Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 8 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho ba điểm A(5;1;5),B(4;3;2),C( - 3; -
2;1) và điểm I(a;b;c) là tâm đường tròn ngoại tiếp tam giác ABC. Tính giá trị biểu thức H = a + 2b + c?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;2; - 3) \\
\overrightarrow{BC} = ( - 7; - 5; - 1) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{BC} = 0 nên tam giác ABC vuông tại B

    Suy ra tâm I của đường tròn ngoại tiếp của tam giác ABC là trung điểm của cạnh huyền AC.

    \Rightarrow I\left( 1; - \frac{1}{2};3ight) \Rightarrow \left\{ \begin{matrix}a = 1 \\b = - \dfrac{1}{2} \\c = 3 \\\end{matrix} ight.\  \Rightarrow H = a + 2b + c = 3

    Vậy đáp án cần tìm là H = 3

  • Câu 2: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Vận dụng
    Ghi đáp án đúng vào ô trống

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Gọi Q(x;y;z) là tọa độ của máy bay sau 5 phút tiếp theo.

    \overrightarrow{MN} =
(300;100;2)

    \overrightarrow{NQ} = (x - 800;y - 300;z
- 10)

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M ightarrow N gấp 4 lần thời gian bay từ N ightarrow Q nên MN = 4NQ

    Mặt khác, máy bay giữ nguyên hướng bay nên \overrightarrow{MN}\overrightarrow{NQ} cùng hướng.

    Suy ra \overrightarrow{MN} =
4\overrightarrow{NQ} \Leftrightarrow \left\{ \begin{matrix}
300 = 4(x - 800) \\
100 = 4(y - 300) \\
2 = 4(z - 10) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 875 \\
y = 325 \\
z = 10,5 \\
\end{matrix} ight.\  \Rightarrow Q\left( 875;325;\frac{21}{2}
ight)

    Tọa độ của máy bay sau 5 phút tiếp theo là \left( 875;325;\frac{21}{2} ight) \Rightarrow a
= 875,\ \ b = 325,\ \ c = 21,\ \ d = 2.

    Do đó, a + b + c + d = 1223.

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Trong không gian hệ trục tọa độ Oxyz, cho A(a;0;0),B(0;b;0),C(0;0;c). Gọi G là trọng tâm tam giác ABC. Tính độ dài đoạn thẳng OG?

    Hướng dẫn:

    G là trọng tâm tam giác ABC nên tọa độ điểm G\left( \frac{a}{3};\frac{b}{3};\frac{c}{3}
ight) hay \overrightarrow{OG} =
\left( \frac{a}{3};\frac{b}{3};\frac{c}{3} ight)

    Vậy OG = \frac{1}{3}\sqrt{a^{2} + b^{2} +
c^{2}}.

  • Câu 5: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian Oxyz, cho các điểm M( - 2;6;1),M'(a;b;c) đối xứng nhau qua mặt phẳng (Oyz). Tính giá trị biểu thức S = 7a - 2b + 2017c -
1?

    Hướng dẫn:

    Gọi H là hình chiếu của M trên mặt phẳng (Oyz) suy ra H(0; 6; 1)

    Do M’ đối xứng với M qua (Oyz) nên MM’ nhận H làm trung điểm suy ra M’(2; 6; 1) suy ra a = 2; b = 6; c = 1

    Vậy S = 7a - 2b + 2017c - 1 =
2018.

  • Câu 6: Thông hiểu
    Tìm điều kiện tham số m thỏa mãn yêu cầu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1; -
1)\overrightarrow{b} =
(1;3;m). Xác định giá trị tham số m để \left(
\overrightarrow{a};\overrightarrow{b} ight) = 90^{0}?

    Hướng dẫn:

    Ta có: \left(
\overrightarrow{a};\overrightarrow{b} ight) = 90^{0} \Leftrightarrow
\overrightarrow{a}.\overrightarrow{b} = 0 \Leftrightarrow 5 - m = 0
\Leftrightarrow m = 5

    Vậy m = 5 là giá trị cần tìm.

  • Câu 7: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị nằm trên các trục tọa độ Ox,Oy,Oz\overrightarrow{u} là một vecto tùy ý khác \overrightarrow{0}.

    Tính T = \cos^{2}(\overrightarrow{u},\overrightarrow{i})+ \cos^{2}(\overrightarrow{u},\overrightarrow{j}) +\cos^{2}(\overrightarrow{u},\overrightarrow{k})

    Đáp án: 1

    Giả sử \overrightarrow{u} =
(x,y,z).

    Ta có \overrightarrow{i}(1,0,0);\overrightarrow{j}(0,1,0);\overrightarrow{k}(0,0,1)

    cos^{2}(\overrightarrow{u},\overrightarrow{i}) +
cos^{2}(\overrightarrow{u},\overrightarrow{j}) +
cos^{2}(\overrightarrow{u},\overrightarrow{k})

    = \left( \frac{x}{\sqrt{x^{2} + y^{2} +
z^{2}}} ight)^{2} + \left( \frac{y}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2} + \left( \frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}}
ight)^{2}

    = \frac{x^{2} + y^{2} + z^{2}}{x^{2} +
y^{2} + z^{2}} = 1

    Vậy T = 1

  • Câu 8: Nhận biết
    Xác định tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1; -
2;3);\overrightarrow{v} = ( - 1;2;0). Vectơ \overrightarrow{u} + \overrightarrow{v} có tọa độ là:

    Hướng dẫn:

    Ta có: \overrightarrow{u} +
\overrightarrow{v} = \left( 1 + ( - 1); - 2 + 2;3 + 0 ight) =
(0;0;3)

    Vậy đáp án cần tìm là (0;0;3)

  • Câu 9: Nhận biết
    Tính cosin của hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1;0)\overrightarrow{b} = ( - 1;0; -
2). Tính \cos\left(
\overrightarrow{a};\overrightarrow{b} ight)?

    Hướng dẫn:

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{-
2}{\sqrt{5}.\sqrt{5}} = - \frac{2}{5}

  • Câu 10: Thông hiểu
    Tìm tọa độ điểm cách đều A và B

    Trong không gian Oxyz, tìm tọa độ điểm M trên trục Ox cách đều hai điểm A(1;2; - 1)B(2;1;2)?

    Hướng dẫn:

    Ta có: M \in Ox \Rightarrow
M(m;0;0)

    Theo bài ra ta có:

    MA = MB \Leftrightarrow MA^{2} =
MB^{2}

    \Leftrightarrow (m - 1)^{2} + 2^{2} +
1^{2} = (m - 2)^{2} + 1^{2} + 2^{2}

    \Leftrightarrow (m - 1)^{2} = (m -
2)^{2} \Leftrightarrow \left\lbrack \begin{matrix}
m - 1 = m - 2 \\
m - 1 = 2 - m \\
\end{matrix} ight.

    \Leftrightarrow m = \frac{3}{2}
\Rightarrow M\left( \frac{3}{2};0;0 ight).

  • Câu 11: Thông hiểu
    Chọn khẳng định đúng

    Biết \overrightarrow{c} =
(x;y;z) khác \overrightarrow{0} và vuông góc với cả hai vectơ \overrightarrow{a} =
(1;3;4);\overrightarrow{b} = ( - 1;2;3). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Theo đề bài ta có: \overrightarrow{c} =
(x;y;z) khác \overrightarrow{0} và vuông góc với cả hai vectơ \overrightarrow{a} =
(1;3;4);\overrightarrow{b} = ( - 1;2;3) nên

    \left\{ \begin{matrix}
\overrightarrow{a}.\overrightarrow{c} = 0 \\
\overrightarrow{b}.\overrightarrow{c} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + 3y + 4z = 0 \\
- x + 2y + 3z = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x + 3y + 4z = 0 \\5y + 7z = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x + 3y + 4.\dfrac{- 5}{7}y = 0 \\z = - \dfrac{5}{7}y \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
7x + y = 0 \\
5y + 7z = 0 \\
\end{matrix} ight.

    Vậy khẳng định đúng là 7x + y =
0

  • Câu 12: Thông hiểu
    Tính số đo góc B

    Trong không gian hệ trục tọa độ Oxyz, cho tam giác ABC có tọa các điểm A( - 1; - 2;4),B( - 4; - 2;0),C(3; -
2;1). Tính số đo góc B?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BA} = (3;0;4) \\
\overrightarrow{BC} = (7;0;1) \\
\end{matrix} ight.

    \Rightarrow \cos\widehat{B} = \cos\left(
\overrightarrow{BA};\overrightarrow{BC} ight) =
\frac{\overrightarrow{BA}.\overrightarrow{BC}}{\left|
\overrightarrow{BA} ight|.\left| \overrightarrow{BC}
ight|}

    = \frac{3.7 + 0.0 + 4.1}{\sqrt{3^{2} +
0^{2} + 4^{2}}.\sqrt{7^{2} + 0^{2} + 1^{2}}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \widehat{B} =
45^{0}

  • Câu 13: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Trong không gian Oxyz, cho ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Các khẳng định sau là đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} = -
27. Sai||Đúng

    b) \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{9}{2\sqrt{35}}. Sai||Đúng

    c) \overrightarrow{AC}.\overrightarrow{CB} =
15. Đúng||Sai

    d) \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{5}{2\sqrt{21}}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Các khẳng định sau là đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} = -
27. Sai||Đúng

    b) \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{9}{2\sqrt{35}}. Sai||Đúng

    c) \overrightarrow{AC}.\overrightarrow{CB} =
15. Đúng||Sai

    d) \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{5}{2\sqrt{21}}. Đúng||Sai

    Ta có \overrightarrow{AB} = (1;5; -
2),\overrightarrow{AC} = (5;4; - 1),\overrightarrow{AC} = (4; -
1;1).

    Ta có:

    \overrightarrow{AB}.\overrightarrow{AC} = 5 + 20 +
2 = 27.

    Ta có:

    \overrightarrow{AC}.\overrightarrow{CB} = 5.( - 4)
+ 4.1 + ( - 1).( - 1) = - 15.

    Ta có:

    \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB} ight|.|\overrightarrow{AC}|} =\frac{27}{\sqrt{30}.\sqrt{42}} = \frac{9}{2\sqrt{35}}.

    Ta có:

    \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{\overrightarrow{AB}.\overrightarrow{BC}}{\left|\overrightarrow{AB} ight||\overrightarrow{BC}|} =\frac{15}{\sqrt{42}.\sqrt{18}} = \frac{5}{2\sqrt{21}}.

  • Câu 14: Thông hiểu
    Định các giá trị tham số m

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm M(2;3; - 1),N( - 1;1;1),P(1;m - 1;2). Tìm giá trị của tham số m để tam giác MNP vuông tại N?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MN} = ( - 3; - 2;2) \\
\overrightarrow{NP} = (2;m - 2;1) \\
\end{matrix} ight..

    Tam giác MNP vuông tại N \Leftrightarrow
\overrightarrow{MN}.\overrightarrow{NP} = 0 \Leftrightarrow - 6 - 2(m -
2) + 2 = 0 \Leftrightarrow m = 0

    Vậy đáp án cần tìm là m = 0.

  • Câu 15: Thông hiểu
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho \overrightarrow{AO} = \overrightarrow{i} -
2\overrightarrow{j} + 3\overrightarrow{k}, điểm B(3\ ;\  - 4\ ;\ 1) C(2\ ;\ 0\ ;\  - 1)

    điểm D(a\ ;\ b\ ;\ c) sao cho B là trọng tâm tam giác ACD. Khi đó P
= a + b + c bằng

    Hướng dẫn:

    Ta có: P = a + b + c = 1

  • Câu 16: Thông hiểu
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm A(1;3; - 1),B(3; - 1;5). Tìm tọa độ điểm M thỏa mãn hệ thức \overrightarrow{MA} =
3\overrightarrow{MB}?

    Hướng dẫn:

    Ta có: \overrightarrow{MA} =3\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} - 3x_{B}}{1 - 3} = 4 \\y_{M} = \dfrac{y_{A} - 3y_{B}}{1 - 3} = - 3 \\z_{M} = \dfrac{z_{A} - 3z_{B}}{1 - 3} = 8 \\\end{matrix} ight.\  \Rightarrow M(4; - 3;8)

  • Câu 17: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz cho \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thỏa mãn \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.. Tìm tọa độ \overrightarrow{x}?

    Hướng dẫn:

    Giả sử \overrightarrow{x} =
(x;y;z), khi đó:

    \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2x - y + 3z = 4 \\
x - 3y + 2z = - 5 \\
3x + 2y - 4z = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
(2;3;1)

  • Câu 18: Thông hiểu
    Xác định tọa độ vectơ

    Trong không gian Oxyz, véctơ \overrightarrow{u} vuông góc với hai véctơ \overrightarrow{a} = (1 ; 1 ;1) và \overrightarrow{b} = (1\ ; -
1\ ;3); đồng thời \overrightarrow{u} tạo với tia Oz một góc tù và độ dài véctơ \overrightarrow{u} bằng 3. Tìm véctơ \overrightarrow{u}.

    Hướng dẫn:

    Ta có \overrightarrow{a}\overrightarrow{b} không cùng phương đồng thời

    \left\{ \begin{matrix}
\overrightarrow{\mathbf{u}}\mathbf{\bot}\overrightarrow{\mathbf{a}} \\
\overrightarrow{\mathbf{u}}\mathbf{\bot}\overrightarrow{\mathbf{b}} \\
\end{matrix} ight.\mathbf{\Rightarrow}\overrightarrow{\mathbf{u}}\mathbf{\
}\mathbf{//}\mathbf{\ }\left\lbrack \overrightarrow{\mathbf{a}}\mathbf{\
}\mathbf{,}\mathbf{\ }\overrightarrow{\mathbf{b}}
ightbrack\mathbf{=}\left( \mathbf{4}\mathbf{\
}\mathbf{;}\mathbf{\  -}\mathbf{2}\mathbf{\
}\mathbf{;}\mathbf{\  -}\mathbf{2}
ight)\mathbf{\Rightarrow}\overrightarrow{\mathbf{u}}\mathbf{=}\left(
\mathbf{2}\mathbf{k\ }\mathbf{;}\mathbf{\  - k\ }\mathbf{;}\mathbf{\  -
k} ight).

    Do \left| \overrightarrow{u} ight| = 3\Leftrightarrow \sqrt{4k^{2} + k^{2} + k^{2}} = 3\Leftrightarrow k =\pm \frac{\sqrt{6}}{2}.

    Mặt khác \overrightarrow{u} tạo với tia Oz một góc tù nên

    \cos\left(
\overrightarrow{u},\overrightarrow{k} ight) < 0 \Leftrightarrow
\overrightarrow{u}.\overrightarrow{k} < 0\Leftrightarrow 2k.0 + ( -
k).1 < 0 \Leftrightarrow ( - k).1 < 0 \Leftrightarrow k >
0.

    Suy ra k =
\frac{\sqrt{6}}{2}.

    Vậy \overrightarrow{u} = \left( \sqrt{6}\
;\  - \frac{\sqrt{6}}{2}\ ;\ \frac{\sqrt{6}}{2} ight).

  • Câu 19: Thông hiểu
    Tìm tọa độ điểm A’

    Trong không gian Oxyz, cho điểm A(2; - 3;5). Tìm tọa độ điểm A' đối xứng với A qua trục Oy?

    Hướng dẫn:

    Gọi H là hình chiếu vuông góc của A(2; -
3;5) lên Oy suy ra H(0; - 3;0)

    Khi đó H là trung điểm của AA' nên

    \left\{ \begin{matrix}
x_{A'} = 2x_{H} - x_{A} \\
y_{A'} = 2y_{H} - y_{A} \\
z_{A'} = 2z_{H} - z_{A} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{A'} = 2 \\
y_{A'} = - 3 \\
z_{A'} = - 5 \\
\end{matrix} ight.\  \Rightarrow A'( - 2; - 3; - 5)

  • Câu 20: Vận dụng
    Ghi đáp án vào ô trống

    Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài 10\ m, chiều rộng 6\ m và cao 4\ m. Người ta trang trí một chiếc đèn chùm I ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn J treo chính giữa bức tường 6\ m và cách trần nhà 1\ m. Hỏi hai chiếc bóng đèn I,Jcách nhau bao nhiêu m? (Làm tròn đến hàng phần mười).

    Đáp án: 5,1

    Đáp án là:

    Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài 10\ m, chiều rộng 6\ m và cao 4\ m. Người ta trang trí một chiếc đèn chùm I ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn J treo chính giữa bức tường 6\ m và cách trần nhà 1\ m. Hỏi hai chiếc bóng đèn I,Jcách nhau bao nhiêu m? (Làm tròn đến hàng phần mười).

    Đáp án: 5,1

    Hình vẽ minh họa

    Chọn hệ trục tọa độ như hình vẽ. Khi đó ta có tọa độ các điểm A(6;0;0),B(0;10;0),C(0;0;4).

    Từ đó ta suy ra tọa độ các điểm D(6;10;0),F(6;10;4).

    Đèn chùm I được đặt tại vị trí chính giữa trần nhà có dạng hình chữ nhật nên vị trí đặt là trung điểm của hai đường chéo CFEG nên ta có I(3;5;4)

    Gọi J_{1} là hình chiếu của bóng đèn J lên nền nhà. Khi đó J_{1} là trung điểm của BD nên J_{1}(3;10;0), do đó J(3;10;3).

    Vậy ta tính được

    \overrightarrow{IJ} = (0;5; - 1)
\Rightarrow IJ = \left| \overrightarrow{IJ} ight| = \sqrt{5^{2} + ( -
1)^{2}} = \sqrt{26} \approx 5,1\ (m)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo