Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Ứng dụng hình học của Tích phân CTST (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định công thức tính diện tích hình phẳng

    Diện tích hình phẳng H được giới hạn bởi hai đồ thị y = x^{3} - 2x - 1y = 2x - 1 được tính theo công thức

    Hướng dẫn:

    Phương trình hoành độ giao điểm của y =
x^{3} - 2x - 1y = 2x -
1 là:

    x^{3} - 2x - 1 = 2x - 1 \Leftrightarrow
x^{3} - 4x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 0 \\
x = - 2 \\
\end{matrix} ight.

    Vậy diện tích hình phẳng H được giới hạn bởi hai đồ thị y = x^{3} - 2x -
1y = 2x - 1 được tính theo công thức S = \int_{- 2}^{2}{\left|
x^{3} - 4x ight|dx}.

  • Câu 2: Nhận biết
    Tính thể tích khối tròn xoay

    Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số y = x^{2} - 2;y = 0;x = - 1;x
= 2 quanh trục Ox bằng

    Hướng dẫn:

    Ta có:

    V = \pi\int_{- 1}^{2}{\left( x^{2} - 2x
ight)^{2}dx} = \pi\int_{- 1}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} -
x^{4} + \frac{4x^{3}}{3} ight) ight|_{- 1}^{2} =
\frac{18\pi}{5}

  • Câu 3: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \lbrack a;bbrack. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y =
f(x), trục hoành, đường thẳng x =
a;x = b

    Hướng dẫn:

    Công thức đúng là: S =
\int_{a}^{b}{\left| f(x) ight|dx}

  • Câu 4: Nhận biết
    Xác định diện tích hình phẳng S

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y =
x^{2}, trục hoành Ox, các đường thẳng x = 1, x = 2.

    Hướng dẫn:

    Diện tích hình phẳng là

    S =
\int_{1}^{2}{\left| x^{2} \right|dx} = \int_{1}^{2}{x^{2}dx} = \left. \
\frac{x^{3}}{3} \right|_{1}^{2} = \frac{8}{3} - \frac{1}{3} =
\frac{7}{3}.

  • Câu 5: Thông hiểu
    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi hai đường y = x^{2}y = x bằng:

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm

    x^{2} = x \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Diện tích hình phẳng là:

    S = \int_{0}^{1}{\left| x^{2} - x
ight|dx} = \left| \int_{0}^{1}{\left( x^{2} - x ight)dx}
ight|

    = \left| \left. \ \left( \frac{x^{2}}{2}
- \frac{x^{3}}{3} ight) ight|_{0}^{1} ight| =
\frac{1}{6}

  • Câu 6: Thông hiểu
    Chọn công thức đúng

    Trong không gian Oxyz, cho vật thể (H) giới hạn bởi hai mặt phẳng có phương trình x = ax = b với a
< b. Gọi f(x) là diện tích thiết diện của (H) bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x, với a \leq x \leq b. Biết hàm số y = f(x) liên tục trên đoạn \lbrack a;bbrack, khi đó thể tích V của vật thể (H) được cho bởi công thức:

    Hướng dẫn:

    f(x) là diện tích thiết diện của (H) bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x, với a \leq x \leq b ta có: V = \int_{a}^{b}{f(x)}dx không phải là V = \pi{\int_{a}^{b}\left\lbrack f(x)
ightbrack}^{2}dx.

  • Câu 7: Nhận biết
    Chọn khẳng đính đúng

    Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành, đường thẳng x = a;x = b như hình vẽ sau:

    Hỏi khẳng định nào dưới đây là khẳng định đúng?

    Hướng dẫn:

    Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành, đường thẳng x = a;x = b ta có: S = - \int_{a}^{c}{f(x)dx} +
\int_{c}^{b}{f(x)dx}.

  • Câu 8: Thông hiểu
    Tính diện tích hình phẳng

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{2} + 2x +
1 trục hoành và hai đường thẳngx =
- 1;\ \ x = 3.

    Hướng dẫn:

    Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{2} + 2x +
1 trục hoành và hai đường thẳngx =
- 1;\ \ x = 3 được tính như sau:

    S = \int_{- 1}^{3}{\left( x^{2} + 2x + 1
ight)dx} = \left( \frac{x^{3}}{3} + x^{2} + x ight)\left|
\begin{matrix}
3 \\
- 1 \\
\end{matrix} ight.\  = \frac{64}{3}

  • Câu 9: Nhận biết
    Xác định thể tích của vật

    Vật thể B giới hạn bởi mặt phẳng có phương trình x = 0x = 2. Cắt vật thể B với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x;(0 \leq x \leq 2) ta được thiết diện có diện tích bằng x^{2}(2 - x). Thể tích của vật thể B:

    Hướng dẫn:

    Thể tích của vật thể B là:

    V = \int_{0}^{2}{x^{2}(2 - x)dx} =
\int_{0}^{2}{\left( 2x^{2} - x^{3} ight)dx} = \frac{4}{3}

  • Câu 10: Thông hiểu
    Chọn công thức tính diện tích hình phẳng

    Cho hình vẽ:

    Diện tích của hình phẳng (H) được giới hạn bởi đồ thị hàm số y =
f(x), trục hoành và hai đường thẳng x = a,x = b,(a < b) (phần tô đậm trong hình vẽ) tính theo công thức:

    Hướng dẫn:

    Áp dụng công thức tính diện tích hình phẳng ta có:

    S = \int_{a}^{b}{\left| f(x) ight|dx}
= \int_{a}^{c}{\left\lbrack 0 - f(x) ightbrack dx} +
\int_{c}^{b}{\left\lbrack f(x) - 0 ightbrack dx}

    = - \int_{a}^{c}{f(x)dx} +
\int_{c}^{b}{f(x)dx}

    Vậy đáp án cần tìm là: S = -
\int_{a}^{c}{f(x)dx} + \int_{c}^{b}{f(x)dx}.

  • Câu 11: Nhận biết
    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 1x =
3 bằng

    Hướng dẫn:

    Diện tích hình giới hạn là S =
\int_{1}^{3}{\left| x^{3} ight|dx} = \left| \int_{3}^{3}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{1}^{3}
ight| = 20

  • Câu 12: Thông hiểu
    Tính diện tích thiết diện

    Tính diện tích S của hình phẳng giới hạn bởi các đường y = e^{x};y = 2;x = 0;x = 1?

    Hướng dẫn:

    Phương trình hoành độ giao điểm e^{x} = 2
\Leftrightarrow x = ln2 \in (0;1)

    Do đó, diện tích hình phẳng giới hạn bởi các đường y = e^{x};y = 2;x = 0;x = 1

    S = \int_{0}^{1}{\left| e^{x} - 2
ight|dx}

    = - \int_{0}^{\ln2}{\left( e^{x} - 2ight)dx} + \int_{\ln2}^{1}{\left( e^{x} - 2 ight)dx}

    = - \left. \ \left( e^{x} - 2x ight)ight|_{0}^{\ln2} + \left. \ \left( e^{x} - 2x ight)ight|_{\ln2}^{1}

    = - (2 - 2\ln2 - 1) + (e - 2 - 2 +2\ln2)

    = 4\ln2 + e - 5

  • Câu 13: Nhận biết
    Tìm công thức tính diện tích thích hợp

    Xét hình phẳng (H) giới hạn bởi các đường như hình vẽ (phần gạch sọc).

    Diện tích hình phẳng (H) được tính theo công thức

    Hướng dẫn:

    Ta có:

    S = \int_{0}^{1}{\left| f(x) ight|dx}
+ \int_{1}^{4}{\left| g(x) ight|dx}

    = \int_{0}^{1}{f(x)dx} +
\int_{1}^{4}{g(x)dx}

  • Câu 14: Nhận biết
    Tính thể tích khối tròn xoay D

    Cho hình phẳng D giới hạn bởi đường cong y = e^{x}, trục hoành và các đường thẳng x = 0;x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Hướng dẫn:

    Ta có:

    V = \pi\int_{0}^{1}{e^{2x}dx} = \left. \
\frac{\pi}{2}e^{2x} ight|_{0}^{1} = \frac{\pi\left( e^{2} - 1
ight)}{2}.

  • Câu 15: Nhận biết
    Chọn khẳng định đúng

    Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x);y = g(x) liên tục trên đoạn \lbrack a;bbrack và hai đường thẳng x = a;x = b;a < b

    Hướng dẫn:

    Ta có hình phẳng giới hạn bởi \left\{
\begin{matrix}
\left( C_{1} ight):y = f(x) \\
\left( C_{2} ight):y = g(x) \\
x = a \\
x = b \\
\end{matrix} ight.S =
\int_{a}^{b}{\left| f(x) - g(x) ight|dx}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (60%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo