Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định khoảng biến thiên

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 250 - 0 = 250.

  • Câu 2: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Cho mẫu số liệu ghép nhóm cho bởi bảng sau:

    Nhóm

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    Tần số

    3

    7

    2

    9

    Khoảng biến thiên của mẫu số liệu ghép nhóm này là

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    R = 40 – 0 = 40.

  • Câu 3: Nhận biết
    Tính khoảng biến thiên của mẫu số liệu

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Tần số

    13

    45

    24

    12

    6

    Khoảng biến thiên của mẫu số liệu ghép nhóm này bằng

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu này bằng 21,5 - 19 = 2,5.

  • Câu 4: Thông hiểu
    Tìm tứ phân vị thứ nhất của mẫu số liệu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{1} của mẫu dữ liệu ghép nhóm trên?

    Hướng dẫn:

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =
5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

    Do đó: l = 7;m = 2,f = 7;c = 9 - 7 =
2

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 7 + \dfrac{5 - 2}{7}.2 =\dfrac{55}{7}

  • Câu 5: Nhận biết
    Tìm giá trị đại diện của nhóm đã cho

    Cho mẫu số liệu ghép nhóm về khối lượng (đơn vị: gram) của 30 củ khoai tây như sau:

    Giá trị đại diện của nhóm \lbrack
90;100)

    Hướng dẫn:

    Giá trị đại diện của nhóm \lbrack
90;100) là: \frac{90 + 100}{2} =
95.

  • Câu 6: Nhận biết
    Tính khoảng biến thiên

    Thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ của lớp 12A ở bảng sau:

    Chiều cao

    [150; 155)

    [150; 155)

    [150; 155)

    [150; 155)

    [150; 155)

    Số học sinh

    2

    4

    10

    0

    1

    Xác định khoảng biến thiên của chiều cao của các bạn học sinh nữ lớp 12A?

    Hướng dẫn:

    Khoảng biến thiên của chiều cao của các bạn học sinh nữ lớp 12A là 175 – 155 = 20 (cm)

  • Câu 7: Nhận biết
    Xác định nhóm chứa tứ phân vị thứ nhất

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Hướng dẫn:

    Ta có: \frac{n}{4} = \frac{20}{4} =
51 + 3 < 5 < 1 + 3 +
8 nên tứ phân vị thứ nhất của mẫu số liệu thuộc nhóm \lbrack 16;17)

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn A được thống kê lại ở bảng sau:

    Thời gian (phút)

    [20;25)

    [25;30)

    [30;35)

    [35;40)

    [40;45)

    Số ngày

    6

    6

    4

    1

    1

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [20;25)

    [25;30)

    [30;35)

    [35;40)

    [40;45)

    Số ngày

    6

    6

    4

    1

    1

    Tần số tích lũy

    6

    12

    16

    17

    28

    Cỡ mẫu N = 18

    Cỡ mẫu \Rightarrow \frac{N}{4} =
\frac{18}{4}

    => Nhóm chứa Q_{1} là [20;25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 6;c =
5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \dfrac{\dfrac{18}{4} - 0}{6}.5 =23,75

    Cỡ mẫu N = 18 \Rightarrow \frac{3N}{4} =
\frac{3.18}{4}

    => Nhóm chứa Q_{3} là [30;35)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 30;m = 12,f = 4;c =
5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 30 + \dfrac{\dfrac{3.18}{4} - 12}{4}.5 =31,875.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 8,125

  • Câu 9: Nhận biết
    Tìm mốt của mẫu số liệu ghép nhóm

    Cho mẫu số liệu điểm môn Toán của một nhóm học sinh như sau:

    Điểm

    \lbrack 6;7)

    \lbrack 7;8)

    \lbrack 8;9)

    \lbrack 9;10brack

    Số học sinh

    8

    7

    10

    5

    Mốt của mẫu số liệu (kết quả làm tròn đến hàng phần trăm) là:

    Hướng dẫn:

    Nhóm chứa Mốt là \lbrack
8;9).

    Mốt của mẫu số liệu là M_{e} = 8 +
\frac{10 - 7}{10 - 7 + 10 - 5}(9 - 8) \approx 8,38

  • Câu 10: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Xác định khoảng tứ phân vị của mẫu số liệu?

    Hướng dẫn:

    Ta có:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tần số tích lũy

    5

    17

    42

    86

    100

    N = 100 \Rightarrow \frac{N}{4} =
25 => Nhóm chứa tứ phân vị thứ nhất là: [8,8; 9,0)

    \Rightarrow \left\{ \begin{matrix}l = 8,8,\dfrac{N}{4} = 25,m = 17,f = 25 \\c = 9,0 - 8,8 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c \Rightarrow Q_{1} = 8,8 + \frac{25 -17}{25}.0,2 = \frac{1108}{125}

    \frac{3N}{4} = 75 => Nhóm chứa tứ phân vị thứ ba là: [9,0; 9,2)

    \Rightarrow \left\{ \begin{matrix}l = 9,0,\dfrac{3N}{4} = 75,m = 42,f = 44 \\c = 9,2 - 9,0 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\frac{\dfrac{3N}{4} - m}{f}.c \Rightarrow Q_{3} = 9,0 + \frac{75 -42}{44}.0,2 = \frac{183}{20}

    Vậy khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 0,286.

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có tứ phân vị là Q_{1} = 4,Q_{2} = 6,Q_{3} = 9. Khoảng tứ phân vị của mẫu số ghép nhóm đó là bao nhiêu?

    Hướng dẫn:

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

    \Delta Q = Q_{3} - Q_{1} = 9 - 4 =
5

  • Câu 12: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?

    Đối tượng

    Tần số

    [150; 155)

    5

    [155; 160)

    18

    [160; 165)

    40

    [165; 170)

    26

    [170; 175)

    8

    [175; 180)

    3

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là R = 180 - 150 = 30.

  • Câu 13: Nhận biết
    Tìm R

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    Tốc độ

    Tần số

    40 ≤ x < 50

    4

    50 ≤ x < 60

    5

    60 ≤ x < 70

    7

    70 ≤ x < 80

    4

    Xác định khoảng biến thiên R của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 80 - 40 = 40

  • Câu 14: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu

    Kiểm tra điện lượng của một số viên pin tiểu do một hãng sản xuất thu được kết quả sau.

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [0,1; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này? (Làm tròn các kết quả đến hàng phần trăm)

    Hướng dẫn:

    Ta có:

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [1,0; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Tần số tích lũy

    10

    30

    65

    80

    85

    Cỡ mẫu N = 85

    \frac{N}{4} = \frac{85}{4}

    => Nhóm chứa Q_{1} là [0,95; 1,0)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 0,95;m = 10,f = 20;c = 1
- 0,95 = 0,05

    \Rightarrow {Q_1} = l + \dfrac{{\dfrac{N}{4} - m}}{f}.c = 0,95 + \dfrac{{\dfrac{{85}}{4} - 10}}{{20}}.0,05 \approx 0,98

    \frac{3N}{4} = \frac{3.85}{4} =
\frac{255}{4}

    => Nhóm chứa Q_{3} là [1,0; 1,05)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,0;m = 30,f = 35;c =
1,05 - 1,0 = 0,05

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 1,0 + \dfrac{\dfrac{255}{4} - 30}{35}.0,05\approx 1,05.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} \approx
0,07

  • Câu 15: Nhận biết
    Xác định khoảng biến thiên của mẫu số liệu

    Người ta thống kê tốc độ của một số xe ôtô di chuyển qua một trạm kiểm soát trên đường cao tốc trong một khoảng thời gian ở bảng sau:

    Tốc độ (km/h)

    [75; 80)

    [80; 85)

    [85; 90)

    [90; 95)

    [95; 100)

    Số xe

    15

    22

    28

    34

    19

    Khoảng biến thiên của mẫu số liệu ghép nhóm đã cho là:

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là 100 - 75 = 25 km/h.

  • Câu 16: Nhận biết
    Tìm khoảng biến thiên mẫu số liệu ghép nhóm

    Mỗi ngày bác T đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác T trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Khoảng biến thiên của mẫu số liệu ghép nhóm là:

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là: 4,2 - 2,7 = 1,5(km)

  • Câu 17: Nhận biết
    Chọn đáp án đúng

    Xét mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, tứ phân vị thứ hai, tứ phân vị thứ ba lần lượt là 27,5; 30,5; 33. Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng

    Hướng dẫn:

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta Q = Q_{3} - Q_{1} = 33 - 27,5 =
2,5

  • Câu 18: Nhận biết
    Xác định khoảng biến thiên của mẫu số liệu ghép nhóm

    Bảng sau thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch ở một nông trường.

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là

    Hướng dẫn:

    Khoảng biên thiên bằng u_{k + 1} -
u_{1} = 450 - 250 = 200

  • Câu 19: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Chọn kết luận đúng? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Hướng dẫn:

    Ta có:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Tần số tích lũy

    24

    86

    120

    141

    150

    Cỡ mẫu N = 150 \Rightarrow \frac{N}{4} =
37,5

    => Nhóm chứa tứ phân vị thứ nhất là [250; 300)

    Do đó: l = 250;m = 24,f = 62;c =
50

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 250 + \frac{37,5 - 24}{62}.50 \approx260,89

    N = 150 \Rightarrow \frac{3N}{4} =
112,5

    => Nhóm chứa tứ phân vị thứ ba là [300; 350)

    Do đó: l = 300;m = 86,f = 34;c =
50

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 300 + \dfrac{112,5 - 84}{34}.50 \approx338,97

    Vậy \Delta_{Q} = Q_{3} - Q_{1} \approx
78,08

  • Câu 20: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Thống kê đường kính thân gỗ của một số cây xoan đào 7 năm tuổi được trồng ở một lâm trường ở bảng 1.

    Đường kính

    \lbrack 40;45) \lbrack 45;50) \lbrack 50;55) \lbrack 55;60) \lbrack 60;65)

    Tần số

    5

    20

    18

    7

    3

    Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên.

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là

    a_{m + 1} - a_{1} = 65 - 40 =
25.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo