Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 10 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm phương sai của mẫu số liệu ghép nhóm

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Tần số

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên gần với giá trị nào sau đây nhất?

    Hướng dẫn:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Tần số

    13

    45

    24

    12

    6

    Cỡ mẫu là n = 13 + 45 + 24 + 12 + 6 = 100.

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{1}{100}\lbrack
13.19,25 + 45.19,75

    + 24.20,25 + 12.20,75 + 6.21,25) =
20,015

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{100}\lbrack
13.(19,25)^{2} + 45.(19,25)^{2}

    + 24.(19,25)^{2} + 12.(19,25)^{2} +
6.(19,25)^{2}brack - (20,015)^{2} \approx 0,277

  • Câu 2: Vận dụng
    Tính tổng độ lệch chuẩn

    Biểu đồ dưới đây mô tả kết quả điều tra về mức lương khởi điểm (đơn vị: triệu đồng) của một số công nhân ở hai khu vực AB.

    A graph with blue and yellow barsDescription automatically generated

    Tổng độ lệch chuẩn của mẫu số liệu ghép nhóm ở 2 khu vực gần bằng với số nào sau đây nhất.

    Hướng dẫn:

    Ta có

    A grid of numbers and lettersDescription automatically generated

    » Xét mẫu số liệu của khu vực A

    Cỡ mẫu là n_{A} = 4 + 5 + 5 + 4 + 2 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{A} = \frac{4 \cdot 5,5 +
5 \cdot 6,5 + 5 \cdot 7,5 + 4 \cdot 8,5 + 2 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{A}^{2} = \frac{1}{20}\left( 4 \cdot
5,5^{2} + 5 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 4 \cdot 8,5^{2} + 2 \cdot
9,5^{2} \right) - 7,25^{2} = 1,5875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{A} = \sqrt{1,5875} \approx 1,2300.

    » Xét mẫu số liệu của khu vực B

    Cỡ mẫu là n_{B} = 3 + 6 + 5 + 5 + 1 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{B} = \frac{3 \cdot 5,5 +
6 \cdot 6,5 + 5 \cdot 7,5 + 5 \cdot 8,5 + 1 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{B}^{2} = \frac{1}{20}\left( 3 \cdot
5,5^{2} + 6 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 5 \cdot 8,5^{2} + 1 \cdot
9,5^{2} \right) - 7,25^{2} = 1,2875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{B} = \sqrt{1,2875} \approx 1,1347.

    Tổng: khoảng 2,3647.

  • Câu 3: Vận dụng
    Xét tính đúng sai của các nhận định

    Biểu đồ dưới đây biểu thị kết quả thu thập được về mức tiền (đơn vị: tỷ đồng) của một số khách hàng nợ ở hai ngân hàng AB.

    A graph with lines and numbersDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên

    Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}. Sai||Đúng

    c. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}. Sai||Đúng

    d. Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B.  Sai||Đúng 

    Đáp án là:

    Biểu đồ dưới đây biểu thị kết quả thu thập được về mức tiền (đơn vị: tỷ đồng) của một số khách hàng nợ ở hai ngân hàng AB.

    A graph with lines and numbersDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên

    Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}. Sai||Đúng

    c. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}. Sai||Đúng

    d. Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B.  Sai||Đúng 

    (a) Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên:

    Chọn ĐÚNG.

    (b) Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}.

    Số trung bình của mẫu số liệu ngân hàngA bằng {\overline{x}}_{A} = \frac{1}{38}.\lbrack 6.1,5 +
7.2,5 + 9.3,5 + 10.4,5 + 5.5,5 + 1.6,5\rbrack =
\frac{137}{38}

    Phương sai của mẫu số liệu ngân hàngA bằng

    S_{A}^{2} = \frac{1}{38}.\lbrack
6.1,5^{2} + 7.2,5^{2} + 9.3,5^{2} + 10.4,5^{2} + 5.5,5^{2} +
1.6,5^{2}\rbrack - \left( \frac{137}{38} \right)^{2} =
\frac{661}{361}.

    Độ lệch chuẩn của mẫu số liệu ngân hàngA bằng \sigma_{A} = \sqrt{{S_{A}}^{2}} =
\frac{\sqrt{661}}{19}.

    Chọn SAI.

    (c) Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}.

    Số trung bình của mẫu số liệu ngân hàng B bằng{\overline{x}}_{B} = \frac{1}{38}.\lbrack 8.1,5 +
6.2,5 + 8.3,5 + 9.4,5 + 5.5,5 + 2.6,5\rbrack =
\frac{68}{19}

    Phương sai của mẫu số liệu ngân hàng B bằng

    S_{B}^{2} = \frac{1}{38}[8.1,5^{2} + 6.2,5^{2} + 8.3,5^{2} + 9.4,5^{2} + 5.5,5^{2}+2.6,5^{2}]- \left( \frac{68}{19} \right)^{2} =\frac{3221}{1444}.

    Độ lệch chuẩn của mẫu số liệu ngân hàng B bằng \sigma_{B} = \sqrt{{S_{B}}^{2}} =
\sqrt{\frac{3221}{1444}}.

    Chọn SAI.

    (d) Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B

    \sigma_{A} < \sigma_{B} nên rủi ro của ngân hàng A thấp hơn rủi ro của ngân hàng B khi cho khách hàng vay nợ.

    Chọn SAI.

  • Câu 4: Thông hiểu
    Xét tính đúng sai của các mệnh đề

    Một huấn luyện viên môn bóng rổ thống kê lại số quả bóng được ném vào rổ của một nhóm vận động viên đang tập luyện mỗi người ném 11 lần như sau:

    Xác định tính đúng, sai của các mệnh đề sau:

    a) [NB] Từ biểu đồ, có thể lập được bảng tần số ghép nhóm gồm 5 nhóm biết mỗi nhóm có độ dài là 2 Đúng||Sai

    b) [TH] Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lớn hơn 5 Sai||Đúng

    c) [TH] Số trung bình của mẫu số liệu bằng \frac{85}{14} Đúng||Sai

    d) [VD] Độ lệch chuẩn của mẫu số liệu trên lớn hơn 3. Sai||Đúng

    Đáp án là:

    Một huấn luyện viên môn bóng rổ thống kê lại số quả bóng được ném vào rổ của một nhóm vận động viên đang tập luyện mỗi người ném 11 lần như sau:

    Xác định tính đúng, sai của các mệnh đề sau:

    a) [NB] Từ biểu đồ, có thể lập được bảng tần số ghép nhóm gồm 5 nhóm biết mỗi nhóm có độ dài là 2 Đúng||Sai

    b) [TH] Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lớn hơn 5 Sai||Đúng

    c) [TH] Số trung bình của mẫu số liệu bằng \frac{85}{14} Đúng||Sai

    d) [VD] Độ lệch chuẩn của mẫu số liệu trên lớn hơn 3. Sai||Đúng

    Ta có:

    a) Bảng tần số ghép nhóm thoả yêu cầu:

    Số quả bóng

    \lbrack 1;3)

    \lbrack 3;5)

    \lbrack 5;7)

    \lbrack 7;9)

    \lbrack 9;11)

    Số người

    5

    7

    3

    8

    5

    Vậy có 5 nhóm.

    b) Gọi x_{1},x_{2},\ldots,x_{28} lần lượt là số quả bóng được ném vào rổ của các vận động viên sắp xếp theo thứ tự không giảm.

    Ta có x_{1},\ldots,x_{5} \in \lbrack
1;3);x_{6},\ldots,x_{12} \in \lbrack 3;5);x_{13},\ldots,x_{15} \in
\lbrack 5;7);x_{16},\ldots,x_{23} \in \lbrack 7;9);

    x_{24},\ldots,x_{28} \in \lbrack
9;11)

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{7} + x_{8} ight) \in
\lbrack 3;5) nên tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 3 + \frac{\frac{28}{4} - 5}{7}(5
- 3) = \frac{25}{7}

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{21} + x_{22} ight) \in
\lbrack 7;9) nên tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 7 + \frac{\frac{3.28}{4} -
15}{8}(9 - 7) = \frac{17}{2}

    Nên khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{17}{2} - \frac{25}{7} = \frac{69}{14} \approx 4,93

    c) Ta có bảng thống kê theo giá trị đại diện:

    Số quả bóng đại diện

    2

    4

    6

    8

    10

    Số người

    5

    7

    3

    8

    5

    Cỡ mẫu: n = 28

    Số trung bình của mẫu số liệu:

    \overline{x} = \frac{1}{28}(5.2 + 7.4 + 3.6 + 8.8
+ 5.10) = \frac{85}{14}

    d) Phương sai của mẫu số liệu:

    S^{2} = \frac{1}{28}\left( 5.2^{2} +
7.4^{2} + 3.6^{2} + 8.8^{2} + 5.10^{2} ight) - \left( \frac{85}{14}
ight)^{2} = \frac{1539}{196}

    Độ lệch chuẩn của mẫu số liệu trên là: S
= \sqrt{\frac{1539}{196}} \approx 2,802.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

     

  • Câu 5: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu

    Kết quả đo chiều cao của học sinh lớp 12A được ghi lại trong bảng như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho là:

    Hướng dẫn:

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +
8.170 + 4.174 + 1.178}{21} \approx 169

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{21}\left( 3.162^{2} +
5.166^{2} + 8.170^{2} + 4.174^{2} + 1.178^{2} ight) - 169^{2} \approx
18,14

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là: S \approx 4,26.

  • Câu 6: Vận dụng
    Ghi đáp án vào ô trống

    Một công ty sản xuất bóng đèn LED đã kiểm tra chất lượng sản phẩm của một lô hàng và ghi nhận thời gian sử dụng của 250 bóng đèn như sau:

    Khoảng thời gian (giờ)

    Giá trị đại diện

    Số lượng bóng đèn

    [0, 1000)

    500

    5

    [1000, 2000)

    1500

    46

    [2000, 3000)

    2500

    162

    [3000, 4000)

    3500

    25

    [4000, 5000)

    4500

    12

      N = 250

    Nếu độ lệch chuẩn của của bảng số liệu trên vượt quá 500 thì lô hàng không đạt tiêu chuẩn. Qua tính toán người ta thấy lô hàng đã không đạt tiêu chuẩn để đưa ra thị trường. Hỏi độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là bao nhiêu? (kết quả lấy phần nguyên).

    Đáp án: 245

    Đáp án là:

    Một công ty sản xuất bóng đèn LED đã kiểm tra chất lượng sản phẩm của một lô hàng và ghi nhận thời gian sử dụng của 250 bóng đèn như sau:

    Khoảng thời gian (giờ)

    Giá trị đại diện

    Số lượng bóng đèn

    [0, 1000)

    500

    5

    [1000, 2000)

    1500

    46

    [2000, 3000)

    2500

    162

    [3000, 4000)

    3500

    25

    [4000, 5000)

    4500

    12

      N = 250

    Nếu độ lệch chuẩn của của bảng số liệu trên vượt quá 500 thì lô hàng không đạt tiêu chuẩn. Qua tính toán người ta thấy lô hàng đã không đạt tiêu chuẩn để đưa ra thị trường. Hỏi độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là bao nhiêu? (kết quả lấy phần nguyên).

    Đáp án: 245

    Tính giá trị trung bình

    \overline{x} =
\frac{5.500 + 46.1500 + 162.2500 + 25.3500 + 12.4500}{250} =
\frac{618000}{250} = 2472

    Tính phương sai:

    s^{2} = \frac{5.500^{2} + 46.1500^{2} +
162.2500^{2} + 25.3500^{2} + 12.4500^{2}}{250} - 2472^{2} =
555216

    Tính độ lệch chuẩn: s = \sqrt{s^{2}} =
\sqrt{555216} \approx 745,13

    Độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là: 745,13 - 500 = 245,13

  • Câu 7: Thông hiểu
    Tính số trung bình

    Kết quả cự li ném bóng của học sinh lớp 12 được thống kê lại ở bảng sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số học sinh

    13

    45

    24

    12

    6

    Tính số trung bình của mẫu số liệu ghép nhóm?

    Hướng dẫn:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số học sinh

    13

    45

    24

    12

    6

    Số trung bình:

    \overline{x} = \frac{19,25.13 + 19,75.45
+ 20,25.24 + 20,75.12 + 21,25.6}{100} = 20,015

  • Câu 8: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu

    Năng suất lúa (đơn vị: tấn/ha) của một số thửa ruộng được ghi lại trong bảng sau:

    Năng suất

    [5,5; 5,7)

    [5,7; 5,9)

    [5,9; 6,1)

    [6,1; 6,3)

    [6,3; 6,5)

    [6,5; 6,7)

    Số thửa ruộng

    3

    4

    6

    5

    5

    2

    Xác định độ lệch chuẩn của mẫu số liệu ghép nhóm?

    Hướng dẫn:

    Ta có:

    Năng suất

    [5,5; 5,7)

    [5,7; 5,9)

    [5,9; 6,1)

    [6,1; 6,3)

    [6,3; 6,5)

    [6,5; 6,7)

    Số thửa ruộng

    3

    4

    6

    5

    5

    2

    Tần số tích lũy

    3

    7

    13

    18

    23

    25

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{3.5,6 + 4.5,8 +
6.6,0 + 5.6,2 + 5.6,4 + 2,6,6}{25} = 6,088

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{25}\left( 3.5,6^{2} +
4.5,8^{2} + 6.6,0^{2} + 5.6,2^{2} + 5.6,4^{2} + 2,6,6^{2} ight) -
6,088^{2} \approx 0,086656

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm là S = \sqrt{S^{2}} \approx 0,3

  • Câu 9: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong Bảng 18.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là:

    Hướng dẫn:

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 + 8.52,5 +
10.57,5 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{4\left( 42,5 -
\frac{585}{11} ight)^{2} + 14\left( 47,5 - \frac{585}{11}
ight)^{2}}{44}

    + \frac{8\left( 52,5 - \frac{585}{11}
ight)^{2} + 10\left( 57,5 - \frac{585}{11}
ight)^{2}}{44}

    + \frac{+ 6\left( 62,5 - \frac{585}{11}
ight)^{2} + 2.\left( 67,5 - \frac{585}{11} ight)^{2}}{44} \approx
46,12

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm là: \sqrt{s} \approx 6,2

  • Câu 10: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Điều tra 42 học sinh của một lớp 12 về số giờ tự học ở nhà, người ta có bảng thống kê sau:

    Tính phương sai của mẫu số liệu ghép nhóm trên.

    Hướng dẫn:

    Chọn giá trị đại diện cho mẫu số liệu, ta có:

    A black text on a white backgroundDescription automatically generated

    Số giờ học trung bình là:

    \overline{x} = \frac{8 \cdot 1,5 + 10\cdot 2,5 + 12 \cdot 3,5 + 9 \cdot 4,5 + 3 \cdot 5,5}{42}=\frac{68}{21} \approx 3,238.

    Phương sai là:

    S^{2} = \frac{1}{42}[8 \cdot(1,5)^{2} + 10 \cdot (2,5)^{2} + 12 \cdot (3,5)^{2} + 9 \cdot (4,5)^{2}+ 3 \cdot (5,5)^{2} ]- \left( \frac{68}{21} \right)^{2} =\frac{2525}{1764} \approx 1,431.

  • Câu 11: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Thống kê điểm trắc nghiệm môn Tiếng Anh của 40 học sinh, người ta có bảng sau:

    Tính phương sai của mẫu số liệu ghép nhóm trên.

    Hướng dẫn:

    Chọn giá trị đại diện cho mẫu số liệu, ta có:

    A white paper with black numbersDescription automatically generated

    Điểm trung bình là:

    \overline{x} = \frac{3 \cdot 25 + 5 \cdot
35 + 5 \cdot 45 + 8 \cdot 55 + 7 \cdot 65 + 5 \cdot 75 + 3 \cdot 85 + 4
\cdot 95}{40} = 59,5.

    Phương sai là:

    S^{2} = \frac{1}{40}\lbrack 3 \cdot
(25)^{2} + 5 \cdot (35)^{2} + 5 \cdot (45)^{2} + 8 \cdot (55)^{2} + 7
\cdot (65)^{2}

    + 5 \cdot (75)^{2} + 3 \cdot (85)^{2} +
4 \cdot (95)^{2}\rbrack - (59,5)^{2} = 404,75

  • Câu 12: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu

    Bạn Chi rất thích nhảy hiện đại. Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn Chi được thống kê lại ở bảng sau:

    Độ lệch chuẩn của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Số trung bình:

    \overline{x} =
\frac{6.22,5 + 6.27,5 + 4.32,5 + 37,5 + 42,5}{18} \approx
28,33

    Phương sai:

    s^{2} = \frac{6.22,5^{2} + 6.27,5^{2} +
4.32,5^{2} + 37,5^{2} + 42,5^{2}}{18} - 28,33^{2} = 31,25\begin{matrix}
\\
\\
\end{matrix}

    Độ lệch chuẩn s = \sqrt{s^{2}} =
\sqrt{31,25} \approx 5,59

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Chọn kết luận đúng?

    Hướng dẫn:

    Ta có:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Giá trị đại diện

    145

    175

    205

    235

    265

    295

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Số trung bình của mẫu số liệu ghép nhóm tại A là:

    \overline{x_{A}} = \frac{1.145 + 1.175 +
1.205 + 8.235 + 7.265 + 2.295}{20} = 242,5

    Phương sai của mẫu số liệu ghép nhóm tại A là:

    {S_{A}}^{2} = \frac{1}{20}\left(
1.145^{2} + 1.175^{2} + 1.205^{2} + 8.235^{2} + 7.265^{2} + 2.295^{2}
ight) - 242,5^{2} = 1248,75

    Số trung bình của mẫu số liệu ghép nhóm tại B là:

    \overline{x_{B}} = \frac{0.145 + 2.175 +
4.205 + 4.235 + 10.265 + 3.295}{20} = 253

    Phương sai của mẫu số liệu ghép nhóm tại B là:

    {S_{B}}^{2} = \frac{1}{20}\left(
0.145^{2} + 2.175^{2} + 4.205^{2} + 4.235^{2} + 10.265^{2} + 3.295^{2}
ight) - 253^{2} = 936

  • Câu 15: Vận dụng
    Xét tính đúng sai của các nhận định

    Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư và hai lĩnh vực A, B cho kết quả bằng biểu đồ dưới đây

    A graph on a gridDescription automatically generated A graph on a gridDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83 (làm tròn đến hàng phần trăm). Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01 (làm tròn đến hàng phần trăm). Đúng||Sai

    c. Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A. Sai||Đúng

    d. Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B. Sai||Đúng

    Đáp án là:

    Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư và hai lĩnh vực A, B cho kết quả bằng biểu đồ dưới đây

    A graph on a gridDescription automatically generated A graph on a gridDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83 (làm tròn đến hàng phần trăm). Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01 (làm tròn đến hàng phần trăm). Đúng||Sai

    c. Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A. Sai||Đúng

    d. Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B. Sai||Đúng

    Từ biểu đồ ta có bảng thống kê sau:

    (a) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83(làm tròn đến hàng phần trăm).

    Xét mẫu số liệu của số nhà đầu tư vào lĩnh vực A:

    Cỡ mẫu là n_{1} = 2 + 4 + 7 + 5 +3 =21

    Số trung bình: {\overline{x}}_{1} =
\frac{7,5.2 + 12,5.4 + 17,5.7 + 22,5.5 + 27,5.3}{21} =
\frac{255}{14}

    Phương sai:

    S_{1}^{2} = \frac{1}{21}\left( 2.7,5^{2}
+ 4.12,5^{2} + 7.17,5^{2} + 5.22,5^{2} + 3.27,5^{2} \right) - \left(
\frac{255}{14} \right)^{2} = \frac{5000}{147}

    S_{1} = \sqrt{\frac{5000}{147}} \approx
5,83

    Chọn ĐÚNG.

    (b) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01(làm tròn đến hàng phần trăm).

    Xét mẫu số liệu của số nhà đầu tư vào lĩnh vực B:

    Cỡ mẫu là n_{2} = 5 + 4 + 6 + 2 + 4 =
21

    Số trung bình: \overline{x_{2}} =
\frac{7,5.5 + 12,5.4 + 17,5.6 + 22,5.2 + 27,5.4}{21} =
\frac{695}{42}

    S_{2}^{2} = \frac{1}{21}\left( 5.7,5^{2}
+ 4.12,5^{2} + 6.17,5^{2} + 2.22,5^{2} + 4.27,5^{2} \right) - \left(
\frac{695}{42} \right)^{2} = \frac{21650}{441}

    S_{2} = \sqrt{\frac{21650}{441}} \approx
7,01

    Chọn ĐÚNG.

    (c) Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A.

    Số trung bình: \overline{x_{1}} =
\frac{7,5.2 + 12,5.4 + 17,5.7 + 22,5.5 + 27,5.3}{21} = \frac{255}{14}
\approx 18,21

    Số trung bình: \overline{x_{2}} = \frac{7,5.5 + 12,5.4 + 17,5.6 + 22,5.2 + 27,5.4}{21} = \frac{695}{42}\approx 16,55

    Về trung bình, đầu tư vào lĩnh vực A đem lại tiền lãi cao hơn lĩnh vực B.

    Chọn SAI.

    (d) Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B.

    Ta có: S_{1} < S_{2}

    Vậy nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực B có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực A.

    Chọn SAI.

  • Câu 16: Thông hiểu
    Tính độ lệch chuẩn

    Một câu lạc bộ thể dục thể thao đã ghi lại số giờ các thành viên của mình sử dụng cơ sở vật chất của câu lạc bộ để tập luyện trong một tháng như sau:

    Thời gian (giờ)

    \lbrack 1;5) \lbrack 5;9) \lbrack 9;13) \lbrack 13;17) \lbrack 17;21) \lbrack 21;25)

    Tần số (Số người)

    10

    14

    31

    2

    5

    23

    Độ lệch chuẩn của mẫu số liệu là (kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Ta có bảng sau:

    Thời gian (giờ)

    \lbrack 1;5) \lbrack 5;9) \lbrack 9;13) \lbrack 13;17) \lbrack 17;21) \lbrack 21;25)

    Giá trị đại diện

    3

    7

    11

    15

    19

    23

    Tần số (Số người)

    10

    14

    31

    2

    5

    23

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{1}{85}.(10.3 + 14.7 + 31.11 +
2.15 + 5.19 + 23.23) \approx 13,21

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{85}.(10.3^{2} + 14.7^{2}
+ 31.11^{2} + 2.15^{2} + 5.19^{2} +
23.23^{2}) - 13,21^{2} \approx 48,43

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S = \sqrt{48,43} \approx 6,96

  • Câu 17: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu

    Cho bảng số liệu thống kê cân nặng của 50 học sinh tiểu học như sau:

    Cân nặng (kg)

    Số học sinh

    [0; 10)

    5

    [10; 20)

    8

    [20; 60)

    15

    [30; 80)

    16

    [40; 100)

    6

    Tìm độ lệch chuẩn của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Cân nặng (kg)

    Số học sinh

    Giá trị đại diện (xi)

    \left( x_{i} - \overline{x}
ight)^{2} f_{i}.\left( x_{i} - \overline{x}
ight)^{2}

    [0; 10)

    5

    5

    484

    2420

    [10; 20)

    8

    15

    144

    1152

    [20; 60)

    15

    25

    4

    60

    [30; 80)

    16

    35

    64

    1024

    [40; 100)

    6

    45

    324

    1944

     

    \sum_{}^{}f_{i} = 50

     

     

    Tổng: 6600

    Phương sai của mẫu số liệu là:

    S^{2} =
\frac{1}{N}.\sum_{}^{}{f_{i}.\left( x_{i} - \overline{x} ight)^{2}} =
\frac{1}{50}.6600 = 132

    Suy ra độ lệch chuẩn của mẫu số liệu là: S = \sqrt{S^{2}} = \sqrt{132} \approx
11,5

  • Câu 18: Vận dụng
    Ghi đáp án vào ô trống

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có tốc độ làm bài ít đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê thời gian làm bài test ngắn của học sinh hai lớp 12A và 12B ghi lại trong bảng sau:

    Thời gian (phút)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    [10; 11)

    Học sinh lớp 12A

    8

    10

    13

    10

    9

    Học sinh lớp 12B

    4

    12

    17

    14

    3

    Nếu so sánh theo độ lệch chuẩn thì học sinh lớp nào có tốc độ làm bài ít đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng
    Chọn khẳng định đúng

    Giá đóng cửa của một cổ phiếu là giá của cổ phiếu đó cuối một phiên giao dịch. Bảng sau thống kê giá đóng cửa (đơn vị: nghìn đồng) của hai mã cổ phiếu AB trong 50 ngày giao dịch liên tiếp.

    Giá đóng cửa

    \lbrack 120;122) \lbrack 122;124) \lbrack 124;126) \lbrack 126;128) \lbrack 128;130)

    Số ngày giao dịch

    của cổ phiếu A

    8 9 12 10 11

    Số ngày giao dịch

    của cổ phiếu B

    16 4 3 6 21

    Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro của các loại cổ phiếu có giá trị trung bình gần bằng nhau. Cổ phiếu nào có phương sai, độ lệch chuẩn cao hơn thì được coi là có độ rủi ro lớn hơn. Chọn khẳng định đúng.

    Hướng dẫn:

    Ta có bảng thống kê theo giá trị đại diện

    Giá đóng cửa

     121 123  125  127  129 

    Số ngày giao dịch

    của cổ phiếu A

    8 9 12 10 11

    Số ngày giao dịch

    của cổ phiếu B

    16 4 3 6 21

    Xét mẫu số liệu của cổ phiếu A

    Số trung bình của mẫu số liệu là

    {\overline{x}}_{A} = \frac{1}{50}.(8.121
+ 9.123 + 12.125 + 10.127 + 11.129) = 125,28

    Phương sai của mẫu số liệu ghép nhóm là

    {S_{A}}^{2} = \frac{1}{50}.\left(
8.121^{2} + 9.123^{2} + 12.125^{2} + 10.127^{2} + 11.129^{2} \right) -
125,28^{2} = 7,5216

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là

    S_{A} = \sqrt{7,5216}

    Xét mẫu số liệu của cổ phiếu B

    Số trung bình của mẫu số liệu là

    {\overline{x}}_{B} =\frac{1}{50}.(16.121 + 4.123 + 3.125 + 6.127 + 21.129)= 125,48

    Phương sai của mẫu số liệu ghép nhóm là

    {S_{B}}^{2} = \frac{1}{50}.\left(
16.121^{2} + 4.123^{2} + 3.125^{2} + 6.127^{2} + 21.129^{2} \right) -
125,48^{2} = 12,4096

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là

    S_{B} = \sqrt{12,4096}

    Ta có S_{A} < S_{B} nên giá đóng cửa của cổ phiếu A ít phân tán hơn giá đóng cửa của cổ phiếu B.

  • Câu 20: Vận dụng
    Tìm phương sai của mẫu số liệu ghép nhóm

    Tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ (đơn vị: km/h) được thống kê lại như sau. Hãy tính phương sai của mẫu số liệu ghép nhóm với nhóm đầu tiên là \lbrack
42;46) và độ dài mỗi nhóm bằng 4. (làm tròn đến hàng phần mười)

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    52,1

    52,7

    53,9

    54,8

    55,6

    57,5

    59,6

    60,3

    61,1

    Hướng dẫn:

    Ta lập được bảng số liệu ghép nhóm theo giá trị đại diện như sau:

    Tốc độ (km/h)

    \lbrack
42;46) \lbrack
46;50) \lbrack
50;54) \lbrack
54;58) \lbrack
58;62)

    Giá trị đại diện

    44

    48

    52

    56

    60

    Số xe

    3

    7

    4

    3

    3

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{3 \cdot 44 + 7
\cdot 48 + 4 \cdot 52 + 3 \cdot 56 + 3 \cdot 60}{20} = 51,2

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{20}\left( 3 \cdot
44^{2} + 7 \cdot 48^{2} + 4 \cdot 52^{2} + 3 \cdot 56^{2} + 3 \cdot
60^{2} \right) - (51,2)^{2} \approx 26,6

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (60%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo