Diện tích hình phẳng giới hạn bởi các đường , trục hoành,
và
bằng
Diện tích hình giới hạn là
Diện tích hình phẳng giới hạn bởi các đường , trục hoành,
và
bằng
Diện tích hình giới hạn là
Diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng
,
là
Ta có .
Diện tích hình phẳng giới hạn bởi hai đường và
bằng:
Xét phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng
và
biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục
tại điểm có hoành độ
thì được thiết diện là một hình chữ nhật có hai cạnh là
và
.
Ta có diện tích thiết diện: .
Khi đó .
Cho hình phẳng D giới hạn bởi đường cong , trục hoành và các đường thẳng
,
. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?
Thể tích khối tròn xoay được tạo nên bởi hình phẳng giới hạn bởi các đường ,
,
và trục hoành khi quay quanh Ox là:
(đvtt).
Hình phẳng giới hạn bởi các đường cong và
có diện tích bằng
là phân số tối giản. Kết luận nào sau đây đúng?
Ta có:
Gọi là diện tích hình phẳng giới hạn bởi các đường cong
và
.
Khi đó
(đvdt).
Cho hàm số liên tục trên đoạn
. Diện tích
của hình phẳng giới hạn bởi đồ thị của hàm số
, trục hoành và hai đường thẳng
được tính theo công thức
Theo lí thuyết về tính diện tích hình phẳng ta có diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số , trục hoành và hai đường thẳng
được tính theo công thức:
.
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường quay xung quanh
.
Thể tích vật thể bằng:
.
Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường , trục
và hai đường thẳng
;
khi quay quanh trục hoành được tính bởi công thức nào?
Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số , trục
,
và
được tính bởi công thức
.
Tính thể tích của vật thể giới hạn bởi hai mặt phẳng và
, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x
là một hình chữ nhật có hai kích thước là x và
.
Ta có:
Tính diện tích S của hình phẳng giới hạn bởi các đường ?
Phương trình hoành độ giao điểm
Do đó, diện tích hình phẳng giới hạn bởi các đường
Công thức tính diện tích S của hình thang cong giới hạn bởi hai đồ thị ,
,
,
,
Đáp án đúng: .
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và các trục tọa độ. Chọn kết quả đúng?
Ta có:
Cắt một vật thể bởi hai mặt phẳng vuông góc với trục tại
và
. Một mặt phẳng tùy ý vuông góc với trục
tại điểm có hoành độ
(
) cắt vật thể đó theo thiết diện là một hình chữ nhật có độ dài hai cạnh là
và
. Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng trên
Diện tích thiết diện là:
Thể tích vật thể là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: