Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 10 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường (km)

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Biết phương sai của mẫu số liệu được tính theo công thức:

    S^{2} = \frac{1}{n}\left\lbrack
m_{1}x_{1}^{2} + m_{2}x_{2}^{2} + ... + m_{k}x_{k}^{2} \right\rbrack -
{\overline{x}}^{2}. Khi đó giá trị của phương sai là

    Hướng dẫn:

    Ta có bảng sau:

    Quãng đường (km)

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Giá trị đại diện

    2,85

    3,15

    3,45

    3,75

    4,05

    Số ngày

    3

    6

    5

    4

    2

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{3.2,85 + 6.3,15 +
5.3,45 + 4.3,75 + 2.4,05}{20} = 3,39

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{20}\lbrack 3.(2,85)^{2}
+ 6.(3,15)^{2} + 5.(3,45)^{2}

    + 4.(3,75)^{2} + 2.(4,05)^{2}\rbrack -
(3,39)^{2} = 0,1314

  • Câu 3: Vận dụng
    Xét tính đúng sai của các nhận định

    Trưởng Câu lạc bộ Thể thao đã tiến hành điều tra tuổi thọ (đơn vị: năm) của máy chạy bộ do hai hãng X,Y sản xuất và thu được hai mẫu số liệu sau đây:

    a) [NB] Tuổi thọ của máy chạy bộ do hãng Y có độ phân tán lớn hơn tuổi thọ của máy chạy bộ do hãng X sản xuất. Sai||Đúng

    b) [TH] Tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất lớn hơn tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất. Đúng||Sai

    c) [TH] Khoảng tứ phân vị của mẫu số liệu về tuổi thọ của máy chạy bộ do hãng X sản xuất là 2,5. Sai||Đúng

    d) [VD] Tuổi thọ máy chạy bộ do hãng X sản xuất đồng đều hơn tuổi thọ máy chạy bộ do hãng Y sản xuất. Sai||Đúng

    Đáp án là:

    Trưởng Câu lạc bộ Thể thao đã tiến hành điều tra tuổi thọ (đơn vị: năm) của máy chạy bộ do hai hãng X,Y sản xuất và thu được hai mẫu số liệu sau đây:

    a) [NB] Tuổi thọ của máy chạy bộ do hãng Y có độ phân tán lớn hơn tuổi thọ của máy chạy bộ do hãng X sản xuất. Sai||Đúng

    b) [TH] Tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất lớn hơn tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất. Đúng||Sai

    c) [TH] Khoảng tứ phân vị của mẫu số liệu về tuổi thọ của máy chạy bộ do hãng X sản xuất là 2,5. Sai||Đúng

    d) [VD] Tuổi thọ máy chạy bộ do hãng X sản xuất đồng đều hơn tuổi thọ máy chạy bộ do hãng Y sản xuất. Sai||Đúng

    a) Khoảng biến thiên của tuổi thọ máy chạy bộ do hãng X sản xuất là R_{X} = 12 - 2 = 10

    Khoảng biến thiên của tuổi thọ máy chạy bộ do hãng Y sản xuất là R_{Y} = 12 - 4 = 8

    R_{X} > R_{Y} nên tuổi thọ của máy chạy bộ do hãng X có độ phân tán lớn hơn tuổi thọ của máy chạy bộ do hãng Y sản xuất suy ra mệnh đề sai.

    b) Chọn giá trị đại diện cho các nhóm số liệu, ta có bảng thống kê sau:

    Tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất là

    {\overline{x}}_{X} = \frac{3.7 + 5.20 +
7.36 + 9.20 + 11.17}{100} = 7,4

    Tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất là

    {\overline{x}}_{Y} = \frac{3.0 + 5.20 +
7.35 + 9.35 + 11.10}{100} = 7,7

    Như vậy, tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất lớn hơn tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất suy ra mệnh đề đúng.

    c) Tính các tần số tích lũy của mẫu số liệu về tuổi thọ của máy chạy bộ do hãng X sản xuất, ta có bảng thống kê sau:

    Ta có \frac{n_{X}}{4} = 257 < 25 < 27 nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 25.

    Xét nhóm 2 là nhóm \lbrack 4;6)s = 4;h = 2;n_{2} = 20 và nhóm 1 là nhóm [2;4) có cf_{1} = 7.

    Ta có tứ phân vị thứ nhất là Q_{1} = 4 +
\left( \frac{25 - 7}{20} ight).2 = 5,8

    Ta có \frac{3n_{X}}{4} = 7563 < 75 < 83 nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 75.

    Xét nhóm 4 là nhóm \lbrack 8;10)s = 8;l = 2;n_{4} = 20 và nhóm 3 là nhóm \lbrack 6;8)cf_{3} = 63.

    Ta có tứ phân vị thứ ba là Q_{3} = 8 +
\left( \frac{75 - 63}{20} ight).2 = 9,2

    Vậy khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 3,4 suy ra mệnh đề sai.

    d) Độ lệch chuẩn của tuổi thọ máy chạy bộ do hãng X sản xuất là

    s_{X} = \sqrt{\frac{7.(3 - 7,4)^{2} +
20.(5 - 7,4)^{2} + 36.(7 - 7,4)^{2} + 20.(9 - 7,4)^{2} + 17(11 -
7,4)^{2}}{100}} \approx 2,3

    Độ lệch chuẩn của tuổi thọ máy chạy bộ do hãng Y sản xuất là

    s_{Y} = \sqrt{\frac{20.(5 - 7,7)^{2} +
35.(7 - 7,7)^{2} + 35(9 - 7,7)^{2} + 10(11 - 7,7)^{2}}{100}} \approx
1,82

    Vậy tuổi thọ máy chạy bộ do hãng Y sản xuất đồng đều hơn tuổi thọ máy chạy bộ do hãng X sản xuất suy ra mệnh đề sai.

  • Câu 4: Thông hiểu
    Tìm phương sai của mẫu số liệu

    Một vận động viên luyện tập chạy cự li 100 m đã ghi lại kết quả luyện tập như sau.

    Tìm phương sai của mẫu số liệu ghép nhóm (làm tròn kết quả đến chữ số thập phân thứ 2)

    Hướng dẫn:

    Ta có

    A table with numbers and a numberDescription automatically generated

    Thời gian trung bình là

    \overline{x} = \frac{1}{20}(10,3 \cdot 3
+ 10,5 \cdot 7 + 10,7 \cdot 8 + 10,9 \cdot 2) = 10,59.

    Phương sai

    s^{2} = \frac{1}{20} \cdot \left(
10,3^{2} \cdot 3 + 10,5^{2} \cdot 7 + 10,7^{2} \cdot 8 + 10,9^{2} \cdot
2 \right) - 10,59^{2} = 0.03.

  • Câu 5: Thông hiểu
    Tìm độ lệch chuẩn của mẫu số liệu

    Thời gian tự học tại nhà mỗi ngày (đơn vị: phút) của một học sinh lớp 12A được ghi lại như bảng sau:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số ngày

    6

    6

    4

    1

    1

    Độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho gần nhất với giá trị nào sau đây?

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Giá trị đại diện

    22,5

    27,5

    32,5

    37,5

    42,5

    Số ngày

    6

    6

    4

    1

    1

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{6.22,5 + 6.27,5 +
4.32,5 + 1.37,5 + 1.42,5}{18} = \frac{85}{3}

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{18}\left( 6.22,5^{2} +
6.27,5^{2} + 4.32,5^{2} + 1.37,5^{2} + 1.42,5^{2} ight) - \left(
\frac{85}{3} ight)^{2} = 31,25

    Vậy độ lệch chuẩn của mẫu số liệu cần tìm là: S = \sqrt{S^{2}} \approx \sqrt{31,25} =
5,6

  • Câu 6: Thông hiểu
    Tính giá trị trung bình của mẫu số liệu

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Độ lệch chuẩn của mẫu số liệu đã cho là:

    Hướng dẫn:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.19,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} = 20,015

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{100}\left( 13.19,25^{2}
+ 45.19,75^{2} + 24.20,25^{2} + 12.20,75^{2} + 6.21,25^{2} ight) -
20,015^{2} \approx 0,277

    Độ lệch chuẩn của mẫu số liệu là:

    S = \sqrt{S^{2}} \approx \sqrt{0,277}
\approx 0,526

  • Câu 7: Thông hiểu
    Ghi đáp án vào ô trống

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Độ lệch chuẩn S_{A} bằng: 2,3

    Độ lệch chuẩn S_{B} bằng: 2,7

    (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án là:

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Độ lệch chuẩn S_{A} bằng: 2,3

    Độ lệch chuẩn S_{B} bằng: 2,7

    (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Ta có:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Suy ra

    \overline{x_{A}} = \frac{25.31 + 38.33 +20.35 + 10.37 + 7.39}{100} = 33,72

    {S_{A}}^{2} = \frac{1}{100}\left(25.31^{2} + 38.33^{2} + 20.35^{2} + 10.37^{2} + 7.39^{2} ight) -33,72^{2} \approx 5,402

    \Rightarrow S_{A} \approx2,3

    \overline{x_{B}} = \frac{25.31 + 27.33 +19.35 + 18.37 + 14.39}{100} = 34,2

    {S_{B}}^{2} = \frac{1}{100}\left(25.31^{2} + 27.33^{2} + 19.35^{2} + 18.37^{2} + 14.39^{2} ight) -34,2^{2} \approx 7,31

    \Rightarrow S_{B} \approx2,7

  • Câu 8: Thông hiểu
    Tìm phương sai của mẫu số liệu ghép nhóm

    Phương sai của một mẫu số liệu ghép nhóm cho bởi bảng thống kê dưới đây là:

    A white rectangular grid with black numbersDescription automatically generated

    Hướng dẫn:

    Ta có chiều cao trung bình:

    \overline{x} = \frac{1}{500}(152.25 +
156.50 + 160.200 + 164.175 + 168.50) = 161,4

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{500}\lbrack 25(152 -161,4)^2 + 50(156 - 161,4)^{2}

    + 200(160 - 161,4)^{2} + 175(164 -
161,4)^{2} + 50(168 - 161,4)^{2}\rbrack

    = 14,84.

  • Câu 9: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Cân nặng (kg) của một số quả mít trong một khu vườn được thống kê ở bảng sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Số cây giống

    6

    12

    19

    9

    4

    Hãy tính phương sai của mẫu số liệu ghép nhóm trên (làm tròn đến hàng phần mười).

    Hướng dẫn:

    Ta có giá trị đại diện được thể hiện trong bảng sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Giá trị đại diện

    5

    7

    9

    11

    13

    Số cây giống

    6

    12

    19

    9

    4

    Cỡ mẫu: n = 50.

    Số trung bình

    \overline{x} = \frac{m_{1}.x_{1} +
m_{2}.x_{2} + ... + m_{k}.x_{k}}{n}

    = \frac{6.5 + 12.7 + 19.9 + 9.11 +
4.13}{50} = 8,72.

    Phương sai:

    s^{2} = \frac{1}{n}\left(m_{1}.{x_{1}}^{2} + m_{2}.{x_{2}}^{2} + ... + m_{k}.{x_{k}}^{2} ight)- \left( \overline{x} ight)^{2}

    = \frac{1}{50}\left( 6.5^{2} +12.7^{2} + 19.9^{2} + 9.11^{2} + 4.13^{2} ight) - (8,72)^{2} =4,8016.

  • Câu 10: Vận dụng
    Chọn câu trả lời đúng nhất

    Trong 30 ngày, một nhà đầu tư đã theo dõi giá cổ phiếu của hai công ty G và H vào phiên mở cửa mỗi ngày. Thông tin được ghi lại ở hai bảng dưới đây:

    A white paper with black textDescription automatically generated

    Chọn câu trả lời đúng nhất biết độ lệch chuẩn càng cao thì tỷ lệ rủi ro càng lớn:

    Hướng dẫn:

    Công ty G:

    Bổ sung thêm các giá trị đại diện, ta có bảng sau

    A white rectangular box with black numbersDescription automatically generated

    Giá trị trung bình của mẫu số liệu là

    \overline{x} = \frac{51 \cdot 3 + 53
\cdot 7 + 55 \cdot 9 + 57 \cdot 8 + 59 \cdot 3}{30} \approx
55,1.

    Trung bình cộng của các bình phương số liệu thống kê là

    \overline{x^{2}} = \frac{51^{2} \cdot 3
+ 53^{2} \cdot 7 + 55^{2} \cdot 9 + 57^{2} \cdot 8 + 59^{2} \cdot 3}{30}
\approx 3037,5.

    Từ đó ta có độ lệch chuẩn của mẫu số liệu là s = \sqrt{\overline{x^{2}} - \left( \overline{x}
\right)^{2}} \approx \sqrt{5,2} \approx 2,3.

    Công ty H

    A white rectangular box with black numbersDescription automatically generated

    Bổ sung thêm các giá trị đại diện, ta có bảng sau

    Giá trị trung bình của mẫu số liệu là

    \overline{x} = \frac{41 \cdot 6 + 43
\cdot 7 + 45 \cdot 5 + 47 \cdot 7 + 49 \cdot 5}{30} \approx
44,9.

    Trung bình cộng của các bình phương số liệu thống kê là

    \overline{x^{2}} = \frac{41^{2} \cdot 6 +
43^{2} \cdot 7 + 45^{2} \cdot 5 + 47^{2} \cdot 7 + 49^{2} \cdot 5}{30}
\approx 2020,7.

    Từ đó ta có độ lệch chuẩn của mấu số liệu là s = \sqrt{\overline{x^{2}} - \left( \overline{x}
\right)^{2}} \approx \sqrt{7,7} \approx 2,8.

    Từ kết quả trên, ta thấy công ty Hrủi ro hơn

  • Câu 11: Vận dụng
    Chọn đáp án chính xác

    Thời gian hoàn thành một bài viết chính tả của một số học sinh lớp 4 hai trường X và Y được ghi lại ở bảng sau. Gọi độ lệch chuẩn thời gian gian hoàn thành một bài viết chính tả của một số học sinh lớp 4 ở trường X và Y lần lượt là S_{X} và S_{Y}. Tính S_{X} - S_{Y} bằng bao nhiêu?

    Thời gian (Phút)

    \lbrack
6;7) \lbrack
7;8) \lbrack
8;9) \lbrack
9;10) \lbrack
10;11)

    Số học sinh trường X

    8

    10

    13

    10

    9

    Số học sinh trường Y

    4

    12

    17

    14

    3

    Hướng dẫn:

    Ta lập bảng theo giá trị đại diện như sau:

    Thời gian (Phút)

    \lbrack
6;7) \lbrack
7;8) \lbrack
8;9) \lbrack
9;10) \lbrack
10;11)

    Giá trị đại diện

    6,5

    7,5

    8,5

    9,5

    10,5

    Số học sinh trường X

    8

    10

    13

    10

    9

    Số học sinh trường Y

    4

    12

    17

    14

    3

    Cỡ mẫu n_{X} = 8 + 10 + 13 + 10 + 9 =
50,\ \ n_{Y} = 4 + 12 + 17 + 14 + 3 = 50.

    Thời gian trung bình hoàn thành một bài viết chính tả của học sinh trường X là:

    {\overline{x}}_{X} = \frac{8 \cdot 6,5 +
10 \cdot 7,5 + 13 \cdot 8,5 + 10 \cdot 9,5 + 9 \cdot 10,5}{50} =
8,54

    Phương sai của mẫu số liệu ghép nhóm của trường X là:

    S_{X}^{2} = \frac{1}{50}[ 8\cdot (6,5)^{2} + 10 \cdot (7,5)^{2}+ 13 \cdot (8,5)^{2} + 10 \cdot(9,5)^{2} + 9 \cdot (10,5)^{2}] - (8,54)^{2} =1,76

    Độ lệch chuẩn của mẫu số liệu ghép nhóm của trường X là:

    S_{X} = \sqrt{S_{X}^{2}} = \sqrt{1,76}
\approx 1,33

    Thời gian trung bình hoàn thành một bài viết chính tả của học sinh trường Y là:

    {\overline{x}}_{Y} = \frac{4 \cdot 6,5 +
12 \cdot 7,5 + 17 \cdot 8,5 + 14 \cdot 9,5 + 3 \cdot 10,5}{50} =
8,5

    Phương sai của mẫu số liệu ghép nhóm của trường Y là:

    S_{Y}^{2} = \frac{1}{50}[ 4\cdot (6,5)^{2} + 12 \cdot (7,5)^{2} + 17 \cdot (8,5)^{2}+ 14 \cdot(9,5)^{2} + 3 \cdot (10,5)^{2} ] - (8,5)^{2} =1,08

    Độ lệch chuẩn của mẫu số liệu ghép nhóm của trường Y là:

    S_{Y} = \sqrt{S_{Y}^{2}} = \sqrt{1,08}
\approx 1,04

    Vậy S_{X} - S_{Y} = 1,33 - 1,04 =
0,29

  • Câu 12: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Độ lệch chuẩn của mẫu số liệu là:

    Hướng dẫn:

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{50}\left( 8.121^{2} +
9.123^{2} + 12.125^{2} + 10.127^{2} + 11.129^{2} ight) - 125,28^{2} =
7,5216

    Độ lệch chuẩn của mẫu số liệu ghép nhóm kaf:

    S = \sqrt{S^{2}} = \sqrt{7,5216} \approx
2,74

  • Câu 13: Vận dụng
    Chọn đáp án đúng nhất

    Thống kê lợi nhuận hàng tháng (đơn vị: triệu đồng) trong 20 tháng của hai nhà đầu tư được cho như sau:

    A white paper with black text and numbersDescription automatically generated

    Đáp án nào dưới đây đúng nhất?

    Hướng dẫn:

    Chọn điểm đại diện cho các nhóm số liệu ta tính được các số đặc trưng như sau Lợi nhuận trung bình một tháng của các nhà đầu tư tương ứng là

    \begin{matrix}
{\overline{x}}_{A} = \frac{1}{20}(2 \cdot 15 + \ldots + 2 \cdot 55) = 35
\\
{\overline{x}}_{B} = \frac{1}{20}(4 \cdot 515 + \ldots + 4 \cdot 555) =
535 \\
\end{matrix}

    Độ lệch chuẩn của lợi nhuận hàng tháng của hai nhà đầu tư tương ứng là

    \begin{matrix}
s_{A} = \sqrt{\frac{1}{20}\left( 2 \cdot 15^{2} + \ldots + 2 \cdot
55^{2} \right) - (35)^{2}} \approx 10,95 \\
s_{B} = \sqrt{\frac{1}{20}\left( 4 \cdot 515^{2} + \ldots + 4 \cdot
555^{2} \right) - (535)^{2}} \approx 13,78. \\
\end{matrix}

    Độ lệch chuẩn cho lợi nhuận hàng tháng của nhà đầu tư lớn cao hơn của nhà đầu tư nhỏ. Lợi nhuận trung bình của hai nhà đầu tư khác nhau rất nhiều, do đó ta không nên dùng độ lệch chuẩn để so sánh mức độ rủi ro của hai nhà đầu tư này

  • Câu 14: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong Bảng 1.

    Nhóm

    Giá trị đại diện

    Tần số

    [40;45)

    [40;45)

    [40;45)

    [40;45)

    [40;45)

    [40;45)

    42,5

    47,5

    52,5

    57,5

    62,5

    67,5

    4

    14

    8

    10

    6

    2

    N = 44

    Bảng 1

    Phương sai của mẫu số liệu ghép nhóm trên là:

    Hướng dẫn:

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 +
8.52,5 + 10.57,5 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{4\left( 42,5 -\frac{585}{11} ight)^{2} + 14\left( 47,5 - \frac{585}{11}ight)^{2}}{44}+ \frac{8\left( 52,5 - \frac{585}{11} ight)^{2} +10\left( 57,5 - \frac{585}{11} ight)^{2}}{44}

    + \frac{+ 6\left( 62,5 - \frac{585}{11}
ight)^{2} + 2.\left( 67,5 - \frac{585}{11} ight)^{2}}{44} \approx
46,12

  • Câu 15: Vận dụng
    Chọn khẳng định đúng

    Giá đóng cửa của một cổ phiếu là giá của cổ phiếu đó cuối một phiên giao dịch. Bảng sau thống kê giá đóng cửa (đơn vị: nghìn đồng) của hai mã cổ phiếu AB trong 50 ngày giao dịch liên tiếp.

    Giá đóng cửa

    \lbrack 120;122) \lbrack 122;124) \lbrack 124;126) \lbrack 126;128) \lbrack 128;130)

    Số ngày giao dịch

    của cổ phiếu A

    8 9 12 10 11

    Số ngày giao dịch

    của cổ phiếu B

    16 4 3 6 21

    Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro của các loại cổ phiếu có giá trị trung bình gần bằng nhau. Cổ phiếu nào có phương sai, độ lệch chuẩn cao hơn thì được coi là có độ rủi ro lớn hơn. Chọn khẳng định đúng.

    Hướng dẫn:

    Ta có bảng thống kê theo giá trị đại diện

    Giá đóng cửa

     121 123  125  127  129 

    Số ngày giao dịch

    của cổ phiếu A

    8 9 12 10 11

    Số ngày giao dịch

    của cổ phiếu B

    16 4 3 6 21

    Xét mẫu số liệu của cổ phiếu A

    Số trung bình của mẫu số liệu là

    {\overline{x}}_{A} = \frac{1}{50}.(8.121
+ 9.123 + 12.125 + 10.127 + 11.129) = 125,28

    Phương sai của mẫu số liệu ghép nhóm là

    {S_{A}}^{2} = \frac{1}{50}.\left(
8.121^{2} + 9.123^{2} + 12.125^{2} + 10.127^{2} + 11.129^{2} \right) -
125,28^{2} = 7,5216

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là

    S_{A} = \sqrt{7,5216}

    Xét mẫu số liệu của cổ phiếu B

    Số trung bình của mẫu số liệu là

    {\overline{x}}_{B} =\frac{1}{50}.(16.121 + 4.123 + 3.125 + 6.127 + 21.129)= 125,48

    Phương sai của mẫu số liệu ghép nhóm là

    {S_{B}}^{2} = \frac{1}{50}.\left(
16.121^{2} + 4.123^{2} + 3.125^{2} + 6.127^{2} + 21.129^{2} \right) -
125,48^{2} = 12,4096

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là

    S_{B} = \sqrt{12,4096}

    Ta có S_{A} < S_{B} nên giá đóng cửa của cổ phiếu A ít phân tán hơn giá đóng cửa của cổ phiếu B.

  • Câu 16: Vận dụng
    Tính tổng độ lệch chuẩn

    Biểu đồ dưới đây mô tả kết quả điều tra về mức lương khởi điểm (đơn vị: triệu đồng) của một số công nhân ở hai khu vực AB.

    A graph with blue and yellow barsDescription automatically generated

    Tổng độ lệch chuẩn của mẫu số liệu ghép nhóm ở 2 khu vực gần bằng với số nào sau đây nhất.

    Hướng dẫn:

    Ta có

    A grid of numbers and lettersDescription automatically generated

    » Xét mẫu số liệu của khu vực A

    Cỡ mẫu là n_{A} = 4 + 5 + 5 + 4 + 2 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{A} = \frac{4 \cdot 5,5 +
5 \cdot 6,5 + 5 \cdot 7,5 + 4 \cdot 8,5 + 2 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{A}^{2} = \frac{1}{20}\left( 4 \cdot
5,5^{2} + 5 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 4 \cdot 8,5^{2} + 2 \cdot
9,5^{2} \right) - 7,25^{2} = 1,5875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{A} = \sqrt{1,5875} \approx 1,2300.

    » Xét mẫu số liệu của khu vực B

    Cỡ mẫu là n_{B} = 3 + 6 + 5 + 5 + 1 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{B} = \frac{3 \cdot 5,5 +
6 \cdot 6,5 + 5 \cdot 7,5 + 5 \cdot 8,5 + 1 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{B}^{2} = \frac{1}{20}\left( 3 \cdot
5,5^{2} + 6 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 5 \cdot 8,5^{2} + 1 \cdot
9,5^{2} \right) - 7,25^{2} = 1,2875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{B} = \sqrt{1,2875} \approx 1,1347.

    Tổng: khoảng 2,3647.

  • Câu 17: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Mỗi ngày bác Lan đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị km) của bác Lan trong 20 ngày được thống kê lại ở bảng sau

    Phương sai của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Xét mẫu số liệu ghép nhóm cho bởi bảng sau

    A table with numbers and symbolsDescription automatically generated

    Số trung bình của mẫu số liệu là

    \overline{x} = \frac{1}{20}.(2,85.3 +
3,15.6 + 3,45.5 + 3,75.4 + 4,05.2) = 3,39.

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}(3.2,85^{2} +
6.3,15^{2} + 5.3,45^{2}+ 4.3,45^{2} + 2.4,05^{2}) - 3,39^{2} =
0,1314.

  • Câu 18: Vận dụng
    Xét tính đúng sai của các nhận định

    Bác sĩ A điều trị 18 bệnh nhân mỡ máu bằng cách xét nghiệm Cholesterol toàn phần trong buổi sáng điều trị như sau:

    Xét tính đúng/sai các mệnh đề sau:

    a. Khoảng tứ phân vị của mẫu số liệu trên bằng 1, độ lệch chuẩn của mẫu số liệu trên bằng 0,61 do bác sĩ A điều trị. Đúng||Sai

    b. Bảng tần số ghép nhóm với nhóm đầu tiên là \lbrack 3, 7 ; 4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị được thống kê dưới đây

    Sai||Đúng

    c. Giá trị độ lệch chuẩn của mẫu số liệu ghép nhóm đầu tiên là \lbrack 3, 7; 4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị là 0,58. Sai||Đúng

    d. Biết rằng bác sĩ B cũng điều trị 18 bệnh nhân trên với với nhóm đầu tiên là \lbrack 3,7; 4,14) và độ dài mỗi nhóm bằng 0,44 được thống kê dưới đây:

    Đúng||Sai

    Đáp án là:

    Bác sĩ A điều trị 18 bệnh nhân mỡ máu bằng cách xét nghiệm Cholesterol toàn phần trong buổi sáng điều trị như sau:

    Xét tính đúng/sai các mệnh đề sau:

    a. Khoảng tứ phân vị của mẫu số liệu trên bằng 1, độ lệch chuẩn của mẫu số liệu trên bằng 0,61 do bác sĩ A điều trị. Đúng||Sai

    b. Bảng tần số ghép nhóm với nhóm đầu tiên là \lbrack 3, 7 ; 4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị được thống kê dưới đây

    Sai||Đúng

    c. Giá trị độ lệch chuẩn của mẫu số liệu ghép nhóm đầu tiên là \lbrack 3, 7; 4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị là 0,58. Sai||Đúng

    d. Biết rằng bác sĩ B cũng điều trị 18 bệnh nhân trên với với nhóm đầu tiên là \lbrack 3,7; 4,14) và độ dài mỗi nhóm bằng 0,44 được thống kê dưới đây:

    Đúng||Sai

    (a) Khoảng tứ phân vị của mẫu số liệu trên bằng 1, độ lệch chuẩn của mẫu số liệu trên bằng 0,61 do bác sĩ A điều trị.

    Sắp xếp lại bảng số liệu theo thứ tự không giảm như sau:

    3,8;3,8;4,0;4,1; 4,2; 4,3;4,4;4,5;4,6; 4,7

    ;4,8;5,0;5,1; 5,2; 5,3; 5,6; 5,6;5,8

    Gọi x_{1};x_{2};....;x_{18} là mẫu số liệu gốc của 18 bệnh nhân mỡ máu bằng cách xét nghiệm Cholesterol toàn phần trong một ngày theo thứ tự không giảm.

    Trung vị Q_{2} = \frac{1}{2}\left( x_{9}
+ x_{10} \right) = \frac{1}{2}(4,6 + 4,7) = 4,65.

    Tứ phân vị thứ nhất của trung vị của nửa số liệu bên trái Q_{2}Q_{1} = 4,2.

    Tứ phân vị thứ nhất của trung vị của nửa số liệu bên phải Q_{2}Q_{3} = 5,2.

    Khoảng tứ phân vị của mẫu số liệu trên \Delta Q = Q_{3} - Q_{1} = 5,2 - 4,2 =
1.

    Số trung bình của mẫu số liệu trên do bác sĩ A điều trị bằng \overline{x} = \frac{1}{18}[2.3,8 + 4,0 + 4,1 + 4,2 + 4,3+ 4,4 + 4,5+ 4,6 + 4,7 + 4,8 + 5,0 + 5,1 + 5,2 + 5,3+ 2.5,6 + 5,8]= \frac{212}{45}

    Phương sai của mẫu số liệu trên do bác sĩ A điều trị bằng

    S^{2} = \frac{{x_{1}}^{2} + {x_{2}}^{2} +
{x_{3}}^{2} + .... + {x_{18}}^{2}}{18} - {\overline{x}}^{2} =
\frac{3023}{8100}.

    Độ lệch chuẩn của mẫu số liệu trên do bác sĩ A điều trị bằng \sigma = \sqrt{S^{2}} = 0,61.

    Chọn ĐÚNG.

    (b) Bảng tần số ghép nhóm với nhóm đầu tiên là \lbrack 3,7;4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị được thống kê dưới đây:

    Chọn SAI.

    (c) Giá trị độ lệch chuẩn của mẫu số liệu ghép nhóm đầu tiên là \lbrack 3,7;4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị là 0,58.

    Số trung bình của mẫu số liệu trên do bác sĩ A điều trị bằng \overline{x_{A}} = \frac{4.3,92 + 4.4,36 +
4.4,8 + 3.5,24 + 3.5,68}{18} = \frac{709}{150}

    Phương sai của mẫu số liệu trên do bác sĩ A điều trị bằng

    {S_{A}}^{2} = \frac{4.3,92^{2} +
4.4,36^{2} + 4.4,8^{2} + 3.5,24^{2} + 3.5,68^{2}}{18} - \left(
\frac{709}{150} \right)^{2} = \frac{2783}{7500}.

    Độ lệch chuẩn của mẫu số liệu trên do bác sĩ A điều trị bằng \sigma_{A} = \sqrt{{S_{A}}^{2}} =
0,609.

    Chọn SAI.

    (d) Biết rằng bác sĩ B cũng điều trị 18 bệnh nhân trên với với nhóm đầu tiên là \lbrack 3,7;4,14) và độ dài mỗi nhóm bằng 0,44 được thống kê dưới đây:

    Số trung bình của mẫu số liệu trên do bác sĩ B điều trị bằng;

    \overline{x_{B}} = \frac{3.3,92 + 4.4,36 + 3.4,8 +
4.5,24 + 4.5,68}{18} = \frac{1091}{225}

    Phương sai của mẫu số liệu trên do bác sĩ B điều trị bằng

    {S_{B}}^{2} = \frac{3.3,92^{2} +
4.4,36^{2} + 3.4,8^{2} + 4.5,24^{2} + 4.5,68^{2}}{18} - \left(
\frac{1091}{225} \right)^{2} \approx 0,3848.

    Độ lệch chuẩn của mẫu số liệu trên do bác sĩ B điều trị bằng \sigma_{B} = \sqrt{{S_{B}}^{2}} = 0,62.

    \sigma_{A} < \sigma_{B} nên so sánh về độ lệch chuẩn thì chỉ số Cholesterol toàn phần bác sĩ A điều trị ít phân tán hơn bác sĩ B điều trị.

    Chọn ĐÚNG.

  • Câu 19: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu đãcho

    Thời gian truy cập Internet mỗi buổi tối của một số học sinh được cho trong bảng sau:

    Thời gian (phút)

    \lbrack 9,5; 12,5) \lbrack 12,5;15,5) \lbrack 15,5;18,5) \lbrack 18,5;21,5) \lbrack 21,5;24,5)

    Số học sinh

    3

    12

    15

    24

    2

    Độ lệch chuẩn của mẫu số liệu là (kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Thời gian (phút)

    \lbrack 9,5; 12,5) \lbrack 12,5;15,5) \lbrack 15,5;18,5) \lbrack 18,5;21,5) \lbrack 21,5;24,5)

    Giá trị đại diện

     11

    14

    17

    20

    23

    Số học sinh

    3

    12

    15

    24

    2

    Số trung bình của mẫu số liệu là

    \overline{x} = \frac{1}{56}.(3.11 +
12.14 + 15.17 + 24.20 + 2.23) \approx 17,54

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{56}\left( 3.11^{2} +
12.14^{2} + 15.17^{2} + 24.20^{2} + 2.23^{2} \right) - 17,54^{2} \approx
8,56

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S = \sqrt{8,56} \approx 2,93

  • Câu 20: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho mẫu số liệu dưới dạng bảng sau

    Xét tính đúng/sai các mệnh đề sau:

    a. Giá trị đại diện của lớp \lbrack
36;41) là 38,5. Đúng||Sai

    b. Công thức tính số trung bình là \overline{x} = \frac{18,5.4 + 23,5.6 + 28,5.8 +
33,5.18 + 38,5.4}{40}. Đúng||Sai

    c. Số trung bình là 30. Đúng||Sai

    d. Phương sai của mẫu số liệu là S^2 = 32,75. Đúng||Sai

    Đáp án là:

    Cho mẫu số liệu dưới dạng bảng sau

    Xét tính đúng/sai các mệnh đề sau:

    a. Giá trị đại diện của lớp \lbrack
36;41) là 38,5. Đúng||Sai

    b. Công thức tính số trung bình là \overline{x} = \frac{18,5.4 + 23,5.6 + 28,5.8 +
33,5.18 + 38,5.4}{40}. Đúng||Sai

    c. Số trung bình là 30. Đúng||Sai

    d. Phương sai của mẫu số liệu là S^2 = 32,75. Đúng||Sai

    (a) giá trị đại diện của lớp \lbrack 36;41) là 38,5.

    » Chọn ĐÚNG.

    (b) Công thức tính số trung bình là

    \overline{x} = \frac{18,5.4 + 23,5.6 + 28,5.8 +
33,5.18 + 38,5.4}{40}.

    » Chọn ĐÚNG.

    (c) số trung bình là 30.

    số trung bình là \overline{x} =
\frac{18,5.4 + 23,5.6 + 28,5.8 + 33,5.18 + 38,5.4}{40} =
30.

    » Chọn ĐÚNG.

    (d) phương sai của mẫu số liệu là S^{2} = 32,75.

    Phương sai của mẫu số liệu là:

    S^{2} =\frac{1}{40}[4(18,5 - 30)^{2} + 6(23,5 - 30)^{2} + 8(28,5 -30)^{2}+ 18(33,5 - 30)^{2} + 4(38,5 - 30)^{2} ] =32,75

    » Chọn ĐÚNG.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (60%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo