Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 8 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đẳng thức đúng

    Trong không gian hệ trục tọa độ Oxyz, cho các vectơ \overrightarrow{a} = (2;3;1),\overrightarrow{b} =
( - 1;5;2),\overrightarrow{c} = (4; - 1;3),\overrightarrow{x} = ( -
3;22;5). Đẳng thức nào dưới đây đúng?

    Hướng dẫn:

    Đặt \overrightarrow{x} =
m\overrightarrow{a} + n\overrightarrow{b} + p\overrightarrow{c};\left(
m;n;p\mathbb{\in R} ight)

    \Rightarrow ( - 3;22;5) = m(2;3;1) + n(
- 1;5;2) + p(4; - 1;3)

    \Rightarrow \left\{ \begin{matrix}
2m - m + 4p = - 3 \\
3m + 5m - p = 22 \\
m + 2m + 3p = 5 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m = 2 \\
n = 3 \\
p = - 1 \\
\end{matrix} ight.

    Vậy \overrightarrow{x} =
2\overrightarrow{a} + 3\overrightarrow{b} - \overrightarrow{c} là đẳng thức đúng.

  • Câu 2: Vận dụng
    Ghi đáp án vào ô trống

    Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài 10\ m, chiều rộng 6\ m và cao 4\ m. Người ta trang trí một chiếc đèn chùm I ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn J treo chính giữa bức tường 6\ m và cách trần nhà 1\ m. Hỏi hai chiếc bóng đèn I,Jcách nhau bao nhiêu m? (Làm tròn đến hàng phần mười).

    Đáp án: 5,1

    Đáp án là:

    Phòng khách của một ngôi nhà được thiết kế có dạng hình hộp chữ nhật với chiều dài 10\ m, chiều rộng 6\ m và cao 4\ m. Người ta trang trí một chiếc đèn chùm I ngay tại chính giữa trần nhà. Để đảm bảo độ sáng cho căn phòng, chủ nhà còn thiết kế thêm một bóng đèn tròn J treo chính giữa bức tường 6\ m và cách trần nhà 1\ m. Hỏi hai chiếc bóng đèn I,Jcách nhau bao nhiêu m? (Làm tròn đến hàng phần mười).

    Đáp án: 5,1

    Hình vẽ minh họa

    Chọn hệ trục tọa độ như hình vẽ. Khi đó ta có tọa độ các điểm A(6;0;0),B(0;10;0),C(0;0;4).

    Từ đó ta suy ra tọa độ các điểm D(6;10;0),F(6;10;4).

    Đèn chùm I được đặt tại vị trí chính giữa trần nhà có dạng hình chữ nhật nên vị trí đặt là trung điểm của hai đường chéo CFEG nên ta có I(3;5;4)

    Gọi J_{1} là hình chiếu của bóng đèn J lên nền nhà. Khi đó J_{1} là trung điểm của BD nên J_{1}(3;10;0), do đó J(3;10;3).

    Vậy ta tính được

    \overrightarrow{IJ} = (0;5; - 1)
\Rightarrow IJ = \left| \overrightarrow{IJ} ight| = \sqrt{5^{2} + ( -
1)^{2}} = \sqrt{26} \approx 5,1\ (m)

  • Câu 3: Thông hiểu
    Chọn phương án đúng

    Cho hình chóp S.ABCDABCD là hình chữ nhật có AB = 3,AD = 4, SA\bot(ABCD),SA = 5; giá trị của \overrightarrow{SA}.\overrightarrow{BC}

    Hướng dẫn:

    SA \bot \left( {ABCD} ight) \Rightarrow \overrightarrow {SA}  \bot \overrightarrow {BC}  \Rightarrow \overrightarrow {SA} .\overrightarrow {BC}  = 0

  • Câu 4: Thông hiểu
    Tính tổng a và b

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):\ x + y + z - 3 = 0 và đường thẳng d:\frac{x}{1} = \frac{y + 1}{2} =
\frac{z - 2}{- 1}. Gọi \Delta là hình chiếu vuông góc của d trên (\alpha)\overrightarrow{u} = (1;\ a;\ b) là một vectơ chỉ phương của \Delta với a,\ b\mathbb{\in Z}. Tính tổng a + b.

    Hướng dẫn:

    Ta có mặt phẳng (\alpha) nhận vectơ \overrightarrow{n_{\alpha}} = (1;\ 1;\
1) là vectơ pháp tuyến, đường thẳng d đi qua điểm A = (0;\  - 1;\ 2) và nhận \overrightarrow{u_{d}} = (1;\ 2;\  - 1) là vectơ chỉ phương

    Gọi (\beta) là mặt phẳng chứa đường thẳng d và vuông góc với mặt phẳng(\alpha).

    Ta có \overrightarrow{n_{\beta}} =
\overrightarrow{n_{\alpha}} \land \overrightarrow{u_{d}} = ( - 3;\ 2;\
1).

    Khi đó đường thẳng \Delta là giao tuyến của hai mặt phẳng (\alpha)(\beta).

    Do đó một vectơ chỉ phương của đường thẳng \Delta\overrightarrow{u_{\Delta}} =
\overrightarrow{n_{\alpha}} \land \overrightarrow{n_{\beta}} = ( -
1;\  - 4;\ 5).

    \overrightarrow{u} = (1;\ a;\
b) nên a = 4, b = - 5. Vậy a + b = - 1.

  • Câu 5: Nhận biết
    Xác định tọa độ trung điểm

    Tìm tọa độ trung điểm M của đoạn thẳng AB. Biết tọa độ hai điểm A(1;2;3)B(3; - 1;4).

    Hướng dẫn:

    Ta có: M là trung điểm của AB nên tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 3 \\\end{matrix} ight.\  \Rightarrow M(2;1;3)

    Vậy đáp án đúng là: M(2;1;3).

  • Câu 6: Thông hiểu
    Tìm cặp số thực

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (m;2;4),\overrightarrow{b} =
(1;n;2) cùng phương. Tìm cặp số thực (m;n)?

    Hướng dẫn:

    Ta có hai vectơ \overrightarrow{a} =
(m;2;4),\overrightarrow{b} = (1;n;2) cùng phương

    \Leftrightarrow \frac{m}{1} =
\frac{2}{n} = \frac{4}{2} \Leftrightarrow \left\{ \begin{matrix}
m = 2 \\
n = 1 \\
\end{matrix} ight.

    Vậy (m;n) = (2;1).

  • Câu 7: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu
    Chọn mệnh đề sai

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (2; - 2; - 4)\overrightarrow{b} = (1; - 1;1). Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = (3; - 3; - 3) đúng

    \left\{ \begin{matrix}
\overrightarrow{a} = 2(1; - 1; - 2) \\
\overrightarrow{b} = (1; - 1;1) \\
\end{matrix} ight. suy ra Hai vectơ \overrightarrow{a};\overrightarrow{b} không cùng phương.

    Vậy mệnh đề sai là: “Hai vectơ \overrightarrow{a};\overrightarrow{b} cùng phương”.

  • Câu 9: Thông hiểu
    Chọn khẳng định đúng

    Cho lăng trụ đứng ABC.A'B'C', điểm M trên CC' sao cho \overrightarrow{MC} = -
\frac{1}{3}\overrightarrow{MC'}. Đặt \overrightarrow{AB} = \overrightarrow{a},\ \
\overrightarrow{AC} = \overrightarrow{b},\ \ \overrightarrow{AA'} =
\overrightarrow{c}. Khẳng định nào dưới đây là đúng ?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có

    \overrightarrow{A'M} =
\overrightarrow{A'C} + \overrightarrow{CM}

    = \overrightarrow{A'A} +
\overrightarrow{A'C'} +
\frac{1}{4}\overrightarrow{AA'}

    = - \overrightarrow{AA'} +\overrightarrow{AC} + \frac{1}{4}\overrightarrow{AA'}

    = \overrightarrow{AC} -
\frac{3}{4}\overrightarrow{AA'} = \overrightarrow{b} -
\frac{3}{4}\overrightarrow{c}

  • Câu 10: Thông hiểu
    Tìm tọa độ điểm D thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A( - 2;3;1),B(3;0; - 1),C(6;5;0). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
6 - x = 3 + 2 \\
5 - y = 0 - 3 \\
- z = - 1 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 8 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm D(1;8;2).

  • Câu 11: Thông hiểu
    Xác định tọa độ điểm Q

    Trong không gian tọa độ Oxyzcho ba điểm M(1;1;1),\ N(2;3;4),\
P(7;7;5). Tìm tọa độ điểm Q để tứ giác MNPQ là hình bình hành

    Hướng dẫn:

    Minh họa bằng hình vẽ sau:

    Ta có \overrightarrow{MN} = (1;2;3),\
\overrightarrow{QP} = \left( 7 - x_{Q};7 - y_{Q};5 - z_{Q}
ight).

    MNPQ là hình bình hành \Leftrightarrow \overrightarrow{MN} =
\overrightarrow{QP}

    \Leftrightarrow \left\{ \begin{matrix}
1 = 7 - x_{Q} \\
2 = 7 - y_{Q} \\
3 = 5 - z_{Q} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{Q} = 6 \\
y_{Q} = 5 \\
z_{Q} = 2 \\
\end{matrix} ight..

    Vậy Q(6;5;2).

  • Câu 12: Nhận biết
    Tìm tọa độ vectơ

    Biết rằng vectơ \overrightarrow{a} = (1;
- 2;0)\overrightarrow{b} =
2\overrightarrow{a}. Tìm tọa độ vectơ \overrightarrow{b}?

    Hướng dẫn:

    Ta có: \overrightarrow{b} =
2\overrightarrow{a} = (2; - 4;0)

  • Câu 13: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian hệ trục tọa độ Oxyz, cho tam giác ABC có tọa các điểm A(1; - 3;3),B(2; - 4;5),C(a; - 2;b) và tam giác đó nhận điểm G(1;c;3) làm trọng tâm. Xác định giá trị biểu thức P = a
+ b + c?

    Hướng dẫn:

    Vì tam giác ABC nhận điểm G làm trọng tâm nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{1 + 2 + a}{3} = 1 \\\dfrac{- 3 - 4 - 2}{3} = c \\\dfrac{3 + 5 + b}{3} = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 0 \\b = 1 \\c = - 3 \\\end{matrix} ight.\  \Rightarrow P = a + b + c = - 2

  • Câu 14: Thông hiểu
    Tìm số khẳng định đúng

    Trong không gian Oxyz, cho tọa độ các điểm A(1;2;0),B(2;1;1),C(0;3; -
1). Cho các khẳng định sau:

    (I) BC = 2AB.

    (II) B \in AC.

    (III) Ba điểm A;B;C tạo thành một tam giác.

    (IV) Ba điểm A;B;C thẳng hàng.

    Trong các khẳng định trên, có bao nhiêu khẳng định đúng.

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1;1) \\
\overrightarrow{AC} = ( - 1;1; - 1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{AC} = -
\overrightarrow{AB} nên A là trung điểm của BC và ba điểm A;B;C thẳng hàng.

    Vậy có 2 khẳng định sai và 2 khẳng định đúng.

  • Câu 15: Thông hiểu
    Xác định chu vi tam giác

    Trong không gian với hệ trục tọa độ Oxyz, cho tọa độ hai điểm A(3;0;0),B(0;0;4). Tính chu vi tam giác OAB?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{OA} = (3;0;0) \Rightarrow OA = 3 \\
\overrightarrow{OB} = (0;0;4) \Rightarrow OB = 4 \\
\overrightarrow{AB} = ( - 3;0;4) \Rightarrow AB = 5 \\
\end{matrix} ight.

    Chu vi tam giác OAB là:

    C = OA + OB + AB = 3 + 4 + 5 =
12

    Vậy đáp án đúng là: 12.

  • Câu 16: Vận dụng
    Tìm tập hợp điểm M trong không gian

    Trong không gian tọa độ Oxyz, cho A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm M trong không gian thỏa mãn M không trùng với các điểm A, B, C và \widehat{AMB} = \widehat{BMC} =
\widehat{CMA} = 90^{0}

    Hướng dẫn:

    Gọi M(x;y;z)

    Ta có: \widehat{AMB} = \widehat{BMC} =
\widehat{CMA} = 90^{0}\Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AM}.\overrightarrow{BM} = 0 \\
\overrightarrow{BM}.\overrightarrow{CM} = 0 \\
\overrightarrow{CM}.\overrightarrow{AM} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x(x - 2) + y(y - 2) + z^{2} = 0 \\
x^{2} + y(y - 2) + z(z - 2) = 0 \\
x(x - 2) + y^{2} + z(z - 2) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2x - 2y = 0 \\
x^{2} + y^{2} + z^{2} - 2y - 2z = 0 \\
x^{2} + y^{2} + z^{2} - 2x - 2z = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2x - 2y = 0 \\
x = z \\
y = z \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
3x^{2} - 4x = 0 \\
x = y = z \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
M(0;0;0) \\
M\left( \dfrac{4}{3};\dfrac{4}{3};\dfrac{4}{3} ight) \\
\end{matrix} ight..

  • Câu 17: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm B(1;2; - 3),C(7;4 - 2). Tìm tọa độ điểm E thỏa mãn đẳng thức \overrightarrow{CE} =
2\overrightarrow{EB}?

    Hướng dẫn:

    Gọi E(x;y;z)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CE} = (x - 7;y - 4;z + 2) \\
2\overrightarrow{EB} = (2 - 2x;4 - 2y; - 6 - 2z) \\
\end{matrix} ight.

    Theo bài ra ta có:

    \overrightarrow{CE} =2\overrightarrow{EB} \Leftrightarrow \left\{ \begin{matrix}x - 7 = 2 - 2x \\y - 4 = 4 - 2y \\z + 2 = - 6 - 2z \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}x = 3 \\y = \dfrac{8}{3} \\z = - \dfrac{8}{3} \\\end{matrix} ight.\  \Rightarrow E\left( 3;\frac{8}{3}; - \dfrac{8}{3}ight)

    Vậy điểm E có tọa độ là E\left(
3;\frac{8}{3}; - \frac{8}{3} ight).

  • Câu 18: Thông hiểu
    Chọn mệnh đề đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (1;1;0), \overrightarrow{b} = (2; - 1; - 2)\overrightarrow{c} = ( - 3;0;2). Chọn mệnh đề đúng?

    Hướng dẫn:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0} là mệnh đề đúng.

  • Câu 19: Vận dụng
    Tính giá trị biểu thức

    Trong không gian Oxyz cho hai điểm A(1\ ;\ \ 5\ ;\ 0), B(3\ ;\ 3\ ;\ 6) và đường thẳng d:\ \frac{x + 1}{2} = \frac{y - 1}{- 1} =
\frac{z}{2}. Điểm M(a\ ;\ b\ ;\
c) thuộc đường thẳng d sao cho chu vi tam giác MAB nhỏ nhất. Khi đó biểu thức a + 2b + 3c bằng

    Hướng dẫn:

    Ta có AB = \sqrt{44} không đổi.

    Do đó chu vi tam giác MAB nhỏ nhất khi (MA + MB) đạt giá trị nhỏ nhất.

    M \in (d) \Rightarrow M( - 1 + 2t\ ;\ 1 -
t\ ;\ 2t).

    MA = \sqrt{9t^{2} + 20} = \sqrt{(3t)^{2}
+ \left( 2\sqrt{5} ight)^{2}}, MB
= \sqrt{9t^{2} - 36t + 56} = \sqrt{(6 - 3t)^{2} + \left( 2\sqrt{5}
ight)^{2}}.

    Chọn \overrightarrow{u} = \left( 3t\ ;\
2\sqrt{5}\ ;\ 0 ight) \Rightarrow \left| \overrightarrow{u} ight| =
\sqrt{(3t)^{2} + \left( 2\sqrt{5} ight)^{2}}.

    Chọn \overrightarrow{v} = \left( 6 - 3t\
;\ 2\sqrt{5}\ ;\ 0 ight) \Rightarrow \left| \overrightarrow{v} ight|
= \sqrt{(6 - 3t)^{2} + \left( 2\sqrt{5} ight)^{2}}

    \Rightarrow \overrightarrow{u} +
\overrightarrow{v} = \left( 6\ ;\ 4\sqrt{5}\ ;\ 0 ight) \Rightarrow
\left| \overrightarrow{u} + \overrightarrow{v} ight| =
2\sqrt{29}.

    Theo tính chất vecto \left|
\overrightarrow{u} ight| + \left| \overrightarrow{v} ight| \geq
\left| \overrightarrow{u} + \overrightarrow{v} ight| =
2\sqrt{29}.

    Dấu " = " xảy ra khi và chỉ khi \overrightarrow{u} cùng hướng với \overrightarrow{v} \Leftrightarrow t = 1.

    Suy ra MA + MB = \left|
\overrightarrow{u} ight| + \left| \overrightarrow{v} ight| \geq
2\sqrt{29}.

    Do đóMA + MB đạt giá trị nhỏ nhất bằng 2\sqrt{29} khi t = 1 \Rightarrow M(1\ ;\ 0\ ;\ 2).

    Vậy a + 2b + 3c = 1 + 2.0 + 3.2 =
7.

  • Câu 20: Thông hiểu
    Chọn phương án thíchhợp

    Trong không gian Oxyz, cho hai điểm A(2 ;  - 2 ; 1), B(0; 1 ;2). Tọa độ điểm M thuộc mặt phẳng (Oxy) sao cho ba điểm A, B, M thẳng hàng là

    Hướng dẫn:

    Ta có: M \in (Oxy) \Rightarrow M(x\ ;\ y\
;\ 0); \overrightarrow{AB} = ( - 2\
;\ 3\ ;\ 1);\overrightarrow{AM} = (x - 2\ ;\ y + 2\ ;\  -
1).

    Để A, B, M thẳng hàng thì \overrightarrow{AB}\overrightarrow{AM} cùng phương , khi đó :

    \frac{x - 2}{- 2} = \frac{y +
2}{3} = \frac{- 1}{1} \Leftrightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 5 \\
\end{matrix} ight. .

    Vậy M(4\ ;\  - 5\ ;\ 0).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo