Trong không gian , cho hai vecto
,
cùng có độ dài bằng
. Biết rằng góc giữa hai vecto đó bằng
, giá trị của biểu thức
là
Ta có:
Do đó:
.
Trong không gian , cho hai vecto
,
cùng có độ dài bằng
. Biết rằng góc giữa hai vecto đó bằng
, giá trị của biểu thức
là
Ta có:
Do đó:
.
Trong không gian , cho ba điểm
và điểm
là tâm đường tròn ngoại tiếp tam giác
. Tính giá trị biểu thức
?
Ta có: nên tam giác ABC vuông tại B
Suy ra tâm I của đường tròn ngoại tiếp của tam giác ABC là trung điểm của cạnh huyền AC.
Vậy đáp án cần tìm là
Cho lăng trụ đứng , điểm
trên
sao cho
Đặt
Khẳng định nào dưới đây là đúng ?
Hình vẽ minh họa
Ta có
Trong không gian với hệ trục tọa độ , cho các vectơ
và
. Mệnh đề nào sau đây đúng?
Ta có:
không cùng phương vì
Vậy mệnh đề đúng là
Trong không gian , cho vectơ
. Các khẳng định sau là đúng hay sai?
a) Tọa độ điểm A là . Đúng||Sai
b) Hình chiếu vuông góc của lên trục
là
. Sai||Đúng
c) Trung điểm của là
. Đúng||Sai
d) Hình chiếu vuông góc của lên mặt phẳng
là
. Sai||Đúng
Trong không gian , cho vectơ
. Các khẳng định sau là đúng hay sai?
a) Tọa độ điểm A là . Đúng||Sai
b) Hình chiếu vuông góc của lên trục
là
. Sai||Đúng
c) Trung điểm của là
. Đúng||Sai
d) Hình chiếu vuông góc của lên mặt phẳng
là
. Sai||Đúng
a) Ta có
b) Hình chiếu vuông góc của A lên Ox là .
c) Trung điểm của là điểm
.
d) Hình chiếu vuông góc của lên mặt phẳng
là
.
Trong không gian tọa độ , góc giữa hai vectơ
và
là:
Ta có:
Trong không gian với hệ tọa độ Oxyz, cho lần lượt là các vecto đơn vị nằm trên các trục tọa độ
và
là một vecto tùy ý khác
.
Tính
Đáp án: 1
Trong không gian với hệ tọa độ Oxyz, cho lần lượt là các vecto đơn vị nằm trên các trục tọa độ
và
là một vecto tùy ý khác
.
Tính
Đáp án: 1
Giả sử .
Ta có
Vậy
Trong không gian hệ trục tọa độ , cho ba điểm
. Tìm điểm
sao cho
đạt giá trị nhỏ nhất?
Vì suy ra
. Ta có:
Theo bài ra:
Vậy nhỏ nhất bằng
khi
. Hay
Biết khác
và vuông góc với cả hai vectơ
. Khẳng định nào sau đây đúng?
Theo đề bài ta có: khác
và vuông góc với cả hai vectơ
nên
Vậy khẳng định đúng là
Trong không gian với hệ trục tọa độ , cho tam giác
có tọa độ các đỉnh
. Gọi
là chân đường phân giác trong của góc
trong tam giác
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ , cho tam giác
có tọa độ các đỉnh
. Gọi
là chân đường phân giác trong của góc
trong tam giác
. Tính giá trị biểu thức
?
Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. Trong cùng một thời điểm, vị trí của một điểm trong không gian sẽ được xác định bởi bốn vệ tịnh cho truớc nhờ các bộ thu phát tín hiệu đặt trên các vệ tinh. Giả sử trong không gian với hệ tọa độ
, có bốn vệ tinh lần lượt đặt tại các điểm
,
; vị trí
thỏa mãn
. Khoảng cách từ điểm
đến điểm
bằng bao nhiêu?
Đáp án: 3
Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. Trong cùng một thời điểm, vị trí của một điểm trong không gian sẽ được xác định bởi bốn vệ tịnh cho truớc nhờ các bộ thu phát tín hiệu đặt trên các vệ tinh. Giả sử trong không gian với hệ tọa độ
, có bốn vệ tinh lần lượt đặt tại các điểm
,
; vị trí
thỏa mãn
. Khoảng cách từ điểm
đến điểm
bằng bao nhiêu?
Đáp án: 3
Ta có, vị trí thỏa mãn
Vậy OM = 3
Cho hình chóp có
là hình chữ nhật có
,
; giá trị của
là
Vì
Trong không gian , cho
, điểm
và
điểm sao cho
là trọng tâm tam giác
. Khi đó
bằng
Ta có:
Cho tam giác có
. Tọa độ của trọng tâm
của tam giác
là:
Với G là trọng tâm tam giác ABC:
Vậy tọa độ trọng tâm tam giác có tọa độ là .
Trong không gian với hệ trục tọa độ cho hai điểm
,
. Tìm tọa độ điểm
thuộc trục
sao cho
cách đều hai điểm
.
Gọi . Ta có:
Trong không gian , cho vectơ
. Khi đó tọa độ vectơ
là:
Ta có:
Trong không gian , véctơ
vuông góc với hai véctơ
và
; đồng thời
tạo với tia
một góc tù và độ dài véctơ
bằng 3. Tìm véctơ
.
Ta có và
không cùng phương đồng thời
.
Do .
Mặt khác tạo với tia
một góc tù nên
.
Suy ra .
Vậy .
Trong không gian vói hệ trục tọa độ , cho hình thang cân
có hai đáy
,
thỏa mãn
và diện tích bằng
, đỉnh
, phương trình đường thẳng chứa cạnh
là
. Tìm tọa độ điểm
biết hoành độ điểm
lớn hơn hoành độ điểm
.
Hình vẽ minh họa
Gọi điểm là hình chiếu vuông góc của
lên đường thẳng
.
Khi đó .
Đường thẳng có vtcp là:
. Ta có:
.
Đường thẳng đi qua
và song song với
phương trình
là:
Theo bài ra ta có:
Với . Với
Ta có:
Trong không gian , cho ba điểm
,
và
. Để
,
,
thẳng hàng thì giá trị
bằng
Ta có ,
.
Ba điểm ,
,
thẳng hàng
.
Vậy .
Trong không gian , cho tọa độ các điểm
. Cho các khẳng định sau:
(I) .
(II) .
(III) Ba điểm tạo thành một tam giác.
(IV) Ba điểm thẳng hàng.
Trong các khẳng định trên, khẳng định nào sai?
Ta có: nên
là trung điểm của
và ba điểm
thẳng hàng
Vậy các khẳng định sai là: .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: