Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 8 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm tọa độ điểm D

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(3; - 4;0),B( - 1;1;3),C(3;1;0). Xác định tọa độ điểm D \in Ox sao cho AD = BC?

    Hướng dẫn:

    Ta có: D(x;0;0) \in Ox

    AD = BC \Leftrightarrow \sqrt{(x -
3)^{2} + 16} = 5

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow D(0;0;0) \\
x = 6 \Rightarrow D(6;0;0) \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: D(0;0;0) hoặc D(6;0;0)

  • Câu 2: Thông hiểu
    Tìm điều kiện tham số m thỏa mãn yêu cầu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1; -
1)\overrightarrow{b} =
(1;3;m). Xác định giá trị tham số m để \left(
\overrightarrow{a};\overrightarrow{b} ight) = 90^{0}?

    Hướng dẫn:

    Ta có: \left(
\overrightarrow{a};\overrightarrow{b} ight) = 90^{0} \Leftrightarrow
\overrightarrow{a}.\overrightarrow{b} = 0 \Leftrightarrow 5 - m = 0
\Leftrightarrow m = 5

    Vậy m = 5 là giá trị cần tìm.

  • Câu 3: Thông hiểu
    Xác định các giá trị nguyên dương của tham số

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (5;3; -
2);\overrightarrow{b} = (m; - 1;m + 3). Có tất cả bao nhiêu giá trị nguyên dương của tham số m để góc giữa hai vectơ \overrightarrow{a};\overrightarrow{b} là góc tù?

    Hướng dẫn:

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{3m -
9}{\sqrt{38}.\sqrt{2m^{2} + 6m + 10}}

    Góc giữa hai vectơ \overrightarrow{a};\overrightarrow{b} là góc tù khi và chỉ khi

    \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) < 0 \Leftrightarrow
\frac{3m - 9}{\sqrt{38}.\sqrt{2m^{2} + 6m + 10}} < 0

    \Leftrightarrow 3m - 9 < 0
\Leftrightarrow m < 3

    m \in \mathbb{Z}^{+} \Rightarrow m =
\left\{ 1;2 ight\}

    Suy ra có 2 giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán.

    Vậy đáp án cần tìm là 2.

  • Câu 4: Thông hiểu
    Xác định tọa độ điểm A’

    Trong không gian Oxyz, cho hình hộp ABCD.A'B'C'D' biết A(1;0;1), B(2;1;2), D(1; - 1;1), C'(4;5; - 5). Tọa độ của điểm A' là:

    Hướng dẫn:

    Gọi A'(a;b;c)

    ABCD.A'B'C'D' là hình hộp \Rightarrow
\overrightarrow{AC'} = \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'}

    \Leftrightarrow \overrightarrow{AA'}
= \overrightarrow{AC'} - \overrightarrow{AB} -
\overrightarrow{AD}

    \overrightarrow{AB} = (1;1;1), \overrightarrow{AD} = (0; - 1;0), \overrightarrow{AC'} = (3;5; -
6)

    \overrightarrow{AC'} -
\overrightarrow{AB} - \overrightarrow{AD} = (2;5; - 7)

    \overrightarrow{AA'} = (a - 1;b;c -
1)

    (1) \Leftrightarrow \left\{
\begin{matrix}
a - 1 = 2 \\
b = 5 \\
c - 1 = - 7 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 5 \\
c = - 6 \\
\end{matrix} ight.. Vậy: A'(3;5; - 6).

  • Câu 5: Thông hiểu
    Xác định tham số m theo yêu cầu

    Trong không gian Oxyz, cho các vec tơ \overrightarrow{a} = (5;3; -
2)\overrightarrow{b} = (m; -
1;m + 3). Có bao nhiêu giá trị nguyên dương của m để góc giữa hai vec tơ \overrightarrow{a}\overrightarrow{b} là góc tù?

    Hướng dẫn:

    Ta có \cos\left( \overrightarrow{a};\
\overrightarrow{b} ight) = \frac{\overrightarrow{a}.\
\overrightarrow{b}}{\left| \overrightarrow{a} ight|.\left|
\overrightarrow{b} ight|} = \frac{3m - 9}{\sqrt{38}.\sqrt{2m^{2} + 6m
+ 10}}.

    Góc giữa hai vec tơ \overrightarrow{a}\overrightarrow{b} là góc tù khi và chỉ khi

    \cos\left( \overrightarrow{a};\
\overrightarrow{b} ight) < 0 \Leftrightarrow 3m - 9 < 0
\Leftrightarrow m < 3.

    m nguyên dương nên m \in \left\{ 1;\ 2 ight\}.

    Vậy có 2 giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 6: Nhận biết
    Chọn khẳng định đúng

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;2;3)\overrightarrow{v} = ( - 5;1;1). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1.( - 5) +2.1 + 3.1 = 0 \Rightarrow\overrightarrow{u}\bot\overrightarrow{v}

    Vậy khẳng định đúng là \overrightarrow{u}\bot\overrightarrow{v}

  • Câu 7: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz cho \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thỏa mãn \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.. Tìm tọa độ \overrightarrow{x}?

    Hướng dẫn:

    Giả sử \overrightarrow{x} =
(x;y;z), khi đó:

    \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2x - y + 3z = 4 \\
x - 3y + 2z = - 5 \\
3x + 2y - 4z = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
(2;3;1)

  • Câu 8: Thông hiểu
    Xác định chu vi tam giác

    Trong không gian với hệ trục tọa độ Oxyz, cho tọa độ hai điểm A(3;0;0),B(0;0;4). Tính chu vi tam giác OAB?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{OA} = (3;0;0) \Rightarrow OA = 3 \\
\overrightarrow{OB} = (0;0;4) \Rightarrow OB = 4 \\
\overrightarrow{AB} = ( - 3;0;4) \Rightarrow AB = 5 \\
\end{matrix} ight.

    Chu vi tam giác OAB là:

    C = OA + OB + AB = 3 + 4 + 5 =
12

    Vậy đáp án đúng là: 12.

  • Câu 9: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian Oxyz, cho các điểm M( - 2;6;1),M'(a;b;c) đối xứng nhau qua mặt phẳng (Oyz). Tính giá trị biểu thức S = 7a - 2b + 2017c -
1?

    Hướng dẫn:

    Gọi H là hình chiếu của M trên mặt phẳng (Oyz) suy ra H(0; 6; 1)

    Do M’ đối xứng với M qua (Oyz) nên MM’ nhận H làm trung điểm suy ra M’(2; 6; 1) suy ra a = 2; b = 6; c = 1

    Vậy S = 7a - 2b + 2017c - 1 =
2018.

  • Câu 10: Thông hiểu
    Tìm số khẳng định đúng

    Trong không gian Oxyz, cho tọa độ các điểm A(1;2;0),B(2;1;1),C(0;3; -
1). Cho các khẳng định sau:

    (I) BC = 2AB.

    (II) B \in AC.

    (III) Ba điểm A;B;C tạo thành một tam giác.

    (IV) Ba điểm A;B;C thẳng hàng.

    Trong các khẳng định trên, có bao nhiêu khẳng định đúng.

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1;1) \\
\overrightarrow{AC} = ( - 1;1; - 1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{AC} = -
\overrightarrow{AB} nên A là trung điểm của BC và ba điểm A;B;C thẳng hàng.

    Vậy có 2 khẳng định sai và 2 khẳng định đúng.

  • Câu 11: Thông hiểu
    Tìm tọa độ điểm M

    Trong không gian Oxyz, cho các điểm A(1; - 1;0),B(0;2;0),C(2;1;3). Xác định tọa độ điểm M thỏa mãn \overrightarrow{MA} - \overrightarrow{MB} +
\overrightarrow{MC} = \overrightarrow{0}?

    Hướng dẫn:

    Ta có: \overrightarrow{MA} -
\overrightarrow{MB} + \overrightarrow{MC} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}
(1 - x) - (0 - x) + (2 - x) = 0 \\
( - 1 - y) - (2 - y) + (1 - y) = 0 \\
(0 - z) - (0 - z) + (3 - z) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = - 2 \\
z = 3 \\
\end{matrix} ight.

    \Rightarrow M(3; - 2;3)

  • Câu 12: Vận dụng
    Tìm tọa độ điểm D

    Trong không gian vói hệ trục tọa độ Oxyz, cho hình thang cân ABCD có hai đáy AB, CD thỏa mãn CD = 2AB và diện tích bằng 27, đỉnh A( -
1; - 1;0), phương trình đường thẳng chứa cạnh CD\frac{x
- 2}{2} = \frac{y + 1}{2} = \frac{z - 3}{1} . Tìm tọa độ điểm D biết x_{B} > x_{A}.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi điểm H là hình chiếu vuông góc của A lên đường thẳng CD.

    Khi đó H(2 + 2t; - 1 + 2t;3 + t)\Rightarrow \overrightarrow{AH} = (3 + 2t;2t;3 + t) .

    Đường thẳng CD có vtcp là: \overrightarrow{u}(2;2;1).

    Ta có:

    \overrightarrow{AH}\bot\overrightarrow{u}
\Rightarrow \overrightarrow{AH}.\overrightarrow{u} = 0

    \Rightarrow 2(3 + 2t) + 2.2t + 3 + t = 0

    \Leftrightarrow t = - 1 \Rightarrow H(0; -
3;2) \Rightarrow AH = 3.

    Đường thẳng AB đi qua A và song song với CD \Rightarrow phương trình ABlà: \frac{x
+ 1}{2} = \frac{y + 1}{2} = \frac{z}{1}

    B \in AB \Rightarrow B( - 1 + 2a; - 1 +
2a;a) \Rightarrow AB = 3|a|
\Rightarrow CD = 6|a|

    Theo bài ra ta có:

    S_{ABCD} = \frac{AB +
CD}{2}.AH\Leftrightarrow \frac{3|a| + 6|a|}{2}.3 =
27 \Leftrightarrow |a| = 2
\Leftrightarrow \left\lbrack \begin{matrix}
a = 2 \\
a = - 2 \\
\end{matrix} ight.

    Với a = - 2 \Rightarrow B( - 5; - 5; -
2) .

    Với a = 2 \Rightarrow B(3;3; -
2)

    Ta có: \overrightarrow{DH} =
\frac{1}{2}\overrightarrow{AB} \Rightarrow D( - 2; - 5;1)

  • Câu 13: Vận dụng
    Tìm tọa độ điểm D

    Trong không gian vói hệ trục tọa độ Oxyz, cho hình thang cân ABCD có hai đáy AB, CD thỏa mãn CD = 2AB và diện tích bằng 27, đỉnh A( -
1; - 1;0), phương trình đường thẳng chứa cạnh CD\frac{x
- 2}{2} = \frac{y + 1}{2} = \frac{z - 3}{1} . Tìm tọa độ điểm D biết hoành độ điểm B lớn hơn hoành độ điểm A .

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi điểm H là hình chiếu vuông góc của A lên đường thẳng CD.

    Khi đó H(2 + 2t; - 1 + 2t;3 + t)
\Rightarrow \overrightarrow{AH}(3 + 2t;2t;3 + t) .

    Đường thẳng CDcó vtcp là: \overrightarrow{u}(2;2;1). Ta có:

    \overrightarrow{AH}\bot\overrightarrow{u}
\Rightarrow \overrightarrow{AH}.\overrightarrow{u} = 0 \Rightarrow 2(3 +
2t) + 2.2t + 3 + t = 0 \Leftrightarrow t = - 1 \Rightarrow H(0; - 3;2)
\Rightarrow AH = 3.

    Đường thẳng AB đi qua A và song song với CD \Rightarrow phương trình ABlà: \frac{x
+ 1}{2} = \frac{y + 1}{2} = \frac{z}{1}

    B \in AB \Rightarrow B( - 1 + 2a; - 1 +
2a;a) \Rightarrow AB = 3|a| \Rightarrow CD = 6|a|

    Theo bài ra ta có: S_{ABCD} = \frac{AB +
CD}{2}.AH\Leftrightarrow \frac{3|a| + 6|a|}{2}.3 = 27\Leftrightarrow
|a| = 2 \Leftrightarrow \left\lbrack \begin{matrix}
a = 2 \\
a = - 2 \\
\end{matrix} ight.

    Với a = - 2 \Rightarrow B( - 5; - 5; -
2) . Với a = 2 \Rightarrow B(3;3; -
2)

    Ta có: \overrightarrow{DH} =
2\overrightarrow{AB} \Rightarrow D( - 2; - 5;1)

  • Câu 14: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A( - 2;3;4),B(8; - 5;6). Hình chiếu vuông góc của trung điểm I của đoạn AB trên mặt phẳng (Oyz) là điểm nào dưới đây?

    Hướng dẫn:

    Vì I là trung điểm của đoạn AB nên I(3; -
1;5).

    Khi đó hình chiếu của I lên (Oyz) là M(0; - 1;5).

  • Câu 15: Thông hiểu
    Tìm tọa độ điểm A’

    Trong không gian Oxyz, cho điểm A(2; - 3;5). Tìm tọa độ điểm A' đối xứng với A qua trục Oy?

    Hướng dẫn:

    Gọi H là hình chiếu vuông góc của A(2; -
3;5) lên Oy suy ra H(0; - 3;0)

    Khi đó H là trung điểm của AA' nên

    \left\{ \begin{matrix}
x_{A'} = 2x_{H} - x_{A} \\
y_{A'} = 2y_{H} - y_{A} \\
z_{A'} = 2z_{H} - z_{A} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{A'} = 2 \\
y_{A'} = - 3 \\
z_{A'} = - 5 \\
\end{matrix} ight.\  \Rightarrow A'( - 2; - 3; - 5)

  • Câu 16: Thông hiểu
    Chọn phương án thíchhợp

    Trong không gian Oxyz, cho hai điểm A(2 ;  - 2 ; 1), B(0; 1 ;2). Tọa độ điểm M thuộc mặt phẳng (Oxy) sao cho ba điểm A, B, M thẳng hàng là

    Hướng dẫn:

    Ta có: M \in (Oxy) \Rightarrow M(x\ ;\ y\
;\ 0); \overrightarrow{AB} = ( - 2\
;\ 3\ ;\ 1);\overrightarrow{AM} = (x - 2\ ;\ y + 2\ ;\  -
1).

    Để A, B, M thẳng hàng thì \overrightarrow{AB}\overrightarrow{AM} cùng phương , khi đó :

    \frac{x - 2}{- 2} = \frac{y +
2}{3} = \frac{- 1}{1} \Leftrightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 5 \\
\end{matrix} ight. .

    Vậy M(4\ ;\  - 5\ ;\ 0).

  • Câu 17: Vận dụng
    Tìm tọa độ chân đường phân giác

    Trong không gian Oxyz, cho ba điểm A(1;2; - 1),B(2; - 1;3),C( -
4;7;5). Tọa độ chân đường phân giác của góc B trong tam giác ABC là:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BA} = ( - 1; - 3;4) \Rightarrow BA = \sqrt{26} \\
\overrightarrow{BC} = ( - 6;8;2) \Rightarrow BC = 2\sqrt{26} \\
\end{matrix} ight.

    Gọi D(a;b;c) là chân đường phân giác kẻ từ B lên AC của tam giác ABC.

    Suy ra \frac{DA}{DC} = \frac{BA}{BC}
\Rightarrow \overrightarrow{DA} = -
\frac{1}{2}\overrightarrow{DC}(*)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{DA} = (1 - x;2 - y; - 1 - z) \\
\overrightarrow{DC} = ( - 4 - x;7 - y;5 - z) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}1 - x = - \dfrac{1}{2}( - 4 - x) \\2 - y = - \dfrac{1}{2}(7 - y) \\- 1 - z = - \dfrac{1}{2}(5 - z) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{2}{3} \\y = \dfrac{11}{3} \\z = 1 \\\end{matrix} ight.\  \Rightarrow D\left( - \dfrac{2}{3};\dfrac{11}{3};1ight)

  • Câu 18: Vận dụng
    Ghi đáp án đúng vào ô trống

    Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D'A(0;0;0), B(2;0;0), D( 0 ; 2 ; 0 ), A'(0;0;2). Gọi M,\ N lần lượt là trung điểm của CD,AA' (xem hình vẽ bên dưới). Biết rằng \cos\lbrack
B,MN,D'brack = m, tính giá trị 14m.

    Đáp án: -10

    Đáp án là:

    Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D'A(0;0;0), B(2;0;0), D( 0 ; 2 ; 0 ), A'(0;0;2). Gọi M,\ N lần lượt là trung điểm của CD,AA' (xem hình vẽ bên dưới). Biết rằng \cos\lbrack
B,MN,D'brack = m, tính giá trị 14m.

    Đáp án: -10

    Ta có M,\ N lần lượt là trung điểm của CD,AA', suy ra M(1;\ 2;\ 0),\ N(0;\ 0;\ 1)

    \Rightarrow \overrightarrow{MN} = ( -
1;\  - 2;\ 1)

    \Rightarrow MN:\left\{ \begin{matrix}
x = t \\
y = 2t \\
z = 1 - t \\
\end{matrix} ight.

    Gọi H(t;2t;1 - t);H'(u;2u;1 -
u) thứ tự là hình chiếu của B ; D ' trên MN

    \overrightarrow{BH}(t - 2;2t;1 -
t);\overrightarrow{D'H'}(u;2u - 2; - 1 - u) vuông góc với \overrightarrow{MN} = ( - 1;\  - 2;\
1)

    \Leftrightarrow \left\{ \begin{matrix}
2 - t - 4t + 1 - t = 0 \\
- u - 4u + 4 - 1 - u = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{2} \\
u = \frac{1}{2} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{BH}\left( -
\frac{3}{2};1;\frac{1}{2} ight);\overrightarrow{D'H'}\left(
\frac{1}{2}; - 1; - \frac{3}{2} ight)

    \Rightarrow \cos\lbrack
B,MN,D'brack = \cos\left(
\overrightarrow{BH},\overrightarrow{D'H'} ight)= \frac{-
\frac{3}{4} - 1 - \frac{3}{4}}{\sqrt{\frac{9}{4} + 1 +
\frac{1}{4}}.\sqrt{\frac{9}{4} + 1 + \frac{1}{4}}} = -
\frac{5}{7}

    \Rightarrow \cos\lbrack
B,MN,D'brack = - \frac{5}{7} = m \Rightarrow 14m = -
10

  • Câu 19: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Trong không gian Oxyz, cho tam giác ABCA(2, - 2,1),B( - 4,2,4),C( - 4,0,1). Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?

    a) M\left( - 1,0,\frac{5}{2}
ight) là trung điểm của BC. Sai||Đúng

    b) G(-2,0,2) là trọng tâm tam giác ABC. Đúng||Sai

    c) N(8; - 6; - 2) là điểm đối xứng của B qua A. Đúng||Sai

    d) Tọa độ điểm E( - 14;8;11) thỏa B là trọng tâm tam giác AOE. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho tam giác ABCA(2, - 2,1),B( - 4,2,4),C( - 4,0,1). Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?

    a) M\left( - 1,0,\frac{5}{2}
ight) là trung điểm của BC. Sai||Đúng

    b) G(-2,0,2) là trọng tâm tam giác ABC. Đúng||Sai

    c) N(8; - 6; - 2) là điểm đối xứng của B qua A. Đúng||Sai

    d) Tọa độ điểm E( - 14;8;11) thỏa B là trọng tâm tam giác AOE. Đúng||Sai

    a) Sai: Do tọa độ trung điểm M của đoạn thẳng AB

    M\left( \frac{- 4 + ( - 4)}{2};\frac{2 +0}{2};\frac{4 + 1}{2} ight) hay M\left( - 4;1;\frac{5}{2}ight)

    b) Đúng: Do tọa độ trọng tâm G của tam giác ABC

    G\left( \frac{2 + ( - 4) + ( -4)}{3};\frac{- 2 + 2 + 0}{3};\frac{1 + 4 + 1}{3} ight) hay G(- 2;0;2)

    c) Đúng: N là điểm đối xứng của B qua A thì B là trung điểm AN.

    \left\{ \begin{matrix}x_{B} = \dfrac{x_{A} + x_{N}}{2} \\y_{B} = \dfrac{y_{A} + y_{N}}{2} \\z_{B} = \dfrac{z_{A} + z_{N}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{N} = 2x_{B} - x_{A} \\y_{N} = 2y_{B} - y_{A} \\z_{N} = 2z_{B} - z_{A} \\\end{matrix} ight.\  ight.

     \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 8 \\
y_{N} = - 6 \\
z_{N} = - 2 \\
\end{matrix} ight. \Rightarrow N(8; - 6; - 2) 

    d) Đúng: B là trọng tâm tam giác AOE.

     \left\{ \begin{matrix}x_{B} = \dfrac{x_{A} + x_{O} + x_{E}}{3} \\y_{B} = \dfrac{y_{A} + y_{O} + y_{E}}{3} \\z_{B} = \dfrac{z_{A} + z_{O} + z_{E}}{3} \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x_{E} = 3x_{B} - x_{A} - x_{O} \\
y_{E} = 2y_{B} - y_{A} - y_{O} \\
z_{E} = 3z_{B} - z_{A} - z_{O} \\
\end{matrix} ight. 

    \Leftrightarrow \left\{ \begin{matrix}
x_{E} = - 14 \\
y_{E} = 8 \\
z_{E} = 11 \\
\end{matrix} \Rightarrow E( - 14;8;11) ight.

  • Câu 20: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm B(1;2; - 3),C(7;4 - 2). Tìm tọa độ điểm E thỏa mãn đẳng thức \overrightarrow{CE} =
2\overrightarrow{EB}?

    Hướng dẫn:

    Gọi E(x;y;z)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CE} = (x - 7;y - 4;z + 2) \\
2\overrightarrow{EB} = (2 - 2x;4 - 2y; - 6 - 2z) \\
\end{matrix} ight.

    Theo bài ra ta có:

    \overrightarrow{CE} =2\overrightarrow{EB} \Leftrightarrow \left\{ \begin{matrix}x - 7 = 2 - 2x \\y - 4 = 4 - 2y \\z + 2 = - 6 - 2z \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}x = 3 \\y = \dfrac{8}{3} \\z = - \dfrac{8}{3} \\\end{matrix} ight.\  \Rightarrow E\left( 3;\frac{8}{3}; - \dfrac{8}{3}ight)

    Vậy điểm E có tọa độ là E\left(
3;\frac{8}{3}; - \frac{8}{3} ight).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo