Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 10 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Chọn kết luận đúng?

    Hướng dẫn:

    Ta có:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Giá trị đại diện

    145

    175

    205

    235

    265

    295

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Số trung bình của mẫu số liệu ghép nhóm tại A là:

    \overline{x_{A}} = \frac{1.145 + 1.175 +
1.205 + 8.235 + 7.265 + 2.295}{20} = 242,5

    Phương sai của mẫu số liệu ghép nhóm tại A là:

    {S_{A}}^{2} = \frac{1}{20}\left(
1.145^{2} + 1.175^{2} + 1.205^{2} + 8.235^{2} + 7.265^{2} + 2.295^{2}
ight) - 242,5^{2} = 1248,75

    Số trung bình của mẫu số liệu ghép nhóm tại B là:

    \overline{x_{B}} = \frac{0.145 + 2.175 +
4.205 + 4.235 + 10.265 + 3.295}{20} = 253

    Phương sai của mẫu số liệu ghép nhóm tại B là:

    {S_{B}}^{2} = \frac{1}{20}\left(
0.145^{2} + 2.175^{2} + 4.205^{2} + 4.235^{2} + 10.265^{2} + 3.295^{2}
ight) - 253^{2} = 936

  • Câu 2: Vận dụng
    Tìm phương sai của mẫu số liệu ghép nhóm

    Tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ (đơn vị: km/h) được thống kê lại như sau. Hãy tính phương sai của mẫu số liệu ghép nhóm với nhóm đầu tiên là \lbrack
42;46) và độ dài mỗi nhóm bằng 4. (làm tròn đến hàng phần mười)

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    52,1

    52,7

    53,9

    54,8

    55,6

    57,5

    59,6

    60,3

    61,1

    Hướng dẫn:

    Ta lập được bảng số liệu ghép nhóm theo giá trị đại diện như sau:

    Tốc độ (km/h)

    \lbrack
42;46) \lbrack
46;50) \lbrack
50;54) \lbrack
54;58) \lbrack
58;62)

    Giá trị đại diện

    44

    48

    52

    56

    60

    Số xe

    3

    7

    4

    3

    3

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{3 \cdot 44 + 7
\cdot 48 + 4 \cdot 52 + 3 \cdot 56 + 3 \cdot 60}{20} = 51,2

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{20}\left( 3 \cdot
44^{2} + 7 \cdot 48^{2} + 4 \cdot 52^{2} + 3 \cdot 56^{2} + 3 \cdot
60^{2} \right) - (51,2)^{2} \approx 26,6

  • Câu 3: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Cỡ mẫu: n = 20.

    Số trung bình của mẫu số liệu ghép nhóm là

    \overline{x} = \frac{2,85.3 + 3,15.6 +
3,45.5 + 3,75.4 + 4,05.2}{20} = 3,39.

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}\left( 2,85^{2}.3 +
3,15^{2}.6 + 3,45^{2}.5 + 3,75^{2}.4 + 4,05^{2}.2 ight) - 3,39^{2}
\approx 0,13

  • Câu 4: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm

    Cho bảng phân bố tần số ghép lớp về độ dài của 60 lá dương xỉ trưởng thành như sau sau:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Tần số

    8 18 24 10

    Tính độ lệch chuẩn bảng phân bố tần số ghép lớp đã cho

    Hướng dẫn:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Giá trị đại diện

     15 25  35  45 

    Tần số

    8 18 24 10

    Trước hết ta có \overline{x} = \frac{15.8
+ 25.18 + 35.24 + 45.10}{60} = 31.

    Khi đó phương sai

    s_{x}^{2} = \lbrack 8.(15 - 31)^{2} + 18
\cdot (25 - 31)^{2} + 24.(35 - 31)^{2} + 10.(45 -
31)^{2}\rbrack.\frac{1}{60} = 84.

    s_{x} = \sqrt{s_{x}^{2}} = \sqrt{84}
\approx 9,2

  • Câu 5: Thông hiểu
    Ghi đáp án vào ô trống

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    C li

    \lbrack 19;19,5)[19,5;20)\lbrack 20;20,5)\lbrack 20,5;21)\lbrack 21;21,5)

    Tn s

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \overline{a,b77}. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    C li

    \lbrack 19;19,5)[19,5;20)\lbrack 20;20,5)\lbrack 20,5;21)\lbrack 21;21,5)

    Tn s

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \overline{a,b77}. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Thông hiểu
    Tính số trung bình

    Kết quả cự li ném bóng của học sinh lớp 12 được thống kê lại ở bảng sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số học sinh

    13

    45

    24

    12

    6

    Tính số trung bình của mẫu số liệu ghép nhóm?

    Hướng dẫn:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số học sinh

    13

    45

    24

    12

    6

    Số trung bình:

    \overline{x} = \frac{19,25.13 + 19,75.45
+ 20,25.24 + 20,75.12 + 21,25.6}{100} = 20,015

  • Câu 7: Vận dụng
    Xét tính đúng sai của các nhận định

    Trưởng Câu lạc bộ Thể thao đã tiến hành điều tra tuổi thọ (đơn vị: năm) của máy chạy bộ do hai hãng X,Y sản xuất và thu được hai mẫu số liệu sau đây:

    a) [NB] Tuổi thọ của máy chạy bộ do hãng Y có độ phân tán lớn hơn tuổi thọ của máy chạy bộ do hãng X sản xuất. Sai||Đúng

    b) [TH] Tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất lớn hơn tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất. Đúng||Sai

    c) [TH] Khoảng tứ phân vị của mẫu số liệu về tuổi thọ của máy chạy bộ do hãng X sản xuất là 2,5. Sai||Đúng

    d) [VD] Tuổi thọ máy chạy bộ do hãng X sản xuất đồng đều hơn tuổi thọ máy chạy bộ do hãng Y sản xuất. Sai||Đúng

    Đáp án là:

    Trưởng Câu lạc bộ Thể thao đã tiến hành điều tra tuổi thọ (đơn vị: năm) của máy chạy bộ do hai hãng X,Y sản xuất và thu được hai mẫu số liệu sau đây:

    a) [NB] Tuổi thọ của máy chạy bộ do hãng Y có độ phân tán lớn hơn tuổi thọ của máy chạy bộ do hãng X sản xuất. Sai||Đúng

    b) [TH] Tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất lớn hơn tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất. Đúng||Sai

    c) [TH] Khoảng tứ phân vị của mẫu số liệu về tuổi thọ của máy chạy bộ do hãng X sản xuất là 2,5. Sai||Đúng

    d) [VD] Tuổi thọ máy chạy bộ do hãng X sản xuất đồng đều hơn tuổi thọ máy chạy bộ do hãng Y sản xuất. Sai||Đúng

    a) Khoảng biến thiên của tuổi thọ máy chạy bộ do hãng X sản xuất là R_{X} = 12 - 2 = 10

    Khoảng biến thiên của tuổi thọ máy chạy bộ do hãng Y sản xuất là R_{Y} = 12 - 4 = 8

    R_{X} > R_{Y} nên tuổi thọ của máy chạy bộ do hãng X có độ phân tán lớn hơn tuổi thọ của máy chạy bộ do hãng Y sản xuất suy ra mệnh đề sai.

    b) Chọn giá trị đại diện cho các nhóm số liệu, ta có bảng thống kê sau:

    Tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất là

    {\overline{x}}_{X} = \frac{3.7 + 5.20 +
7.36 + 9.20 + 11.17}{100} = 7,4

    Tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất là

    {\overline{x}}_{Y} = \frac{3.0 + 5.20 +
7.35 + 9.35 + 11.10}{100} = 7,7

    Như vậy, tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất lớn hơn tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất suy ra mệnh đề đúng.

    c) Tính các tần số tích lũy của mẫu số liệu về tuổi thọ của máy chạy bộ do hãng X sản xuất, ta có bảng thống kê sau:

    Ta có \frac{n_{X}}{4} = 257 < 25 < 27 nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 25.

    Xét nhóm 2 là nhóm \lbrack 4;6)s = 4;h = 2;n_{2} = 20 và nhóm 1 là nhóm [2;4) có cf_{1} = 7.

    Ta có tứ phân vị thứ nhất là Q_{1} = 4 +
\left( \frac{25 - 7}{20} ight).2 = 5,8

    Ta có \frac{3n_{X}}{4} = 7563 < 75 < 83 nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 75.

    Xét nhóm 4 là nhóm \lbrack 8;10)s = 8;l = 2;n_{4} = 20 và nhóm 3 là nhóm \lbrack 6;8)cf_{3} = 63.

    Ta có tứ phân vị thứ ba là Q_{3} = 8 +
\left( \frac{75 - 63}{20} ight).2 = 9,2

    Vậy khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 3,4 suy ra mệnh đề sai.

    d) Độ lệch chuẩn của tuổi thọ máy chạy bộ do hãng X sản xuất là

    s_{X} = \sqrt{\frac{7.(3 - 7,4)^{2} +
20.(5 - 7,4)^{2} + 36.(7 - 7,4)^{2} + 20.(9 - 7,4)^{2} + 17(11 -
7,4)^{2}}{100}} \approx 2,3

    Độ lệch chuẩn của tuổi thọ máy chạy bộ do hãng Y sản xuất là

    s_{Y} = \sqrt{\frac{20.(5 - 7,7)^{2} +
35.(7 - 7,7)^{2} + 35(9 - 7,7)^{2} + 10(11 - 7,7)^{2}}{100}} \approx
1,82

    Vậy tuổi thọ máy chạy bộ do hãng Y sản xuất đồng đều hơn tuổi thọ máy chạy bộ do hãng X sản xuất suy ra mệnh đề sai.

  • Câu 8: Vận dụng
    Ghi đáp án vào ô trống

    Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 5 tại địa điểm nào đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 5 tại địa điểm nào đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Vận dụng
    Ghi đáp án vào ô trống

    Một công ty sản xuất bóng đèn LED đã kiểm tra chất lượng sản phẩm của một lô hàng và ghi nhận thời gian sử dụng của 250 bóng đèn như sau:

    Khoảng thời gian (giờ)

    Giá trị đại diện

    Số lượng bóng đèn

    [0, 1000)

    500

    5

    [1000, 2000)

    1500

    46

    [2000, 3000)

    2500

    162

    [3000, 4000)

    3500

    25

    [4000, 5000)

    4500

    12

      N = 250

    Nếu độ lệch chuẩn của của bảng số liệu trên vượt quá 500 thì lô hàng không đạt tiêu chuẩn. Qua tính toán người ta thấy lô hàng đã không đạt tiêu chuẩn để đưa ra thị trường. Hỏi độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là bao nhiêu? (kết quả lấy phần nguyên).

    Đáp án: 245

    Đáp án là:

    Một công ty sản xuất bóng đèn LED đã kiểm tra chất lượng sản phẩm của một lô hàng và ghi nhận thời gian sử dụng của 250 bóng đèn như sau:

    Khoảng thời gian (giờ)

    Giá trị đại diện

    Số lượng bóng đèn

    [0, 1000)

    500

    5

    [1000, 2000)

    1500

    46

    [2000, 3000)

    2500

    162

    [3000, 4000)

    3500

    25

    [4000, 5000)

    4500

    12

      N = 250

    Nếu độ lệch chuẩn của của bảng số liệu trên vượt quá 500 thì lô hàng không đạt tiêu chuẩn. Qua tính toán người ta thấy lô hàng đã không đạt tiêu chuẩn để đưa ra thị trường. Hỏi độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là bao nhiêu? (kết quả lấy phần nguyên).

    Đáp án: 245

    Tính giá trị trung bình

    \overline{x} =
\frac{5.500 + 46.1500 + 162.2500 + 25.3500 + 12.4500}{250} =
\frac{618000}{250} = 2472

    Tính phương sai:

    s^{2} = \frac{5.500^{2} + 46.1500^{2} +
162.2500^{2} + 25.3500^{2} + 12.4500^{2}}{250} - 2472^{2} =
555216

    Tính độ lệch chuẩn: s = \sqrt{s^{2}} =
\sqrt{555216} \approx 745,13

    Độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là: 745,13 - 500 = 245,13

  • Câu 10: Vận dụng
    Xét tính đúng sai của các nhận định

    Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư và hai lĩnh vực A, B cho kết quả bằng biểu đồ dưới đây

    A graph on a gridDescription automatically generated A graph on a gridDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83 (làm tròn đến hàng phần trăm). Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01 (làm tròn đến hàng phần trăm). Đúng||Sai

    c. Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A. Sai||Đúng

    d. Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B. Sai||Đúng

    Đáp án là:

    Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư và hai lĩnh vực A, B cho kết quả bằng biểu đồ dưới đây

    A graph on a gridDescription automatically generated A graph on a gridDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83 (làm tròn đến hàng phần trăm). Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01 (làm tròn đến hàng phần trăm). Đúng||Sai

    c. Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A. Sai||Đúng

    d. Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B. Sai||Đúng

    Từ biểu đồ ta có bảng thống kê sau:

    (a) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83(làm tròn đến hàng phần trăm).

    Xét mẫu số liệu của số nhà đầu tư vào lĩnh vực A:

    Cỡ mẫu là n_{1} = 2 + 4 + 7 + 5 +3 =21

    Số trung bình: {\overline{x}}_{1} =
\frac{7,5.2 + 12,5.4 + 17,5.7 + 22,5.5 + 27,5.3}{21} =
\frac{255}{14}

    Phương sai:

    S_{1}^{2} = \frac{1}{21}\left( 2.7,5^{2}
+ 4.12,5^{2} + 7.17,5^{2} + 5.22,5^{2} + 3.27,5^{2} \right) - \left(
\frac{255}{14} \right)^{2} = \frac{5000}{147}

    S_{1} = \sqrt{\frac{5000}{147}} \approx
5,83

    Chọn ĐÚNG.

    (b) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01(làm tròn đến hàng phần trăm).

    Xét mẫu số liệu của số nhà đầu tư vào lĩnh vực B:

    Cỡ mẫu là n_{2} = 5 + 4 + 6 + 2 + 4 =
21

    Số trung bình: \overline{x_{2}} =
\frac{7,5.5 + 12,5.4 + 17,5.6 + 22,5.2 + 27,5.4}{21} =
\frac{695}{42}

    S_{2}^{2} = \frac{1}{21}\left( 5.7,5^{2}
+ 4.12,5^{2} + 6.17,5^{2} + 2.22,5^{2} + 4.27,5^{2} \right) - \left(
\frac{695}{42} \right)^{2} = \frac{21650}{441}

    S_{2} = \sqrt{\frac{21650}{441}} \approx
7,01

    Chọn ĐÚNG.

    (c) Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A.

    Số trung bình: \overline{x_{1}} =
\frac{7,5.2 + 12,5.4 + 17,5.7 + 22,5.5 + 27,5.3}{21} = \frac{255}{14}
\approx 18,21

    Số trung bình: \overline{x_{2}} = \frac{7,5.5 + 12,5.4 + 17,5.6 + 22,5.2 + 27,5.4}{21} = \frac{695}{42}\approx 16,55

    Về trung bình, đầu tư vào lĩnh vực A đem lại tiền lãi cao hơn lĩnh vực B.

    Chọn SAI.

    (d) Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B.

    Ta có: S_{1} < S_{2}

    Vậy nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực B có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực A.

    Chọn SAI.

  • Câu 11: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho bảng thống kê cân nặng của học sinh (đơn vị: kg) lớp 12D như sau:

    Nhóm cân nặng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    Số học sinh

    2

    10

    16

    8

    2

    2

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Số học sinh nặng dưới 50 kilogam là 1. Đúng||Sai

    b) Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(kg). Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là 19,5. Sai||Đúng

    d) Phương sai của mẫu số liệu ghép nhóm là 128. Sai||Đúng

    Đáp án là:

    Cho bảng thống kê cân nặng của học sinh (đơn vị: kg) lớp 12D như sau:

    Nhóm cân nặng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    Số học sinh

    2

    10

    16

    8

    2

    2

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Số học sinh nặng dưới 50 kilogam là 1. Đúng||Sai

    b) Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(kg). Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là 19,5. Sai||Đúng

    d) Phương sai của mẫu số liệu ghép nhóm là 128. Sai||Đúng

    a) Đúng: Số học sinh nặng dưới 50 kg là 2
+ 10 = 12.

    b) Đúng: Nhóm chứa mốt của mẫu số liệu là \lbrack 50;60).

    Do đó u_{m} = 50;n_{m} = 16;n_{m - 1} =
10,n_{m + 1} = 8,u_{m + 1} - u_{m} = 60 - 50 = 10.

    Mốt của mẫu số liệu ghép nhóm xấp xỉ bằng:

    M_{0} = 50 + \frac{16 - 10}{(16 - 10) +
(16 - 8)} \cdot 10 = \frac{380}{7} \approx 54,29(\text{\
}kg)

    Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(\text{\ }kg).

    c) Sai: Cỡ mẫu n = 40.

    Gọi x_{1},x_{2} \in \lbrack
30;40);x_{3},\ldots,x_{12} \in \lbrack 40;50);

    x_{13},\ldots,x_{28} \in \lbrack
50;60);x_{29},\ldots,x_{36} \in \lbrack 60;70);

    x_{37},x_{38} \in \lbrack
70;80);x_{39},x_{40} \in \lbrack 80;90).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{10} + x_{11} ight) \in
\lbrack 40;50).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 40 + \frac{\frac{40}{4} - 2}{10}
\cdot (50 - 40) = 48.

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{30} + x_{31} ight) \in
\lbrack 60;70).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 60 + \dfrac{\dfrac{3 \cdot 40}{4} -(2 + 10 + 16)}{8}.(70 - 60) = \frac{125}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    \Delta_{Q} = \frac{125}{2} - 48 =
\frac{29}{2}

    d) Sai: Ta có bảng cân nặng của các em học sinh theo giá trị đại diện:

    Nhóm

    Giá trị đại diện

    Tần số

    [30; 40)

    35

    2

    [40; 50)

    45

    10

    [50; 60)

    55

    16

    [60; 70)

    65

    8

    [70; 80)

    75

    2

    [80; 90)

    85

    2

    Cỡ mẫu n = 2 + 10 + 16 + 8 + 2 + 2 =
40.

    Số trung bình của mẫu số liệu ghép nhóm là

     \frac{35.2 + 45.10 + 55.16 + 65.8 + 75.2
+ 85.2}{40} = \frac{2240}{40} = 56(kg)

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{40}\left( {2.35}^{2} +
{10.45}^{2} + {16.55}^{2} + {8.65}^{2} + {2.75}^{2} + {2.85}^{2} ight)
- 56^{2}

    = 3265 - 3136 = 129.

  • Câu 12: Vận dụng
    Chọn kết luận đúng

    Giá đóng cửa của một cổ phiếu là giá của cổ phiếu đó cuối một phiên giao dịch. Bảng sau thống kê giá đóng cửa (đơn vị: nghìn đồng) của hai mã cổ phiếu AB trong 50 ngày giao dịch liên tiếp.

    A white rectangular box with black numbersDescription automatically generated

    Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro của các loại cổ phiếu có giá trị trung bình gần bằng nhau. Cổ phiếu nào có phương sai, độ lệch chuẩn cao hơn thì được coi là có độ rủi ro lớn hơn.

    Theo quan điểm trên, độ rủi ro của cổ phiếu nào cao hơn?

    Hướng dẫn:

    Ta có bảng thống kê giá đóng cửa theo giá trị đại diện

    A grid of numbers with black textDescription automatically generated

    - Xét mẫu số liệu của cổ phiếu A

    Số trung bình của mẫu số liệu ghép nhóm là: {\overline{x}}_{1} = \frac{8.121 + 9.123 + 12.125
+ 10.127 + 11.129}{50} = 125,28.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{1}^{2} = \frac{1}{50}8.121^{2} +
9.123^{2} + 12.125^{2} + 10.127^{2}

    + 11.129^{2}) - 125,28^{2} =
7,5216.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{1} = \sqrt{7,5216}

    - Xét mẫu số liệu của cổ phiếu B

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{2} = \frac{1}{50}(16.121
+ 4.123 + 3.125 + 6.127 + 21.129) = 125,48.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{2}^{2} = \frac{1}{50}(16.121^{2} +
4.123^{2} + 3.125^{2} + 6.127^{2}

    + 21.129^{2}) - 125,48^{2} =
12,4096.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{2} = \sqrt{12,4096}.

    Vậy nếu đánh giá độ rủi ro theo phương sai và độ lệch chuẩn thì cổ phiếu A có độ rủi ro thấp hơn cồ phiếu B.

  • Câu 13: Thông hiểu
    Tính phương sai của mẫu số liệu

    Cho bảng phân bố tần số ghép lớp về độ dài của 60 lá dương xỉ trưởng thành như sau:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Tần số

    8 18 24 10

    Tính phương sai bảng phân bố tần số ghép lớp đã cho

    Hướng dẫn:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Giá trị đại diện

    15 25 35 45

    Tần số

    8 18 24 10

    Trước hết ta có \overline{x} = \frac{15.8
+ 25.18 + 35.24 + 45.10}{60} = 31.

    Khi đó phương sai:

    s_{x}^{2} = \frac{8.(15
- 31)^{2} + 18 \cdot (25 - 31)^{2} + 24.(35 - 31)^{2} + 10.(45 -
31)^{2}}{60} = 84

  • Câu 14: Thông hiểu
    Chọn kết luận đúng

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Chọn kết luận đúng?

    Hướng dẫn:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Phương sai của mẫu số liệu ghép nhóm là:

    {S_{A}}^{2} = \frac{1}{20}.\left(
4.5,5^{2} + 5.6,5^{2} + 5.7,5^{2} + 4.8,5^{2} + 2.9,5^{2} ight) -
7,25^{2} = 1,5875

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    S_{A} = \sqrt{1,5875} \approx
1,26

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

    Phương sai của mẫu số liệu ghép nhóm là:

    {S_{B}}^{2} = \frac{1}{20}.\left(
3.5,5^{2} + 6.6,5^{2} + 5.7,5^{2} + 5.8,5^{2} + 1.9,5^{2} ight) -
7,25^{2} = 1,2875

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    S_{B} = \sqrt{1,2875} \approx
1,13

    Vậy kết luận đúng là: S_{A} \approx
1,26;S_{B} \approx 1,13.

  • Câu 15: Thông hiểu
    Tìm phương sai của mẫu số liệu ghép nhóm

    Cho bảng số liệu thống kê như sau:

    Đối tượng

    Tần số

    [0; 30)

    2

    [30; 60)

    3

    [60; 90)

    5

    [90; 120)

    10

    [120; 150)

    3

    [150; 180)

    5

    [180; 210)

    2

    Xác định phương sai của mẫu số liệu ghép nhóm đã cho?

    Hướng dẫn:

    Ta có:

    Đối tượng

    Tần số

    Giá trị đại diện (xi)

    \left( x_{i} - \overline{x}
ight)^{2} f_{i}.\left( x_{i} - \overline{x}
ight)^{2}

    [0; 30)

    2

    5

    8462

    2187

    [30; 60)

    3

    45

    2844

    2023

    [60; 90)

    5

    75

    1024

    588

    [90; 120)

    10

    105

    4

    135

    [120; 150)

    3

    135

    784

    1352

    [150; 180)

    5

    165

    3364

    1589

    [180; 210)

    2

    195

    7744

    2187

     

    \sum_{}^{}f_{i} = 30

     

     

    Tổng: 68280

    Phương sai của mẫu số liệu là:

    S^{2} =
\frac{1}{N}.\sum_{}^{}{f_{i}.\left( x_{i} - \overline{x} ight)^{2}} =
\frac{1}{30}.68280 = 2276

  • Câu 16: Thông hiểu
    Chọn đáp án thích hợp

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Hướng dẫn:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Phương sai của mẫu số liệu ghép nhóm của lớp 12C:

    {S_{C}}^{2} = \frac{1}{18}\left(4.5,5^{2} + 5.6,5^{2} + 3.7,5^{2} + 4.8,5^{2} + 2.9,5^{2} ight) -\left( \frac{65}{9} ight)^{2} = \frac{569}{324}

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm lớp 12C là: S_{C} = \sqrt{{S_{C}}^{2}} =\sqrt{\frac{569}{324}} \approx 1,33

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}

    Phương sai của mẫu số liệu ghép nhóm của lớp 12D:

    {S_{D}}^{2} = \frac{1}{15}\left(2.5,5^{2} + 5.6,5^{2} + 4.7,5^{2} + 3.8,5^{2} + 1.9,5^{2} ight) -\left( \frac{217}{30} ight)^{2} = \frac{284}{225}

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm lớp 12D là: S_{D} = \sqrt{{S_{D}}^{2}} =\sqrt{\frac{284}{225}} \approx 1,12

    Ta có: S_{C} > S_{D} nên nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh lớp 12D có điểm đồng đều hơn lớp 12C.

  • Câu 17: Thông hiểu
    Chọn phát biểu đúng

    Hai mẫu số lię̂u ghép nhóm M_{1},M_{2} có bảng tần số ghép nhóm như sau:

    M_{1}

    Nhóm

    \lbrack 8;10)

    [10;12)

    \lbrack 12;14)

    \lbrack 14;16)

    \lbrack 16;18)

    Tần số

    3

    4

    8

    6

    4

    M_{2}

    Nhóm

    \lbrack 8;10)

    [10;12)

    \lbrack 12;14)

    \lbrack 14;16)

    \lbrack 16;18)

    Tằn số

    6

    8

    16

    12

    8

    Gọi s_{1},s_{2} lần lượt là độ lệch chuẩn của mẫu số liệu ghép nhóm M_{1},M_{2}. Phát biểu nào sau đây là đúng?

    Hướng dẫn:

    Dùng máy tính casio tính được độ lệch chuẩn: \left\{ \begin{matrix}
s_{1} \approx 2,444913086 \\
s_{2} \approx 2,444913086 \\
\end{matrix} ight.

  • Câu 18: Vận dụng
    Chọn câu trả lời đúng nhất

    Trong 30 ngày, một nhà đầu tư đã theo dõi giá cổ phiếu của hai công ty G và H vào phiên mở cửa mỗi ngày. Thông tin được ghi lại ở hai bảng dưới đây:

    A white paper with black textDescription automatically generated

    Chọn câu trả lời đúng nhất biết độ lệch chuẩn càng cao thì tỷ lệ rủi ro càng lớn:

    Hướng dẫn:

    Công ty G:

    Bổ sung thêm các giá trị đại diện, ta có bảng sau

    A white rectangular box with black numbersDescription automatically generated

    Giá trị trung bình của mẫu số liệu là

    \overline{x} = \frac{51 \cdot 3 + 53
\cdot 7 + 55 \cdot 9 + 57 \cdot 8 + 59 \cdot 3}{30} \approx
55,1.

    Trung bình cộng của các bình phương số liệu thống kê là

    \overline{x^{2}} = \frac{51^{2} \cdot 3
+ 53^{2} \cdot 7 + 55^{2} \cdot 9 + 57^{2} \cdot 8 + 59^{2} \cdot 3}{30}
\approx 3037,5.

    Từ đó ta có độ lệch chuẩn của mẫu số liệu là s = \sqrt{\overline{x^{2}} - \left( \overline{x}
\right)^{2}} \approx \sqrt{5,2} \approx 2,3.

    Công ty H

    A white rectangular box with black numbersDescription automatically generated

    Bổ sung thêm các giá trị đại diện, ta có bảng sau

    Giá trị trung bình của mẫu số liệu là

    \overline{x} = \frac{41 \cdot 6 + 43
\cdot 7 + 45 \cdot 5 + 47 \cdot 7 + 49 \cdot 5}{30} \approx
44,9.

    Trung bình cộng của các bình phương số liệu thống kê là

    \overline{x^{2}} = \frac{41^{2} \cdot 6 +
43^{2} \cdot 7 + 45^{2} \cdot 5 + 47^{2} \cdot 7 + 49^{2} \cdot 5}{30}
\approx 2020,7.

    Từ đó ta có độ lệch chuẩn của mấu số liệu là s = \sqrt{\overline{x^{2}} - \left( \overline{x}
\right)^{2}} \approx \sqrt{7,7} \approx 2,8.

    Từ kết quả trên, ta thấy công ty Hrủi ro hơn

  • Câu 19: Vận dụng
    Xét tính đúng sai của các nhận định

    Biểu đồ dưới đây biểu thị kết quả thu thập được về mức tiền (đơn vị: tỷ đồng) của một số khách hàng nợ ở hai ngân hàng AB.

    A graph with lines and numbersDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên

    Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}. Sai||Đúng

    c. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}. Sai||Đúng

    d. Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B.  Sai||Đúng 

    Đáp án là:

    Biểu đồ dưới đây biểu thị kết quả thu thập được về mức tiền (đơn vị: tỷ đồng) của một số khách hàng nợ ở hai ngân hàng AB.

    A graph with lines and numbersDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên

    Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}. Sai||Đúng

    c. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}. Sai||Đúng

    d. Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B.  Sai||Đúng 

    (a) Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên:

    Chọn ĐÚNG.

    (b) Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}.

    Số trung bình của mẫu số liệu ngân hàngA bằng {\overline{x}}_{A} = \frac{1}{38}.\lbrack 6.1,5 +
7.2,5 + 9.3,5 + 10.4,5 + 5.5,5 + 1.6,5\rbrack =
\frac{137}{38}

    Phương sai của mẫu số liệu ngân hàngA bằng

    S_{A}^{2} = \frac{1}{38}.\lbrack
6.1,5^{2} + 7.2,5^{2} + 9.3,5^{2} + 10.4,5^{2} + 5.5,5^{2} +
1.6,5^{2}\rbrack - \left( \frac{137}{38} \right)^{2} =
\frac{661}{361}.

    Độ lệch chuẩn của mẫu số liệu ngân hàngA bằng \sigma_{A} = \sqrt{{S_{A}}^{2}} =
\frac{\sqrt{661}}{19}.

    Chọn SAI.

    (c) Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}.

    Số trung bình của mẫu số liệu ngân hàng B bằng{\overline{x}}_{B} = \frac{1}{38}.\lbrack 8.1,5 +
6.2,5 + 8.3,5 + 9.4,5 + 5.5,5 + 2.6,5\rbrack =
\frac{68}{19}

    Phương sai của mẫu số liệu ngân hàng B bằng

    S_{B}^{2} = \frac{1}{38}[8.1,5^{2} + 6.2,5^{2} + 8.3,5^{2} + 9.4,5^{2} + 5.5,5^{2}+2.6,5^{2}]- \left( \frac{68}{19} \right)^{2} =\frac{3221}{1444}.

    Độ lệch chuẩn của mẫu số liệu ngân hàng B bằng \sigma_{B} = \sqrt{{S_{B}}^{2}} =
\sqrt{\frac{3221}{1444}}.

    Chọn SAI.

    (d) Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B

    \sigma_{A} < \sigma_{B} nên rủi ro của ngân hàng A thấp hơn rủi ro của ngân hàng B khi cho khách hàng vay nợ.

    Chọn SAI.

  • Câu 20: Thông hiểu
    Tìm độ lệch chuẩn của mẫu số liệu

    Thời gian tự học tại nhà mỗi ngày (đơn vị: phút) của một học sinh lớp 12A được ghi lại như bảng sau:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số ngày

    6

    6

    4

    1

    1

    Độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho gần nhất với giá trị nào sau đây?

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Giá trị đại diện

    22,5

    27,5

    32,5

    37,5

    42,5

    Số ngày

    6

    6

    4

    1

    1

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{6.22,5 + 6.27,5 +
4.32,5 + 1.37,5 + 1.42,5}{18} = \frac{85}{3}

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{18}\left( 6.22,5^{2} +
6.27,5^{2} + 4.32,5^{2} + 1.37,5^{2} + 1.42,5^{2} ight) - \left(
\frac{85}{3} ight)^{2} = 31,25

    Vậy độ lệch chuẩn của mẫu số liệu cần tìm là: S = \sqrt{S^{2}} \approx \sqrt{31,25} =
5,6

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (60%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo