Trong không gian cho hình hộp . Hỏi bốn vectơ nào có giá cùng thuộc một mặt phẳng?
Hình vẽ minh họa
Từ hình vẽ ta thấy các vectơ có giá cùng thuộc một mặt phẳng
.
Trong không gian cho hình hộp . Hỏi bốn vectơ nào có giá cùng thuộc một mặt phẳng?
Hình vẽ minh họa
Từ hình vẽ ta thấy các vectơ có giá cùng thuộc một mặt phẳng
.
Cho tứ diện có
và
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Ta có
Cho hình hộp CÓ
. Giá trị của
bằng:
Ta có:
Vậy .
Cho hình hộp có tâm
. Gọi
là tâm hình bình hành
. Đặt
,
,
,
. Trong các đẳng thức sau, đẳng thức nào đúng?
Hình vẽ minh họa

+ Gọi lần lượt là trung điểm của
.
+Ta có:
Cho tứ diện đều cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ và
bằng
. Sai||Đúng
c) Nếu thì
. Sai||Đúng
d) Tích vô hướng . Đúng||Sai
Cho tứ diện đều cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ và
bằng
. Sai||Đúng
c) Nếu thì
. Sai||Đúng
d) Tích vô hướng . Đúng||Sai
Hình vẽ minh họa
a) Sai: Các vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là:
.
Do đó có 12 vectơ thỏa mãn yêu cầu.
b) Sai:
c) Sai: .
Do đó suy ra
.
d) Đúng: Ta có:
Suy ra
Cho hình hộp . Một đường thẳng
cắt các đường thẳng
lần lượt tại
sao cho
. Tính
.
Hình vẽ minh họa

Đặt .
Vì nên
,
Ta có
Do
.
Vậy .
Tính chất nào sau đây sai?
Tính chất sai là:
Cho hình hộp . Gọi
và
lần lượt là tâm của hình bình hành
và
. Khẳng định nào sau đây sai ?
“Bốn điểm ,
,
,
đồng phẳng ». Đúng vì
cùng thuộc
“”. Đúng vì
“Ba vectơ không đồng phẳng ». Sai vì
Ba vectơ đồng phẳng.
””. Đúng vì theo câu trên
Cho tứ diện có trọng tâm
. Chọn mệnh đề đúng?
Vì G là trọng tâm tứ diện ABCD nên suy ra:
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Hình vẽ minh họa
a) Đúng: .
b) Đúng: Vi là trung điểm của
nên
Vì là trung điểm của
nên
Vì là trung điểm của
nên
Do đó:
c) Sai:
d) Đúng
Ta có: .
.
Do đó: nhỏ nhất khi
Cho hình tứ diện có trọng tâm
. Mệnh đề nào sau đây sai.
Theo giả thuyết trên thì với là một điểm bất kỳ ta luôn có:
.
Ta thay điểm bởi điểm
thì ta có:
Do vậy là sai.
Trong không gian cho điểm và bốn điểm
không thẳng hàng. Điều kiện cần và đủ để
tạo thành hình bình hành là:
Hình vẽ minh họa
Ta có:
Cho tứ diện . Gọi
lần lượt là trung điểm của
và
,
là trung điểm của
). Xác định vị trí của
để
nhỏ nhất.
Hình vẽ minh họa

Ta có nên
nhỏ nhất khi
.
Cho hình lập phương . Gọi
là tâm của hình lập phương. Chọn đẳng thức đúng?
Theo quy tắc hình hộp:
Mà nên
.
Cho tứ diện đều cạnh bằng
. Gọi
là tâm đường tròn ngoại tiếp tam giác
. Góc giữa
và
bằng:
Hình vẽ minh họa
Gọi M là trung điểm của CD
Vì ABCD là tứ diện đều nên
Ta có:
Suy ra nên số đo góc giữa hai đường thẳng bằng
.
Cho , góc giữa
bằng
. Chọn khẳng định sai trong các khẳng định sau?
Ta có:
Khi đó:
Vậy khẳng định sai là .
Cho hình lăng trụ tam giác . Đặt
trong các đẳng thức sau, đẳng thức nào đúng?
Hình vẽ minh họa
+ Dễ thấy: .
Trong không gian, cho hai vectơ và
. Vectơ
bằng
Theo quy tắc ba điểm: .
Cho hình hộp có các cạnh đều bằng
và các góc
. Tính góc giữa đường thẳng
với các đường thẳng
.
Hình vẽ minh họa

.
Cho hình hộp . Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
Hình vẽ minh họa
Ta có:
.
Vậy .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: