Trong không gian cho điểm
. Tìm tọa độ hình chiếu vuông góc của
trên mặt phẳng
.
Vì nên tọa độ hình chiếu vuông góc của
trên mặt phẳng
là
.
Trong không gian cho điểm
. Tìm tọa độ hình chiếu vuông góc của
trên mặt phẳng
.
Vì nên tọa độ hình chiếu vuông góc của
trên mặt phẳng
là
.
Trong không gian cho
. Tọa độ của
là
Ta có:
Trong không gian với hệ trục tọa độ , cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có:
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Trong không gian , cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian , cho điểm
thỏa mãn
. Tọa độ điểm
bằng
Ta có:
Trong không gian , cho điểm
. Hình chiếu vuông góc của
trên mặt phẳng
là điểm
. Khi đó giá trị
bằng:
Hình chiếu vuông góc của trên mặt phẳng
là
Suy ra .
Trong không gian hệ trục tọa độ , cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian , cho điểm
. Tìm tọa độ hình chiếu M lên trục
.
Tọa độ hình chiếu của điểm M trên trục Ox là
Trong không gian với hệ trục tọa độ , cho
,
,
. Tìm tọa độ của vectơ
.
Ta có:
.
Trong không gian , điểm nào sau đây nằm trên mặt phẳng tọa độ
?
Điểm thuộc có
. Vậy điểm cần tìm được là:
.
Trong không gian , cho
và
. Vectơ
có tọa độ là
Có , gọi
Vậy
Trong không gian , cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian , cho điểm
. Tọa độ trung điểm của
là.
Tọa độ trung điểm I của AB là:
Trong không gian , cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian , điểm nào sau đây thuộc mặt phẳng
?
Do điểm thuộc mặt phẳng nên điểm đó có tọa độ dạng
Suy ra điểm là đáp án cần tìm.
Trong không gian tọa độ , hình chiếu vuông góc của điểm
trên trục
có tọa độ là:
Hình chiếu vuông góc của điểm trên trục
là điểm có tọa độ
.
Trong không gian với hệ tọa độ , cho vectơ
và điểm
. Tọa độ điểm
thỏa mãn
là:
Gọi tọa độ điểm là
, ta có:
.
Ta có:
.
Vậy .
Trong không gian , cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.
Cho. Tọa độ của
là:
Ta có:
Hình chiếu vuông góc của điểm trên mặt phẳng
là:
Hình chiếu vuông góc của điểm trên mặt phẳng
là điểm có tọa độ
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: