Cho tứ diện . Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là đỉnh thứ tư của hình bình hành
.
Cho tứ diện . Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là đỉnh thứ tư của hình bình hành
.
Trong không gian cho hình hộp . Hỏi bốn vectơ nào có giá cùng thuộc một mặt phẳng?
Hình vẽ minh họa
Từ hình vẽ ta thấy các vectơ có giá cùng thuộc một mặt phẳng
.
Một em nhỏ cân nặng trượt trên cầu trượt dài
(như trong hình dưới đây). Biết rằng, cầu trượt có góc nghiêng so với phương nằm ngang là
. Trong các khẳng định sau, có bao nhiêu khẳng định đúng?
+ Với gia tốc rơi tự do có độ lớn là
thì độ lớn của trọng lực
tác dụng lên em nhỏ có độ lớn là
.
+ Góc giữa độ dịch chuyển so với trọng lực
là
.
+ Công sinh bởi một lực
có độ dịch chuyển
được tính bởi công thức
thì công sinh bởi trọng lực
khi em nhỏ trượt hết chiều dài cầu trượt là
.

» Với gia tốc rơi tự do có độ lớn là
thì độ lớn của trọng lực
tác dụng lên em nhỏ có độ lớn là
.
» Em nhỏ trượt từ điểm tới điểm
nên khi đó góc giữa độ dịch chuyển
so với trọng lực
là
.
» Ta có độ lớn của trọng lực tác dụng lên em nhỏ có độ lớn là
nên công sinh bởi trọng lực
khi em nhỏ trượt hết chiều dài cầu trượt là
.
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Hình vẽ minh họa
a) Đúng: .
b) Đúng: Vi là trung điểm của
nên
Vì là trung điểm của
nên
Vì là trung điểm của
nên
Do đó:
c) Sai:
d) Đúng
Ta có: .
.
Do đó: nhỏ nhất khi
Cho hình lập phương có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn:
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Cho hình lập phương có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn:
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Cho lập phương có cạnh bằng
. Gọi
là trọng tâm tam giác
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Do G là trọng tâm tam giác suy ra
Cho tứ diện đều có cạnh bằng
. Tính góc
.

Gọi là trung điểm
.
Khi đó,
Do tam giác đều nên
Và tam giác đều nên
Vậy .
Kết luận .
Cho tứ diện đều cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ và
bằng
. Sai||Đúng
c) Nếu thì
. Sai||Đúng
d) Tích vô hướng . Đúng||Sai
Cho tứ diện đều cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ và
bằng
. Sai||Đúng
c) Nếu thì
. Sai||Đúng
d) Tích vô hướng . Đúng||Sai
Hình vẽ minh họa
a) Sai: Các vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là:
.
Do đó có 12 vectơ thỏa mãn yêu cầu.
b) Sai:
c) Sai: .
Do đó suy ra
.
d) Đúng: Ta có:
Suy ra
Cho tứ diện . Gọi
lần lượt là trung điểm các cạnh
,
là trọng tâm của tứ diện
và
là một điểm bất kì trong không gian. Tìm giá trị của
thỏa mãn đẳng thức
?
Vì G là trọng tâm tứ diện nên
.
Cho hình chóp . Gọi
là giao điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa

“Nếu thì
là hình thang » Đúng
Vì và
.
Vì và
thẳng hàng nên đặt
.
Mà không cùng phương nên
và
“Nếu là hình bình hành thì
.“. Đúng.
Hs tự biến đổi bằng cách chêm điểm vào vế trái.
“Nếu là hình thang thì
. ». Sai.
Vì nếu là hình thang cân có 2 đáy là
thì sẽ sai.
“Nếu thì
là hình bình hành ». Đúng.
Tương tự đáp án A với là trung điểm 2 đường chéo.
Cho lăng trụ tam giác có
. Hãy phân tích (biểu thị) vectơ
qua các vectơ
.
Hình vẽ minh họa
Theo quy tắc hình bình hành ta có:
Cho hình lăng trụ tam giác đều có
và. Góc giữa hai đường thẳng
và
bằng
Hình vẽ minh họa
Ta có
.
Suy ra .
Cho hình tứ diện có trọng tâm
. Mệnh đề nào sau đây sai.
Theo giả thuyết trên thì với là một điểm bất kỳ ta luôn có:
.
Ta thay điểm bởi điểm
thì ta có:
Do vậy là sai.
Cho tứ diện có
và
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Ta có
Cho hình chóp có đáy
là hình bình hành. Đặt
;
;
;
.
Hình vẽ minh họa
Gọi là tâm của hình bình hành
. Ta phân tích như sau:
(do tính chất của đường trung tuyến)
.
Cho tứ diện và điểm
thỏa mãn
(
là trọng tâm của tứ diện). Gọi
là giao điểm của
và mặt phẳng
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì là giao điểm của
và mặt phẳng
suy ra
là trọng tâm tam giác
suy ra
Theo bài ra ta có:
Cho lăng trụ tam giác có
. Hãy phân tích (biểu thị) vectơ
qua các vectơ
.
Hình vẽ minh họa
Ta có:
.
Cho tứ diện . Gọi
và
lần lượt là trung điểm của
và
. Đặt
,
,
. Khẳng định nào sau đây đúng.
Ta có
.
Cho hình lập phương . Chọn khẳng định sai?
Hình vẽ minh họa
Ta có:
(vì
và
)
Do đó:
Trong không gian cho tứ diện , gọi
lần lượt là trung điểm của
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Vì lần lượt là trung điểm của
suy ra
Xét các phương án như sau:
đồng phẳng đúng vì
không đồng phẳng đúng vì MN không nằm trong (ABC)
đồng phẳng sai vì AN không nằm trong (MNC)
đồng phẳng đúng vì
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: