Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 8 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho hình vuông ABCD, B(3;0;8),D( - 5; - 4;0). Biết đỉnh A thuộc mặt phẳng (Oxy) và có tọa độ là những số nguyên, khi đó \left|
\overrightarrow{CA} + \overrightarrow{CB} ight| bằng:

    Gợi ý:

    - Tham số hóa điểm A

    - Sử dụng điều kiện ABCD là hình vuông để tìm A.

    - Tính |\overrightarrow{CA} +
\overrightarrow{CB}|

    Hướng dẫn:

    Ta có trung điểm BD là I( - 1; - 2;4),BD
= 12 và điểm A thuộc mặt phẳng (Oxy) nên A(a;b;0). Lại có: ABCD là hình vuông \Rightarrow \left\{ \begin{matrix}
AB^{2} = AD^{2} \\
AI^{2} = \left( \frac{1}{2}BD ight)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 3)^{2} + b^{2} + 8^{2} = (a + 5)^{2} + (b + 4)^{2} \\
(a + 1)^{2} + (b + 2)^{2} + 4^{2} = 36 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = 4 - 2a \\
(a + 1)^{2} + (6 - 2a)^{2} = 20 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
\end{matrix} ight. hoặc \left\{\begin{matrix}a = \frac{17}{5} \\b = \dfrac{- 14}{5} \\\end{matrix} ight.

    \Rightarrow \left\lbrack \begin{matrix}A(1;2;0)(tm) \\A\left( \dfrac{17}{5};\dfrac{- 14}{5};0 ight)(ktm) \\\end{matrix} ight.

    \Rightarrow A(1;2;0) \Rightarrow C( - 3;
- 6;8) \Rightarrow \overrightarrow{CA} = (4;8; - 8);\overrightarrow{CB}
= (6;6;0)

    \Rightarrow \overrightarrow{CA} +
\overrightarrow{CB} = (10;14; - 8) \Rightarrow \left|
\overrightarrow{CA} + \overrightarrow{CB} ight| =
6\sqrt{10}

  • Câu 2: Nhận biết
    Xác định cosin góc giữa hai vectơ

    Trong không gian Oxyz, cho \overrightarrow{a} = ( - 3\ ;\ 4\ ;\ 0), \overrightarrow{b} = (5\ ;\ 0\ ;\
12). Côsin của góc giữa \overrightarrow{a}\overrightarrow{b} bằng

    Hướng dẫn:

    Ta có:

    \cos\left( \overrightarrow{a}\ ;\ \
\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \ \overrightarrow{b} ight|}

    = \frac{- 3.5 + 4.0 + 0.12}{\sqrt{( - 3)^{2} +
4^{2} + 0^{2}}.\sqrt{5^{2} + 0^{2} + 12^{2}}} = \frac{-
3}{13}.

  • Câu 3: Thông hiểu
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho \overrightarrow{AO} = \overrightarrow{i} -
2\overrightarrow{j} + 3\overrightarrow{k}, điểm B(3\ ;\  - 4\ ;\ 1) C(2\ ;\ 0\ ;\  - 1)

    điểm D(a\ ;\ b\ ;\ c) sao cho B là trọng tâm tam giác ACD. Khi đó P
= a + b + c bằng

    Hướng dẫn:

    Ta có: P = a + b + c = 1

  • Câu 4: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Trong không gian Oxyz , cho vectơ \overrightarrow{OA} = (2; - 1;5),B(5; -
5;7). Xét sự đúng sai của các khẳng định sau:

    a) Tọa độ của điểm A(2; - 1;5). Đúng||Sai

    b) Gọi C(a;b;c) thỏa mãn ∆ABC nhận G(1;1;1) làm trọng tâm. Khi đó a + b +
c = - 4 . Đúng||Sai

    c) Nếu A;B;M(x;y;1) thẳng hàng thì tổng x + y = 3 . Đúng||Sai

    d) Cho N \in (Oxy) để ∆ABN vuông cân tại A. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz , cho vectơ \overrightarrow{OA} = (2; - 1;5),B(5; -
5;7). Xét sự đúng sai của các khẳng định sau:

    a) Tọa độ của điểm A(2; - 1;5). Đúng||Sai

    b) Gọi C(a;b;c) thỏa mãn ∆ABC nhận G(1;1;1) làm trọng tâm. Khi đó a + b +
c = - 4 . Đúng||Sai

    c) Nếu A;B;M(x;y;1) thẳng hàng thì tổng x + y = 3 . Đúng||Sai

    d) Cho N \in (Oxy) để ∆ABN vuông cân tại A. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng

    a) Ta có:

    Tọa độ của điểm A(2; - 1;5).

    b) G là trọng tâm tam giác ABC

    \Leftrightarrow \left\{ \begin{matrix}1 = \dfrac{2 + 5 + x_{C}}{3} \\1 = \dfrac{- 1 - 5 + y_{C}}{3} \\1 = \dfrac{5 + 7 + x_{C}}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{C} = - 4 \\y_{C} = 9 \\x_{C} = - 9 \\\end{matrix} ight.\  \Rightarrow C( - 4;9; - 9)

    \Rightarrow a + b + c = - 4

    c) Ta có: \overrightarrow{AB} = (3; -
4;2);\overrightarrow{AC} = (x - 2;y + 1; - 4)

    Ba điểm A, B, M thằng hàng khi và chỉ khi

    \overrightarrow{AM} =
k\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}
x - 2 = 3k \\
y + 1 = k.( - 4) \\
- 4 = k.2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = 7 \\
k = - 2 \\
\end{matrix} ight.

    Suy ra x + y = 3

    d) Ta có: N \in (Oxy) \Rightarrow N =
(x;y;0)

    \Rightarrow \overrightarrow{AN} = (x -
2;y + 1; - 5),\overrightarrow{AB} = (3; - 4;2)

    Ta có ∆ABN vuông cân tại A \Leftrightarrow \left\{ \begin{matrix}
AN\bot AB(*) \\
AN = AB(**) \\
\end{matrix} ight.

    Từ (*) \Leftrightarrow
\overrightarrow{AN}\bot\overrightarrow{AB} \Leftrightarrow 3(x - 2) -
4(y + 1) - 10 = 0

    \Leftrightarrow 3x - 4y = 20
\Leftrightarrow y = \frac{3}{4}x - 5

    Từ (**) AN^{2} = AB^{2} \Leftrightarrow
(x - 2)^{2} + (y + 1)^{2} + 25 = 9 + 16 + 4

    \Leftrightarrow (x - 2)^{2} + \left(
\frac{3x}{4} - 4 ight)^{2} = 4 \Leftrightarrow x =
\frac{16}{5}

    \Rightarrow y = - \frac{13}{5}
\Rightarrow N\left( \frac{16}{5}; - \frac{13}{5};0 ight)

    Vậy x_{N} + y_{N} =
\frac{3}{5}

  • Câu 5: Thông hiểu
    Xác định tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho ba điểm A(5;1;5),B(4;3;2),C( - 3; -
2;1) và điểm I(a;b;c) là tâm đường tròn ngoại tiếp tam giác ABC. Tính giá trị biểu thức H = a + 2b + c?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;2; - 3) \\
\overrightarrow{BC} = ( - 7; - 5; - 1) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{BC} = 0 nên tam giác ABC vuông tại B

    Suy ra tâm I của đường tròn ngoại tiếp của tam giác ABC là trung điểm của cạnh huyền AC.

    \Rightarrow I\left( 1; - \frac{1}{2};3ight) \Rightarrow \left\{ \begin{matrix}a = 1 \\b = - \dfrac{1}{2} \\c = 3 \\\end{matrix} ight.\  \Rightarrow H = a + 2b + c = 3

    Vậy đáp án cần tìm là H = 3

  • Câu 6: Thông hiểu
    Tính bán kính đường tròn nội tiếp tam giác

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC, biết A(5;3; - 1),B(2;3; - 4), C(3;1; - 2). Bán kính đường tròn nội tiếp tam giác ABC bằng:

    Hướng dẫn:

    Ta có AC^{2} + BC^{2} = 9 + 9 = AB^{2}
\Rightarrow Tam giác ABC vuông tại C.

    Suy ra: r = \frac{S_{ABC}}{p} =
\frac{\frac{1}{2}CA.CB}{\frac{1}{2}(AB + BC + CA)}=
\frac{3.3\sqrt{2}}{3\sqrt{2} + \sqrt{3} + \sqrt{3}} = 9 -
3\sqrt{6}

  • Câu 7: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{\left( P_{1}
ight)}} = (1;2; - 1) nên mệnh đề sai

    b) \overrightarrow{n_{\left( P_{1}
ight)}} = ( - 2;1;1) nên mệnh đề đúng

    c) \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) = \frac{1.( - 2) +
2.1 + ( - 1)1}{\sqrt{6}\sqrt{6}} = - \frac{1}{6} mệnh đề đúng

    d) Góc hai mặt phẳng không thể tù nên mệnh đề sai

  • Câu 8: Thông hiểu
    Tính giá trị biểu thức T

    Trong không gian Oxyz, cho hình thang cân\ ABCD có các đáy lần lượt là AB,CD. Biết A(3;1; - 2), B( - 1;3;2), C( - 6;3;6)D(a;b;c) với a;b;c\mathbb{\in R}. Tính T = a + b + c.

    Hướng dẫn:

    Cách 1: Ta có \overrightarrow{AB} = ( -
4;2;4);\overrightarrow{CD} = (a + 6;b - 3;c - 6)

    Do ABCD là hình thang cân nên \overrightarrow{CD} =
k\overrightarrow{AB}\left( k\mathbb{\in R} ight) hay \frac{a + 6}{- 2} = \frac{b - 3}{1} = \frac{c -
6}{2}

    \Rightarrow \left\{ \begin{matrix}
b = \frac{- a}{2} \\
c = - a \\
\end{matrix} ight.. Vậy D\left(
a;\frac{- a}{2}; - a ight).

    Lại có

    AC = BD \Leftrightarrow AC^{2} =
BD^{2}

    \Leftrightarrow ( - 9)^{2} + 2^{2} +
8^{2} = (a + 1)^{2} + \left( \frac{a}{2} + 3 ight)^{2} + (a +
2)^{2}

    \Leftrightarrow a^{2} + 4a - 60 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = 6 \\
a = - 10 \\
\end{matrix} ight..

    Với a = - 10 \Rightarrow D( -
10;5;10). Kiểm tra thấy: \overrightarrow{AB} = \overrightarrow{CD} .

    Với a = 6 \Rightarrow D(6; - 3; -6).

    Kiểm tra thấy: ( - 3).\overrightarrow{AB}
= \overrightarrow{CD} . Do đó, T =
a + b + c = 6 - 3 - 6 = - 3.

    Cách 2

    Ta có \overrightarrow{AB} = ( -
4;2;4);\overrightarrow{CD} = (a + 6;b - 3;c - 6)

    Do ABCD là hình thang cân nên \overrightarrow{AB};_{}\overrightarrow{CD} ngược hướng hay \frac{a + 6}{- 2} = \frac{b
- 3}{1} = \frac{c - 6}{2} < 0

    \Leftrightarrow \left\{ \begin{matrix}
b = \frac{- a}{2} \\
c = - a \\
a > - 6 \\
\end{matrix} ight.. Vậy D\left(
a;\frac{- a}{2}; - a ight) với a
> - 6 .

    Lại có

    AC = BD \Leftrightarrow AC^{2} =
BD^{2}

    \Leftrightarrow ( - 9)^{2} + 2^{2} +
8^{2} = (a + 1)^{2} + \left( \frac{a}{2} + 3 ight)^{2} + (a +
2)^{2}

    \Leftrightarrow a^{2} + 4a - 60 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = 6 \\
a = - 10(L) \\
\end{matrix} ight..

    Với a = 6 \Rightarrow D(6; - 3; -
6).

    Do đó, T = a + b + c = 6 - 3 - 6 = -
3.

    Cách 3

    + Viết phương trình mặt phẳng trung trực của đoạn thẳng AB

    + Gọi mp (\alpha) là mặt phẳng trung trực của đoạn thẳng AB, suy ra mp (\alpha) đi qua trung điểm I(1\ ;\ 2\ ;0) của đoạn thẳng AB và có một vectơ pháp tuyến là \overrightarrow{n} =
\frac{1}{2}\overrightarrow{AB} = ( - 2\ ;1\ ;\ 2), suy ra phương trình của mp (\alpha)là: (\alpha): - 2x + y + 2z = 0.

    + Vì C,D đối xứng nhau qua mp(\alpha)nên

    D(6\ ;\  - 3\ ;\  - 6) \Rightarrow a =
6;b = - 3;c = - 6 \Rightarrow T = a
+ b + c = - 3

  • Câu 9: Thông hiểu
    Xác định tọa độ vectơ

    Trong không gian Oxyz, véctơ \overrightarrow{u} vuông góc với hai véctơ \overrightarrow{a} = (1 ; 1 ;1) và \overrightarrow{b} = (1\ ; -
1\ ;3); đồng thời \overrightarrow{u} tạo với tia Oz một góc tù và độ dài véctơ \overrightarrow{u} bằng 3. Tìm véctơ \overrightarrow{u}.

    Hướng dẫn:

    Ta có \overrightarrow{a}\overrightarrow{b} không cùng phương đồng thời

    \left\{ \begin{matrix}
\overrightarrow{\mathbf{u}}\mathbf{\bot}\overrightarrow{\mathbf{a}} \\
\overrightarrow{\mathbf{u}}\mathbf{\bot}\overrightarrow{\mathbf{b}} \\
\end{matrix} ight.\mathbf{\Rightarrow}\overrightarrow{\mathbf{u}}\mathbf{\
}\mathbf{//}\mathbf{\ }\left\lbrack \overrightarrow{\mathbf{a}}\mathbf{\
}\mathbf{,}\mathbf{\ }\overrightarrow{\mathbf{b}}
ightbrack\mathbf{=}\left( \mathbf{4}\mathbf{\
}\mathbf{;}\mathbf{\  -}\mathbf{2}\mathbf{\
}\mathbf{;}\mathbf{\  -}\mathbf{2}
ight)\mathbf{\Rightarrow}\overrightarrow{\mathbf{u}}\mathbf{=}\left(
\mathbf{2}\mathbf{k\ }\mathbf{;}\mathbf{\  - k\ }\mathbf{;}\mathbf{\  -
k} ight).

    Do \left| \overrightarrow{u} ight| = 3\Leftrightarrow \sqrt{4k^{2} + k^{2} + k^{2}} = 3\Leftrightarrow k =\pm \frac{\sqrt{6}}{2}.

    Mặt khác \overrightarrow{u} tạo với tia Oz một góc tù nên

    \cos\left(
\overrightarrow{u},\overrightarrow{k} ight) < 0 \Leftrightarrow
\overrightarrow{u}.\overrightarrow{k} < 0\Leftrightarrow 2k.0 + ( -
k).1 < 0 \Leftrightarrow ( - k).1 < 0 \Leftrightarrow k >
0.

    Suy ra k =
\frac{\sqrt{6}}{2}.

    Vậy \overrightarrow{u} = \left( \sqrt{6}\
;\  - \frac{\sqrt{6}}{2}\ ;\ \frac{\sqrt{6}}{2} ight).

  • Câu 10: Vận dụng
    Xác định mệnh đề đúng

    Trong không gian với hệ tọa độ Oxyz, cho hình thang ABCD có hai đáy AB,\ CD; có tọa độ ba đỉnh A(1;2;1),\ B(2;0; - 1),\ C(6;1;0). Biết hình thang có diện tích bằng 6\sqrt{2}. Giả sử đỉnh D(a;b;c), tìm mệnh đề đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{AB} = (1; - 2; -
2);\overrightarrow{AC} = (5; - 1; - 1);\overrightarrow{DC} = (6 - a;1 -
b; - c).

    Ta có S_{\Delta ABC} = \frac{1}{2}\left|
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} ightbrack
ight| = \frac{9\sqrt{2}}{2}

    \Rightarrow S_{ACD} = 6\sqrt{2} -
\frac{9\sqrt{2}}{2} = \frac{3\sqrt{2}}{2}.

    AB//CD nên \overrightarrow{AB}\overrightarrow{DC} cùng phương, cùng chiều \Leftrightarrow \frac{6 - a}{1} =
\frac{1 - b}{- 2} = \frac{c}{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
c = 12 - 2a \\
b = 13 - 2a \\
a < 6 \\
b > 1 \\
c > 0 \\
\end{matrix} ight.

    \left\lbrack
\overrightarrow{AC},\overrightarrow{AD} ightbrack = (0;9a - 54;54 -
9a).

    S_{\Delta ACD} = \frac{3\sqrt{2}}{2}
\Leftrightarrow \frac{1}{2}\left| \left\lbrack
\overrightarrow{AC},\overrightarrow{AD} ightbrack ight| =
\frac{3\sqrt{2}}{2}

    \Leftrightarrow |54 - 9a| = 3
\Leftrightarrow \left\lbrack \begin{matrix}
a = \frac{19}{3} \\
a = \frac{17}{3} \\
\end{matrix} ight.\ .

    So với điều kiện suy ra: a = \frac{17}{3}
\Rightarrow a + b + c = 8.

  • Câu 11: Thông hiểu
    Chọn phương án thíchhợp

    Trong không gian Oxyz, cho hai điểm A(2 ;  - 2 ; 1), B(0; 1 ;2). Tọa độ điểm M thuộc mặt phẳng (Oxy) sao cho ba điểm A, B, M thẳng hàng là

    Hướng dẫn:

    Ta có: M \in (Oxy) \Rightarrow M(x\ ;\ y\
;\ 0); \overrightarrow{AB} = ( - 2\
;\ 3\ ;\ 1);\overrightarrow{AM} = (x - 2\ ;\ y + 2\ ;\  -
1).

    Để A, B, M thẳng hàng thì \overrightarrow{AB}\overrightarrow{AM} cùng phương , khi đó :

    \frac{x - 2}{- 2} = \frac{y +
2}{3} = \frac{- 1}{1} \Leftrightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 5 \\
\end{matrix} ight. .

    Vậy M(4\ ;\  - 5\ ;\ 0).

  • Câu 12: Nhận biết
    Tìm vectơ cùng phương với vectơ đã cho

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} = (1;3;4). Hãy chọn vectơ cùng phương với \overrightarrow{a}?

    Hướng dẫn:

    Ta có: \overrightarrow{b} cùng phương với \overrightarrow{a} khi \overrightarrow{b} =
k.\overrightarrow{a};\left( k\mathbb{\in R} ight). Khi đó đáp án cần tìm là \overrightarrow{b} = ( - 2; -
6; - 8) (vì \overrightarrow{b} = -2(1;3;4) = - 2\overrightarrow{a}).

  • Câu 13: Thông hiểu
    Tính độ dài đoạn thẳng AC’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A(0;0;0),B(a;0;0),D(0;2a;0),A'(0;0;2a) với a eq 0. Độ dài đoạn thẳng AC' là:

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (a;0;0) \\
\overrightarrow{AD} = (0;2a;0) \\
\overrightarrow{AA'} = (0;0;2a) \\
\end{matrix} ight.

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'} \Rightarrow \overrightarrow{AC'} =
(a;2a;2a)

    Suy ra AC' = \left|
\overrightarrow{AC'} ight| = \sqrt{a^{2} + (2a)^{2} + (2a)^{2}} =
3|a|

    Vậy độ dài AC’ bằng 3|a|.

  • Câu 14: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A'B'C'A'\left( \sqrt{3}\ ;\  - 1\ ;\ 1
\right), hai đỉnh B\ ,\ C thuộc trục OzAA' = 1 (C không trùng với O). Biết véctơ \overrightarrow{u} = (a\ ;\ b\ ;\ 2) với a\ ,\ b\mathbb{\in R} là một véctơ chỉ phương của đường thẳng A'C. Tính T = a^{2} + b^{2}.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm BC.

    Khi đó có \left\{ \begin{matrix}
AM\bot BC \\
AA'\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot A'M tại M \Rightarrow M là hình chiếu của A' trên trục Oz

    A'\left( \sqrt{3}\ ;\  - 1\ ;\ 1
ight) \Rightarrow M(0\ ;\ 0\ ;\ 1)A'M = 2.

    Ta có: AM = \sqrt{A'M^{2} -
A{A'}^{2}} = \sqrt{3}.

    Mà tam giác ABC đều nên AM = \frac{\sqrt{3}}{2}BC = \sqrt{3} \Rightarrow
BC = 2 \Rightarrow MC = 1.

    C thuộc trục OzC không trùng với O nên gọi C(0\ ;\ 0\ ;\ c), c eq 0.

    \overrightarrow{MC} = (0\ ;\ 0\ ;\ c -
1) \Rightarrow MC = |c -
1|; MC = 1 \Leftrightarrow |c - 1| = 1 \Leftrightarrow \left\lbrack \begin{matrix}
c = 0\ (L) \\
c = 2 \\
\end{matrix} ight. \Rightarrow
C(0\ ;\ 0\ ;\ 2).

    \overrightarrow{A'C} = \left( -\sqrt{3} ; 1 ;1 ight) là một véctơ chỉ phương của đường thẳng A'C

    \Rightarrow \overrightarrow{u} = \left( - 2\sqrt{3}\ ;\ 2\ ;\
2 ight)cũng là một véctơ chỉ phương của đường thẳng A'C.

    Vậy a = - 2\sqrt{3};\ \ b = 2 \Rightarrow
T = a^{2} + b^{2} = 16.

  • Câu 15: Thông hiểu
    Tính tọa độ điểm M

    Trong không gian Oxyz có điểm A(4;2;1),B( - 2; - 1;4). Tìm tọa độ điểm M thỏa mãn đẳng thức \overrightarrow{AM} =
2\overrightarrow{MB}?

    Hướng dẫn:

    Ta có: M(x;y;z). Khi đó \overrightarrow{AM} =
2\overrightarrow{MB}

    \overrightarrow{AM} =
2\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}
x - 4 = 2( - 2 - x) \\
y - 2 = 2( - 1 - y) \\
z - 1 = 2(4 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 3 \\
\end{matrix} ight.\  \Rightarrow M(0;0;3)

    Vậy giá trị cần tìm là M(0;0;3).

  • Câu 16: Vận dụng
    Ghi đáp án đúng vào chỗ trống

    Một kho chứa hàng có dạng hình lăng trụ đứng ABFPE.DCGQH với ABFE là hình chữ nhật

    EFP là tam giác cân tại P. Gọi T là trung điểm của DC. Các kích thước của kho chứa lần lượt là AB = 6m;AE = 5m; AD =
8m; QT = 7m. Người ta mô hình hoá nhà kho bằng cách chọn hệ trục toạ độ có gốc toạ độ là điểm O thuộc đoạn AD sao cho OA
= 2m và các trục toạ độ tương ứng như hình vẽ dưới đây.

    Để lắp camera quan sát trong nhà kho tại vị trí trung điểm của FG và đầu thu dữ liệu đặt tại vị trí O, người ta thiết kế đường dây cáp nối từ O đến K sau đó nối thẳng đến camera, rồi nối lại từ camera đến thẳng điểm Q. Độ dài đoạn cáp nối tối thiểu bằng bao nhiêu mét (làm tròn đến hàng phần chục và đầu dây nối không đáng kể ).

    Đáp án: 16,7

    Đáp án là:

    Một kho chứa hàng có dạng hình lăng trụ đứng ABFPE.DCGQH với ABFE là hình chữ nhật

    EFP là tam giác cân tại P. Gọi T là trung điểm của DC. Các kích thước của kho chứa lần lượt là AB = 6m;AE = 5m; AD =
8m; QT = 7m. Người ta mô hình hoá nhà kho bằng cách chọn hệ trục toạ độ có gốc toạ độ là điểm O thuộc đoạn AD sao cho OA
= 2m và các trục toạ độ tương ứng như hình vẽ dưới đây.

    Để lắp camera quan sát trong nhà kho tại vị trí trung điểm của FG và đầu thu dữ liệu đặt tại vị trí O, người ta thiết kế đường dây cáp nối từ O đến K sau đó nối thẳng đến camera, rồi nối lại từ camera đến thẳng điểm Q. Độ dài đoạn cáp nối tối thiểu bằng bao nhiêu mét (làm tròn đến hàng phần chục và đầu dây nối không đáng kể ).

    Đáp án: 16,7

    Với hệ trục toạ độ đã chọn ta có O(0;0;0), K(0;0;5), F(2;6;5), G(
- 6;6;5), Q( - 6;3;7).

    Gọi I là trung điểm của FG, ta có I(
- 2;6;5)

    Do đó OK = 5; \overrightarrow{KI} = ( - 2;6;0) \Rightarrow KI =
\sqrt{4 + 36} = 2\sqrt{10}; \overrightarrow{IQ} = ( - 4; - 3;2) \Rightarrow IQ
= \sqrt{16 + 9 + 4} = \sqrt{29}.

    Vậy độ dài đoạn cáp nối tối thiểu là: OK
+ KI + IQ = 5 + 2\sqrt{10} + \sqrt{29} \approx 16,7\ m.

  • Câu 17: Vận dụng
    Ghi đáp án đúng vào ô trống

    Ba chiếc máy bay không người lái cùng bay lên từ một địa điểm. Sau một thời gian bay, chiếc máy bay thứ nhất cách điểm xuất phát về phía Đông 60(km) và về phía Nam 40(km), đồng thời cách mặt đất 2(km). Chiếc máy bay thứ hai cách điểm xuất phát về phía Bắc 80(km) và về phía Tây 50(km), đồng thời cách mặt đất 4(km). Chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng.

    Xác định khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó.

    Đáp án: 20,8

    Đáp án là:

    Ba chiếc máy bay không người lái cùng bay lên từ một địa điểm. Sau một thời gian bay, chiếc máy bay thứ nhất cách điểm xuất phát về phía Đông 60(km) và về phía Nam 40(km), đồng thời cách mặt đất 2(km). Chiếc máy bay thứ hai cách điểm xuất phát về phía Bắc 80(km) và về phía Tây 50(km), đồng thời cách mặt đất 4(km). Chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng.

    Xác định khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó.

    Đáp án: 20,8

    Chọn hệ trục tọa độ Oxyz, với gốc đặt tại điểm xuất phát của hai chiếc máy bay, mặt phẳng (Oxy) trùng với mặt đất, trục Ox hướng về phía Bắc, trục Oy hướng về phía Tây, trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo kilômét (xem hình vẽ).

    Chiếc máy bay thứ nhất có tọa độ ( - 40;
- 60;2).

    Chiếc máy bay thứ hai có tọa độ (80;50;4).

    Do chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng nên ở vị trí trung điểm, suy ra chiếc máy bay thứ ba có tọa độ \left( \frac{- 40 + 80}{2};\frac{- 60 +
50}{2};\frac{2 + 4}{2} ight) = (20; - 5;3).

    Khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó là:

    \sqrt{20^{2} + ( - 5)^{2} + 3^{2}}
\approx 20,8(km).

  • Câu 18: Thông hiểu
    Tính góc giữa hai vectơ

    Trong không gian tọa độ Oxyz, góc giữa hai vectơ \overrightarrow{i}\overrightarrow{u} = \left( - \sqrt{3};0;1
ight) là:

    Hướng dẫn:

    Ta có: \overrightarrow{i} =
(1;0;0)

    \Rightarrow \cos\left(
\overrightarrow{i};\overrightarrow{u} ight) =
\frac{\overrightarrow{i}.\overrightarrow{u}}{\left| \overrightarrow{i}
ight|.\left| \overrightarrow{u} ight|} = \frac{1.\left( - \sqrt{3} +
0.0 + 0.1 ight)}{1.\sqrt{\left( - \sqrt{3} ight)^{2} + 0^{2} +
1^{2}}} = \frac{- \sqrt{3}}{2}

    \Rightarrow \left(
\overrightarrow{i};\overrightarrow{u} ight) = 150^{0}

  • Câu 19: Thông hiểu
    Tìm các khẳng định sai

    Trong không gian Oxyz, cho tọa độ các điểm A(1;2;0),B(2;1;1),C(0;3; -
1). Cho các khẳng định sau:

    (I) BC = 2AB.

    (II) B \in AC.

    (III) Ba điểm A;B;C tạo thành một tam giác.

    (IV) Ba điểm A;B;C thẳng hàng.

    Trong các khẳng định trên, khẳng định nào sai?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1;1) \\
\overrightarrow{AC} = ( - 1;1; - 1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{AC} = -
\overrightarrow{AB} nên A là trung điểm của BC và ba điểm A;B;C thẳng hàng

    Vậy các khẳng định sai là: (II);(III).

  • Câu 20: Thông hiểu
    Tính diện tích tam giác ABC

    Trong không gian hệ trục tọa độ Oxyz, cho tam giác ABCA(1;0;0),B(0;0;1),C(2;1;1). Tính diện tích tam giác ABC?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;0;1) \\
\overrightarrow{AC} = (1;1;1) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{AC} = ( - 1).1 + 0.1 + 1.1 =
0

    Suy ra \overrightarrow{AB}\bot\overrightarrow{AC}. Lại có: \left\{ \begin{matrix}
\left| \overrightarrow{AB} ight| = \sqrt{2} \\
\left| \overrightarrow{AC} ight| = \sqrt{3} \\
\end{matrix} ight.

    Suy ra diện tích tam giác ABC là: S = \frac{1}{2}AB.AC =
\frac{\sqrt{6}}{2}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo