Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CTST Công thức xác suất toàn phần và công thức Bayes (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính xác suất để lấy được viên bi màu đỏ

    Một chiếc hộp có 20 viên bi, trong đó có 12 viên bi màu đỏ và 8 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Bạn Minh lấy 1 viên bi từ hộp sau đó bạn Châu lấy viên bi thứ hai. Tính xác suất để bạn Châu lấy được viên bi màu đỏ.

    Hướng dẫn:

    Xét hai biến cố : A: “ Bạn Châu lấy được viên bi màu đỏ”

    B: “ Bạn Minh lấy được viên bi màu đỏ”

    Khi đó ta có:

    P(B) = \frac{12}{20} =
\frac{3}{5},P\left( \overline{B} \right) = 1 - P(B) =
\frac{2}{5},

    P\left( A|B \right) =
\frac{11}{19},P\left( A|\overline{B} \right) =
\frac{12}{19}

    Áp dụng công thức xác suất toàn phần, ta có:

    P(A) = P(B).P\left( A|B \right) + P\left(
\overline{B} \right).P\left( A|\overline{B} \right) = \frac{3}{5}.\frac{11}{19} +
\frac{2}{5}.\frac{12}{19} = \frac{3}{5}

  • Câu 2: Vận dụng cao
    Chọn đáp án đúng

    Trong học kỳ I năm học 2024 - 2025, sinh viên phải thi 4 học phần. Xác suất để sinh viên thi đạt một học phần trong mỗi lần thi đều là 0,8. Nếu thi không đạt học phần nào phải thi lại học phần đó. Tính xác suất để một sinh viên thi đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần.

    Hướng dẫn:

    Gọi A_{i} là "đạt i học phần ở lần thi đầu".

    Khi đó, A_{0},A_{1},A_{2},A_{3},A_{4} tạo thành hệ đầy đủ và P\left( A_{i} ight) =
C_{4}^{i}.0,8^{i}.0,2^{4 - i}

    Gọi A là "đạt cả 4 học phần trong đó không có học phần nào thi quá 2 lần".

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = \sum_{i = 0}^{4}P\left( A_{i}
ight)P\left( A \mid A_{i} ight)

    = C_{4}^{0}.0,8^{0}.0,2^{4}.\left(
0,8^{4} ight) + C_{4}^{2}.0,8^{1}.0,2^{3}.\left( 0,8^{3} ight) +
C_{4}^{2}.0,8^{2}.0,2^{2}.\left( 0,8^{2} ight)

    + C_{4}^{3}.0,8^{3}.0,2^{1}.(0,8) +
C_{4}^{4}.0,8^{4}.0,2^{0}.\left( 0,8^{0} ight)

    \approx 0,8493 = 84,93\%

  • Câu 3: Vận dụng
    Chọn đáp án đúng

    Tại công ty Yến Sào, có hai thùng I và II chứa các hộp đựng yến sào có khối lượng và hình dạng như nhau. Thùng I có 5 hộp yến từ tự nhiên và 4 hộp yến nuôi, thùng 2 có 6 hộp yến từ tự nhiên và 8 hộp yến nuôi. Lấy ngẫu nhiên 1 hộp từ thùng I bỏ sang thùng II. Sau đó, lấy ngẫu nhiên 1 hộp từ thùng II để sử dụng. Xác suất lấy được hộp yến từ tự nhiên ở thùng II là bao nhiêu (làm tròn kết quả đến hàng phần trăm)?

    Hướng dẫn:

    Xét các biến cố: A: "Lấy được 1 hộp yến tự nhiên từ thùng I sang thùng II";

    B: "Lây được 1 hộp yến tự nhiên từ thùng II".

    Khi đó, P(A) = \frac{5}{9};\ \ P\left(
\overline{A} \right) = \frac{4}{9}; P\left( B|A \right) = \frac{7}{15}; P\left( B|\overline{A} \right) = \frac{6}{15} =
\frac{2}{5}

    Theo công thức xác suất toàn phần, xác suất của biến cố B là:

    P(B) =P(A).P\left( B|A \right) + P\left( \overline{A} \right).P\left(B|\overline{A} \right)= \frac{5}{9}.\frac{7}{15} +\frac{4}{9}.\frac{2}{5} \approx 0,44.

  • Câu 4: Vận dụng
    Chọn đáp án chính xác

    Cho hai hộp đựng các viên bi có cùng kích thước và khối lượng như sau:

    Hộp thứ nhất có 3 viên bi xanh và 6 viên vi đỏ.

    Hộp thứ hai có 3 viên vi xanh và 7 viên bi đỏ.

    Lấy ngẫu nhiên ra một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ngẫu nhiên đồng thời hai viên từ hộp thứ hai, biết rằng hai bi lấy ra từ hộp thứ hai là bi màu đỏ, tính xác suất viên bi lấy ra từ hộp thứ nhất cũng là bi màu đỏ.

    Hướng dẫn:

    Gọi A1: “Lấy ra một bi một màu xanh ở hộp thứ nhất”

    Và A2: “Lấy ra một bi một màu đỏ ở hộp thứ nhất”

    Nên A_{1};A_{2} là hệ biến cố đầy đủ

    Gọi B: “Hai bi lấy ra từ hộp thứ hai là màu đỏ”

    Ta có:

    P\left( A_{1} ight) =
\frac{C_{3}^{1}}{C_{9}^{1}} = \frac{1}{3};P\left( A_{2} ight) =
\frac{C_{6}^{1}}{C_{9}^{1}} = \frac{2}{3}

    P\left( B|A_{1} ight) =
\frac{C_{7}^{2}}{C_{11}^{2}} = \frac{21}{55};P\left( B|A_{2} ight) =
\frac{C_{8}^{2}}{C_{11}^{2}} = \frac{28}{55}

    Áp dụng công thức xác suất toàn phần

    P(B) = P\left( B|A_{1} ight).P\left(
A_{1} ight) + P\left( B|A_{2} ight).P\left( A_{2}
ight)

    \Rightarrow P(B) =
\frac{1}{3}.\frac{21}{55} + \frac{2}{3}.\frac{28}{55} =
\frac{7}{15}

    Xác suất viên bi lấy ra từ hộp thứ nhất màu đỏ, biết rằng hai bi lấy ra từ hộp thứ hai màu đỏ, ta áp dụng công thức Bayes:

    P\left( A_{2}|B ight) = \dfrac{P\left(B|A_{2} ight).P\left( A_{2} ight)}{P(B)} =\dfrac{\dfrac{28}{55}.\dfrac{2}{3}}{\dfrac{7}{15}} =\dfrac{8}{11}

  • Câu 5: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong một đợt kiểm tra sức khoẻ, có một loại bệnhXmà tỉ lệ người mắc bệnh là 0,2\%và một loại xét nghiệmYmà̀ ai mắc bệnh Xkhi xét nghiệm Ycũng có phản ứng dương tính. Tuy nhiên, có 6\%những người không bị bệnh Xlại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Các khẳng định sau đúng hay sai?

    a) Xác suất người được chọn không mắc bệnh X là 0,8.Sai||Đúng

    b) Xác suất người được chọn có phản ứng dương tính với xét nghiệm Y biết rằng người đó mắc bệnh X là 0,94. Sai||Đúng

    c) Xác suất người được chọn không mắc bệnh X biết rằng người đó có phản ứng dương tính với xét nghiệm Y là 0,06. Đúng||Sai

    d) Giả sử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X (làm tròn kết quả đến hàng phần trăm) là 0,03.Đúng||Sai

    Hướng dẫn:

    Xét các biến cố:

    A: "Người được chọn mắc bệnh X ";

    B: "Người được chọn có phản ứng dương tính với xét nghiệm Y".

    Theo giả thiết ta có: P(A) = 0,002,\ \
P\left( \overline{A} \right) = 1 - P(A) = 0.998

    Xác suất người được chọn có phản ứng dương tính với xét nghiệm Y biết rằng người đó mắc bệnh X là P\left( B|A
\right) = 1

    Xác suất người được chọn không mắc bệnh X biết rằng người đó có phản ứng dương tính với xét nghiệm Y là P\left(
B|\overline{A} \right) = 0,06

    Theo công thức Bayes, ta có:

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(A).P\left( B|A \right) + P\left( \overline{A}
\right).P\left( B|\overline{A} \right)} = \frac{0,002.1}{0,002.1 +
0,998.0,06} \approx 0,03

    Vậy nếu người được chọn có phản ứng dương tính với xét nghiệm Y thì xác suất bị mắc bệnh X của người đó là khoảng 0,03.

  • Câu 6: Vận dụng cao
    Tính xác suất của biến cố

    Bạn Tuấn hằng ngày ăn sáng bằng xôi hoặc bún. Nếu hôm nay bạn ăn sáng bằng xôi thì xác suất để hôm sau bạn ăn sáng bằng bún là 0,7. Xét một tuần mà thứ ba bạn ăn sáng bằng xôi. Biết xác suất để thứ năm tuần đó, bạn Tuấn ăn sáng bằng bún là 0,63. Hỏi nếu hôm nay bạn ăn sáng bằng bún thì xác suất để hôm sau bạn ăn sáng bằng xôi là

    Hướng dẫn:

    Giả sử nếu hôm nay bạn ăn sáng bằng bún thì xác suất để hôm sau bạn ăn sáng bằng xôi là x (x < 1).

    Gọi A là biến cố “Thứ tư, bạn Tuấn ăn sáng bằng bún”,

    B là biến cố “Thứ năm, bạn Tuấn ăn sáng bằng bún”, khi đó P(B) =
0,63

    Ta cần tính P\left(\overline{B}|A \right)

    Ta có thứ ba bạn Tuấn ăn sáng bằng xôi nên P(A) = 0,7, P\left( \overline{A} \right) = 1 - 0,7 =
0,3

    Vì nếu hôm nay bạn ăn sáng bằng bún thì xác suất để hôm sau bạn ăn sáng bằng xôi là x và ăn sáng bằng bún là 1 - x hay P\left( B|A \right) = 1 - x.

    Ta có P\left( B|\overline{A} \right) =
0,7

    Theo công thức xác suất toàn phần:

    P(B) = P(A).P\left( B|A \right) +P\left( \overline{A} \right).P\left( B|\overline{A}\right)

    \Rightarrow 0,63 = 0,7.(1 - x) +
0,3.0,7

    \Rightarrow x = 0,4

    Vậy nếu hôm nay bạn ăn sáng bằng bún thì xác suất để hôm sau bạn ăn sáng bằng xôi là 0,4.

  • Câu 7: Vận dụng cao
    Tính xác suất theo yêu cầu

    Một kho hàng có 85\% sản phẩm loại I và 15\% sản phẩm loại II, trong đó có 1\% sản phẩm loại I bị hỏng, 4\% sản phẩm loại II bị hỏng. Các sản phẩm có kích thước và hình dạng như nhau. Một khách hàng chọn ngẫu nhiên 1 sản phẩm. Tính xác suất để sản phẩm đó loại I và sản phẩm đó không bị hỏng. (kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Xét các biến cố:

    A: "Khách hàng chọn được sản phẩm loại I ";

    B: "Khách hàng chọn được sản phẩm không bị hỏng".

    Ta có: P(A) = 0,85; P\left( \overline{A} \right) = 0,15;\ P\left( B|A\right) = 1 - P\left( \overline{B}|A \right) = 1 - 0,01 =0,99;

    P\left( B|\overline{A} \right) = 1 -
P\left( \overline{B}|\overline{A} \right) = 1 - 0,04 =
0,96.

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A)P\left( B|A \right) + P\left(
\overline{A} \right)P\left( B|\overline{A} \right)

    = 0,85.0,99 + 0,15.0,96 =
0,9855

    Theo công thức Bayes, ta có:

    P\left( A|B
\right) = \frac{P(A).P\left( B|A \right)}{P(B)} =
\frac{0,85.0,99}{0,9855} \approx 0,85.

  • Câu 8: Vận dụng cao
    Tính xác suất P

    Ba người thợ cùng may một loại áo với xác suất may được sản phẩm chất lượng cao tương ứng là 0,9; 0,9 ; 0,8. Biết một người khi may 8 áo thì có 6 sản phẩm chất lượng cao. Tìm xác suất để người đó may 8 áo nữa thì có 6 áo chất lượng cao?

    Hướng dẫn:

    Áp dụng công thức xác suất đầy đủ

    P(A) = P\left( A_{1} ight)P\left( A
\mid A_{1} ight) + P\left( A_{2} ight)P\left( A \mid A_{2} ight) +
P\left( A_{3} ight)P\left( A \mid A_{3} ight)

    =
\frac{1}{3}.C_{8}^{6}{.0,9}^{6}.{0,1}^{2} +
\frac{1}{3}.C_{8}^{6}.{0,9}^{6}.{0,1}^{2} +
\frac{1}{3}.C_{8}^{6}.{0,8}^{6}.{0,2}^{2}\simeq 0,1971

    Gọi B là "trong 8 áo sau có 6 áo chất lượng cao". Vì trong không gian điều kiện A, hệ A_{i} vẫn là hệ đầy đủ.

    Áp dụng công thức xác suất toàn phần có

    P(B) = P\left( A_{1} \mid A
ight)P\left( B \mid A_{1}A ight) + P\left( A_{2} \mid A
ight)P\left( B \mid A_{2}A ight) + P\left( A_{3} \mid A
ight)P\left( B \mid A_{3}A ight)

    Ở đó:

    P\left( A_{1} \mid A ight) =\frac{P\left( A_{1} ight)P\left( A \mid A_{1} ight)}{P(A)} \simeq\dfrac{\dfrac{1}{3}.C_{8}^{6}.{0,9}^{6}.{0,1}^{2}}{0.1971} \simeq0,2516

    P\left( A_{2} \mid A ight) \simeq
0,2516,\ P\left( A_{3} \mid A ight) \simeq 0,4965

    Thay vào ta tính được

    P(A) \simeq
0,2516.C_{8}^{6}.{0,9}^{6}.{0.1}^{2} +
0.2516.C_{8}^{6}.{0,9}^{6}.{0,1}^{2}

    +
0,4965.C_{8}^{6}.{0,8}^{6}.{0,2}^{2}\simeq 0,2206

  • Câu 9: Vận dụng
    Chọn đáp án đúng

    Cho hai hộp đựng phiếu bốc thăm trúng thưởng giống nhau:

    Hộp thứ nhất có tỉ lệ trúng thưởng bằng \frac{3}{4}.

    Hộp thứ hai có tỉ lệ trúng thưởng bằng \frac{2}{3}.

    Chọn ngẫu nhiên một thùng và lấy ngẫu nhiên một phiếu trong thùng đó thấy phiếu đó trúng thưởng. Bỏ lại phiếu trở lại thùng, từ thùng đó lấy tiếp một phiếu. Tìm xác suất để lần thứ hai cũng lấy được phiếu trúng thưởng.

    Hướng dẫn:

    Gọi A là biến cố phiếu đầu tiên lấy là phiếu trúng thưởng.

    Biến cố A có thể xảy ra cùng với một trong các biến cố sau:

    H1 phiếu bốc thăm lấy ra từ thùng I.

    H2 phiếu bốc thăm lấy ra từ thùng II.

    Theo công thức xác xuất toàn phần ta có:

    P(A) = P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2}
ight)

    Theo dữ kiện đề bài ta có: \left\{
\begin{matrix}
P\left( H_{1} ight) = P\left( H_{2} ight) = \frac{1}{2} \\
P\left( A|H_{1} ight) = \frac{3}{4};P\left( A|H_{2} ight) =
\frac{2}{3} \\
\end{matrix} ight.

    Do đó: P(A) = \frac{1}{2}.\frac{3}{4} +
\frac{1}{2}.\frac{2}{3} = \frac{17}{24}

    Sau khi biến cố A đã xảy ra, xác suất của các biến cố H_{1};H_{2} thay đổi theo công thức Bayes như sau:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P(A)} = \frac{3}{8}:\frac{17}{24}
= \frac{9}{17}

    P\left( H_{2}|A ight) = \frac{P\left(
H_{2} ight).P\left( A|H_{2} ight)}{P(A)} = \frac{1}{3}:\frac{17}{24}
= \frac{8}{17}

    Gọi B là biến cố lấy phiếu lần thứ hai là trúng thưởng.

    B vẫn có thể xảy ra với một trong hai giả thiết H_{1};H_{2} do đó theo công thức xác suất toàn phần ta có:

    P(B) = P\left( H_{1}|A ight).P\left(
B|H_{1}A ight) + P\left( H_{2}|A ight).P\left( B|H_{2}A
ight)

    Vì phiếu lấy lần thứ nhất bỏ trở lại thùng, do đó tỉ lệ trúng thưởng ở các thùng đó vẫn không thay đổi.

    Vì thế

    P\left( B|H_{1}A ight) =
\frac{3}{4};P\left( B|H_{2}A ight) = \frac{2}{3}

    \Rightarrow P(B) =
\frac{9}{17}.\frac{3}{4} + \frac{8}{17}.\frac{2}{3} = \frac{145}{204} =
0,71

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Có hai hộp bên ngoài giống nhau:

    Hộp thứ nhất đựng 1 sản phẩm lỗi và 9 sản phẩm tốt.

    Hộp thứ hai đựng 2 sản phẩm lỗi và 8 sản phẩm tốt.

    Lấy ngẫu nhiên một hộp, sau đó lấy ngẫu nhiên một sản phẩm. Xác suất để được sản phẩm tốt là:

    Hướng dẫn:

    Gọi A1 là biến cố lấy sản phẩm từ hộp thứ nhất.

    A2 là biến cố lấy sản phẩm từ hộp thứ hai.

    Vì chọn ngẫu nhiên nên P\left( A_{1}
ight) = P\left( A_{2} ight) = \frac{1}{2}

    Gọi B là biến cố lấy được sản phẩm tốt ta có:

    P\left( B|A_{1} ight) =
\frac{9}{10};P\left( B|A_{2} ight) = \frac{8}{10}

    Do đó:

    P(B) = P\left( A_{1} ight).P\left(
B|A_{1} ight) + P\left( A_{2} ight).P\left( B|A_{2}
ight)

    \Rightarrow P(B) =
\frac{1}{2}.\frac{9}{10} + \frac{1}{2}.\frac{8}{10} = \frac{17}{20} =
0,85

  • Câu 11: Vận dụng
    Tính xác suất để chọn được trứng không bị ung

    Một cửa hàng bán trứng gà, có hai loại trứng, trong đó có 65\% loại trứng gà Mỹ và 35\%trứng gà Nga, các trứng có kích thước như nhau. Các trứng gà Mỹ có tỉ lệ bị ung (hư) là 2\% và các trứng gà Nga có tỉ lệ bị ung là 3\%. Một khách hàng chọn mua ngấu nhiên 1 trứng gà từ cửa hàng. Tính xác suất để chọn được trứng không bị ung. (Kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Xét các biến cố:

    A: "Khách hàng chọn được loại trứng gà Mỹ ";

    B: "Khách hàng chọn được loại trứng gà không bị ung".

    Ta có: P(A) = 0,65;\ P\left( \overline{A}
\right) = 0,35;

    P\left( B|A \right) = 1 - P\left(
\overline{B}|A \right) = 1 - 0,02 = 0,98;

    P\left( B|\overline{A} \right) = 1 -
P\left( \overline{B}|\overline{A} \right) = 1 - 0,03 = 0,97

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A)P\left( B|A \right) + P\left(
\overline{A} \right)P\left( B|\overline{A} \right)

    = 0,65.0,98 + 0,35.0,97 = 0,9765 \approx
0,98.

  • Câu 12: Vận dụng cao
    Chọn đáp án đúng

    Giả sử tỉ lệ người dân của tỉnh X nghiện thuốc lá là 20\%. Tỉ lệ người bị bệnh phổi trong số người nghiện thuốc lá là 70\%, còn tỉ lệ này đối với người không nghiện thuốc lá là 15\%. Gặp ngẫu nhiên một người dân của tỉnh X, biết rằng người này bị bệnh phổi, tính xác suất mà người này nghiện thuốc lá?

    Hướng dẫn:

    Gọi A là biến cố “người nghiện thuốc lá”, suy ra \overline{A} là biến cố “người không nghiện thuốc lá”.

    Gọi B là biến cố “người bị bệnh phổi”.

    Ta có:

    P(B) = P(A).P\left( B|A \right) +
P\left( \overline{A} \right).P\left( B|\overline{A}
\right).

    Theo bài ra có

    P(A) = 0,2\ ;\ P\left( B|A\right) = 0,7\ ;\ P\left( \overline{A} \right) = 0,8\ ;\ P\left(B|\overline{A} \right) = 0,15.

    Vậy P(B) = P(A).P\left( B|A \right) +
P\left( \overline{A} \right).P\left( B|\overline{A} \right)

    = 0,2.0,7 + 0,8.0,15 = 0,26.

    Theo công thức Bayes, ta có:

    P\left( A|B
\right) = \frac{P(A).P\left( B|A \right)}{P(B)} = \frac{0,2.0,7}{0,26} =
\frac{7}{13}

    Như vậy trong số người bị bệnh phổi của tỉnh X, có khoảng \frac{7}{13} số người nghiện thuốc lá.

  • Câu 13: Vận dụng cao
    Xét tính đúng sai của các khẳng định

    Một bệnh nhân hàng ngày phải uống 150(mg) thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn 6\% lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?

    a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là 9(mg). Đúng||Sai

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ là 159(mg). Đúng||Sai

    c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ là 170(mg). Sai||Đúng

    d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là 159,57(mg). Đúng||Sai

    Đáp án là:

    Một bệnh nhân hàng ngày phải uống 150(mg) thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn 6\% lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?

    a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là 9(mg). Đúng||Sai

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ là 159(mg). Đúng||Sai

    c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ là 170(mg). Sai||Đúng

    d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là 159,57(mg). Đúng||Sai

    a) Ta có hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau ngày đầu còn 150.6\% =
9(mg), suy ra mệnh đề đúng

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là: 150.6\% + 150 = 159(mg)suy ra mệnh đề đúng.

    c) Gọi u_{n} là lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể bệnh nhân sau khi uống ở ngày thứ n

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 1 là: u_{1} = 150(mg)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 2 là:

    u_{2} = u_{1}.6\% + 150 = 150.6\% + 150
= 150.(0,06 + 1)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 3 là:

    u_{3} = u_{2}.6\% + 150 = 150.(0,06 +
1).0,06 + 150 = 150\left( 0,06^{2} + 0,06 + 1 \right)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ4 là:

    u_{4} = u_{3}.6\% + 150 = 150\left(
0,06^{3} + 0,06^{2} + 0,06 + 1 \right)

    = 159,5724(mg)

    Suy ra mệnh đề sai.

    d) Nếu bệnh nhân sử dụng thuốc trong thời gian 30 ngày. Khi đó lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng là:

    S = 150.\left( 1 + 0,06 + 0,06^{2} + ...
+ 0,06^{29} \right)

    = 150.u_{1}.\frac{1 - q^{30}}{1 - q} =
\frac{7500}{47} \approx 159,57(mg)

    Vậy lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng trong 30 ngày là 159,57(mg), suy ra mệnh đề đúng.

  • Câu 14: Vận dụng cao
    Ghi đáp án vào ô trống

    Có hai chiếc hộp, hộp I có 6 quả bóng màu đỏ và 4 quả bóng màu vàng, hộp II có 7 quả bóng màu đỏ và 3 quả bóng màu vàng, các quả bóng có cùng kích thước và khối lượng. Lấy ngẫu nhiên một quả bóng từ hộp I bỏ vào hộp II. Sau đó, lấy ra ngẵu nhiên một quả bóng từ hộp II. Tính xác suất để quả bóng được lấy ra từ hộp II là quả bóng được chuyển từ hộp I sang, biết rằng quả bóng đó có màu đỏ (làm tròn kết quả đến hảng phần trăm).

    Đáp án 0,08

    Đáp án là:

    Có hai chiếc hộp, hộp I có 6 quả bóng màu đỏ và 4 quả bóng màu vàng, hộp II có 7 quả bóng màu đỏ và 3 quả bóng màu vàng, các quả bóng có cùng kích thước và khối lượng. Lấy ngẫu nhiên một quả bóng từ hộp I bỏ vào hộp II. Sau đó, lấy ra ngẵu nhiên một quả bóng từ hộp II. Tính xác suất để quả bóng được lấy ra từ hộp II là quả bóng được chuyển từ hộp I sang, biết rằng quả bóng đó có màu đỏ (làm tròn kết quả đến hảng phần trăm).

    Đáp án 0,08

    Gọi 𝐴 là biến cố: “Quả bóng lấy ra từ hộp II là quả bóng được chuyển từ hộp I sang “. Khi đó, \overline{A} là biến cố: Quả bóng lấy ra từ hộp II là quả bóng của hộp II ban đầu “.

    Gọi B là biến cố: “Quả bóng lấy ra từ hộp II có màu đỏ, sau khi có một quả bóng từ hộp I chuyển sang hộp II“

    Ta cần tính P\left( A|B ight) =
\frac{P(A).P\left( B|A ight)}{P(B)}

    P(B) = P(B.A) + P\left( B.\overline{A}
ight)

    = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    = \frac{1}{11}.\frac{6}{10} +
\frac{10}{11}.\frac{7}{10} = \frac{76}{110} = \frac{38}{55}

    P\left( A|B ight) = \dfrac{P(A).P\left(
B|A ight)}{P(B)} = \dfrac{\dfrac{1}{11}.\dfrac{6}{10}}{\dfrac{38}{35}} =
\dfrac{3}{38} \approx 0,08

  • Câu 15: Vận dụng
    Xét tính đúng sai của các khẳng định sau

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét các biến cố: A: "Lần thứ nhất lấy ra chai nước loại I; B: "Lần thứ hai lấy ra chai nước loại I".

    a) P(B \mid A) = \frac{16}{23}. Sai||Đúng

    b) P(B \mid \overline{A}) =
\frac{15}{23}. Sai||Đúng

    c) P(\overline{B} \mid A) =
\frac{8}{23}. Đúng||Sai

    d) P(\overline{B} \mid \overline{A}) =
\frac{7}{23}. Đúng||Sai

    Đáp án là:

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét các biến cố: A: "Lần thứ nhất lấy ra chai nước loại I; B: "Lần thứ hai lấy ra chai nước loại I".

    a) P(B \mid A) = \frac{16}{23}. Sai||Đúng

    b) P(B \mid \overline{A}) =
\frac{15}{23}. Sai||Đúng

    c) P(\overline{B} \mid A) =
\frac{8}{23}. Đúng||Sai

    d) P(\overline{B} \mid \overline{A}) =
\frac{7}{23}. Đúng||Sai

    Ta có: P(A) = \frac{16}{24} =
\frac{2}{3};P(\overline{A}) = \frac{8}{24} = \frac{1}{3}.

    Nếu lần thứ nhất lấy ra chai loại I thì két còn 23 chai nước, trong đó có 15 chai loại I, 8 chai loại II. Suy ra P(B
\mid A) = \frac{15}{23}.

    Nếu lần thứ nhất lấy ra chai loại II thì két còn 23 chai nước, trong đó có 16 chai loại I, 7 chai loại II. Suy ra P(B \mid \overline{A}) =
\frac{16}{23}.

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A).P(B \mid A) +
P(\overline{A}).P(B \mid \overline{A}) = \frac{2}{3} \cdot \frac{15}{23}
+ \frac{1}{3} \cdot \frac{16}{23} = \frac{2}{3}.

    Ta có: P(\overline{B} \mid A) = 1 - P(B
\mid A) = 1 - \frac{15}{23} = \frac{8}{23};

    P(\overline{B} \mid \overline{A}) = 1 -
P(B \mid \overline{A}) = 1 - \frac{16}{23} = \frac{7}{23}.

    Đáp án: a) S, b) S, c) Đ, d) Đ.

  • Câu 16: Vận dụng
    Tính giá trị của biểu thức

    Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng. Biết xác suất để ít nhất 1 lần lấy được bóng đèn loại I bằng \frac{a}{b}(với a,blà các số nguyên dương và \frac{a}{b} là phân số tối giản). Tính a - b.

    Hướng dẫn:

    Xét các biến cố:

    A: "Lần thứ nhất lấy được bóng đèn loại II";

    B: "Lần thứ hai lấy được bóng đèn loại II".

    Xác suất đề lần thứ nhất lấy được bóng đèn loại II là: P(A) = \frac{2}{20} = \frac{1}{10}.

    Sau khi lấy 1 bóng đèn loại II thì chỉ còn 1 bóng đèn loại II trong hộp.

    Suy ra xác suất để lần thứ hai lấy được quá bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II, là P(B \mid A) = \frac{1}{19}.

    Khi đó, xác suất để cả hai lần đều lấy được bóng đèn loại II là:

    P(C) = P(A \cap B) = P(A) \cdot P(B \mid
A) = \frac{1}{10} \cdot \frac{1}{19} = \frac{1}{190}.

    Vậy để ít nhất 1 lần lấy được bóng đèn loại I là:

    P\left(
\overline{C} \right) = 1 - P(C) = 1 - \frac{1}{190} =
\frac{189}{190}.

    Suy ra a = 189,b = 190 \Rightarrow a - b
= - 1.

  • Câu 17: Thông hiểu
    Tính xác suất chọn được áo chất lượng cao

    Một công ty may có hai chi nhánh cùng sản xuất một loại áo, trong đó có 56\% áo ở chi nhánh I và 44\% áo ở chi nhánh II. Tại chi nhánh I có 75\% áo chất lượng cao và tại chi nhánh II có 68\% áo chất lượng cao (kích thước và hình dáng bề ngoài của các áo là như nhau). Chọn ngẫu nhiên 1 áo. Xác suất chọn được áo chất lượng cao là (làm tròn đến chữ số thập phân thứ hai)

    Hướng dẫn:

    Gọi A là biến cố áo được chọn là áo chất lượng cao. B là biến cố áo được chọn ở chi nhánh I\overline{B} là biến cố áo được chọn ở chi nhánh II.

    Từ giải thiết ta có P(B) = 0,56, P\left( \left. \ A \right|B \right) =
0,75, P\left( \overline{B} \right)
= 0,44, P\left( \left. \ A
\right|\overline{B} \right) = 0,68.

    Theo công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A\left| B\right.\  \right) + P\left( \overline{B} \right).P\left( \left. \ A\right|\overline{B} \right)

    = 0,56.0,75 + 0,44.0,68 = 0,7192 \approx0,72.

    Vậy xác suất chọn được áo chất lượng cao là 0,72.

  • Câu 18: Thông hiểu
    Tính xác suất bị bệnh

    Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là 0,2\% và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có 6\% những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên một người trong đợt kiểm tra sức khoẻ đó. Giả sử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quả đến hàng phần trăm)

    Hướng dẫn:

    Xét các biến cố:

    A: "Người được chọn mắc bệnh X"

    B: "Người được chọn có phản ứng dương tính với xét nghiệm Y".

    Theo giả thiết ta có:

    P(A) = 0,002 \Rightarrow P\left(
\overline{A} ight) = 1 - 0,002 = 0,998

    P\left( B|A ight) = 1;P\left(
B|\overline{A} ight) = 0,06

    Theo công thức Bayes, ta có:

    P\left( A|B ight) = \frac{P(A).P\left(
B|A ight)}{P(A).P\left( B|A ight) + P\left( \overline{A}
ight).P\left( B|\overline{A} ight)}

    \Rightarrow P\left( A|B ight) =
\frac{0,002.1}{0,002.1 + 0,998.0,06} \approx 0,03

  • Câu 19: Vận dụng cao
    Chọn đáp án đúng

    Một loại linh kiện do 3 nhà máy số I, số II, số III cùng sản xuất. Tỷ lệ phế phẩm của các nhà máy lần lượt là: I; 0,04; II: 0,03 và III: 0,05. Trong 1 lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I, 120 của nhà máy số II và 100 của nhà máy số III. Khách hàng lấy phải một linh kiện loại phế phẩm từ lô hàng đó. Khả năng linh kiện đó do nhà máy nào sản xuất là cao nhất?

    Hướng dẫn:

    Gọi E1 là biến cố phế phẩm máy số I

    \Rightarrow P\left( E_{1} ight) = 0,04
\Rightarrow P\left( \overline{E_{1}} ight) = 1 - 0,04 =
0,96

    E2 là biến cố phế phẩm máy số II

    \Rightarrow P\left( E_{2} ight) = 0,03
\Rightarrow P\left( \overline{E_{2}} ight) = 1 - 0,03 =
0,97

    E3 là biến cố phế phẩm máy số III

    \Rightarrow P\left( E_{3} ight) = 0,05
\Rightarrow P\left( \overline{E_{3}} ight) = 1 - 0,05 =
0,95

    Gọi B là biến cố khách hàng lấy được 1 linh kiện tốt

    Xác suất để khách hàng lấy được linh kiện tốt là:

    P(B) =
\frac{C_{80}^{1}}{C_{300}^{1}}.0,96 +
\frac{C_{120}^{1}}{C_{300}^{1}}.0,97 +
\frac{C_{100}^{1}}{C_{300}^{1}}.0,95 = 0,96

    Gọi \overline{B} là biến cố khách hàng lấy 1 linh kiện loại không tốt

    Ta xác định được:

    P\left( \overline{B} ight) = 1 - P(B)
= 0,04

    P\left( E_{1}|\overline{B} ight) =
\frac{P\left( E_{1} ight).P\left( \overline{B}|E_{1} ight)}{P\left(
\overline{B} ight)} = \frac{C_{80}^{1}.0,04}{0,04} = 0,26

    P\left( E_{2}|\overline{B} ight) =
\frac{P\left( E_{2} ight).P\left( \overline{B}|E_{2} ight)}{P\left(
\overline{B} ight)} = \frac{C_{120}^{1}.0,03}{0,04} = 0,3

    P\left( E_{3}|\overline{B} ight) =
\frac{P\left( E_{3} ight).P\left( \overline{B}|E_{3} ight)}{P\left(
\overline{B} ight)} = \frac{C_{100}^{1}.0,05}{0,04} =
0,41

    Vậy linh kiện đó do máy III là cao nhất.

  • Câu 20: Vận dụng cao
    Tính xác suất để cuộc gọi là đúng

    Một ứng dụng được sử dụng để chặn cuộc gọi rác trong điện thoại. Tuy nhiên, vì ứng dụng không tuyệt đối hoàn hảo nên một cuộc gọi rác bị chặn với xác suất 0,8 và một cuộc gọi đúng (không phải là cuộc gọi rác) bị chặn với xác suất 0,01. Thống kê cho thấy tỉ lệ cuộc gọi rác là 10\%. Chọn ngẫu nhiên một cuộc gọi không bị chặn. Xác suất để đó là cuộc gọi đúng là

    Hướng dẫn:

    Gọi A là biến cố: “cuộc gọi được chọn là cuộc gọi rác”, B là biến cố: “cuộc gọi được chọn bị chặn” thì \overline{B} là biến cố: “cuộc gọi được chọn không bị chặn”.

    Theo đầu bài ta có: P(A) = 0,1; P\left( \overline{A} \right) = 0,9; P\left( \left. \ B \right|A \right) =
0,8; P\left( \left. \ B
\right|\overline{A} \right) = 0,01.

    Ta có:

    P(B) = P\left( \left. \ B \right|A
\right).P(A) + P\left( \left. \ B \right|\overline{A} \right).P\left(
\overline{A} \right)

    = 0,8.0,1 + 0,01.0,9 =
0,089.

    P\left( \left. \ B \right|\overline{A}
\right) = 0,01 \Rightarrow P\left( \left. \ \overline{B}
\right|\overline{A} \right) = 0,99

    P\left( \left. \ B \right|A \right) = 0,8
\Rightarrow P\left( \left. \ \overline{B} \right|A \right) =
0,2

    Theo công thức Bayes ta có:

    P\left( \left. \ \overline{A}
\right|\overline{B} \right) = \frac{P\left( \overline{A} \right).P\left(
\left. \ \overline{B} \right|\overline{A} \right)}{P\left( \overline{A}
\right).P\left( \left. \ \overline{B} \right|\overline{A} \right) +
P(A).P\left( \left. \ \overline{B} \right|A \right)}

    = \frac{0,9.0,99}{0,9.0,99 + 0,1.0,2} =
\frac{891}{911}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (35%):
    2/3
  • Vận dụng (45%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo