Trong không gian hệ trục tọa độ , cho hai điểm
. Điểm
thuộc đoạn
sao cho
, tọa độ điểm
là:
Gọi tọa độ độ điểm . Vì điểm
nên
Vậy đáp án cần tìm là: .
Trong không gian hệ trục tọa độ , cho hai điểm
. Điểm
thuộc đoạn
sao cho
, tọa độ điểm
là:
Gọi tọa độ độ điểm . Vì điểm
nên
Vậy đáp án cần tìm là: .
Trong không gian , cho các điểm
đối xứng nhau qua mặt phẳng
. Tính giá trị biểu thức
?
Gọi H là hình chiếu của M trên mặt phẳng suy ra H(0; 6; 1)
Do M’ đối xứng với M qua nên MM’ nhận H làm trung điểm suy ra M’(2; 6; 1) suy ra a = 2; b = 6; c = 1
Vậy .
Trong không gian , cho điểm
. Điểm đối xứng với
qua mặt phẳng
có tọa độ là:
Giữ nguyên y, z và đổi dấu x nên ta suy ra điểm đối xứng với A qua có tọa độ là
.
Trong không gian cho
điểm
và điểm
Tọa độ trọng tâm của tam giác ABC là
Ta có
Gọi G là trọng tâm của tam giác ABC ta có
.
Vậy
Trong không gian với hệ tọa độ , cho hình thang
có hai đáy
; có tọa độ ba đỉnh
. Biết hình thang có diện tích bằng
. Giả sử đỉnh
, tìm mệnh đề đúng?
Hình vẽ minh họa
Ta có:
Ta có
//
nên
và
cùng phương, cùng chiều
So với điều kiện suy ra:
Trong không gian tọa độ , góc giữa hai vectơ
và
là:
Ta có:
Trong không gian với hệ tọa độ , cho véc tơ
. Tìm tất cả giá trị của
để góc giữa
,
bằng
.
Ta có:
.
Cho hình chóp có
là hình chữ nhật có
,
; giá trị của
là
Vì
Trong không gian hệ trục tọa độ , cho
. Gọi
là trọng tâm tam giác
. Tính độ dài đoạn thẳng
?
Vì là trọng tâm tam giác
nên tọa độ điểm
hay
Vậy .
Trong không gian với hệ trục tọa độ , cho điểm
và điểm
. Tìm tọa độ điểm
để ba điểm
thẳng hàng?
Ta có:
Lại có:
Vì ba điểm A; B; M thẳng hàng nên cùng phương
Vậy đáp án cần tìm là .
Trong không gian tọa độ , cho hai mặt phẳng
,
. Xét các vectơ
,
.
a) là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
b) không là vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
c) . Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
Trong không gian tọa độ , cho hai mặt phẳng
,
. Xét các vectơ
,
.
a) là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
b) không là vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
c) . Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
a) là một vectơ pháp tuyến của mặt phẳng
.
Ta có: có vectơ pháp tuyến
.
b) là một vectơ pháp tuyến của mặt phẳng
.
Ta có: có vectơ pháp tuyến
.
c) .
d) Gọi là góc giữa hai mặt phẳng
và
.
Trong không gian , cho hình hộp
biết
,
,
,
. Tọa độ của điểm
là:
Gọi
là hình hộp
,
,
⇒
. Vậy:
.
Trong không gian với hệ tọa độ , cho các điểm
và điểm
thỏa mãn
lớn nhất. Tính
.
Đáp án: 13
Trong không gian với hệ tọa độ , cho các điểm
và điểm
thỏa mãn
lớn nhất. Tính
.
Đáp án: 13
Ta có:
Dấu bằng xảy ra khi và chỉ khi. Khi đó
.
Trong không gian với hệ trục tọa độ , cho tọa độ hai điểm
. Tính chu vi tam giác
?
Ta có:
Chu vi tam giác là:
Vậy đáp án đúng là: .
Trong không gian hệ trục tọa độ , cho hai vectơ
cùng phương. Tìm cặp số thực
?
Ta có hai vectơ cùng phương
Vậy .
Các thiên thạch có đường kính lớn hơn và có thể lại gần Trái Đất ở khoảng cách nhỏ hơn 7500000 km được coi là những vật thể có khả năng va chạm gáy nguy hiểm cho Trái Đất. Để theo đõi những thiên thạch này, người ta đã thiết lập các trạm quan sát các vật thể bay gần Trái Đất. Giả sử có một hệ thống quan sát có khả năng theo dõi các vật thể ở độ cao khồng vượt quả 6600 km so với mực nước biển. Coi Trái Đất là khối cầu có bán kính 6400 km. Chọn hệ trục tọa độ
trong không gian có gốc
tại tâm Trái Đất và đơn vị độ dài trên mỗi trục tọa độ là 1000 km. Một thiên thạch (coi như một hạt) chuyển động với tốc độ không đổi theo một đường thẳng từ điểm
đến điểm
.
a) Đường thẳng có phương trình tham số là
. Đúng||Sai
b) Vị trí đầu tiên thiên thạch di chuyển vào phạm vi theo dỡi của hệ thống quan sát lả điểm . Sai||Đúng
c) Khoảng cách giữa vị trí đầu tiên và vị trỉ cuối cùng mả thiên thạch di chuyển trong phạm vi theo dõi của hệ thống quan sát là 18900 km (kết quả làm tròn đến hàng trăm theo đơn vị ki-lô-mét). Đúng||Sai
d) Nếu thời gian di chuyển của thiên thạch trong phạm vi theo dõi của hệ thống quan sát là 3 phút thì thời gian nó di chuyển từ đến
là 6 phút. Đúng||Sai
Các thiên thạch có đường kính lớn hơn và có thể lại gần Trái Đất ở khoảng cách nhỏ hơn 7500000 km được coi là những vật thể có khả năng va chạm gáy nguy hiểm cho Trái Đất. Để theo đõi những thiên thạch này, người ta đã thiết lập các trạm quan sát các vật thể bay gần Trái Đất. Giả sử có một hệ thống quan sát có khả năng theo dõi các vật thể ở độ cao khồng vượt quả 6600 km so với mực nước biển. Coi Trái Đất là khối cầu có bán kính 6400 km. Chọn hệ trục tọa độ
trong không gian có gốc
tại tâm Trái Đất và đơn vị độ dài trên mỗi trục tọa độ là 1000 km. Một thiên thạch (coi như một hạt) chuyển động với tốc độ không đổi theo một đường thẳng từ điểm
đến điểm
.
a) Đường thẳng có phương trình tham số là
. Đúng||Sai
b) Vị trí đầu tiên thiên thạch di chuyển vào phạm vi theo dỡi của hệ thống quan sát lả điểm . Sai||Đúng
c) Khoảng cách giữa vị trí đầu tiên và vị trỉ cuối cùng mả thiên thạch di chuyển trong phạm vi theo dõi của hệ thống quan sát là 18900 km (kết quả làm tròn đến hàng trăm theo đơn vị ki-lô-mét). Đúng||Sai
d) Nếu thời gian di chuyển của thiên thạch trong phạm vi theo dõi của hệ thống quan sát là 3 phút thì thời gian nó di chuyển từ đến
là 6 phút. Đúng||Sai
a) Ta có:
Chọn .
Khi đó, phương trình
Do đó, a đúng
b) Phạm vi theo dõi của hệ thống ra đa là mặt cầu .
Tọa độ giao điểm của MN và là nghiệm của phương trình
Ta có
Điểm gặp đầu tiên là
Do đó, b sai
c)
Đơn vị độ dài trên mỗi trục là 1000 km nên khoảng cách
Do đó, c đúng
d)
(phút)
Do đó, d đúng
Trong không gian , cho hai vectơ
. Tìm tất cả các giá trị của tham số
để
?
Ta có:
Vậy đáp án cần tìm là .
Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều , có cạnh bên bằng cạnh đáy và dài
mét. Kiến trúc sư muốn xây dựng một cây cầu
bắc xuyên tòa nhà (điểm đầu thuộc cạnh
, điểm cuối thuộc cạnh
) và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho
ngắn nhất (như hình vẽ).
Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 72
Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều , có cạnh bên bằng cạnh đáy và dài
mét. Kiến trúc sư muốn xây dựng một cây cầu
bắc xuyên tòa nhà (điểm đầu thuộc cạnh
, điểm cuối thuộc cạnh
) và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho
ngắn nhất (như hình vẽ).
Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 72
Để độ dài cây cầu ngắn nhất thì
là đoạn vuông góc chung của hai đường thẳng
và
.
Đặt hệ trục Oxyz như hình vẽ:
Khi đó ,
Do đó
Số tiền cần làm cây cầu ngắn nhất là (tỷ đồng)
Trong không gian hệ trục tọa độ , cho tọa độ ba điểm
. Tính tích vô hướng của
?
Ta có:
Ba chiếc máy bay không người lái cùng bay lên từ một địa điểm. Sau một thời gian bay, chiếc máy bay thứ nhất cách điểm xuất phát về phía Đông và về phía Nam
, đồng thời cách mặt đất
. Chiếc máy bay thứ hai cách điểm xuất phát về phía Bắc
và về phía Tây
, đồng thời cách mặt đất
. Chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng.
Xác định khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó.
Đáp án: 20,8
Ba chiếc máy bay không người lái cùng bay lên từ một địa điểm. Sau một thời gian bay, chiếc máy bay thứ nhất cách điểm xuất phát về phía Đông và về phía Nam
, đồng thời cách mặt đất
. Chiếc máy bay thứ hai cách điểm xuất phát về phía Bắc
và về phía Tây
, đồng thời cách mặt đất
. Chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng.
Xác định khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó.
Đáp án: 20,8
Chọn hệ trục tọa độ , với gốc đặt tại điểm xuất phát của hai chiếc máy bay, mặt phẳng
trùng với mặt đất, trục
hướng về phía Bắc, trục
hướng về phía Tây, trục
hướng thẳng đứng lên trời, đơn vị đo lấy theo kilômét (xem hình vẽ).
Chiếc máy bay thứ nhất có tọa độ .
Chiếc máy bay thứ hai có tọa độ .
Do chiếc máy bay thứ ba nằm chính giữa của chiếc máy bay thứ nhất và thứ hai, đồng thời ba chiếc máy bay này thẳng hàng nên ở vị trí trung điểm, suy ra chiếc máy bay thứ ba có tọa độ .
Khoảng cách của chiếc máy bay thứ ba với vị trí tại điểm xuất phát của nó là:
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: