Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng xung quanh trục Ox.
Ta có :
Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng xung quanh trục Ox.
Ta có :
Cho hàm số liên tục trên
. Diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, đường thẳng
là
Công thức đúng là:
Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số quanh trục
bằng
Ta có:
Diện tích hình phẳng giới hạn bởi các đường , trục hoành,
và
bằng
Diện tích hình giới hạn là
Cho đồ thị hàm số . Diện tích hình phẳng (phần gạch trong hình) là:
Diện tích hình phẳng (phần gạch trong hình) là:
Tính thể tích khối tròn xoay sinh bởi Elip (E): quay quanh trục hoành?
Xét có
. Do đó hai đỉnh thuộc trục lớn có tọa độ
Vì
Do đó thể tích khối tròn xoay là
Hình phẳng giới hạn bởi các đường cong và
có diện tích bằng
là phân số tối giản. Kết luận nào sau đây đúng?
Ta có:
Gọi là diện tích hình phẳng giới hạn bởi các đường cong
và
.
Khi đó
(đvdt).
Tính thể tích khối tròn xoay sinh ra khi quay quanh trục hình phẳng giới hạn bởi hai đồ thị
?
Phương trình hoành độ giao điểm
Gọi là hình phẳng giới hạn bởi các đường
Thể tích khối tròn xoay tạo thành khi quay (H) quanh Ox l
Diện tích hình phẳng là:
Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng
và
biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục
tại điểm có hoành độ
thì được thiết diện là một hình chữ nhật có hai cạnh là
và
.
Ta có diện tích thiết diện: .
Khi đó .
Tính thể tích của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường
và hai đường thẳng
quanh trục
:
Thể tích của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường
và hai đường thẳng
quanh trục
là:
.
Trong hệ trục tọa độ cho elip
có phương trình
. Hình phẳng
giới hạn bởi nửa elip nằm trên trục hoành và trục hoành. Quay hình
xung quanh trục
ta được khối tròn xoay, tính thể tích khối tròn xoay đó?
Ta có: với
Khi đó thể tích cần tìm là:
Cho hình phẳng giới hạn bởi Parabol
và đường cong có phương trình
như hình vẽ:
Diện tích của hình phẳng bằng:
Phương trình hoành độ giao điểm:
Diện tích hình phẳng bằng:
Đặt
Diện tích hình phẳng giới hạn bởi các đường bằng:
Gọi S là diện tích hình phẳng cần tìm. Khi đó
Vật thể giới hạn bởi mặt phẳng có phương trình
và
. Cắt vật thể
với mặt phẳng vuông góc với trục
tại điểm có hoành độ bằng
ta được thiết diện có diện tích bằng
. Thể tích của vật thể
:
Thể tích của vật thể B là:
Tính diện tích hình phẳng giới hạn bởi các đường thẳng ?
Hình vẽ minh họa
Ta có:
Từ đó ta thấy phương trình hoành độ không có nghiệm nào thuộc khoảng
Diện tích hình giới hạn là
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: