Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 10 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Ghi đáp án vào ô trống

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Vận dụng
    Tính giá trị của biểu thức P

    Một giống xoan đào được trồng tại hai địa điểm AB. Người ta thống kê đường kính thân cây của một số cây xoan đào 5 tuổi ở bảng sau:

    Đường kính (cm)

    \lbrack 30;\
32) \lbrack 32;\
34) \lbrack 34;\
36) \lbrack 36;\
38) \lbrack 38;\
40)

    Số cây trồng ở điểm A

    25

    38

    20

    10

    7

    Số cây trồng ở điểm B

    22

    27

    19

    18

    14

    Gọi ab là phương sai về đường kính cây trồng ở hai địa điểm AB. Tính giá trị biểu thức P = \frac{a}{b} (làm tròn đến hàng phần trăm).

    Hướng dẫn:

    Cỡ mẫu n = 25 + 38 + 20 + 10 + 7= 22 +27 + 19 + 18 + 14 = 100

    Đường kính thân cây trung bình của một số cây xoan đào trồng ở hai địa điểm A B tương ứng là

    \overline{x_{A}} = \frac{1}{100}(25.31 +
38.33 + 20.35 + 10.37 + 7.39) = 33,72

    \overline{x_{B}} = \frac{1}{100}(22.31 +
27.33 + 19.35 + 18.37 + 14.39) = 34,5

    Phương sai đường kính của cây ở hai địa điểm A, B lần lượt là

    S_{x_{A}}^{2} = \dfrac{1}{100}[ 25.(31 - 33,72)^{2} + 38.(33 -33,72)^{2}+ 20.(35 - 33,72)^{2} + 10.(37 - 33,72)^{2} + 7.(39 -33,72)^{2} ]  = 5,4016

    S_{x_{B}}^{2} = \dfrac{1}{100}ơ 22.(31 - 34,5)^{2} + 27.(33 -34,5)^{2}+ 19.(35 - 34,5)^{2} + 18.(37 - 34,5)^{2} + 14.(39 - 34,5)^{2}] = 7,31.

    Khi đó P = \frac{a}{b} \approx
0,74.

  • Câu 3: Thông hiểu
    Định phương sai của mẫu số liệu ghép nhóm

    Bạn Mai rất thích múa. Thời gian tập múa mỗi ngày trong thời gian gần đây của bạn Mai được thống kê lại ở bảng sau:

    Thời gian (phút)

    \lbrack 20;\ 25) \lbrack 25;\ 30) \lbrack 30;\ 35) \lbrack 35;\ 40) \lbrack 40;\ \ 45)

    Số ngày

    6

    6

    4

    1

    1

    Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Hướng dẫn:

    + Cỡ mẫu: n = 18.

    Thời gian (phút)

    \lbrack 20;\ 25) \lbrack 25;\ 30) \lbrack 30;\ 35) \lbrack 35;\ 40) \lbrack 40;\ \ 45)

    Giá trị đại diện

    22,5

    27,5

    32,5

    37,5

    42,5

    Số ngày

    6

    6

    4

    1

    1

    + Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{22,5.6 + 27,5.6 + 32,5.4 +
37,5.1 + 42,5.1}{18} = \frac{85}{3}.

    + Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{18}(22,5^{2}.6 +
27,5^{2}.6 + 32,5^{2}.4+ 37,5^{2}.1 + 42,5^{2}.1) - \left(
\frac{85}{3} \right)^{2} = 31,25.

  • Câu 4: Vận dụng
    Chọn đáp án đúng

    Anh An đầu tư số tiền bằng nhau vào hai lĩnh vực kinh doanh A,B. Anh An thống kê số tiền thu được mỗi tháng trong vòng 60 tháng theo mỗi lĩnh vực cho kết quả như sau:

    A white grid with black numbersDescription automatically generated

    Đáp án nào sau đây đúng?

    Hướng dẫn:

    Ta có

    A table with numbers and lettersDescription automatically generated

    Số tiền trung bình thu được khi đầu tư vào các lĩnh vực A,B tương ứng là:

    {\overline{x}}_{A} = \frac{1}{60}(5 \cdot
7,5 + \ldots + 5 \cdot 27,5) = 17,5;

    {\overline{x}}_{B} = \frac{1}{60}(20
\cdot 7,5 + \ldots + 20 \cdot 27,5) = 17,5

    Độ lệch chuẩn của số tiền thu được hàng tháng khi đầu tư vào các lĩnh vực A,B tương ứng là

    s_{A} = \sqrt{\frac{1}{60}\left( 5 \cdot
7,5^{2} + \ldots + 5 \cdot 27,5^{2} \right) - (17,5)^{2}} \approx
5;

    s_{B} = \sqrt{\frac{1}{60}\left( 20
\cdot 7,5^{2} + \ldots + 20 \cdot 27,5^{2} \right) - (17,5)^{2}} \approx
8

    Như vậy, về trung bình đầu tư vào các lĩnh vực A,Bsố tiền thu được hàng tháng như nhau tuy nhiên độ lệch chuẩn của mẫu số liệu về số tiền thu được hàng tháng khi đầu tư vào lĩnh vực B cao hơn khi đầu tư vào lĩnh vực A. Người ta nói rằng, đầu tư vào lĩnh vực B là "rủi ro" hơn.

  • Câu 5: Thông hiểu
    Chọn đáp án đúng

    Số đặc trưng nào sau đây thay đổi khi ta cộng tất cả các giá trị của mẫu số liệu với 1 số không đổi d?

    Hướng dẫn:

    Giả sử mẫu số liệu có n giá trị được sắp xếp theo thứ tự không giảm là x_{1};\ x_{2};\ \ldots;\ x_{n}. Khi đó:

    Giá trị trung bình \overline{x} =
\frac{1}{n}\left( x_{1} + \ x_{2} + \ \ldots + x_{n} \right)

    Khoảng biến thiên R = x_{n} -
x_{1}.

    Khoảng tứ phân vị \Delta_{Q} = Q_{3} -
Q_{1}.

    Phương sai {S_{x}}^{2} =
\frac{1}{n}\left\lbrack \left( x_{1} - \overline{x} \right)^{2} + \left(
x_{2} - \overline{x} \right)^{2} + ... + \left( x_{n} - \overline{x}
\right)^{2} \right\rbrack

    Độ lệch chuẩn S_{x} =
\sqrt{{S_{x}}^{2}}

    Khi cộng tất cả các giá trị với số không đổi d ta được dãy số liệu x_{1} + d;\ x_{2} + d;\ \ldots;\ x_{n} + d

    Giá trị trung bình {\overline{x}}^{'}
= \frac{1}{n}\left( x_{1} + d + \ x_{2} + d + \ \ldots + x_{n} + d
\right)\  = \overline{x} + d

    Khoảng biến thiên R' = x_{n} + d -
\left( x_{1} + d \right) = x_{n} - x_{1} = R.

    Khoảng tứ phân vị {\Delta_{Q}}^{'} =
Q_{3} + d - \left( Q_{1} + d \right) = \Delta_{Q}.

    Phương sai

    {{S^{'}}_{x}}^{2} =
\frac{1}{n}\lbrack\left( x_{1} + d - \overline{x} - d \right)^{2} +
\left( x_{2} + d - \overline{x} - d \right)^{2}

    + ... + \left( x_{n} + d - \overline{x}
- d \right)^{2}\rbrack = {S_{x}}^{2}

    Độ lệch chuẩn {S'}_{x} =
\sqrt{{{S'}_{x}}^{2}} = S_{x}

    Từ đó suy ra giá trị trung bình sẽ thay đổi khi ta cộng tất cả các giá trị của dãy số liệu với một số không đổi d.

  • Câu 6: Vận dụng
    Chọn câu trả lời đúng nhất

    Trong 30 ngày, một nhà đầu tư đã theo dõi giá cổ phiếu của hai công ty G và H vào phiên mở cửa mỗi ngày. Thông tin được ghi lại ở hai bảng dưới đây:

    A white paper with black textDescription automatically generated

    Chọn câu trả lời đúng nhất biết độ lệch chuẩn càng cao thì tỷ lệ rủi ro càng lớn:

    Hướng dẫn:

    Công ty G:

    Bổ sung thêm các giá trị đại diện, ta có bảng sau

    A white rectangular box with black numbersDescription automatically generated

    Giá trị trung bình của mẫu số liệu là

    \overline{x} = \frac{51 \cdot 3 + 53
\cdot 7 + 55 \cdot 9 + 57 \cdot 8 + 59 \cdot 3}{30} \approx
55,1.

    Trung bình cộng của các bình phương số liệu thống kê là

    \overline{x^{2}} = \frac{51^{2} \cdot 3
+ 53^{2} \cdot 7 + 55^{2} \cdot 9 + 57^{2} \cdot 8 + 59^{2} \cdot 3}{30}
\approx 3037,5.

    Từ đó ta có độ lệch chuẩn của mẫu số liệu là s = \sqrt{\overline{x^{2}} - \left( \overline{x}
\right)^{2}} \approx \sqrt{5,2} \approx 2,3.

    Công ty H

    A white rectangular box with black numbersDescription automatically generated

    Bổ sung thêm các giá trị đại diện, ta có bảng sau

    Giá trị trung bình của mẫu số liệu là

    \overline{x} = \frac{41 \cdot 6 + 43
\cdot 7 + 45 \cdot 5 + 47 \cdot 7 + 49 \cdot 5}{30} \approx
44,9.

    Trung bình cộng của các bình phương số liệu thống kê là

    \overline{x^{2}} = \frac{41^{2} \cdot 6 +
43^{2} \cdot 7 + 45^{2} \cdot 5 + 47^{2} \cdot 7 + 49^{2} \cdot 5}{30}
\approx 2020,7.

    Từ đó ta có độ lệch chuẩn của mấu số liệu là s = \sqrt{\overline{x^{2}} - \left( \overline{x}
\right)^{2}} \approx \sqrt{7,7} \approx 2,8.

    Từ kết quả trên, ta thấy công ty Hrủi ro hơn

  • Câu 7: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong Bảng 18.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là:

    Hướng dẫn:

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 + 8.52,5 +
10.57,5 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{4\left( 42,5 -
\frac{585}{11} ight)^{2} + 14\left( 47,5 - \frac{585}{11}
ight)^{2}}{44}

    + \frac{8\left( 52,5 - \frac{585}{11}
ight)^{2} + 10\left( 57,5 - \frac{585}{11}
ight)^{2}}{44}

    + \frac{+ 6\left( 62,5 - \frac{585}{11}
ight)^{2} + 2.\left( 67,5 - \frac{585}{11} ight)^{2}}{44} \approx
46,12

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm là: \sqrt{s} \approx 6,2

  • Câu 8: Vận dụng
    Tính tổng độ lệch chuẩn

    Biểu đồ dưới đây mô tả kết quả điều tra về mức lương khởi điểm (đơn vị: triệu đồng) của một số công nhân ở hai khu vực AB.

    A graph with blue and yellow barsDescription automatically generated

    Tổng độ lệch chuẩn của mẫu số liệu ghép nhóm ở 2 khu vực gần bằng với số nào sau đây nhất.

    Hướng dẫn:

    Ta có

    A grid of numbers and lettersDescription automatically generated

    » Xét mẫu số liệu của khu vực A

    Cỡ mẫu là n_{A} = 4 + 5 + 5 + 4 + 2 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{A} = \frac{4 \cdot 5,5 +
5 \cdot 6,5 + 5 \cdot 7,5 + 4 \cdot 8,5 + 2 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{A}^{2} = \frac{1}{20}\left( 4 \cdot
5,5^{2} + 5 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 4 \cdot 8,5^{2} + 2 \cdot
9,5^{2} \right) - 7,25^{2} = 1,5875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{A} = \sqrt{1,5875} \approx 1,2300.

    » Xét mẫu số liệu của khu vực B

    Cỡ mẫu là n_{B} = 3 + 6 + 5 + 5 + 1 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{B} = \frac{3 \cdot 5,5 +
6 \cdot 6,5 + 5 \cdot 7,5 + 5 \cdot 8,5 + 1 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{B}^{2} = \frac{1}{20}\left( 3 \cdot
5,5^{2} + 6 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 5 \cdot 8,5^{2} + 1 \cdot
9,5^{2} \right) - 7,25^{2} = 1,2875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{B} = \sqrt{1,2875} \approx 1,1347.

    Tổng: khoảng 2,3647.

  • Câu 9: Vận dụng
    Ghi đáp án vào ô trống

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Nhiệt độ trong 55 ngày của một địa phương được cho trong bảng ghép lớp sau:

    Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất nằm trong khoảng

    Hướng dẫn:

    Nhiệt độ trung bình trong một ngày là:

    \overline{x} = \frac{20,5.5 + 23,5.7 +
26,5.8 + 29,5.16 + 32,5.12 + 35,5.7}{55} = 28,9

    Phương sai của mẫu số liệu là:

    S^{2} = \frac{1}{55}[20,5^{2}.5 + 23,5^{2}.7 +26,5^{2}.8+ 29,5^{2}.16 + 32,5^{2}.12 + 35,5^{2}.7] - 28,9^{2} =19,44

    Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất là S^{2} = 19,4

  • Câu 11: Thông hiểu
    Chọn đáp án thích hợp

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Hướng dẫn:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Phương sai của mẫu số liệu ghép nhóm của lớp 12C:

    {S_{C}}^{2} = \frac{1}{18}\left(4.5,5^{2} + 5.6,5^{2} + 3.7,5^{2} + 4.8,5^{2} + 2.9,5^{2} ight) -\left( \frac{65}{9} ight)^{2} = \frac{569}{324}

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm lớp 12C là: S_{C} = \sqrt{{S_{C}}^{2}} =\sqrt{\frac{569}{324}} \approx 1,33

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}

    Phương sai của mẫu số liệu ghép nhóm của lớp 12D:

    {S_{D}}^{2} = \frac{1}{15}\left(2.5,5^{2} + 5.6,5^{2} + 4.7,5^{2} + 3.8,5^{2} + 1.9,5^{2} ight) -\left( \frac{217}{30} ight)^{2} = \frac{284}{225}

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm lớp 12D là: S_{D} = \sqrt{{S_{D}}^{2}} =\sqrt{\frac{284}{225}} \approx 1,12

    Ta có: S_{C} > S_{D} nên nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh lớp 12D có điểm đồng đều hơn lớp 12C.

  • Câu 12: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số máy vi tính cùng loại được thống kê ở bảng sau:

    Thời gian sử dụng

    \lbrack 7,2;7,4) \lbrack 7,4;7,6) \lbrack 7,6;7,8) \lbrack 7,8;8,0)

    Số máy

    2

    4

    7

    6

    Độ lệch chuẩn của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Từ bảng thống kê ta có:

    Thời gian sử dụng

    \lbrack 7,2;7,4) \lbrack 7,4;7,6) \lbrack 7,6;7,8) \lbrack 7,8;8,0)

    Giá trị đại diện

    7,3

    7,5

    7,7

    7,9

    Số máy

    2

    4

    7

    6

    Tổng số máy: n = 2 + 4 + 7 + 6 =
19.

    Thời gian sử dụng trung bình của pin là:

    \overline{x} = \frac{2.7,3 + 4.7,5 + 7.7,7 +
6.7,9}{19} = \frac{1459}{190}

    Phương sai của mẫu số liệu là:

    S^{2} = \frac{1}{19}\left( 2.7,3^{2} +
4.7,5^{2} + 7.7,7^{2} + 6.7,9^{2} \right) - \left( \frac{1459}{190}
\right)^{2} \approx 0,037.

    Độ lệch chuẩn của mẫu số liệu là: S =
\sqrt{S^{2}} \approx \sqrt{0,037} \approx 0,192.

  • Câu 13: Thông hiểu
    Xác định phương sai của mẫu số liệu ghép nhóm

    Cân nặng của các học sinh lớp 10A trường Trung học phổ thông Mnhư sau.

    Cân nặng(kg)

    \lbrack 30;36) \lbrack 36;42) \lbrack 42;48) \lbrack 48;54) \lbrack 54;60) \lbrack 60;66)

    Số học sinh lớp

    1

    2

    5

    15

    9

    6

    Phương sai của mẫu số liệu ghép nhóm trên gần nhất với kết quả nào sau đây.

    Hướng dẫn:

    Cân nặng trung bình của học sinh lớp 10A là.

    \overline{x_{A}} = \frac{1}{38}(1.33 +
2.39 + 5.45 + 15.51 + 9.57 + 6.63) = 52,4\ \ kg

    Độ lệch chuẩn về nhóm cân nặng của học sinh lớp 10A

    {s^{2}}_{A} = \frac{1}{38}\lbrack 1.(33 -
52,4)^{2} + 2.(39 - 52,4)^{2} + 5.(45 - 52,4)^{2} + 15.(51 - 52,4)^{2} + 9.(57 - 52,4)^{2} + 6.(63 -
52,4)^{2}\rbrack \approx 50,4

  • Câu 14: Vận dụng
    Chọn kết luận đúng

    Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư vào hai lĩnh vực A,B cho kết quả như sau

    A white square with numbersDescription automatically generated

    Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro đầu tư các lĩnh vực có giá trị trung bình tiền lãi gần bằng nhau. Lĩnh vực nào có phương sai, độ lệch chuẩn tiền lãi cao hơn thì được coi là có độ rủi ro lớn hơn.

    Theo quan điểm trên, độ rủi ro của cổ phiếu nào cao hơn?

    Hướng dẫn:

    Lĩnh vực A

    A white rectangular grid with numbersDescription automatically generated with medium confidence

    Lĩnh vực B

    A white rectangular box with black numbersDescription automatically generated

    Giá trị trung bình của hai lĩnh vực AB

    {\overline{x}}_{A} = \frac{1}{25}.(2.7,5
+ 5.12,5 + 8.17,5 + 6.22,5 + 4.27,5) = 18,5

    {\overline{x}}_{B} = \frac{1}{25}.(8.7,5
+ 4.12,5 + 2.17,5 + 5.22,5 + 6.27,5) = 16,9

    Về độ trung bình đầu tư vào lĩnh vực A lãi hơn lĩnh vực B.

    Độ lệch chuẩn của hai lĩnh vực AB

    s_{A} = \sqrt{\frac{1}{25}.\left(
2.7,5^{2} + 5.12,5^{2} + 8.17,5^{2} + 6.22,5^{2} + 4.27,5^{2} \right) -
18,5^{2}} = 5,8

    s_{B} = \sqrt{\frac{1}{25}.\left(
8.7,5^{2} + 4.12,5^{2} + 2.17,5^{2} + 5.22,5^{2} + 6.27,5^{2} \right) -
16,9^{2}} = 8,04.

    Như vậy độ lệch chuẩn của mẫu số liệu thu tiền được hàng tháng khi đầu tư vào lĩnh vực B cao hơn lĩnh vực A nên đầu tư vào lĩnh vực B rủi ro hơn.

  • Câu 15: Vận dụng
    Tìm phương sai của mẫu số liệu ghép nhóm

    Tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ (đơn vị: km/h) được thống kê lại như sau. Hãy tính phương sai của mẫu số liệu ghép nhóm với nhóm đầu tiên là \lbrack
42;46) và độ dài mỗi nhóm bằng 4. (làm tròn đến hàng phần mười)

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    52,1

    52,7

    53,9

    54,8

    55,6

    57,5

    59,6

    60,3

    61,1

    Hướng dẫn:

    Ta lập được bảng số liệu ghép nhóm theo giá trị đại diện như sau:

    Tốc độ (km/h)

    \lbrack
42;46) \lbrack
46;50) \lbrack
50;54) \lbrack
54;58) \lbrack
58;62)

    Giá trị đại diện

    44

    48

    52

    56

    60

    Số xe

    3

    7

    4

    3

    3

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{3 \cdot 44 + 7
\cdot 48 + 4 \cdot 52 + 3 \cdot 56 + 3 \cdot 60}{20} = 51,2

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{20}\left( 3 \cdot
44^{2} + 7 \cdot 48^{2} + 4 \cdot 52^{2} + 3 \cdot 56^{2} + 3 \cdot
60^{2} \right) - (51,2)^{2} \approx 26,6

  • Câu 16: Thông hiểu
    Tính độ lệch chuẩn

    Một câu lạc bộ thể dục thể thao đã ghi lại số giờ các thành viên của mình sử dụng cơ sở vật chất của câu lạc bộ để tập luyện trong một tháng như sau:

    Thời gian (giờ)

    \lbrack 1;5) \lbrack 5;9) \lbrack 9;13) \lbrack 13;17) \lbrack 17;21) \lbrack 21;25)

    Tần số (Số người)

    10

    14

    31

    2

    5

    23

    Độ lệch chuẩn của mẫu số liệu là (kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Ta có bảng sau:

    Thời gian (giờ)

    \lbrack 1;5) \lbrack 5;9) \lbrack 9;13) \lbrack 13;17) \lbrack 17;21) \lbrack 21;25)

    Giá trị đại diện

    3

    7

    11

    15

    19

    23

    Tần số (Số người)

    10

    14

    31

    2

    5

    23

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{1}{85}.(10.3 + 14.7 + 31.11 +
2.15 + 5.19 + 23.23) \approx 13,21

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{85}.(10.3^{2} + 14.7^{2}
+ 31.11^{2} + 2.15^{2} + 5.19^{2} +
23.23^{2}) - 13,21^{2} \approx 48,43

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S = \sqrt{48,43} \approx 6,96

  • Câu 17: Thông hiểu
    Ghi đáp án vào ô trống

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    C li

    \lbrack 19;19,5)[19,5;20)\lbrack 20;20,5)\lbrack 20,5;21)\lbrack 21;21,5)

    Tn s

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \overline{a,b77}. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    C li

    \lbrack 19;19,5)[19,5;20)\lbrack 20;20,5)\lbrack 20,5;21)\lbrack 21;21,5)

    Tn s

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \overline{a,b77}. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong Bảng 18.

    A table with numbers and symbolsDescription automatically generated

    Phương sai của mẫu số liệu ghép nhóm trên là:

    Hướng dẫn:

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 +
8.52,5 + 10.57,5 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{1}{44}\lbrack 4\left( 42,5
- \frac{585}{11} \right)^{2} + 14\left( 47,5 - \frac{585}{11}
\right)^{2} + 8\left( 52,5 -
\frac{585}{11} \right)^{2} + 10\left( 57,5 - \frac{585}{11}
\right)^{2}

    +6\left( 62,5 - \frac{585}{11}\right)^{2} + 2.\left( 67,5 - \frac{585}{11} \right)^{2}\rbrack \approx46,12

  • Câu 19: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Cỡ mẫu: n = 20.

    Số trung bình của mẫu số liệu ghép nhóm là

    \overline{x} = \frac{2,85.3 + 3,15.6 +
3,45.5 + 3,75.4 + 4,05.2}{20} = 3,39.

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}\left( 2,85^{2}.3 +
3,15^{2}.6 + 3,45^{2}.5 + 3,75^{2}.4 + 4,05^{2}.2 ight) - 3,39^{2}
\approx 0,13

  • Câu 20: Vận dụng
    Ghi đáp án vào ô trống

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (60%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo