Cho hình chóp có đáy là hình vuông
cạnh bằng
và các cạnh bên đều bằng
. Gọi
và
lần lượt là trung điểm của
và
. Số đo của góc
bằng:
Hình vẽ minh họa
Ta có:
vuông tại
.
Khi đó:
Cho hình chóp có đáy là hình vuông
cạnh bằng
và các cạnh bên đều bằng
. Gọi
và
lần lượt là trung điểm của
và
. Số đo của góc
bằng:
Hình vẽ minh họa
Ta có:
vuông tại
.
Khi đó:
Cho hình chóp Lấy các điểm
lần lượt thuộc các tia
sao cho
, trong đó
là các số thay đổi. Tìm mối liên hệ giữa
để mặt phẳng
đi qua trọng tâm của tam giác
.
Nếu thì
nên
.
Suy ra đi qua trọng tâm của tam giác
=> là đáp án đúng.
Cho lăng trụ tam giác . Đặt
. Biểu diễn vectơ
qua các vectơ
. Chọn đáp án đúng?
Hình vẽ minh họa
Ta có:
Vậy đáp án đúng là: .
Cho hai vectơ và
. Xác định kết luận sai?
Nhận thấy và
chỉ khác nhau về hệ số
và
Ta có
đúng, vì
đúng, vì
Gọi lần lượt là trung điểm của các cạnh
và
của tứ diện
. Gọi
là trung điểm đoạn
và
là 1 điểm bất kỳ trong không gian. Tìm giá trị của
thích hợp điền vào đẳng thức vectơ:
.
Ta có ,
nên
Vậy
Cho tứ diện đều có cạnh bằng
. Tính góc
.

Gọi là trung điểm
.
Khi đó,
Do tam giác đều nên
Và tam giác đều nên
Vậy .
Kết luận .
Trong không gian , cho hai vectơ
và
tạo với nhau một góc
và
,
. Tính
Ta có:
.
Suy ra .
Trong không gian cho điểm và bốn điểm
không thẳng hàng. Điều kiện cần và đủ để
tạo thành hình bình hành là:
Để tạo thành hình bình thành thì
.
Khi đó:
, O là trọng tâm tứ giác (hoặc tứ diện) ABCD. (Loại).
(Loại)
(loại)
Vậy đáp án cần tìm là .
Cho tứ diện đều cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ và
bằng
. Sai||Đúng
c) Nếu thì
. Sai||Đúng
d) Tích vô hướng . Đúng||Sai
Cho tứ diện đều cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ và
bằng
. Sai||Đúng
c) Nếu thì
. Sai||Đúng
d) Tích vô hướng . Đúng||Sai
Hình vẽ minh họa
a) Sai: Các vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là:
.
Do đó có 12 vectơ thỏa mãn yêu cầu.
b) Sai:
c) Sai: .
Do đó suy ra
.
d) Đúng: Ta có:
Suy ra
Điều kiện cần và đủ để ba vectơ không đồng phẳng là:
Ba vectơ đồng phẳng khi và chỉ khi giá của chúng cùng song song với một mặt phẳng.
Gọi là tâm của hình lập phương
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Theo quy tắc hình hộp ta có:
Vì là trung điểm của
suy ra
Cho hình chóp . Gọi
là giao điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa

“Nếu thì
là hình thang » Đúng
Vì và
.
Vì và
thẳng hàng nên đặt
.
Mà không cùng phương nên
và
“Nếu là hình bình hành thì
.“. Đúng.
Hs tự biến đổi bằng cách chêm điểm vào vế trái.
“Nếu là hình thang thì
. ». Sai.
Vì nếu là hình thang cân có 2 đáy là
thì sẽ sai.
“Nếu thì
là hình bình hành ». Đúng.
Tương tự đáp án A với là trung điểm 2 đường chéo.
Cho tứ diện có
và
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Ta có:
Mà
Cho tứ diện có trọng tâm
. Chọn mệnh đề đúng?
Vì G là trọng tâm tứ diện ABCD nên suy ra:
Cho hình hộp CÓ
. Giá trị của
bằng:
Ta có:
Vậy .
Cho hình hộp có tâm
. Gọi
là tâm hình bình hành
. Đặt
,
,
,
. Trong các đẳng thức sau, đẳng thức nào đúng?
Hình vẽ minh họa

+ Gọi lần lượt là trung điểm của
.
+Ta có:
Trong không gian cho hình hộp có
. Gọi
là trung điểm của
,
là giao điểm của
và
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Vì I là trung điểm của B’C’ suy ra
Và K là giao điểm của nên theo định lí Talet
Ta có:
Khi đó
Vậy .
Cho hình hộp . Một đường thẳng
cắt các đường thẳng
lần lượt tại
sao cho
. Tính
.
Hình vẽ minh họa

Đặt .
Vì nên
,
Ta có
Do
.
Vậy .
Trong không gian, cho hai vectơ và
. Vectơ
bằng
Theo quy tắc ba điểm: .
Cho hình chóp có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ bằng
. Sai||Đúng
c) Tích vô hướng của bằng
. Đúng||Sai
d) Độ dài vectơ là
. Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ bằng
. Sai||Đúng
c) Tích vô hướng của bằng
. Đúng||Sai
d) Độ dài vectơ là
. Sai||Đúng
a) Sai
Ta thấy ABCD là hình chữ nhật nên
Suy ra hai vectơ là hai vectơ cùng phương, ngược hướng.
b) Sai
Ta có ABCD là hình chữ nhật nên
Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.
Suy ra
Ta có:
c) Đúng
Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.
Suy ra
Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:
Lại có M là trung điểm của SB nên
Ta tính được
Mà
d) Sai
Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD
Do đó
Suy ra
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: