Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 10 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính phương sai của mẫu số liệu

    Thống kê kết quả giải rubik của một bạn học sinh được ghi lại như sau:

    Thời gian (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Số lần

    4

    6

    8

    4

    3

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào sau đây?

    Hướng dẫn:

    Ta có:

    Thời gian (giây)

    [8; 10)

    [10; 12)

    [12; 14)

    [14; 16)

    [16; 18)

    Giá trị đại diện

    9

    11

    13

    15

    17

    Số lần

    4

    6

    8

    4

    3

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.9 + 6.11 + 8..13
+ 4.15 + 3.17}{25} = 12,68

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{25}\left( 4.9^{2} +
6.11^{2} + 8.13^{2} + 4.15^{2} + 3.17^{2} ight) - (12,68)^{2} =
5,9776

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị 6,2.

  • Câu 2: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Khảo sát thời gian tập thể dục của một số học sinh khối 12 thu được mẫu số liệu ghép nhóm sau:

    Thời gian

    \lbrack 0;\
20) \lbrack 20;\
40) \lbrack 40;\
60) \lbrack 60;\
80) \lbrack 80;\
100)

    Số học sinh

    5

    9

    12

    10

    6

    Tìm phương sai của mẫu số liệu trên. (Kết quả làm tròn đến hàng phần chục).

    Hướng dẫn:

    Cỡ mẫu là n = 5 + 9 + 12 + 10 + 6 =
42.

    Thời gian tập thể dục trung bình của 42 học sinh khối 12 trên là

    \overline{x} = \frac{1}{42}(5.10 + 9.30 +
12.50 + 10.70 + 6.90) = 51,4.

    Phương sai

    S_{x}^{2} = \frac{1}{42}\lbrack 5.(10 -
51,4)^{2} + 9.(30 - 51,4)^{2} + 12.(50 - 51,4)^{2}

    + 10.(70 - 51,4)^{2} + 6.(90 -
51,4)^{2}\rbrack \approx 598

  • Câu 3: Vận dụng
    Ghi đáp án vào ô trống

    Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 5 tại địa điểm nào đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 5 tại địa điểm nào đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Vận dụng
    Chọn đáp án chính xác

    Thời gian hoàn thành một bài viết chính tả của một số học sinh lớp 4 hai trường X và Y được ghi lại ở bảng sau. Gọi độ lệch chuẩn thời gian gian hoàn thành một bài viết chính tả của một số học sinh lớp 4 ở trường X và Y lần lượt là S_{X} và S_{Y}. Tính S_{X} - S_{Y} bằng bao nhiêu?

    Thời gian (Phút)

    \lbrack
6;7) \lbrack
7;8) \lbrack
8;9) \lbrack
9;10) \lbrack
10;11)

    Số học sinh trường X

    8

    10

    13

    10

    9

    Số học sinh trường Y

    4

    12

    17

    14

    3

    Hướng dẫn:

    Ta lập bảng theo giá trị đại diện như sau:

    Thời gian (Phút)

    \lbrack
6;7) \lbrack
7;8) \lbrack
8;9) \lbrack
9;10) \lbrack
10;11)

    Giá trị đại diện

    6,5

    7,5

    8,5

    9,5

    10,5

    Số học sinh trường X

    8

    10

    13

    10

    9

    Số học sinh trường Y

    4

    12

    17

    14

    3

    Cỡ mẫu n_{X} = 8 + 10 + 13 + 10 + 9 =
50,\ \ n_{Y} = 4 + 12 + 17 + 14 + 3 = 50.

    Thời gian trung bình hoàn thành một bài viết chính tả của học sinh trường X là:

    {\overline{x}}_{X} = \frac{8 \cdot 6,5 +
10 \cdot 7,5 + 13 \cdot 8,5 + 10 \cdot 9,5 + 9 \cdot 10,5}{50} =
8,54

    Phương sai của mẫu số liệu ghép nhóm của trường X là:

    S_{X}^{2} = \frac{1}{50}[ 8\cdot (6,5)^{2} + 10 \cdot (7,5)^{2}+ 13 \cdot (8,5)^{2} + 10 \cdot(9,5)^{2} + 9 \cdot (10,5)^{2}] - (8,54)^{2} =1,76

    Độ lệch chuẩn của mẫu số liệu ghép nhóm của trường X là:

    S_{X} = \sqrt{S_{X}^{2}} = \sqrt{1,76}
\approx 1,33

    Thời gian trung bình hoàn thành một bài viết chính tả của học sinh trường Y là:

    {\overline{x}}_{Y} = \frac{4 \cdot 6,5 +
12 \cdot 7,5 + 17 \cdot 8,5 + 14 \cdot 9,5 + 3 \cdot 10,5}{50} =
8,5

    Phương sai của mẫu số liệu ghép nhóm của trường Y là:

    S_{Y}^{2} = \frac{1}{50}[ 4\cdot (6,5)^{2} + 12 \cdot (7,5)^{2} + 17 \cdot (8,5)^{2}+ 14 \cdot(9,5)^{2} + 3 \cdot (10,5)^{2} ] - (8,5)^{2} =1,08

    Độ lệch chuẩn của mẫu số liệu ghép nhóm của trường Y là:

    S_{Y} = \sqrt{S_{Y}^{2}} = \sqrt{1,08}
\approx 1,04

    Vậy S_{X} - S_{Y} = 1,33 - 1,04 =
0,29

  • Câu 5: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Bạn Trang thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ lớp 12C và lớp 12D ở bảng sau:

    Chiều cao (cm)

    [155; 160) [160; 165) [165; 170) [170; 175) [175; 180) [180; 185)

    Số học sinh nữ lớp 12C

    2

    7

    12

    3

    1

    1

    Số học sinh nữ lớp 12D

    5

    9

    8

    2

    2

    0

    Xét tính đúng/sai của các mệnh đề sau:

    a) [NB] Giá trị đại điện của nhóm \lbrack
165;\ 170)167,5. Đúng||Sai

    b) [TH] Khoảng biến thiên của mẫu số liệu ghép nhóm của lớp 12D là 30. Sai|||Đúng

    c) [VD, VDC] Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12C có chiều cao trung bình đồng đều hơn học sinh nữ lớp 12D. Đúng||Sai

    d) [VD, VDC] Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12D có chiều cao trung bình đồng đều hơn. Sai|||Đúng

    Đáp án là:

    Bạn Trang thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ lớp 12C và lớp 12D ở bảng sau:

    Chiều cao (cm)

    [155; 160) [160; 165) [165; 170) [170; 175) [175; 180) [180; 185)

    Số học sinh nữ lớp 12C

    2

    7

    12

    3

    1

    1

    Số học sinh nữ lớp 12D

    5

    9

    8

    2

    2

    0

    Xét tính đúng/sai của các mệnh đề sau:

    a) [NB] Giá trị đại điện của nhóm \lbrack
165;\ 170)167,5. Đúng||Sai

    b) [TH] Khoảng biến thiên của mẫu số liệu ghép nhóm của lớp 12D là 30. Sai|||Đúng

    c) [VD, VDC] Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12C có chiều cao trung bình đồng đều hơn học sinh nữ lớp 12D. Đúng||Sai

    d) [VD, VDC] Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12D có chiều cao trung bình đồng đều hơn. Sai|||Đúng

    a) Đúng

    Giá trị đại điện của nhóm \left\lbrack
\mathbf{165}\mathbf{}\mathbf{;}\mathbf{\ }\mathbf{170} ight)\frac{165 + 170}{2} = 167,5.

    b) Sai

    Khoảng biến thiên của mẫu số liệu ghép nhóm của lớp 12D là 180 - 155 = 25.

    c) Đúng

    Xét mẫu số liệu của lớp 12C:

    Cỡ mẫu n_{C} = 2 + 7 + 12 + 3 + 1 + 1 =
26.

    Gọi x_{1}\ ;\ ...\ ;\ x_{26}là mẫu số liệu gốc về chiều cao của các bạn học sinh nữ lớp 12C được xếp theo thứ tự không giảm.

    Ta có

    x_{1}\ ;\ x_{2} \in \lbrack 155\ ;\
160),

    x_{3}\ ;\ ...\ ;\ x_{9} \in \lbrack 160\
;\ 165),

    x_{10}\ ;\ ...\ ;\ x_{21} \in \lbrack
165\ ;\ 170),

    x_{22}\ ;\ x_{23}\ ;x_{24} \in \lbrack
170\ ;\ 175),

    x_{25} \in \lbrack 175\ ;\
180),

    x_{26} \in \lbrack 180\ ;\
185).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{7} \in \lbrack 160\ ;\ 165).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: 

    Q_{1} = 160 + \frac{\frac{26}{4} - 2}{7}(165 -
160) \approx 163,214.

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{20} \in \lbrack 165\ ;\ 170).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: 

    Q_{3} = 165 + \frac{\frac{3.26}{4} - (2 +
7)}{12}(170 - 165) = 169,375

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{C} = Q_{3} - Q_{1} \approx 169,375 -
163,214 \approx 6,161.

     Xét mẫu số liệu của lớp 12D:

    Cỡ mẫu n_{D} = 5 + 9 + 8 + 2 + 2 + 0 =
26.

    Gọi x_{1}\ ;\ ...\ ;\ x_{26}là mẫu số liệu gốc về chiều cao của các bạn học sinh nữ lớp 12D được xếp theo thứ tự không giảm.

    Ta có

    x_{1}\ ;\ ...\ ;x_{5} \in \lbrack 155\ ;\
160),

    x_{6}\ ;\ ...\ ;\ x_{14} \in \lbrack 160\
;\ 165),

    x_{15}\ ;\ ...\ ;\ x_{22} \in \lbrack
165\ ;\ 170),

    x_{23}\ ;\ x_{24} \in \lbrack 170\ ;\
175),

    x_{25}\ ;\ x_{26} \in \lbrack 175\ ;\
180).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{7} \in \lbrack 160\ ;\ 165). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: {Q'}_{1} = 160 + \frac{\frac{26}{4} -
5}{9}(165 - 160) \approx 160,833.

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{20} \in \lbrack 165\ ;\ 170).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: {Q'}_{3} = 165 + \frac{\frac{3.26}{4} - (5 +
9)}{8}(170 - 165) = 168,4375

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{D} = {Q'}_{3} - {Q'}_{1} \approx
168,4375 - 160,833 \approx 7,6045.

    \Delta_{C} < \Delta_{D} nên nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12C có chiều cao trung bình đồng đều hơn học sinh nữ lớp 12D.

    d) Sai

    Ta có bảng giá trị đại diện của nhóm:

    Chiều cao (cm)

    [155; 160) [160; 165) [165; 170) [170; 175) [175; 180) [180; 185)

    Giá trị đại diện

    157,5

    162,5

    167,5

    172,5

    177,5

    182,5

    Số học sinh nữ lớp 12C

    2

    7

    12

    3

    1

    1

    Số học sinh nữ lớp 12D

    5

    9

    8

    2

    2

    0

    Xét mẫu số liệu của lớp 12C:

    Số trung bình của mẫu số liệu ghép nhóm là: 

    {\overline{x}}_{C} = \frac{2.157,5 +
7.162,5 + 12.167,5 + 3.172,5 + 1.177,5 + 1.182,5}{26} =
\frac{2170}{13}.

    Phương sai của mẫu số liệu ghép nhóm là:

    S_{C}^{2} = \frac{1}{26}[
2.(157,5)^{2} + 7.(162,5)^{2} + 12.(167,5)^{2}+ 3.(172,5)^{2} +
1.(177,5)^{2} + 1.(182,5)^{2} ] - \left( \frac{2170}{13}
ight)^{2} \approx 29,475

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là: S_{C} = \sqrt{S_{C}^{2}} = \sqrt{29,475} \approx
5,429.

    Xét mẫu số liệu của lớp 12D:

    Số trung bình của mẫu số liệu ghép nhóm là: 

    {\overline{x}}_{D} = \frac{5.157,5 +
9.162,5 + 8.167,5 + 2.172,5 + 2.177,5 + 0.182,5}{26} = 165.

    Phương sai của mẫu số liệu ghép nhóm là:

    S_{D}^{2} = \frac{1}{26}[
5.(157,5)^{2} + 9.(162,5)^{2} + 8.(167,5)^{2}+ 2.(172,5)^{2} +
2.(177,5)^{2} + 0.(182,5)^{2} ]- (165)^{2} =
31,25

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là: S_{D} = \sqrt{S_{D}^{2}} = \sqrt{31,25} \approx
5,59.

    S_{C} < S_{D} nên nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12C có chiều cao trung bình đồng đều hơn.

  • Câu 6: Vận dụng
    Chọn khẳng định đúng

    Giá đóng cửa của một cổ phiếu là giá của cổ phiếu đó cuối một phiên giao dịch. Bảng sau thống kê giá đóng cửa (đơn vị: nghìn đồng) của hai mã cổ phiếu AB trong 50 ngày giao dịch liên tiếp.

    Giá đóng cửa

    \lbrack 120;122) \lbrack 122;124) \lbrack 124;126) \lbrack 126;128) \lbrack 128;130)

    Số ngày giao dịch

    của cổ phiếu A

    8 9 12 10 11

    Số ngày giao dịch

    của cổ phiếu B

    16 4 3 6 21

    Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro của các loại cổ phiếu có giá trị trung bình gần bằng nhau. Cổ phiếu nào có phương sai, độ lệch chuẩn cao hơn thì được coi là có độ rủi ro lớn hơn. Chọn khẳng định đúng.

    Hướng dẫn:

    Ta có bảng thống kê theo giá trị đại diện

    Giá đóng cửa

     121 123  125  127  129 

    Số ngày giao dịch

    của cổ phiếu A

    8 9 12 10 11

    Số ngày giao dịch

    của cổ phiếu B

    16 4 3 6 21

    Xét mẫu số liệu của cổ phiếu A

    Số trung bình của mẫu số liệu là

    {\overline{x}}_{A} = \frac{1}{50}.(8.121
+ 9.123 + 12.125 + 10.127 + 11.129) = 125,28

    Phương sai của mẫu số liệu ghép nhóm là

    {S_{A}}^{2} = \frac{1}{50}.\left(
8.121^{2} + 9.123^{2} + 12.125^{2} + 10.127^{2} + 11.129^{2} \right) -
125,28^{2} = 7,5216

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là

    S_{A} = \sqrt{7,5216}

    Xét mẫu số liệu của cổ phiếu B

    Số trung bình của mẫu số liệu là

    {\overline{x}}_{B} =\frac{1}{50}.(16.121 + 4.123 + 3.125 + 6.127 + 21.129)= 125,48

    Phương sai của mẫu số liệu ghép nhóm là

    {S_{B}}^{2} = \frac{1}{50}.\left(
16.121^{2} + 4.123^{2} + 3.125^{2} + 6.127^{2} + 21.129^{2} \right) -
125,48^{2} = 12,4096

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là

    S_{B} = \sqrt{12,4096}

    Ta có S_{A} < S_{B} nên giá đóng cửa của cổ phiếu A ít phân tán hơn giá đóng cửa của cổ phiếu B.

  • Câu 7: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu

    Đo chiều cao (tính bằngcm) của 500 học sinh trong một trường THPT ta thu được kết quả như sau:

    Độ lệch chuẩn của mẫu số liệu trên là

    Hướng dẫn:

    Ta có bảng sau

    Ta có chiều cao trung bình:

    \overline{x} = \frac{1}{500}(152.25 +
156.50 + 160.200 + 164.175 + 168.50) = 161,4

    Phương sai của mẫu số liệu:

    s_{x}^{2} = f_{1}\left( c_{1} -
\overline{x} \right)^{2} + f_{2}\left( c_{2} - \overline{x} \right)^{2}
+ ... + f_{k}\left( c_{k} - \overline{x} \right)^{2}

    = \frac{1}{500}\lbrack 25(152 -
161,4)^{2} + 50(156 - 161,4)^{2} + 200(160 - 161,4)^{2}

    + 175(164 - 161,4)^{2} + 50(168 -
161,4)^{2}\rbrack = 14,84

    => Độ lệch chuẩn: s_{x} =
\sqrt{s_{x}^{2}} = \sqrt{14,48} = 3,85

  • Câu 8: Vận dụng
    Chọn kết luận đúng

    Giá đóng cửa của một cổ phiếu là giá của cổ phiếu đó cuối một phiên giao dịch. Bảng sau thống kê giá đóng cửa (đơn vị: nghìn đồng) của hai mã cổ phiếu AB trong 50 ngày giao dịch liên tiếp.

    A white rectangular box with black numbersDescription automatically generated

    Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro của các loại cổ phiếu có giá trị trung bình gần bằng nhau. Cổ phiếu nào có phương sai, độ lệch chuẩn cao hơn thì được coi là có độ rủi ro lớn hơn.

    Theo quan điểm trên, độ rủi ro của cổ phiếu nào cao hơn?

    Hướng dẫn:

    Ta có bảng thống kê giá đóng cửa theo giá trị đại diện

    A grid of numbers with black textDescription automatically generated

    - Xét mẫu số liệu của cổ phiếu A

    Số trung bình của mẫu số liệu ghép nhóm là: {\overline{x}}_{1} = \frac{8.121 + 9.123 + 12.125
+ 10.127 + 11.129}{50} = 125,28.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{1}^{2} = \frac{1}{50}8.121^{2} +
9.123^{2} + 12.125^{2} + 10.127^{2}

    + 11.129^{2}) - 125,28^{2} =
7,5216.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{1} = \sqrt{7,5216}

    - Xét mẫu số liệu của cổ phiếu B

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{2} = \frac{1}{50}(16.121
+ 4.123 + 3.125 + 6.127 + 21.129) = 125,48.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{2}^{2} = \frac{1}{50}(16.121^{2} +
4.123^{2} + 3.125^{2} + 6.127^{2}

    + 21.129^{2}) - 125,48^{2} =
12,4096.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{2} = \sqrt{12,4096}.

    Vậy nếu đánh giá độ rủi ro theo phương sai và độ lệch chuẩn thì cổ phiếu A có độ rủi ro thấp hơn cồ phiếu B.

  • Câu 9: Thông hiểu
    Tìm phương sai của mẫu số liệu

    Cho mẫu số liệu ghép nhóm về thống kê thời gian hoàn thành (phút) một bài kiểm tra trực tuyến của 100 học sinh, ta có bảng số liệu sau:

    Thời gian

    \lbrack 33;\ 35) \lbrack 35;\ 37) \lbrack 37;\ 39) \lbrack 39;\ 41) \lbrack 41;\ 43) \lbrack 43;\ 45)

    Số học sinh

    4

    13

    38

    27

    14

    4

    Phương sai của mẫu số liệu trên là

    Hướng dẫn:

    Giá trị đại diện của mỗi nhóm số liệu là trung bình cộng của hai đầu mút.

    Ta có bảng tần số ghép nhóm theo giá trị đại diện của mỗi nhóm:

    Thời gian

    \lbrack 33;\ 35) \lbrack 35;\ 37) \lbrack 37;\ 39) \lbrack 39;\ 41) \lbrack 41;\ 43) \lbrack 43;\ 45)

    Giá trị đại diện

    34

    36

    38

    40

    42

    44

    Số học sinh

    4

    13

    38

    27

    14

    4

    Thời gian trung bình để 100 học sinh hoàn thành bài kiểm tra là:

    \overline{x} = \frac{4.34 + 13.36 + 38.38
+ 27.40 + 14.42 + 4.44}{100} = 38,92 (phút).

    Phương sai của mẫu số liệu

    S_{x}^{2} = \frac{4.(34 - 38,92)^{2} +
13.(36 - 38,92)^{2}}{100} +
\frac{38.(38 - 38,92)^{2} + 27.(40 - 38,92)^{2}}{100}

    + \frac{14.(42 - 38,92)^{2} + 4.(44 -
38,92)^{2}}{100} = 5,0736

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các mệnh đề

    Thời gian (phút) để học sinh hoàn thành một câu hỏi thi được cho như sau:

    Xét tính đúng/sai các mệnh đề sau:

    a) [NB] Số trung bình của mẫu số liệu lớp 11A là: 23,9 (làm tròn đến hàng phần mười). Đúng||Sai

    b) [TH] Độ lệch chuẩn của mẫu số liệu lớp 11A là: 11,77 (làm tròn đến hàng phần trăm).Sai||Đúng

    c) [TH] Độ lệch chuẩn của mẫu số liệu lớp 11B là: 11,55 (làm tròn đến hàng phần trăm). Sai||Đúng

    d) [VD, VDC] Nếu so sánh theo độ lệch chuẩn thì thời gian để học sinh hoàn thành một câu hỏi thi của lớp 11A ít phân tán hơn lớp 11B. Đúng||Sai

    Đáp án là:

    Thời gian (phút) để học sinh hoàn thành một câu hỏi thi được cho như sau:

    Xét tính đúng/sai các mệnh đề sau:

    a) [NB] Số trung bình của mẫu số liệu lớp 11A là: 23,9 (làm tròn đến hàng phần mười). Đúng||Sai

    b) [TH] Độ lệch chuẩn của mẫu số liệu lớp 11A là: 11,77 (làm tròn đến hàng phần trăm).Sai||Đúng

    c) [TH] Độ lệch chuẩn của mẫu số liệu lớp 11B là: 11,55 (làm tròn đến hàng phần trăm). Sai||Đúng

    d) [VD, VDC] Nếu so sánh theo độ lệch chuẩn thì thời gian để học sinh hoàn thành một câu hỏi thi của lớp 11A ít phân tán hơn lớp 11B. Đúng||Sai

    Ta có bảng giá trị như sau:

    a) Đúng. Số trung bình của mẫu số liệu lớp 11A là: 23,9 (làm tròn đến hàng phần mười).

    Xét mẫu số liệu của lớp 11A:

    Cỡ mẫu là n_{1} = 2 + 10 + 6 + 4 + 3 =
25

    Số trung bình:

    {\overline{x}}_{1} = \frac{5,5.2 +
15,5.10 + 25,5.6 + 35,5.4 + 45,5.3}{25} = 23,9.

    a) Sai.

    Phương sai:

    S_{1}^{2} = \frac{1}{25}(2.5,5^{2} +
10.15,5^{2} + 6.25,5^{2}+ 4.35,5^{2} + 3.45,5^{2}) - 23,9^{2} =
133,44.

    S_{1} = \sqrt{133,44} \approx
11,55.

    a) Sai.

    Xét mẫu số liệu của lớp 11B:

    Cỡ mẫu là n_{2} = 3 + 8 + 10 + 2 + 4 =
27.

    Số trung bình:

    {\overline{x}}_{2} = \frac{1}{27}(5,5.3
+ 15,5.8+ 25,5.10 + 35,5.2 + 45,5.4) = \frac{648,5}{27} \approx
24,02

    Phương sai của mẫu số liệu của lớp 11B là:

    S_{2}^{2} = \frac{1}{27}(3.5,5^{2} +
8.15,5^{2} + 10.25,5^{2}+ 2.35,5^{2} + 4.45,5^{2}) - 24,02^{2} \approx
138,47

    Độ lệch chuẩn của mẫu số liệu của lớp 11B là:

    S_{2} \approx \sqrt{138,47} \approx
11,77

    d) Đúng. Ta có: S_{1} <
S_{2} .

    Nên nếu so sánh theo độ lệch chuẩn thì thời gian để học sinh hoàn thành một câu hỏi thi của lớp 11A ít phân tán hơn lớp 11B.

  • Câu 11: Vận dụng
    Tính giá trị của biểu thức

    Một giống cây xoan đào được trồng tại hai địa điểm A và B. Người ta thống kê đường kính thân của một số cây xoan đào 5 năm tuổi ở bảng sau. Gọi phương sai đường kính thân của một số cây xoan đào 5 năm tuổi ở địa điểm A và địa điểm B lần lượt là S_{A}^{2} và S_{B}^{2}. Tính T = \left| S_{A}^{2} - S_{B}^{2} \right| bằng bao nhiêu?

    Đường kính (cm)

    \lbrack
30;32) \lbrack
32;34) \lbrack
34;36) \lbrack
36;38) \lbrack
38;40)

    Số cây trồng ở địa điểm A

    25

    38

    20

    10

    9

    Số cây trồng ở địa điểm B

    22

    27

    19

    14

    14

    Hướng dẫn:

    Ta lập bảng theo giá trị đại diện như sau:

    Đường kính (cm)

    \lbrack
30;32) \lbrack
32;34) \lbrack
34;36) \lbrack
36;38) \lbrack
38;40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    Số cây trồng ở địa điểm A

    25

    38

    20

    10

    9

    Số cây trồng ở địa điểm B

    22

    27

    19

    14

    14

    Cỡ mẫu: n_{A} = 25 + 38 + 20 + 10 + 7 =
100; n_{B} = 22 + 27 + 19 + 18 + 14
= 100

    Đường kính trung bình của thân cây xoan đào trồng tại địa điểm A là:

    {\overline{x}}_{A} = \frac{25 \cdot 31 +
38 \cdot 33 + 20 \cdot 35 + 10 \cdot 37 + 7 \cdot 39}{100} =
33,72

    Phương sai của mẫu số liệu ghép nhóm vè̀ đường kính của thân cây xoan đào trồng tại địa điểm A là:

    S_{A}^{2} = \frac{1}{100}\left( 25 \cdot
31^{2} + 38 \cdot 33^{2} + 20 \cdot 35^{2} + 10 \cdot 37^{2} + 7 \cdot
39^{2} \right) - (33,72)^{2} \approx 5,40

    Đường kính trung bình của thân cây xoan đào trồng tại địa điểm B là:

    {\overline{x}}_{B} = \frac{22 \cdot 31 +
27 \cdot 33 + 19 \cdot 35 + 18 \cdot 37 + 14 \cdot 39}{100} =
34,5

    Phương sai của mẫu số liệu ghép nhóm về đường kính của thân cây xoan đào trồng tại địa điểm B là:

    S_{B}^{2} = \frac{1}{100}\left( 22 \cdot
31^{2} + 27 \cdot 33^{2} + 19 \cdot 35^{2} + 18 \cdot 37^{2} + 14 \cdot
39^{2} \right) - (34,5)^{2} = 7,31

    Vậy \left| S_{A}^{2} - S_{B}^{2} \right|
= |5,40 - 7,31| = 1,91

  • Câu 12: Thông hiểu
    Ghi đáp án vào ô trống

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Thông hiểu
    Tính phương sai của mẫu số liệu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Phương sai của mẫu số liệu là:

    Hướng dẫn:

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Giá trị đại diện

    10

    30

    50

    70

    90

    Số học sinh

    5

    9

    12

    10

    6

    Số trung bình: \overline{x} = \frac{5.10
+ 9.30 + 12.50 + 10.70 + 6.90}{42} = \frac{360}{7}

    Phương sai: S^{2} = \frac{1}{42}\left(
5.10^{2} + 9.30^{2} + 12.50^{2} + 10.70^{2} + 6.90^{2} ight) - \left(
\frac{360}{7} ight)^{2} \approx 598

  • Câu 14: Vận dụng
    Chọn kết luận đúng

    Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư vào hai lĩnh vực A,B cho kết quả như sau

    A white square with numbersDescription automatically generated

    Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro đầu tư các lĩnh vực có giá trị trung bình tiền lãi gần bằng nhau. Lĩnh vực nào có phương sai, độ lệch chuẩn tiền lãi cao hơn thì được coi là có độ rủi ro lớn hơn.

    Theo quan điểm trên, độ rủi ro của cổ phiếu nào cao hơn?

    Hướng dẫn:

    Lĩnh vực A

    A white rectangular grid with numbersDescription automatically generated with medium confidence

    Lĩnh vực B

    A white rectangular box with black numbersDescription automatically generated

    Giá trị trung bình của hai lĩnh vực AB

    {\overline{x}}_{A} = \frac{1}{25}.(2.7,5
+ 5.12,5 + 8.17,5 + 6.22,5 + 4.27,5) = 18,5

    {\overline{x}}_{B} = \frac{1}{25}.(8.7,5
+ 4.12,5 + 2.17,5 + 5.22,5 + 6.27,5) = 16,9

    Về độ trung bình đầu tư vào lĩnh vực A lãi hơn lĩnh vực B.

    Độ lệch chuẩn của hai lĩnh vực AB

    s_{A} = \sqrt{\frac{1}{25}.\left(
2.7,5^{2} + 5.12,5^{2} + 8.17,5^{2} + 6.22,5^{2} + 4.27,5^{2} \right) -
18,5^{2}} = 5,8

    s_{B} = \sqrt{\frac{1}{25}.\left(
8.7,5^{2} + 4.12,5^{2} + 2.17,5^{2} + 5.22,5^{2} + 6.27,5^{2} \right) -
16,9^{2}} = 8,04.

    Như vậy độ lệch chuẩn của mẫu số liệu thu tiền được hàng tháng khi đầu tư vào lĩnh vực B cao hơn lĩnh vực A nên đầu tư vào lĩnh vực B rủi ro hơn.

  • Câu 15: Vận dụng
    Xét tính đúng sai của các nhận định

    Biểu đồ dưới đây biểu thị kết quả thu thập được về mức tiền (đơn vị: tỷ đồng) của một số khách hàng nợ ở hai ngân hàng AB.

    A graph with lines and numbersDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên

    Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}. Sai||Đúng

    c. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}. Sai||Đúng

    d. Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B.  Sai||Đúng 

    Đáp án là:

    Biểu đồ dưới đây biểu thị kết quả thu thập được về mức tiền (đơn vị: tỷ đồng) của một số khách hàng nợ ở hai ngân hàng AB.

    A graph with lines and numbersDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên

    Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}. Sai||Đúng

    c. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}. Sai||Đúng

    d. Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B.  Sai||Đúng 

    (a) Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên:

    Chọn ĐÚNG.

    (b) Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}.

    Số trung bình của mẫu số liệu ngân hàngA bằng {\overline{x}}_{A} = \frac{1}{38}.\lbrack 6.1,5 +
7.2,5 + 9.3,5 + 10.4,5 + 5.5,5 + 1.6,5\rbrack =
\frac{137}{38}

    Phương sai của mẫu số liệu ngân hàngA bằng

    S_{A}^{2} = \frac{1}{38}.\lbrack
6.1,5^{2} + 7.2,5^{2} + 9.3,5^{2} + 10.4,5^{2} + 5.5,5^{2} +
1.6,5^{2}\rbrack - \left( \frac{137}{38} \right)^{2} =
\frac{661}{361}.

    Độ lệch chuẩn của mẫu số liệu ngân hàngA bằng \sigma_{A} = \sqrt{{S_{A}}^{2}} =
\frac{\sqrt{661}}{19}.

    Chọn SAI.

    (c) Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}.

    Số trung bình của mẫu số liệu ngân hàng B bằng{\overline{x}}_{B} = \frac{1}{38}.\lbrack 8.1,5 +
6.2,5 + 8.3,5 + 9.4,5 + 5.5,5 + 2.6,5\rbrack =
\frac{68}{19}

    Phương sai của mẫu số liệu ngân hàng B bằng

    S_{B}^{2} = \frac{1}{38}[8.1,5^{2} + 6.2,5^{2} + 8.3,5^{2} + 9.4,5^{2} + 5.5,5^{2}+2.6,5^{2}]- \left( \frac{68}{19} \right)^{2} =\frac{3221}{1444}.

    Độ lệch chuẩn của mẫu số liệu ngân hàng B bằng \sigma_{B} = \sqrt{{S_{B}}^{2}} =
\sqrt{\frac{3221}{1444}}.

    Chọn SAI.

    (d) Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B

    \sigma_{A} < \sigma_{B} nên rủi ro của ngân hàng A thấp hơn rủi ro của ngân hàng B khi cho khách hàng vay nợ.

    Chọn SAI.

  • Câu 16: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Khảo sát thời gian chơi thể thao trong một ngày của 42 học sinh được cho trong bảng sau (thời gian đơn vị phút):

    Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất là

    Hướng dẫn:

    Trung bình thời gian chơi thể thao trong một ngày của một học sinh là:

    \overline{x} = \frac{10.5 + 30.9 + 50.12
+ 70.10 + 90.6}{42} = \frac{360}{7} = 51,42857143

    Phương sai của mẫu số liệu là:

    S^{2} = \frac{5.10^{2} + 9.30^{2} +
12.50^{2} + 10.70^{2} + 6.90^{2}}{42} - \left( \frac{360}{7}
\right)^{2}

    = \frac{29300}{49} = 597,9591837 \approx
598

    Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất là S^{2} \approx 598

  • Câu 17: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong Bảng 1.

    Nhóm

    Giá trị đại diện

    Tần số

    [40;45)

    [40;45)

    [40;45)

    [40;45)

    [40;45)

    [40;45)

    42,5

    47,5

    52,5

    57,5

    62,5

    67,5

    4

    14

    8

    10

    6

    2

    N = 44

    Bảng 1

    Phương sai của mẫu số liệu ghép nhóm trên là:

    Hướng dẫn:

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 +
8.52,5 + 10.57,5 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{4\left( 42,5 -\frac{585}{11} ight)^{2} + 14\left( 47,5 - \frac{585}{11}ight)^{2}}{44}+ \frac{8\left( 52,5 - \frac{585}{11} ight)^{2} +10\left( 57,5 - \frac{585}{11} ight)^{2}}{44}

    + \frac{+ 6\left( 62,5 - \frac{585}{11}
ight)^{2} + 2.\left( 67,5 - \frac{585}{11} ight)^{2}}{44} \approx
46,12

  • Câu 18: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik 3 \times 3, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Ta có:

    Giá trị đại diện

    9

    11

    13

    15

    17

    Số lần

    4

    _6

    8

    4

    3

    Số trung bình: \overline{x} = \frac{4.9 +
6.11 + 8.13 + 4.15 + 3.17}{25} = 12,68

    Phương sai:

    s^{2} = \lbrack 4.(9 - 12,68)^{2} +6.(11 - 12,68)^{2} + 8.(13 - 12,68)^{2}+ 4.(15 - 12,68)^{2} + 3.(17 -12,68)^{2}\rbrack.\frac{1}{25} \approx 5,98

  • Câu 19: Thông hiểu
    Xét tính đúng sai của các nhận định

    Xét mẫu dữ liệu ghép nhóm được cho ở bảng sau với n = n_{1} + n_{2} + \cdots + n_{k}.

    A table with writing on itDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Giá trị đại diện của \left\lbrack
u_{2};u_{3} \right)c_{2} = \frac{u_{2} +u_{3}}{2}. Đúng||Sai

    b. Giá trị trung bình của mẫu số liệu ghép nhóm là \overline{x} = \frac{1}{n}\left( c_{1} + c_{2} +
\cdots + c_{k} \right). Sai||Đúng

    c. Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{1}{n}\left\lbrack n_{1}\left( c_{1}
- \overline{x} \right)^{2} + n_{2}\left( c_{2} - \overline{x}
\right)^{2} + \cdots + n_{k}\left( c_{k} - \overline{x} \right)^{2}
\right\rbrack. Đúng||Sai

    d. Phương sai của mẫu số liệu ghép nhóm là s^{2} = \frac{1}{n}\left( n_{1}c_{\ _{1}}^{2} +
n_{2}c_{\ _{2}}^{2} + ... + n_{k}c_{\ _{k}}^{2} \right) -
\overline{x}. Sai||Đúng

    Đáp án là:

    Xét mẫu dữ liệu ghép nhóm được cho ở bảng sau với n = n_{1} + n_{2} + \cdots + n_{k}.

    A table with writing on itDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Giá trị đại diện của \left\lbrack
u_{2};u_{3} \right)c_{2} = \frac{u_{2} +u_{3}}{2}. Đúng||Sai

    b. Giá trị trung bình của mẫu số liệu ghép nhóm là \overline{x} = \frac{1}{n}\left( c_{1} + c_{2} +
\cdots + c_{k} \right). Sai||Đúng

    c. Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{1}{n}\left\lbrack n_{1}\left( c_{1}
- \overline{x} \right)^{2} + n_{2}\left( c_{2} - \overline{x}
\right)^{2} + \cdots + n_{k}\left( c_{k} - \overline{x} \right)^{2}
\right\rbrack. Đúng||Sai

    d. Phương sai của mẫu số liệu ghép nhóm là s^{2} = \frac{1}{n}\left( n_{1}c_{\ _{1}}^{2} +
n_{2}c_{\ _{2}}^{2} + ... + n_{k}c_{\ _{k}}^{2} \right) -
\overline{x}. Sai||Đúng

    (a) giá trị đại diện của \left\lbrack u_{2};u_{3} \right)c_{2} = \frac{u_{2} +u_{3}}{2}.

    Chọn ĐÚNG.

    (b) giá trị trung bình của mẫu số liệu ghép nhóm là \overline{x} = \frac{1}{n}\left( c_{1} +
c_{2} + \cdots + c_{k} \right).

    Giá trị trung bình của mẫu số liệu ghép nhóm là \overline{x} = \frac{1}{n}\left( n_{1}c_{1} +
n_{2}c_{2} + \cdots + n_{k}c_{k} \right).

    Chọn SAI.

    (c) phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{1}{n}\left\lbrack n_{1}\left( c_{1}
- \overline{x} \right)^{2} + n_{2}\left( c_{2} - \overline{x}
\right)^{2} + \cdots + n_{k}\left( c_{k} - \overline{x} \right)^{2}
\right\rbrack.

    Chọn ĐÚNG.

    (d) phương sai của mẫu số liệu ghép nhóm là s^{2} = \frac{1}{n}\left( n_{1}c_{\ _{1}}^{2} +
n_{2}c_{\ _{2}}^{2} + ... + n_{k}c_{\ _{k}}^{2} \right) -
\overline{x}.

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{1}{n}\left( n_{1}c_{\
_{1}}^{2} + n_{2}c_{\ _{2}}^{2} + ... + n_{k}c_{\ _{k}}^{2} \right) -
{\overline{x}}^{2}.

    Chọn SAI.

  • Câu 20: Vận dụng
    Chọn đáp án đúng

    Anh An đầu tư số tiền bằng nhau vào hai lĩnh vực kinh doanh A,B. Anh An thống kê số tiền thu được mỗi tháng trong vòng 60 tháng theo mỗi lĩnh vực cho kết quả như sau:

    A white grid with black numbersDescription automatically generated

    Đáp án nào sau đây đúng?

    Hướng dẫn:

    Ta có

    A table with numbers and lettersDescription automatically generated

    Số tiền trung bình thu được khi đầu tư vào các lĩnh vực A,B tương ứng là:

    {\overline{x}}_{A} = \frac{1}{60}(5 \cdot
7,5 + \ldots + 5 \cdot 27,5) = 17,5;

    {\overline{x}}_{B} = \frac{1}{60}(20
\cdot 7,5 + \ldots + 20 \cdot 27,5) = 17,5

    Độ lệch chuẩn của số tiền thu được hàng tháng khi đầu tư vào các lĩnh vực A,B tương ứng là

    s_{A} = \sqrt{\frac{1}{60}\left( 5 \cdot
7,5^{2} + \ldots + 5 \cdot 27,5^{2} \right) - (17,5)^{2}} \approx
5;

    s_{B} = \sqrt{\frac{1}{60}\left( 20
\cdot 7,5^{2} + \ldots + 20 \cdot 27,5^{2} \right) - (17,5)^{2}} \approx
8

    Như vậy, về trung bình đầu tư vào các lĩnh vực A,Bsố tiền thu được hàng tháng như nhau tuy nhiên độ lệch chuẩn của mẫu số liệu về số tiền thu được hàng tháng khi đầu tư vào lĩnh vực B cao hơn khi đầu tư vào lĩnh vực A. Người ta nói rằng, đầu tư vào lĩnh vực B là "rủi ro" hơn.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (60%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo