Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 8 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính độ dài đoạn thẳng

    Trong không gian Oxyz, cho đường thẳng d:\frac{x - 3}{2} = \frac{y + 1}{1} =
\frac{z - 1}{2} và điểm M(1\ ;2\
;\  - 3). Gọi M_{1} là hình chiếu vuông góc của M lên đường thẳng d. Độ dài đoạn thẳng OM_{1} bằng

    Hướng dẫn:

    Cách 1: Phương trình tham số của đường thẳng d là: \left\{
\begin{matrix}
x = 3 + 2t \\
y = - 1 + t \\
z = 1 + 2t \\
\end{matrix} ight..

    Một vtcp của d\overrightarrow{u} = (2\ ;\ 1\ ;\ 2).

    Gọi (\alpha) là mặt phẳng đi qua điểm M(1\ ;2\ ;\  - 3) và vuông góc với đường thẳng d. Khi đó (\alpha) có vtpt là \overrightarrow{n} = \overrightarrow{u} = (2\ ;\
1\ ;\ 2).

    Phương trình mặt phẳng (\alpha): 2(x - 1) + 1(y - 2) + 2(z + 3) = 0 \Leftrightarrow 2x + y + 2z + 2 =
0.

    M_{1} là hình chiếu vuông góc của M lên đường thẳng d nên M_{1} là giao điểm của d(\alpha).

    Xét hệ phương trình: \left\{
\begin{matrix}
x = 3 + 2t\ \ \ \ \ (1) \\
y = - 1 + t\ \ \ \ \ (2) \\
z = 1 + 2t\ \ \ \ \ \ (3) \\
2x + y + 2z + 2 = 0\ (4) \\
\end{matrix} ight.

    Thay (1),(2),(3) vào (4) ta được: 2(3 + 2t) - 1 + t + 2(1 + 2t) + 2 = 0

    \Leftrightarrow 9t + 9 = 0 \Leftrightarrow t = - 1.

    Suy ra \left\{ \begin{matrix}
x = 1 \\
y = - 2 \\
z = - 1 \\
\end{matrix} ight.\  \Rightarrow M_{1}(1\ ;\  - 2\ ;\  -1).

    Độ dài đoạn thẳng OM_{1} là: OM_{1} = \sqrt{1^{2} + ( - 2)^{2} + ( -1)^{2}} = \sqrt{6}.

    Cách 2: Phương trình tham số của đường thẳng d là: \left\{
\begin{matrix}
x = 3 + 2t \\
y = - 1 + t \\
z = 1 + 2t \\
\end{matrix} ight..

    Một vtcp của d\overrightarrow{u} = (2\ ;\ 1\ ;\ 2).

    M_{1} \in d \Rightarrow M_{1}(3 + 2t\
;\  - 1 + t\ ;\ 1 + 2t)

    \Rightarrow \overrightarrow{MM_{1}} = (2
+ 2t\ ;\  - 3 + t\ ;\ 4 + 2t).

    Ta có \overrightarrow{MM_{1}}\bot\overrightarrow{u}
\Leftrightarrow \overrightarrow{MM_{1}}.\overrightarrow{u} = 0\Leftrightarrow 4 + 4t - 3 + t + 8 + 4t = 0 \Leftrightarrow t = -
1.

    Suy ra M_{1}(1\ ;\  - 2\ ;\  -
1)

    Độ dài đoạn thẳng OM_{1} là: OM_{1} = \sqrt{1^{2} + ( - 2)^{2} + ( -1)^{2}} = \sqrt{6}.

  • Câu 2: Thông hiểu
    Tìm cặp số thực

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (m;2;4),\overrightarrow{b} =
(1;n;2) cùng phương. Tìm cặp số thực (m;n)?

    Hướng dẫn:

    Ta có hai vectơ \overrightarrow{a} =
(m;2;4),\overrightarrow{b} = (1;n;2) cùng phương

    \Leftrightarrow \frac{m}{1} =
\frac{2}{n} = \frac{4}{2} \Leftrightarrow \left\{ \begin{matrix}
m = 2 \\
n = 1 \\
\end{matrix} ight.

    Vậy (m;n) = (2;1).

  • Câu 3: Thông hiểu
    Tính độ dài vectơ

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{u} = ( - 2;3;0)\overrightarrow{v} = (2; - 2;1). Tính độ dài vectơ \overrightarrow{w} =
\overrightarrow{u} - 2\overrightarrow{v}?

    Hướng dẫn:

    Ta có: \overrightarrow{w} =
\overrightarrow{u} - 2\overrightarrow{v} = ( - 2;3;0) - 2(2; - 2;1) = (
- 6;7; - 2)

    Khi đó \left| \overrightarrow{w} ight|
= \sqrt{89}

  • Câu 4: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A( - 2;3;4),B(8; - 5;6). Hình chiếu vuông góc của trung điểm I của đoạn AB trên mặt phẳng (Oyz) là điểm nào dưới đây?

    Hướng dẫn:

    Vì I là trung điểm của đoạn AB nên I(3; -
1;5).

    Khi đó hình chiếu của I lên (Oyz) là M(0; - 1;5).

  • Câu 5: Thông hiểu
    Chọn đẳng thức đúng

    Trong không gian hệ trục tọa độ Oxyz, cho các vectơ \overrightarrow{a} = (2;3;1),\overrightarrow{b} =
( - 1;5;2),\overrightarrow{c} = (4; - 1;3),\overrightarrow{x} = ( -
3;22;5). Đẳng thức nào dưới đây đúng?

    Hướng dẫn:

    Đặt \overrightarrow{x} =
m\overrightarrow{a} + n\overrightarrow{b} + p\overrightarrow{c};\left(
m;n;p\mathbb{\in R} ight)

    \Rightarrow ( - 3;22;5) = m(2;3;1) + n(
- 1;5;2) + p(4; - 1;3)

    \Rightarrow \left\{ \begin{matrix}
2m - m + 4p = - 3 \\
3m + 5m - p = 22 \\
m + 2m + 3p = 5 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
m = 2 \\
n = 3 \\
p = - 1 \\
\end{matrix} ight.

    Vậy \overrightarrow{x} =
2\overrightarrow{a} + 3\overrightarrow{b} - \overrightarrow{c} là đẳng thức đúng.

  • Câu 6: Vận dụng
    Ghi đáp án đúng vào ô trống

    Ba chiếc máy bay không người lái cùng bay lên từ một địa điểm. Sau một thời gian bay, chiếc máy bay thứ nhất cách điểm xuất phát về phía Đông 60(km) và về phía Nam 40(km), đồng thời cách mặt đất 2(km). Chiếc máy bay thứ hai cách điểm xuất phát về phía Bắc 80(km) và về phía Tây 50(km), đồng thời cách mặt đất 4(km). Chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng.

    Xác định khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó.

    Đáp án: 20,8

    Đáp án là:

    Ba chiếc máy bay không người lái cùng bay lên từ một địa điểm. Sau một thời gian bay, chiếc máy bay thứ nhất cách điểm xuất phát về phía Đông 60(km) và về phía Nam 40(km), đồng thời cách mặt đất 2(km). Chiếc máy bay thứ hai cách điểm xuất phát về phía Bắc 80(km) và về phía Tây 50(km), đồng thời cách mặt đất 4(km). Chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng.

    Xác định khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó.

    Đáp án: 20,8

    Chọn hệ trục tọa độ Oxyz, với gốc đặt tại điểm xuất phát của hai chiếc máy bay, mặt phẳng (Oxy) trùng với mặt đất, trục Ox hướng về phía Bắc, trục Oy hướng về phía Tây, trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo kilômét (xem hình vẽ).

    Chiếc máy bay thứ nhất có tọa độ ( - 40;
- 60;2).

    Chiếc máy bay thứ hai có tọa độ (80;50;4).

    Do chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng nên ở vị trí trung điểm, suy ra chiếc máy bay thứ ba có tọa độ \left( \frac{- 40 + 80}{2};\frac{- 60 +
50}{2};\frac{2 + 4}{2} ight) = (20; - 5;3).

    Khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó là:

    \sqrt{20^{2} + ( - 5)^{2} + 3^{2}}
\approx 20,8(km).

  • Câu 7: Vận dụng
    Ghi đáp án vào ô trống

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu
    Tìm tọa độ trọng tâm tam giác

    Cho tam giác ABCA(2;4;5),B( - 1;2;3),C(5;1;2). Tọa độ của trọng tâm G của tam giác ABC là:

    Hướng dẫn:

    Với G là trọng tâm tam giác ABC:

    \left\{ \begin{matrix}
x_{G} = \dfrac{x_{A} + x_{B} + x_{c}}{3} = 2 \\
y_{G} = \dfrac{y_{A} + y_{B} + y_{c}}{3} = \dfrac{7}{3} \\
z_{G} = \dfrac{z_{A} + z_{B} + z_{c}}{3} = \dfrac{10}{3} \\
\end{matrix} ight.\  \Rightarrow G\left( 2;\dfrac{7}{3};\dfrac{10}{3}
ight)

    Vậy tọa độ trọng tâm tam giác có tọa độ là \left( 2;\frac{7}{3};\frac{10}{3}
ight).

  • Câu 9: Thông hiểu
    Chọn mệnh đề đúng

    Trong không gian Oxyz, cho các vectơ \overrightarrow{a}(2;m - 1;3)\overrightarrow{b}(1;3; - 2n). Xác định giá trị của m;n để hai vectơ đã cho có cùng hướng?

    Hướng dẫn:

    Ta có: Hai vectơ \overrightarrow{a}(2;m -
1;3)\overrightarrow{b}(1;3; -
2n) cùng hướng nên

    \overrightarrow{a} =k.\overrightarrow{b};(k > 0) \Leftrightarrow \left\{ \begin{matrix}2 = k \\m - 1 = 3k \\3 = k( - 2n) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2 = k \\m = 7 \ = - \dfrac{3}{4} \\\end{matrix} ight.

    Vậy m = 7;n = - \frac{3}{4} là đáp án cần tìm.

  • Câu 10: Thông hiểu
    Chọn phương án đúng

    Trong không gian với hệ tọa độ Oxyz, cho véc tơ \overrightarrow{u} = (1;1; - 2),\ \
\overrightarrow{v} = (1;0;m). Tìm tất cả giá trị của m để góc giữa \overrightarrow{u}, \overrightarrow{v} bằng 45^{{^\circ}}.

    Hướng dẫn:

    Ta có:

    \left(
\overrightarrow{u},\overrightarrow{v} ight) = 45{^\circ}
\Leftrightarrow \cos\left( \overrightarrow{u},\overrightarrow{v} ight)
= \frac{\sqrt{2}}{2}

    \Leftrightarrow
\frac{\overrightarrow{u}.\overrightarrow{v}}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{v} ight|} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{1 -
2m}{\sqrt{6}.\sqrt{1 + m^{2}}} = \frac{1}{\sqrt{2}}

    \Leftrightarrow \sqrt{3\left( m^{2} + 1
ight)} = 1 - 2m

    \Leftrightarrow \left\{ \begin{matrix}
1 - 2m \geq 0 \\
3m^{2} + 3 = 1 - 4m + 4m^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \leq \frac{1}{2} \\
m^{2} - 4m - 2 = 0 \\
\end{matrix} ight. \Leftrightarrow m = 2 - \sqrt{6}.

  • Câu 11: Thông hiểu
    Tìm tọa độ điểm cách đều A và B

    Trong không gian Oxyz, tìm tọa độ điểm M trên trục Ox cách đều hai điểm A(1;2; - 1)B(2;1;2)?

    Hướng dẫn:

    Ta có: M \in Ox \Rightarrow
M(m;0;0)

    Theo bài ra ta có:

    MA = MB \Leftrightarrow MA^{2} =
MB^{2}

    \Leftrightarrow (m - 1)^{2} + 2^{2} +
1^{2} = (m - 2)^{2} + 1^{2} + 2^{2}

    \Leftrightarrow (m - 1)^{2} = (m -
2)^{2} \Leftrightarrow \left\lbrack \begin{matrix}
m - 1 = m - 2 \\
m - 1 = 2 - m \\
\end{matrix} ight.

    \Leftrightarrow m = \frac{3}{2}
\Rightarrow M\left( \frac{3}{2};0;0 ight).

  • Câu 12: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian hệ trục tọa độ Oxyz, cho tam giác ABC có tọa các điểm A(1; - 3;3),B(2; - 4;5),C(a; - 2;b) và tam giác đó nhận điểm G(1;c;3) làm trọng tâm. Xác định giá trị biểu thức P = a
+ b + c?

    Hướng dẫn:

    Vì tam giác ABC nhận điểm G làm trọng tâm nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{1 + 2 + a}{3} = 1 \\\dfrac{- 3 - 4 - 2}{3} = c \\\dfrac{3 + 5 + b}{3} = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 0 \\b = 1 \\c = - 3 \\\end{matrix} ight.\  \Rightarrow P = a + b + c = - 2

  • Câu 13: Thông hiểu
    Tìm tọa độ điểm đối xứng

    Trong không gian Oxyz, cho điểm A(3; - 1;1). Điểm đối xứng với A qua mặt phẳng (Oyz) có tọa độ là:

    Hướng dẫn:

    Giữ nguyên y, z và đổi dấu x nên ta suy ra điểm đối xứng với A qua (Oyz) có tọa độ là ( - 3; - 1;1).

  • Câu 14: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Trong không gian Oxyz, cho ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Các khẳng định sau là đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} = -
27. Sai||Đúng

    b) \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{9}{2\sqrt{35}}. Sai||Đúng

    c) \overrightarrow{AC}.\overrightarrow{CB} =
15. Đúng||Sai

    d) \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{5}{2\sqrt{21}}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Các khẳng định sau là đúng hay sai?

    a) \overrightarrow{AB}.\overrightarrow{AC} = -
27. Sai||Đúng

    b) \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{9}{2\sqrt{35}}. Sai||Đúng

    c) \overrightarrow{AC}.\overrightarrow{CB} =
15. Đúng||Sai

    d) \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{5}{2\sqrt{21}}. Đúng||Sai

    Ta có \overrightarrow{AB} = (1;5; -
2),\overrightarrow{AC} = (5;4; - 1),\overrightarrow{AC} = (4; -
1;1).

    Ta có:

    \overrightarrow{AB}.\overrightarrow{AC} = 5 + 20 +
2 = 27.

    Ta có:

    \overrightarrow{AC}.\overrightarrow{CB} = 5.( - 4)
+ 4.1 + ( - 1).( - 1) = - 15.

    Ta có:

    \cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB} ight|.|\overrightarrow{AC}|} =\frac{27}{\sqrt{30}.\sqrt{42}} = \frac{9}{2\sqrt{35}}.

    Ta có:

    \cos(\overrightarrow{AB},\overrightarrow{BC}) =\frac{\overrightarrow{AB}.\overrightarrow{BC}}{\left|\overrightarrow{AB} ight||\overrightarrow{BC}|} =\frac{15}{\sqrt{42}.\sqrt{18}} = \frac{5}{2\sqrt{21}}.

  • Câu 15: Nhận biết
    Tính tích vô hướng của hai vecto

    Trong không gian với hệ tọa độ Oxyz, cho vectơ \overrightarrow{u} = (3\ ;\ 0\ ;\ 1)\overrightarrow{v} = (2\ ;\ 1\ ;\
0). Tính tích vô hướng \overrightarrow{u}.\overrightarrow{v}.

    Hướng dẫn:

    Ta có \overrightarrow{u}.\overrightarrow{v} = 3.2 + 0.1
+ 1.0 = 6.

  • Câu 16: Vận dụng
    Tìm tọa độ chân đường phân giác

    Trong không gian Oxyz, cho ba điểm A(1;2; - 1),B(2; - 1;3),C( -
4;7;5). Tọa độ chân đường phân giác của góc B trong tam giác ABC là:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BA} = ( - 1; - 3;4) \Rightarrow BA = \sqrt{26} \\
\overrightarrow{BC} = ( - 6;8;2) \Rightarrow BC = 2\sqrt{26} \\
\end{matrix} ight.

    Gọi D(a;b;c) là chân đường phân giác kẻ từ B lên AC của tam giác ABC.

    Suy ra \frac{DA}{DC} = \frac{BA}{BC}
\Rightarrow \overrightarrow{DA} = -
\frac{1}{2}\overrightarrow{DC}(*)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{DA} = (1 - x;2 - y; - 1 - z) \\
\overrightarrow{DC} = ( - 4 - x;7 - y;5 - z) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}1 - x = - \dfrac{1}{2}( - 4 - x) \\2 - y = - \dfrac{1}{2}(7 - y) \\- 1 - z = - \dfrac{1}{2}(5 - z) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{2}{3} \\y = \dfrac{11}{3} \\z = 1 \\\end{matrix} ight.\  \Rightarrow D\left( - \dfrac{2}{3};\dfrac{11}{3};1ight)

  • Câu 17: Thông hiểu
    Xác định tọa độ điểm Q

    Trong không gian tọa độ Oxyzcho ba điểm M(1;1;1),\ N(2;3;4),\
P(7;7;5). Tìm tọa độ điểm Q để tứ giác MNPQ là hình bình hành

    Hướng dẫn:

    Minh họa bằng hình vẽ sau:

    Ta có \overrightarrow{MN} = (1;2;3),\
\overrightarrow{QP} = \left( 7 - x_{Q};7 - y_{Q};5 - z_{Q}
ight).

    MNPQ là hình bình hành \Leftrightarrow \overrightarrow{MN} =
\overrightarrow{QP}

    \Leftrightarrow \left\{ \begin{matrix}
1 = 7 - x_{Q} \\
2 = 7 - y_{Q} \\
3 = 5 - z_{Q} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{Q} = 6 \\
y_{Q} = 5 \\
z_{Q} = 2 \\
\end{matrix} ight..

    Vậy Q(6;5;2).

  • Câu 18: Thông hiểu
    Xác định tham số m theo yêu cầu

    Trong không gian Oxyz, cho các vec tơ \overrightarrow{a} = (5;3; -
2)\overrightarrow{b} = (m; -
1;m + 3). Có bao nhiêu giá trị nguyên dương của m để góc giữa hai vec tơ \overrightarrow{a}\overrightarrow{b} là góc tù?

    Hướng dẫn:

    Ta có \cos\left( \overrightarrow{a};\
\overrightarrow{b} ight) = \frac{\overrightarrow{a}.\
\overrightarrow{b}}{\left| \overrightarrow{a} ight|.\left|
\overrightarrow{b} ight|} = \frac{3m - 9}{\sqrt{38}.\sqrt{2m^{2} + 6m
+ 10}}.

    Góc giữa hai vec tơ \overrightarrow{a}\overrightarrow{b} là góc tù khi và chỉ khi

    \cos\left( \overrightarrow{a};\
\overrightarrow{b} ight) < 0 \Leftrightarrow 3m - 9 < 0
\Leftrightarrow m < 3.

    m nguyên dương nên m \in \left\{ 1;\ 2 ight\}.

    Vậy có 2 giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 19: Thông hiểu
    Tính tổng a và b

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):\ x + y + z - 3 = 0 và đường thẳng d:\frac{x}{1} = \frac{y + 1}{2} =
\frac{z - 2}{- 1}. Gọi \Delta là hình chiếu vuông góc của d trên (\alpha)\overrightarrow{u} = (1;\ a;\ b) là một vectơ chỉ phương của \Delta với a,\ b\mathbb{\in Z}. Tính tổng a + b.

    Hướng dẫn:

    Ta có mặt phẳng (\alpha) nhận vectơ \overrightarrow{n_{\alpha}} = (1;\ 1;\
1) là vectơ pháp tuyến, đường thẳng d đi qua điểm A = (0;\  - 1;\ 2) và nhận \overrightarrow{u_{d}} = (1;\ 2;\  - 1) là vectơ chỉ phương

    Gọi (\beta) là mặt phẳng chứa đường thẳng d và vuông góc với mặt phẳng(\alpha).

    Ta có \overrightarrow{n_{\beta}} =
\overrightarrow{n_{\alpha}} \land \overrightarrow{u_{d}} = ( - 3;\ 2;\
1).

    Khi đó đường thẳng \Delta là giao tuyến của hai mặt phẳng (\alpha)(\beta).

    Do đó một vectơ chỉ phương của đường thẳng \Delta\overrightarrow{u_{\Delta}} =
\overrightarrow{n_{\alpha}} \land \overrightarrow{n_{\beta}} = ( -
1;\  - 4;\ 5).

    \overrightarrow{u} = (1;\ a;\
b) nên a = 4, b = - 5. Vậy a + b = - 1.

  • Câu 20: Thông hiểu
    Tìm m thỏa mãn yêu cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(3; - 1;5),B(m;2;7). Tìm giá trị tham số m để AB
= 7?

    Hướng dẫn:

    Theo bài ra ta có:

    AB = 7 \Leftrightarrow \sqrt{(m - 3)^{2}
+ 3^{2} + 2^{2}} = 7

    \Leftrightarrow (m - 3)^{2} = 36
\Leftrightarrow \left\lbrack \begin{matrix}
m - 3 = 6 \\
m - 3 = - 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 9 \\
m = - 3 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là \left\lbrack
\begin{matrix}
m = 9 \\
m = - 3 \\
\end{matrix} ight..

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (10%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo