Cho tam giác , thì công thức tính diện tích nào sau đây là đúng nhất.
Ta có:
.
Cho tam giác , thì công thức tính diện tích nào sau đây là đúng nhất.
Ta có:
.
Cho tứ diện và điểm
thỏa mãn
(
là trọng tâm của tứ diện). Gọi
là giao điểm của
và mặt phẳng
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì là giao điểm của
và mặt phẳng
suy ra
là trọng tâm tam giác
suy ra
Theo bài ra ta có:
Trong không gian, cho hai vectơ và
. Vectơ
bằng
Theo quy tắc ba điểm: .
Trong không gian cho điểm và bốn điểm
không thẳng hàng. Điều kiện cần và đủ để
tạo thành hình bình hành là:
Hình vẽ minh họa
Ta có:
Cho hình hộp và tâm
. Hãy chỉ ra đẳng thức sai trong các đẳng thức sau?
Hình vẽ minh họa
Theo quy tắc hình bình hành suy ra đúng.
Do đối nhau và
đối nhau nên
đúng.
Do suy ra
nên
sai.
Do và
nên
đúng.
Cho hình hộp với tâm
. Hãy chỉ ra đẳng thức sai trong các đẳng thức sau đây:
Ta có :(vô lí)
Cho hình lập phương có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn:
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Cho hình lập phương có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn:
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Hình vẽ minh họa
a) Đúng: .
b) Đúng: Vi là trung điểm của
nên
Vì là trung điểm của
nên
Vì là trung điểm của
nên
Do đó:
c) Sai:
d) Đúng
Ta có: .
.
Do đó: nhỏ nhất khi
Cho hình lập phương có cạnh bằng
Gọi
lần lượt là trung điểm của
và
Tích vô hướng
(
là số thập phân). Giá trị của
bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)
Đáp án: -0,5||- 0,5
Cho hình lập phương có cạnh bằng
Gọi
lần lượt là trung điểm của
và
Tích vô hướng
(
là số thập phân). Giá trị của
bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)
Đáp án: -0,5||- 0,5
Hình vẽ minh họa
Vì nên
Ta có:
Vậy
Cho hình chóp có
,
. Gọi
là mặt phẳng đi qua
và các trung điểm của
. Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng
.
Hinh vẽ minh họa

Gọi lần lượt là trung điểm của
. Thiết diện là tam giác
.
Theo bài tập 5 thì
Ta có
.
Tính tương tự, ta có
.
Vậy
.
Cho tứ diện . Gọi
là trọng tâm tam giác
. Khi đó:
Ta có:
là trọng tâm tam giác
nên
.
Cho tứ diện . Gọi
lần lượt là tung điểm của
. Chọn mệnh đề đúng?
Hình vẽ minh họa
Ta có:
Cộng hai vế của hai đẳng thức trên ta có:
Cho tứ diện . Gọi
là trọng tâm của tam giác
.Phân tích nào sau đây là đúng?
Ta có: là trọng tâm tam giác
khi
Hãy chọn mệnh đề đúng trong các mệnh đề sau đây?
Nếu thì
Suy ra tứ giác là hình bình hành
Mệnh đề sai vì:
Cho hình hộp có tất cả các cạnh đều bằng nhau.
Ta có:
Vì và
là hai hình thoi bằng nhau nên
+ suy ra
không vuông góc với
+ suy ra
Nên đáp án có thể sai vì chưa có điều kiện của góc
và
Một em nhỏ cân nặng trượt trên cầu trượt dài
(như trong hình dưới đây). Biết rằng, cầu trượt có góc nghiêng so với phương nằm ngang là
. Trong các khẳng định sau, có bao nhiêu khẳng định đúng?
+ Với gia tốc rơi tự do có độ lớn là
thì độ lớn của trọng lực
tác dụng lên em nhỏ có độ lớn là
.
+ Góc giữa độ dịch chuyển so với trọng lực
là
.
+ Công sinh bởi một lực
có độ dịch chuyển
được tính bởi công thức
thì công sinh bởi trọng lực
khi em nhỏ trượt hết chiều dài cầu trượt là
.

» Với gia tốc rơi tự do có độ lớn là
thì độ lớn của trọng lực
tác dụng lên em nhỏ có độ lớn là
.
» Em nhỏ trượt từ điểm tới điểm
nên khi đó góc giữa độ dịch chuyển
so với trọng lực
là
.
» Ta có độ lớn của trọng lực tác dụng lên em nhỏ có độ lớn là
nên công sinh bởi trọng lực
khi em nhỏ trượt hết chiều dài cầu trượt là
.
Cho tam giác . Lấy điểm
nằm ngoài mặt phẳng
. Trên đoạn
lấy điểm
sao cho
và trên đoạn
lấy điểm
sao cho
. Biết biểu diễn
là duy nhất. Tính giá trị biểu thức
?
Hình vẽ minh họa
Theo giả thiết ta có: ;
Lấy điểm P trên cạnh AC sao cho . Khi đó:
Cho và
có
vuông góc với vectơ
và
. Khi đó:
+Vì vuông góc với vectơ
nên:
Ta có . Suy ra
.
Cho hình chóp . Gọi
là giao điểm của
và
.
“Nếu thì
là hình thang ». Đúng vì
.
Vì và
thẳng hàng nên đặt
.
Mà không cùng phương nên
và
“Nếu là hình bình hành thì
. ». Đúng. Học sinh tự biến đổi bằng cách chiêm điểm
vào vế trái.
“Nếu là hình thang thì
. ». Sai. Vì nếu
là hình thang cân có 2 đáy là
thì sẽ sai.
“Nếu thì
là hình bình hành. ». Đúng. Tương tự đáp án A với
là trung điểm 2 đường chéo.
Cho các mệnh đề sau:
(I) Vectơ luôn đồng phẳng với hai vectơ
.
(II) Nếu có và ít nhất một trong ba số
khác không thì ba vectơ
đồng phẳng.
(III) Nếu ba vectơ không đồng phẳng và
thì
.
Hỏi có bao nhiêu mệnh đề đúng?
Do được biểu thị qua hai vectơ
nên (I) đúng.
Xét mệnh đề (II): Giả sử , khi đó:
Suy ra ba vectơ đồng phẳng. Vậy mệnh đề (II) đúng.
Do mệnh đề (III) tương đương với mệnh đề (II) nên mệnh đề (III) đúng.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: