Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 8 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm tọa độ trọng tâm của tam giác

    Trong không gian Oxyz, cho tọa độ ba điểm A(1; - 2;3),B( -
1;2;5),C(0;0;1). Tọa độ trọng tâm G của tam giác ABC là:

    Hướng dẫn:

    Tọa độ trọng tâm G của tam giác ABC bằng:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = \dfrac{1 - 1 + 0}{3} = 0 \\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = \dfrac{- 2 + 2 + 0}{3} = 0 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = \dfrac{3 + 5 + 1}{3} = 3 \\\end{matrix} ight.\  \Rightarrow G(0;0;3)

    Vậy trọng tâm G tìm được là G(0;0;3).

  • Câu 2: Thông hiểu
    Ghi đáp án vào ô trống

    Sự chuyển động của máy bay A được thể hiện trong không gian Oxyz như sau: Máy bay khởi hành từ B(0;0;2) chuyển động thẳng đều (Tính theo phút) với vận tốc được biểu thị theo véc tơ \overrightarrow{v}(1;4;5). Sau khi khởi hành được 30 phút, máy bay ở vị trí M(x;y;z). Tính P = 3x + y + z

    Đáp án: 362

    Đáp án là:

    Sự chuyển động của máy bay A được thể hiện trong không gian Oxyz như sau: Máy bay khởi hành từ B(0;0;2) chuyển động thẳng đều (Tính theo phút) với vận tốc được biểu thị theo véc tơ \overrightarrow{v}(1;4;5). Sau khi khởi hành được 30 phút, máy bay ở vị trí M(x;y;z). Tính P = 3x + y + z

    Đáp án: 362

    Ta có:

    Quãng đường máy bay di chuyển là:

    BM = \left| \overrightarrow{v} ight|.t
\Rightarrow \overrightarrow{BM} = \overrightarrow{v}.30 =
(30;120;150)

    \Rightarrow \left\{ \begin{matrix}
x = 30 \\
y = 120 \\
z - 2 = 150 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x = 30 \\
y = 120 \\
z = 152 \\
\end{matrix} ight.\  ight.

    Khi đó: P = 3.30 + 120 + 152 =
362

  • Câu 3: Vận dụng
    Xác định tính đúng sai của từng phương án

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    a) Sai: Hình chiếu của điểm M trên trục Oy có tọa độ là (0;3;0)

    b) Đúng: Vì N là trung điểm của ME

    \Leftrightarrow \left\{ \begin{matrix}- 1 = \dfrac{2 + x_{E}}{2} \\1 = \dfrac{3 + y_{E}}{2} \\1 = \dfrac{- 1 + z_{E}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{E} = - 4 \\y_{E} = - 1 \\z_{E} = 3 \\\end{matrix} \Rightarrow E( - 4; - 1;3) ight.\  ight..

    c) Đúng: Ta có \overrightarrow{NM} =
(3;2; - 2);\overrightarrow{NP} = (2;m - 2;2).

    \bigtriangleup MNP vuông tại N \Leftrightarrow\overrightarrow{NM}.\overrightarrow{NP} = 0

    \Leftrightarrow 3.2 + 2.(m - 2) + ( -
2).2 = 0 \Leftrightarrow m = 1.

    d) Sai.

    Gọi J(x;y;z) thỏa 3\overrightarrow{JM} - \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - ( - 1 - x) = 0 \\3(3 - y) - (1 - y) = 0 \\3( - 1 - z) - (1 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{7}{2} \\y = 4 \\z = - 2 \\\end{matrix} ight.\  ight.

    Suy ra J\left( \frac{7}{2};4; - 2
ight).

    Khi đó T = |3\overrightarrow{IM} -
\overrightarrow{IN}| = |3\overrightarrow{IJ} + 3\overrightarrow{JM} -
\overrightarrow{IJ} - \overrightarrow{JN}| = |2\overrightarrow{IJ}| =
2IJ.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của J trên (Oxy)

    \Leftrightarrow I\left( \frac{7}{2};4;0 ight).

    Vậy a = \frac{7}{2};b = 4;c =
0.

    Suy ra 2a+b+c=11

  • Câu 4: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = - 2\overrightarrow{i} +4\overrightarrow{j} + 2\overrightarrow{k}. Các khẳng định sau là đúng hay sai?

    a) Tọa độ điểm A là (−2; 4; 2). Đúng||Sai

    b) Hình chiếu vuông góc của A lên trục OxA’(0; 4; 0). Sai||Đúng

    c) Trung điểm của OAM(−1; 2; 1). Đúng||Sai

    d) Hình chiếu vuông góc của A lên mặt phẳng (Oyz)H(−2; 0; 2). Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = - 2\overrightarrow{i} +4\overrightarrow{j} + 2\overrightarrow{k}. Các khẳng định sau là đúng hay sai?

    a) Tọa độ điểm A là (−2; 4; 2). Đúng||Sai

    b) Hình chiếu vuông góc của A lên trục OxA’(0; 4; 0). Sai||Đúng

    c) Trung điểm của OAM(−1; 2; 1). Đúng||Sai

    d) Hình chiếu vuông góc của A lên mặt phẳng (Oyz)H(−2; 0; 2). Sai||Đúng

    a) Ta có A(−2; 4; 2).

    b) Hình chiếu vuông góc của A lên Ox là (−2; 0; 0).

    c) Trung điểm của OA là điểm M(−1; 2; 1).

    d) Hình chiếu vuông góc của A lên mặt phẳng (Oyz)H(0; 4; 2).

  • Câu 5: Thông hiểu
    Tìm tọa độ điểm D

    Trong không gian với hệ trục tọa độ Oxyz, cho A(0;\  - 1;\ 1), B( - 2;\ 1;\  - 1), C( - 1;\ 3;\ 2). Biết rằng ABCD là hình bình hành, khi đó tọa độ điểm D

    Hướng dẫn:

    Gọi D(x;\ y;\ z), ta có ABCD là hình bình hành nên \overrightarrow{BA} =
\overrightarrow{CD}

    \Leftrightarrow \left\{ \begin{matrix}
\begin{matrix}
x + 1 = 2 \\
y - 3 = - 2 \\
\end{matrix} \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 4 \\
\end{matrix} ight..

    Vậy D(1;\ 1;\ 4).

  • Câu 6: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình x - y - z - 3 = 0 và hai điểm A(1; - 3; - 4),\ B(1;2;1). Khi đó:

    a) [NB] Mặt phẳng (P)có vec tơ pháp tuyến \overrightarrow{n} = (1; - 1; -
1).Đúng||Sai

    b) [TH] \overrightarrow{AB} = (0;5;5). Đúng||Sai

    c) [TH] Khoảng cách từ điểm A đến (P)\frac{5\sqrt{3}}{3}. Đúng||Sai

    d) [VD] Cho điểm M di động trên (P). Khi đó giá trị nhỏ nhất của biểu thức MA^{2} + 4MB^{2}bằng 56. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình x - y - z - 3 = 0 và hai điểm A(1; - 3; - 4),\ B(1;2;1). Khi đó:

    a) [NB] Mặt phẳng (P)có vec tơ pháp tuyến \overrightarrow{n} = (1; - 1; -
1).Đúng||Sai

    b) [TH] \overrightarrow{AB} = (0;5;5). Đúng||Sai

    c) [TH] Khoảng cách từ điểm A đến (P)\frac{5\sqrt{3}}{3}. Đúng||Sai

    d) [VD] Cho điểm M di động trên (P). Khi đó giá trị nhỏ nhất của biểu thức MA^{2} + 4MB^{2}bằng 56. Sai||Đúng

    a) Đúng.

    Ta có: {\overrightarrow{n}}_{p} = (1; -
1; - 1).

    b) Đúng.

    Ta có: \overrightarrow{AB} =
(0;5;5).

    c) Đúng.

    Khoảng cách từ điểm A đến (P)là:

    d\left( A;(P) ight) = \frac{\left| 1 -
( - 3) - ( - 4) - 3 ight|}{\sqrt{1^{2} + ( - 1)^{2} + ( - 1)^{2}}} =
\frac{5\sqrt{3}}{3}.

    d) Sai.

    Gọi I là điểm sao cho \overrightarrow{IA} + 4\overrightarrow{IB} =
\overrightarrow{0} ta có \left\{
\begin{matrix}
x_{I} = \frac{x_{A} + 4x_{B}}{5} = 1 \\
y_{I} = \frac{y_{A} + 4y_{B}}{5} = 1 \\
z_{I} = \frac{z_{A} + 4z_{B}}{5} = 0 \\
\end{matrix} ight.\  \Rightarrow I(1;1;0).

    Ta có:

    MA^{2} + 4MB^{2} =
{\overrightarrow{MA}}^{2} + 4{\overrightarrow{MB}}^{2}

    = \left( \overrightarrow{IA} -
\overrightarrow{IM} ight)^{2} + 4\left( \overrightarrow{IB} -
\overrightarrow{IM} ight)^{2}

    = 5IM^{2} - 2\overrightarrow{IM}\left(
\overrightarrow{IA} + 4\overrightarrow{IB} ight) + MA^{2} +
4MB^{2}

    \Rightarrow MA^{2} + 4MB^{2} = 5IM^{2} +
IA^{2} + 4IB^{2}

    \Rightarrow MA^{2} + 4MB^{2} nhỏ nhất khi IM nhỏ nhất \Leftrightarrow M là hình chiếu vuông góc của I lên mặt phẳng (P).

    \Rightarrow IM = d\left( I;(P) ight) =
\sqrt{3}

    \Rightarrow giá trị nhỏ nhất của biểu thức MA^{2} + 4MB^{2} là:

    MA^{2} + 4MB^{2} = 5IM^{2} + IA^{2} +
4IB^{2} = 15 + 32 + 8 = 55.

  • Câu 7: Thông hiểu
    Tìm tọa độ điểm A’

    Trong không gian Oxyz, cho điểm A(2; - 3;5). Tìm tọa độ điểm A' đối xứng với A qua trục Oy?

    Hướng dẫn:

    Gọi H là hình chiếu vuông góc của A(2; -
3;5) lên Oy suy ra H(0; - 3;0)

    Khi đó H là trung điểm của AA' nên

    \left\{ \begin{matrix}
x_{A'} = 2x_{H} - x_{A} \\
y_{A'} = 2y_{H} - y_{A} \\
z_{A'} = 2z_{H} - z_{A} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{A'} = 2 \\
y_{A'} = - 3 \\
z_{A'} = - 5 \\
\end{matrix} ight.\  \Rightarrow A'( - 2; - 3; - 5)

  • Câu 8: Thông hiểu
    Tính tổng x và y

    Trong không gian Oxyz, cho ba điểmA(3\ ;\ 5\ ;\  - 1), B(7\ ;\ x\ ;\ 1)C(9\ ;\ 2\ ;\ y). Để A, B, C thẳng hàng thì giá trị x + y bằng

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (4\ ;\ x - 5\
;\ 2), \overrightarrow{AC} = (6\
;\  - 3\ ;\ y + 1).

    Ba điểm A, B, C thẳng hàng \Leftrightarrow \exists
k\mathbb{\in R}:\overrightarrow{AB} = k.\overrightarrow{AC}

    \Leftrightarrow \left\{ \begin{matrix}
4 = 6k \\
x - 5 = - 3k \\
2 = k(y + 1) \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
k = \frac{2}{3} \\
x = 3 \\
y = 2 \\
\end{matrix} ight..

    Vậy x + y = 5.

  • Câu 9: Thông hiểu
    Chọn phát biểu đúng

    Trong không gian tọa độ Oxyz, cho hai điểm A(1;0;0), B(5;0;0). Gọi (H) là tập hợp các điểm M trong không gian thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} =
0. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Gọi I là trung điểmAB \Rightarrow I(3;0;0).

    Ta có :

    \overrightarrow{MA}.\overrightarrow{MB} =
0 \Leftrightarrow \left( \overrightarrow{MI} + \overrightarrow{IA}
ight).\left( \overrightarrow{MI} + \overrightarrow{IB} ight) =
0

    \Leftrightarrow \left(
\overrightarrow{MI} + \overrightarrow{IA} ight).\left(
\overrightarrow{MI} - \overrightarrow{IA} ight) = 0

    \Leftrightarrow MI^{2} - IA^{2} = 0
\Leftrightarrow MI^{2} = IA^{2} \Leftrightarrow MI = \frac{1}{2}AB =
\frac{1}{2}.|5 - 1| = 2.

    Suy ra tập hợp điểm M trong không gian là mặt cầu tâm I, bán kính bằng 2.

    Vậy (H) là một mặt cầu có bán kính bằng 2.

  • Câu 10: Thông hiểu
    Tìm tọa độ điểm C’

    Trong không gian tọa độ Oxyz, cho hình hộp ABCD.A^{'}B^{'}C^{'}D^{'} với các điểm A( - 1;1;2), B( - 3;2;1), D(0; - 1;2)A^{'}(2;1;2). Tìm tọa độ đỉnh C^{'}.

    Gợi ý:

    Quy tắc hình hộp: \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}.

    Hướng dẫn:

    Hình vẽ minh họa

    .

    Theo quy tắc hình hộp ta có: \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'} = \overrightarrow{AC'}.

    \Rightarrow \left\{ \begin{matrix}
x_{C^{'}} + 1 = 2 \\
y_{C^{'}} - 1 = - 1 \\
z_{C^{'}} - 2 = - 1 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x_{C^{'}} = 1 \\
y_{C^{'}} = 0 \\
z_{C^{'}} = 1 \\
\end{matrix} \Rightarrow C'(1;0;1) ight.\  ight.

  • Câu 11: Thông hiểu
    Chọn đáp án đúng

    Trong không gian hệ trục tọa độ Oxyz, cho các điểmA(1;2;3),B(0; - 2;1),C(1;0;1). Gọi D là điểm sao cho C là trọng tâm tam giác ABD. Tính tổng các tọa độ của điểm D?

    Hướng dẫn:

    Đặt D(x;y;z). Vì C là trọng tâm tam giác ABD nên

    \Rightarrow \left\{ \begin{matrix}1 = \dfrac{1 + 0 + x}{3} \\0 = \dfrac{2 - 2 + y}{3} \\1 = \dfrac{3 + 1 + z}{3} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 2 \\y = 0 \\z = - 1 \\\end{matrix} ight.\  \Rightarrow x + y + z = 1

  • Câu 12: Vận dụng
    Ghi đáp án đúng vào ôtrống

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;1;5),\ \ B(3;0;1),\ \ C( - 1;2;0) và điểm M(a;b;c) thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA} lớn nhất. Tính P = a - 2b + 4c.

    Đáp án: 13

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;1;5),\ \ B(3;0;1),\ \ C( - 1;2;0) và điểm M(a;b;c) thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA} lớn nhất. Tính P = a - 2b + 4c.

    Đáp án: 13

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (4 - a;1 - b;5 - c) \\
\overrightarrow{MB} = (3 - a; - b;1 - c) \\
\overrightarrow{MC} = ( - 1 - a;2 - b; - c) \\
\end{matrix} ight.

    \overrightarrow{MA}.\overrightarrow{MB}
+ 2\overrightarrow{MB}.\overrightarrow{MC} -
5\overrightarrow{MC}.\overrightarrow{MA}

    = (4 - a)(3 - a) + (1 - b)( - b) + (5 -
c)(1 - c)

    + 2(3 - a)( - 1 - a) + 2( - b)(2 - b) +
2(1 - c)( - c)

    - 5(4 - a)( - 1 - a) - 5(1 - b)(2 - b) -
5(5 - c)( - c)

    = - 2a^{2} - 2b^{2} - 2c^{2} + 4a + 10b
+ 17c + 21

    = - 2(a - 1)^{2} - 2\left( b -
\frac{5}{2} ight)^{2} - 2\left( c - \frac{17}{4} ight)^{2} +
\frac{573}{8} \leq \frac{573}{8}

    Dấu bằng xảy ra khi và chỉ khi\left\{
\begin{matrix}
a = 1 \\
b = \frac{5}{2} \\
c = \frac{17}{4} \\
\end{matrix} ight.. Khi đó P =
a - 2b + 4c = 13.

  • Câu 13: Vận dụng
    Ghi đáp án đúng vào ô trống

    Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều ABC.A'B'C', có cạnh bên bằng cạnh đáy và dài 30 mét. Kiến trúc sư muốn xây dựng một cây cầu MN bắc xuyên tòa nhà (điểm đầu thuộc cạnh A'C, điểm cuối thuộc cạnh BC') và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho MN ngắn nhất (như hình vẽ).

    Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 72

    Đáp án là:

    Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều ABC.A'B'C', có cạnh bên bằng cạnh đáy và dài 30 mét. Kiến trúc sư muốn xây dựng một cây cầu MN bắc xuyên tòa nhà (điểm đầu thuộc cạnh A'C, điểm cuối thuộc cạnh BC') và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho MN ngắn nhất (như hình vẽ).

    Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 72

    Để độ dài cây cầu MN ngắn nhất thì MN là đoạn vuông góc chung của hai đường thẳng A^{'}CBC^{'}.

    Đặt hệ trục Oxyz như hình vẽ:

    Khi đó C( - 15;0;0),B(15;0;0),\ C'( - 15;0;0),\
A'(0;15\sqrt{3};30)

    Do đó MN = d(A'C;BC') =
\frac{30\sqrt{39}}{13}

    Số tiền cần làm cây cầu ngắn nhất là 5.\frac{30\sqrt{39}}{13} \approx 72(tỷ đồng)

  • Câu 14: Nhận biết
    Tìm tọa độ trung điểm của đoạn thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; - 2;3)B( - 1;2;5). Tìm tọa độ trung điểm I của đoạn thẳng AB.

    Hướng dẫn:

    Tọa độ trung điểm I của đoạn AB với A(3; - 2;3)B( - 1;2;5) được tính bởi

    \left\{ \begin{matrix}
x_{I} = \frac{x_{A} + x_{B}}{2} = 1 \\
y_{I} = \frac{y_{A} + y_{B}}{2} = 0 \\
z_{I} = \frac{z_{A} + z_{B}}{2} = 4 \\
\end{matrix} ight.\  \Rightarrow I(1;\ 0;4).

  • Câu 15: Vận dụng
    Ghi đáp án đúng vào ô trống

    Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D'A(0;0;0), B(2;0;0), D( 0 ; 2 ; 0 ), A'(0;0;2). Gọi M,\ N lần lượt là trung điểm của CD,AA' (xem hình vẽ bên dưới). Biết rằng \cos\lbrack
B,MN,D'brack = m, tính giá trị 14m.

    Đáp án: -10

    Đáp án là:

    Khối rubik như hình vẽ có độ dài cạnh bằng 2. Khi gắn rubik vào hệ trục tọa độ trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D'A(0;0;0), B(2;0;0), D( 0 ; 2 ; 0 ), A'(0;0;2). Gọi M,\ N lần lượt là trung điểm của CD,AA' (xem hình vẽ bên dưới). Biết rằng \cos\lbrack
B,MN,D'brack = m, tính giá trị 14m.

    Đáp án: -10

    Ta có M,\ N lần lượt là trung điểm của CD,AA', suy ra M(1;\ 2;\ 0),\ N(0;\ 0;\ 1)

    \Rightarrow \overrightarrow{MN} = ( -
1;\  - 2;\ 1)

    \Rightarrow MN:\left\{ \begin{matrix}
x = t \\
y = 2t \\
z = 1 - t \\
\end{matrix} ight.

    Gọi H(t;2t;1 - t);H'(u;2u;1 -
u) thứ tự là hình chiếu của B ; D ' trên MN

    \overrightarrow{BH}(t - 2;2t;1 -
t);\overrightarrow{D'H'}(u;2u - 2; - 1 - u) vuông góc với \overrightarrow{MN} = ( - 1;\  - 2;\
1)

    \Leftrightarrow \left\{ \begin{matrix}
2 - t - 4t + 1 - t = 0 \\
- u - 4u + 4 - 1 - u = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
t = \frac{1}{2} \\
u = \frac{1}{2} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{BH}\left( -
\frac{3}{2};1;\frac{1}{2} ight);\overrightarrow{D'H'}\left(
\frac{1}{2}; - 1; - \frac{3}{2} ight)

    \Rightarrow \cos\lbrack
B,MN,D'brack = \cos\left(
\overrightarrow{BH},\overrightarrow{D'H'} ight)= \frac{-
\frac{3}{4} - 1 - \frac{3}{4}}{\sqrt{\frac{9}{4} + 1 +
\frac{1}{4}}.\sqrt{\frac{9}{4} + 1 + \frac{1}{4}}} = -
\frac{5}{7}

    \Rightarrow \cos\lbrack
B,MN,D'brack = - \frac{5}{7} = m \Rightarrow 14m = -
10

  • Câu 16: Thông hiểu
    Tìm tọa độ điểm D thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A( - 2;3;1),B(3;0; - 1),C(6;5;0). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
6 - x = 3 + 2 \\
5 - y = 0 - 3 \\
- z = - 1 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 8 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm D(1;8;2).

  • Câu 17: Thông hiểu
    Tính độ dài vectơ

    Cho tứ diện đều ABCD cạnh a. Tính \left| \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight| theo a?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi G là trọng tâm của \Delta BCD.

    Do đó \left| \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD} ight| = \left|
3\overrightarrow{AG} ight| = 3AG.

    Ta có BG = \frac{2}{3}BI =
\frac{2}{3}.\frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{3}.

    ABCD là tứ diện đều nên AG\bot(BCD) \Rightarrow AG\bot BG.

    Suy ra AG = \sqrt{AB^{2} - BG^{2}} =
\frac{a\sqrt{6}}{3}.

    Vậy \left| \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD} ight| =
3.\frac{a\sqrt{6}}{3} = a\sqrt{6}.

  • Câu 18: Thông hiểu
    Chọn phương án thíchhợp

    Trong không gian Oxyz, cho hai điểm A(2 ;  - 2 ; 1), B(0; 1 ;2). Tọa độ điểm M thuộc mặt phẳng (Oxy) sao cho ba điểm A, B, M thẳng hàng là

    Hướng dẫn:

    Ta có: M \in (Oxy) \Rightarrow M(x\ ;\ y\
;\ 0); \overrightarrow{AB} = ( - 2\
;\ 3\ ;\ 1);\overrightarrow{AM} = (x - 2\ ;\ y + 2\ ;\  -
1).

    Để A, B, M thẳng hàng thì \overrightarrow{AB}\overrightarrow{AM} cùng phương , khi đó :

    \frac{x - 2}{- 2} = \frac{y +
2}{3} = \frac{- 1}{1} \Leftrightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 5 \\
\end{matrix} ight. .

    Vậy M(4\ ;\  - 5\ ;\ 0).

  • Câu 19: Thông hiểu
    Tìm tọa độ điểm đối xứng

    Cho hai điểm A(5;1;3)H(3; - 3; - 1). Tọa độ điểm A' đối xứng với A qua H là:

    Hướng dẫn:

    Vì điểm A' đối xứng với A qua H nên H là trung điểm của AA'

    \Rightarrow \left\{ \begin{matrix}
x_{A'} = 2x_{H} - x_{A} = 1 \\
y_{A'} = 2y_{H} - y_{A} = - 7 \\
z_{A'} = 2z_{H} - z_{A} = 5 \\
\end{matrix} ight.\  \Rightarrow A'(1; - 7; - 5)

  • Câu 20: Thông hiểu
    Xác định tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho ba điểm A(5;1;5),B(4;3;2),C( - 3; -
2;1) và điểm I(a;b;c) là tâm đường tròn ngoại tiếp tam giác ABC. Tính giá trị biểu thức H = a + 2b + c?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;2; - 3) \\
\overrightarrow{BC} = ( - 7; - 5; - 1) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{BC} = 0 nên tam giác ABC vuông tại B

    Suy ra tâm I của đường tròn ngoại tiếp của tam giác ABC là trung điểm của cạnh huyền AC.

    \Rightarrow I\left( 1; - \frac{1}{2};3ight) \Rightarrow \left\{ \begin{matrix}a = 1 \\b = - \dfrac{1}{2} \\c = 3 \\\end{matrix} ight.\  \Rightarrow H = a + 2b + c = 3

    Vậy đáp án cần tìm là H = 3

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo