Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tọa độ của vectơ trong không gian (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm tọa độ điểm đối xứng

    Trong không gian Oxyz, cho A(1;2;3). Điểm đối xứng với A qua trục Oz có tọa độ là

    Hướng dẫn:

    Điểm đối xứng với A qua trục Oz có tọa độ là ( - 1; - 2;3).

  • Câu 2: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm A(1;1; - 1)B(2;3;2). Vectơ \overrightarrow{AB} có tọa độ là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{AB} = (2 - 1;3 - 1;2 +
1) = (1;2;3)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(1;2;3).

  • Câu 3: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm M(0;3; - 2)N(2; - 1;0). Vectơ \overrightarrow{MN} có tọa độ là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{MN} = (2 - 0; - 1 - 3;0
+ 2) = (2; - 4;2)

    Vậy đáp án đúng là: \overrightarrow{MN} =
(2; - 4;2).

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hình lập phương ABCD.A'B'C'D' có độ dài cạnh bằng 1 như hình vẽ.

    Tọa độ của vectơ \overrightarrow{AC}

    Hướng dẫn:

    Ta có: A(0;0;0),C(1;1;0) ightarrow
\overrightarrow{AC} = (1;1;0)

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, hình chiếu vuông góc của điểm A(8;1;2) trên trục Ox có tọa độ là

    Hướng dẫn:

    Hình chiếu vuông góc của điểm A(8;1;2) trên trục Ox (8;0;0).

  • Câu 6: Nhận biết
    Tìm tọa độ hình chiếu điểm A

    Trong không gian Oxyz, hình chiếu vuông góc của điểm A(1\ ;\ 2\ ;\
3) trên mặt phẳng (Oxz)

    Hướng dẫn:

    Tọa độ hình chiếu của điểm A trên mặt phẳng (Oxz) là: (1;0;3).

  • Câu 7: Nhận biết
    Tìm tọa độ hình chiếu vuông góc của A

    Trong không gian Oxyz, cho điểm A(1;1;1). Tìm tọa độ hình chiếu vuông góc của A trên mặt phẳng (Oxz).

    Hướng dẫn:

    A(1;1;1) nên tọa độ hình chiếu vuông góc của A trên mặt phẳng (Oxz)(1;0;1).

  • Câu 8: Nhận biết
    Tìm tọa độ hình chiếu

    Trong không gian tọa độ Oxyz cho điểm A(3; - 2;5). Hình chiếu vuông góc của điểm A trên mặt phẳng (Oxz) là:

    Hướng dẫn:

    Hình chiếu vuông góc của điểm A(3; -
2;5) trên mặt phẳng (Oxz) là điểm có tọa độ (3;0;5).

  • Câu 9: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho hai véc tơ \overrightarrow{u} = ( - 3;0;1)\overrightarrow{v} = (0;2; - 2). Tọa độ của véc tơ \overrightarrow{w} =
2\overrightarrow{u} - \overrightarrow{v} tương ứng là:

    Hướng dẫn:

    Ta có: 2\overrightarrow{u} = ( -
6;0;2).

    \overrightarrow{v} = (0;2; -
2).

    Suy ra \overrightarrow{w} = ( - 6 - 0;0 -
2;2 + 2) = ( - 6; - 2;4).

  • Câu 10: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm A(1; - 1; - 3)B( - 2;2;1). Vectơ \overrightarrow{AB} có tọa độ là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{AB} = ( - 2 - 1;2 + 1;1
+ 3) = ( - 3;3;4)

    Vậy đáp án đúng là: \overrightarrow{AB} =
( - 3;3;4).

  • Câu 11: Thông hiểu
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 1; - 1;3), B(0;2;0) C(5; - 2;1). Điểm D(a;b;c) sao cho tứ giác ABCD là hình bình hành. Tính S = a + b + c?

    Đáp án: 3

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 1; - 1;3), B(0;2;0) C(5; - 2;1). Điểm D(a;b;c) sao cho tứ giác ABCD là hình bình hành. Tính S = a + b + c?

    Đáp án: 3

    Gọi D = (x;y;z) \Rightarrow \overrightarrow{DC} = (5 - x; - 2 -
y;1 - z)

    Ta có: \overrightarrow{AB} = (1;3; -
3)

    ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Rightarrow \left\{ \begin{matrix}
5 - x = 1 \\
- 2 - y = 3 \\
1 - z = - 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 5 \\
z = 4 \\
\end{matrix} ight.\  \Rightarrow D(4; - 5;4).

    Vậy S = a + b + c = 3.

  • Câu 12: Thông hiểu
    Tìm tọa độ điểm N

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(4;1; - 2) và vectơ \overrightarrow{u} = (4; - 2;6). Tìm toạ độ điểm N biết rằng \overrightarrow{MN} = -
\frac{1}{2}\overrightarrow{u}.

    Hướng dẫn:

    Ta có: - \frac{1}{2}\overrightarrow{u} =
( - 2;1; - 3).

    Gọi N(x;\ y;\ z). Ta có \overrightarrow{MN} = (x - 4;y - 1;z +
2).

    Khi đó \overrightarrow{MN} = -
\frac{1}{2}\overrightarrow{u} \Leftrightarrow \left\{ \begin{matrix}
x - 4 = - 2 \\
y - 1 = 1 \\
z + 2 = - 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 2 \\
z = - 5 \\
\end{matrix} \right..

    Vậy N(2;\ 2;\  - 5).

  • Câu 13: Thông hiểu
    Tìm tọa độ điểm D thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(0; - 1;1),B( - 2;1; - 1),C( - 1;3;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{BA} =
\overrightarrow{CD}

    \Leftrightarrow \left\{ \begin{matrix}
x + 1 = 2 \\
y - 3 = - 2 \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 4 \\
\end{matrix} ight.. Vậy tọa độ điểm D(1;1;4)

  • Câu 14: Thông hiểu
    Tìm tọa độ điểm B

    Trong không gian với hệ trục tọa độ Oxyz, cho  A(1;2; - 1);\overrightarrow{AB} =(1;3;1), khi đó tọa độ điểm B là:

    Hướng dẫn:

    Gọi B(x;y;z) ta có:

    A(1;2; - 1);\overrightarrow{AB} =(1;3;1) khi đó \left\{\begin{matrix}x - 1 = 1 \\y - 2 = 3 \\z + 1 = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = 5 \\z = 0 \\\end{matrix} ight. nên tọa độ điểm cần tìm là B(2;5;0).

  • Câu 15: Thông hiểu
    Tìm tọa độ điểm B’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCCD.A'B'C'D'. Biết A(2;4;0),B(4;0;0),C( -
1;4;7),D'(6;8;10). Tọa độ điểm B' là:

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AD} =
\overrightarrow{BC} = ( - 5;4;7) \Rightarrow D( - 3;8; - 7)

    \overrightarrow{BD} =
\overrightarrow{B'D'} = ( - 7;8; - 7) \Rightarrow
B'(13;0;17)

  • Câu 16: Nhận biết
    Tìm tọa độ vecto

    Trong không gian Oxyz, cho \ \overrightarrow{b} = 4\overrightarrow{j} -
\overrightarrow{i}. Tọa độ \
\overrightarrow{b} bằng?

    Hướng dẫn:

    Ta có: \overrightarrow{b} =
4\overrightarrow{j} - \overrightarrow{i} = ( - 1;4;0)

  • Câu 17: Nhận biết
    Tìm tọa độ hình chiếu của M trên Ox

    Trong không gian Oxyz, cho điểm M(1;2;3). Tìm tọa độ hình chiếu M lên trục Ox.

    Hướng dẫn:

    Tọa độ hình chiếu của điểm M trên trục Ox là (1;0;0)

  • Câu 18: Nhận biết
    Xác định tọa độ điểm trong không gian

    Trong không gian Oxyz, điểm đối xứng của điểm M(1;2;3) qua trục Ox có tọa độ là

    Hướng dẫn:

    Gọi M' là điểm đối xứng của M(1;2;3) qua trục Ox.

    Hình chiếu vuông góc của M(1;2;3) lên trục OxH(1;0;0)

    Khi đó H(1;0;0) là trung điểm của M'M. Do đó tọa độ của M'(1;
- 2; - 3)

  • Câu 19: Nhận biết
    Tìm tọa độ vectơ

    Cho\overrightarrow{AB} =
(1;3;2). Tọa độ của \overrightarrow{a} = 2\overrightarrow{AB} là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} = 2 \cdot
\overrightarrow{AB} = (2.1;2.3;2.2) = (2;6;4)

  • Câu 20: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm A(2;3; - 1)B( - 4;1;9). Tìm tọa độ vectơ \overrightarrow{AB} ?

    Hướng dẫn:

    Ta có:

    \overrightarrow{AB} = ( - 4 - 2;1 - 3;9
+ 1) = ( - 6; - 2;10)

    Vậy đáp án đúng là: \overrightarrow{AB} =
( - 6; - 2;10).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo