Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 6 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định mệnh đề đúng

    Cho tứ diện ABCD. Điểm N xác định bởi công thức \overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AC} - \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC} -
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AN} -
\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AD}
\Leftrightarrow \overrightarrow{BN} = \overrightarrow{AD}

    Vậy N là đỉnh thứ tư của hình bình hành CDBN.

  • Câu 2: Nhận biết
    Tìm các vectơ đồng phẳng

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Hỏi bốn vectơ nào có giá cùng thuộc một mặt phẳng?

    Hướng dẫn:

    Hình vẽ minh họa

    Từ hình vẽ ta thấy các vectơ \overrightarrow{A'D};\overrightarrow{AA'};\overrightarrow{A'D'};\overrightarrow{DD'} có giá cùng thuộc một mặt phẳng (AA'D'D).

  • Câu 3: Vận dụng
    Xác định số khẳng định đúng

    Một em nhỏ cân nặng m = 25(kg) trượt trên cầu trượt dài 3,5(m) (như trong hình dưới đây). Biết rằng, cầu trượt có góc nghiêng so với phương nằm ngang là 30{^\circ}. Trong các khẳng định sau, có bao nhiêu khẳng định đúng?

    + Với gia tốc rơi tự do \overrightarrow{g} có độ lớn là g = 9,8\left( m/s^{2} \right) thì độ lớn của trọng lực \overrightarrow{P} =
m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là 245(N).

    + Góc giữa độ dịch chuyển \overrightarrow{d} so với trọng lực \overrightarrow{P}30{^\circ}.

    + Công A(J) sinh bởi một lực \overrightarrow{F} có độ dịch chuyển \overrightarrow{d} được tính bởi công thức A = \left| \overrightarrow{F}
\right|.\left| \overrightarrow{d} \right|.cos\left(
\overrightarrow{F};\overrightarrow{d} \right) thì công sinh bởi trọng lực \overrightarrow{P} khi em nhỏ trượt hết chiều dài cầu trượt là 428,75(J).

    A drawing of a child on a slideDescription automatically generated

    Hướng dẫn:

    » Với gia tốc rơi tự do \overrightarrow{g} có độ lớn là g = 9,8\left( m/s^{2} \right) thì độ lớn của trọng lực \overrightarrow{P} =
m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là \left| \overrightarrow{P} \right| = m\left|
\overrightarrow{g} \right| = 25.9,8 = 245(N).

    » Em nhỏ trượt từ điểm A tới điểm B nên khi đó góc giữa độ dịch chuyển \overrightarrow{d} so với trọng lực \overrightarrow{P}\left( \overrightarrow{d,}\overrightarrow{P}
\right) = \left( \overrightarrow{AB,}\overrightarrow{P} \right) =
60{^\circ}.

    » Ta có độ lớn của trọng lực \overrightarrow{P} = m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là \left|
\overrightarrow{P} \right| = m\left| \overrightarrow{g} \right| = 25.9,8
= 245(N) nên công sinh bởi trọng lực \overrightarrow{P} khi em nhỏ trượt hết chiều dài cầu trượt là A = \left|
\overrightarrow{P} \right|.\left| \overrightarrow{d} \right|.cos\left(
\overrightarrow{P,}\overrightarrow{d} \right) = 245.3,5.cos60{^\circ} =
428,75(J).

  • Câu 4: Vận dụng
    Xác định tính đúng sai của từng phương án

    Cho tứ diện ABCD. Gọi M;N;P;Q;R;S;G lần lượt là trung điểm các đoạn thẳng AB;CD;AC;BD;AD;BC;MN.

    Xét tính đúng sai của các khẳng định sau.

    a) \overrightarrow{MR} =
\overrightarrow{SN}. Sai||Đúng

    b) \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Đúng||Sai

    c) 2\overrightarrow{PQ} =
\overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD}. Sai||Đúng

    d) \left| \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}
ight| nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai

    Đáp án là:

    Cho tứ diện ABCD. Gọi M;N;P;Q;R;S;G lần lượt là trung điểm các đoạn thẳng AB;CD;AC;BD;AD;BC;MN.

    Xét tính đúng sai của các khẳng định sau.

    a) \overrightarrow{MR} =
\overrightarrow{SN}. Sai||Đúng

    b) \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Đúng||Sai

    c) 2\overrightarrow{PQ} =
\overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD}. Sai||Đúng

    d) \left| \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}
ight| nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai

    Hình vẽ minh họa

    a) Đúng: \left. \ \begin{matrix}\overrightarrow{MR} = \dfrac{1}{2}\overrightarrow{BD} \\\overrightarrow{SN} = \dfrac{1}{2}\overrightarrow{BD} \\\end{matrix} ight\} \Rightarrow \overrightarrow{MR} =\overrightarrow{SN}.

    b) Đúng: Vi M là trung điểm của AB nên \overrightarrow{GA} + \overrightarrow{GB} =
2\overrightarrow{GM}

    N là trung điểm của CD nên \overrightarrow{GC} + \overrightarrow{GD} =
2\overrightarrow{GN}

    G là trung điểm của MN nên \overrightarrow{GM} + \overrightarrow{GN} =
\overrightarrow{0}

    Do đó: \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
2(\overrightarrow{GM} + \overrightarrow{GN}) = 2.\overrightarrow{0} =
\overrightarrow{0}

    c) Sai: \overrightarrow{PQ} =\overrightarrow{AQ} - \overrightarrow{AP} =\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AD}) -\frac{1}{2}\overrightarrow{AC}\Leftrightarrow 2\overrightarrow{PQ} =\overrightarrow{AB} - \overrightarrow{AC} +\overrightarrow{AD}

    d) Đúng

    Ta có: \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} =
4\overrightarrow{IG} + (\overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} + \overrightarrow{GD}) =
4\overrightarrow{IG}.

    \Rightarrow |\overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}| =
|4\overrightarrow{IG}| = 4IG.

    Do đó: |\overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} +
\overrightarrow{ID}| nhỏ nhất khi IG = 0 \Leftrightarrow I \equiv G 

  • Câu 5: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Cho lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi G là trọng tâm tam giác AB'C. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{BA} +
\overrightarrow{BC} + \overrightarrow{BB'} =
\overrightarrow{BD'}

    Do G là trọng tâm tam giác AB'C suy ra \overrightarrow{BA} + \overrightarrow{BC} +
\overrightarrow{BB'} = 3\overrightarrow{BG} \Leftrightarrow
\overrightarrow{BD'} = 3\overrightarrow{BG}

  • Câu 7: Thông hiểu
    Tính góc giữa hai vecto

    Cho tứ diện đều ABCD có cạnh bằng a. Tính góc \left( \overrightarrow{AB},\overrightarrow{CD}
\right).

    Hướng dẫn:

    Gọi M là trung điểm CD.

    Khi đó, \overrightarrow{AB}.\overrightarrow{CD} = \left(
\overrightarrow{AM} + \overrightarrow{MB} \right).\overrightarrow{CD} =
\overrightarrow{AM}.\overrightarrow{CD} +
\overrightarrow{MB}.\overrightarrow{CD}

    Do tam giác ACD đều nên AM\bot CD \Rightarrow
\overrightarrow{AM}.\overrightarrow{CD} = 0

    Và tam giác BCD đều nên BM\bot CD \Rightarrow
\overrightarrow{BM}.\overrightarrow{CD} = 0

    Vậy \overrightarrow{AB}.\overrightarrow{CD} = \left(\overrightarrow{AM} + \overrightarrow{MB} \right).\overrightarrow{CD}=\overrightarrow{AM}.\overrightarrow{CD} +\overrightarrow{MB}.\overrightarrow{CD} = 0\Rightarrow\overrightarrow{AB}\bot\overrightarrow{CD}.

    Kết luận \left(
\overrightarrow{AB},\overrightarrow{CD} \right) =
90{^\circ}.

  • Câu 8: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho tứ diện đều ABCD cạnh a. E là điểm trên đoạn CD sao cho ED = 2CE. Xét tính đúng sai của các khẳng định sau:

    a) Có 6 vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{AB}\overrightarrow{BC} bằng 60^{\circ}. Sai||Đúng

    c) Nếu \overrightarrow{BE} =
m\overrightarrow{BA} + n\overrightarrow{BC} +
p\overrightarrow{BD} thì m + n + p
= \frac{2}{3}. Sai||Đúng

    d) Tích vô hướng \overrightarrow{AD}.\overrightarrow{BE} =
\frac{a^{2}}{6}. Đúng||Sai

    Đáp án là:

    Cho tứ diện đều ABCD cạnh a. E là điểm trên đoạn CD sao cho ED = 2CE. Xét tính đúng sai của các khẳng định sau:

    a) Có 6 vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{AB}\overrightarrow{BC} bằng 60^{\circ}. Sai||Đúng

    c) Nếu \overrightarrow{BE} =
m\overrightarrow{BA} + n\overrightarrow{BC} +
p\overrightarrow{BD} thì m + n + p
= \frac{2}{3}. Sai||Đúng

    d) Tích vô hướng \overrightarrow{AD}.\overrightarrow{BE} =
\frac{a^{2}}{6}. Đúng||Sai

    Hình vẽ minh họa

    a) Sai: Các vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là: \overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD},\overrightarrow{BA},\overrightarrow{BC},\overrightarrow{BD},\overrightarrow{CA},\overrightarrow{CB},\overrightarrow{CD},\overrightarrow{DA},\overrightarrow{DB},\overrightarrow{DC}.

    Do đó có 12 vectơ thỏa mãn yêu cầu.

    b) Sai:  (\overrightarrow{AB},\overrightarrow{BC})
= 180^{\circ} - (\overrightarrow{BA},\overrightarrow{BC}) = 180^{\circ}
- ABC = 120^{\circ} 

    c) Sai: \overrightarrow{BE} =\overrightarrow{BC} + \overrightarrow{CE} = \overrightarrow{BC} +\frac{1}{3}\overrightarrow{CD}= \overrightarrow{BC} +\frac{1}{3}(\overrightarrow{BD} - \overrightarrow{BC}) =\frac{2}{3}\overrightarrow{BC} +\frac{1}{3}\overrightarrow{BD}.

    Do đó m = 0,n = \frac{2}{3},p =
\frac{1}{3} suy ra m + n + p =
1.

    d) Đúng: Ta có:

    \overrightarrow{BE} =
\overrightarrow{AE} - \overrightarrow{AB} = (\overrightarrow{AC} +
\overrightarrow{CE}) - \overrightarrow{AB} = \overrightarrow{AC} +
\frac{1}{3}\overrightarrow{CD} - \overrightarrow{AB}

    = \overrightarrow{AC} +
\frac{1}{3}(\overrightarrow{AD} - \overrightarrow{AC}) -
\overrightarrow{AB} = \frac{2}{3}\overrightarrow{AC} +
\frac{1}{3}\overrightarrow{AD} - \overrightarrow{AB}

    Suy ra

    \overrightarrow{AD}.\overrightarrow{BE} =\overrightarrow{AD}.\left( \frac{2}{3}\overrightarrow{AC} +\frac{1}{3}\overrightarrow{AD} - \overrightarrow{AB} ight)=\frac{2}{3}.\overrightarrow{AD}.\overrightarrow{AC} +\frac{1}{3}.{\overrightarrow{AD}}^{2} -\overrightarrow{AD}.\overrightarrow{AB}

    = \frac{2}{3}.a.a.\cos 60^{\circ} +\frac{1}{3}a^{2} - a.a.\cos60^{\circ} = \frac{a^{2}}{6}.

  • Câu 9: Thông hiểu
    Tìm giá trị k thỏa mãn biểu thức

    Cho tứ diện ABCD. Gọi M;N lần lượt là trung điểm các cạnh AC;BD, G là trọng tâm của tứ diện ABCDO là một điểm bất kì trong không gian. Tìm giá trị của k thỏa mãn đẳng thức k.\left( \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} ight)
= \overrightarrow{OG}?

    Hướng dẫn:

    Vì G là trọng tâm tứ diện nên

    \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}

    \Leftrightarrow \left(
\overrightarrow{GO} + \overrightarrow{OA} ight) + \left(
\overrightarrow{GO} + \overrightarrow{OB} ight) + \left(
\overrightarrow{GO} + \overrightarrow{OC} ight) + \left(
\overrightarrow{GO} + \overrightarrow{OD} ight) =
\overrightarrow{0}

    \Leftrightarrow 4\overrightarrow{GO} +
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0}

    \Leftrightarrow \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =
4\overrightarrow{OG}

    \Leftrightarrow k = \dfrac{1}{4}.

  • Câu 10: Vận dụng
    Chọn khẳng định sai

    Cho hình chóp S.ABCD. Gọi O là giao điểm của ACBD. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Hình vẽ minh họa

    “Nếu \overrightarrow{SA} +
\overrightarrow{SB} + 2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO} thì ABCD là hình thang » Đúng

    \overrightarrow{SA} + \overrightarrow{SB} +
2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO}SC\bot(BIH).

    O,A,CBIH thẳng hàng nên đặt \overrightarrow{OA} = k\overrightarrow{OC};OB =
m\overrightarrow{OD}

    \Rightarrow (k + 1)\overrightarrow{OC} +
(m + 1)\overrightarrow{OD} = \overrightarrow{0}.

    \overrightarrow{OC},\overrightarrow{OD} không cùng phương nên k = - 2m = - 2

    \Rightarrow \frac{OA}{OC} = \frac{OB}{OD} = 2
\Rightarrow AB//CD.

    “Nếu ABCD là hình bình hành thì \overrightarrow{SA} + \overrightarrow{SB} +
\overrightarrow{SC} + \overrightarrow{SD} =
4\overrightarrow{SO}.“. Đúng.

    Hs tự biến đổi bằng cách chêm điểm O vào vế trái.

    “Nếu ABCD là hình thang thì \overrightarrow{SA} + \overrightarrow{SB} +
2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO}. ». Sai.

    Vì nếu ABCD là hình thang cân có 2 đáy là AD,BC thì sẽ sai.

    “Nếu \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{SD} =
4\overrightarrow{SO} thì ABCD là hình bình hành ». Đúng.

    Tương tự đáp án A với k = - 1,m = - 1 \Rightarrow
O là trung điểm 2 đường chéo.

  • Câu 11: Thông hiểu
    Phân tích vectơ

    Cho lăng trụ tam giác ABC.A'B'C'\overrightarrow{AA'} =
\overrightarrow{a},\overrightarrow{\ AB} = \overrightarrow{b,}\
\overrightarrow{AC} = \overrightarrow{c}. Hãy phân tích (biểu thị) vectơ \overrightarrow{B'C} qua các vectơ \overrightarrow{a},\ \
\overrightarrow{b},\ \ \overrightarrow{c}.

    Hướng dẫn:

    Hình vẽ minh họa

    Theo quy tắc hình bình hành ta có:

    \overrightarrow{B'C} =
\overrightarrow{B'B} + \overrightarrow{B'C'} = -
\overrightarrow{AA'} + \overrightarrow{BC}

    = - \overrightarrow{a} +
\overrightarrow{AC} - \overrightarrow{AB} = - \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}

  • Câu 12: Vận dụng
    Chọn đáp án đúng

    Cho hình lăng trụ tam giác đều ABC.A'B'C'AB = a và. Góc giữa hai đường thẳng AB'BC'bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có \overrightarrow{AB'}.\overrightarrow{BC'}
= \left( \overrightarrow{AB} + \overrightarrow{BB'} ight)\left(
\overrightarrow{BC} + \overrightarrow{CC'} ight)

    =
\overrightarrow{AB}.\overrightarrow{BC} +
\overrightarrow{AB}.\overrightarrow{CC'} +
\overrightarrow{BB'}.\overrightarrow{BC} +
\overrightarrow{BB'}.\overrightarrow{CC'}

    =
\overrightarrow{AB}.\overrightarrow{BC} +
\overrightarrow{AB}.\overrightarrow{CC'} +
\overrightarrow{BB'}.\overrightarrow{BC} +
\overrightarrow{BB'}.\overrightarrow{CC'}

    = - \frac{a^{2}}{2} + 0 + 0 + 2a^{2} =
\frac{3a^{2}}{2}.

    Suy ra \cos\left(
\overrightarrow{AB^{'}},\overrightarrow{BC^{'}} ight) =
\frac{\overrightarrow{AB^{'}}.\overrightarrow{BC^{'}}}{\left|
\overrightarrow{AB^{'}} ight|.\left| \overrightarrow{BC^{'}}
ight|}=
\dfrac{\dfrac{3a^{2}}{2}}{a\sqrt{3}.a\sqrt{3}} = \dfrac{1}{2} \Rightarrow
\widehat{(AB',BC')} = 60{^\circ}.

  • Câu 13: Thông hiểu
    Tìm câu sai

    Cho hình tứ diện ABCD có trọng tâm G. Mệnh đề nào sau đây sai.

    Hướng dẫn:

    Theo giả thuyết trên thì với O là một điểm bất kỳ ta luôn có:

    \overrightarrow{OG} = \frac{1}{4}\left(
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} ight).

    Ta thay điểm O bởi điểm A thì ta có:

    \overrightarrow{AG} = \frac{1}{4}\left(
\overrightarrow{AA} + \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight)

    \Leftrightarrow \overrightarrow{AG} =
\frac{1}{4}\left( \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight)

    Do vậy \overrightarrow{AG} =
\frac{2}{3}\left( \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight) là sai.

  • Câu 14: Thông hiểu
    Xác định góc giữa cặp vecto

    Cho tứ diện ABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} = 60^{0}. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{CD} ?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có

    \overrightarrow{AB}.\overrightarrow{CD}
= \overrightarrow{AB}.\left( \overrightarrow{AD} - \overrightarrow{AC}
ight) = \overrightarrow{AB}.\overrightarrow{AD} -
\overrightarrow{AB}.\overrightarrow{AC}

    = AB.AD.\cos60^{0} - AB.AC.\cos60^{0} =0

    \Rightarrow \left(
\overrightarrow{AB},\overrightarrow{CD} ight) = 90^{0}

  • Câu 15: Thông hiểu
    Chọn câu đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt \overrightarrow{SA} = \overrightarrow{a}; \overrightarrow{SB} =
\overrightarrow{b}; \overrightarrow{SC} = \overrightarrow{c}; \overrightarrow{SD} =
\overrightarrow{d}.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi O là tâm của hình bình hành ABCD. Ta phân tích như sau:

    \left\{ \begin{matrix}
\overrightarrow{SA} + \overrightarrow{SC} = 2\overrightarrow{SO} \\
\overrightarrow{SB} + \overrightarrow{SD} = 2\overrightarrow{SO} \\
\end{matrix} ight. (do tính chất của đường trung tuyến)

    \Rightarrow \overrightarrow{SA} +
\overrightarrow{SC} = \overrightarrow{SB} + \overrightarrow{SD}
\Leftrightarrow \overrightarrow{a} + \overrightarrow{c} =
\overrightarrow{d} + \overrightarrow{b}.

  • Câu 16: Thông hiểu
    Chọn đẳng thức đúng

    Cho tứ diện ABCD và điểm G thỏa mãn \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0} (G là trọng tâm của tứ diện). Gọi G_{0} là giao điểm của GA và mặt phẳng (BCD). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    G_{0} là giao điểm của GA và mặt phẳng (BCD) suy ra G_{0} là trọng tâm tam giác BCD suy ra \overrightarrow{G_{0}B} + \overrightarrow{G_{0}C}
+ \overrightarrow{G_{0}D} = \overrightarrow{0}

    Theo bài ra ta có: \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{GA} +
3\overrightarrow{GG_{0}} + \overrightarrow{G_{0}B} +
\overrightarrow{G_{0}C} + \overrightarrow{G_{0}D} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{GA} +
3\overrightarrow{GG_{0}} = \overrightarrow{0} \Leftrightarrow
\overrightarrow{GA} = 3\overrightarrow{G_{0}G}

  • Câu 17: Thông hiểu
    Phân tích vectơ theo một vectơ cho trước

    Cho lăng trụ tam giác ABC.A'B'C'\overrightarrow{AA'} =
\overrightarrow{a},\overrightarrow{\ AB} = \overrightarrow{b,}\
\overrightarrow{AC} = \overrightarrow{c}. Hãy phân tích (biểu thị) vectơ \overrightarrow{BC'} qua các vectơ \overrightarrow{a},\
\overrightarrow{b},\ \ \overrightarrow{c}.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{BC'} =
\overrightarrow{BA} + \overrightarrow{AC'} = - \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AA'}

    = - \overrightarrow{b} +
\overrightarrow{c} + \overrightarrow{a} = \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}.

  • Câu 18: Thông hiểu
    Tìm khẳng định đúng

    Cho tứ diện ABCD. Gọi MP lần lượt là trung điểm của ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{b},\overrightarrow{AC} =
\overrightarrow{c},\overrightarrow{AD} = \overrightarrow{d}. Khẳng định nào sau đây đúng.

    Hướng dẫn:

    Ta có

    \overrightarrow{c} + \overrightarrow{d}
- \overrightarrow{b} = \overrightarrow{AC} + \overrightarrow{AD} -
\overrightarrow{AB}

    = 2\overrightarrow{AP} -
2\overrightarrow{AM} = 2\left( \overrightarrow{MP} ight)

    \Leftrightarrow \overrightarrow{MP} =
\frac{1}{2}(\overrightarrow{c} + \overrightarrow{d} -
\overrightarrow{b}).

  • Câu 19: Thông hiểu
    Chọn khẳng định sai

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Chọn khẳng định sai?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AA_{1}}.\overrightarrow{B_{1}D_{1}}
= \overrightarrow{BB_{1}}.\overrightarrow{BD} =
\overrightarrow{BB_{1}}.\left( \overrightarrow{BA} + \overrightarrow{BC}
ight)

    =
\overrightarrow{BB_{1}}.\overrightarrow{BA} +
\overrightarrow{BB_{1}}.\overrightarrow{BC} = 0 (vì \left( \overrightarrow{BB_{1}},\overrightarrow{BA}
ight) = 90^{0}\left(
\overrightarrow{BB_{1}},\overrightarrow{BC} ight) =
90^{0})

    Do đó: \left(
\overrightarrow{AA_{1}},\overrightarrow{B_{1}D_{1}} ight) = 90^{0}
\Rightarrow \left( AA_{1},B_{1}D_{1} ight) = 90^{0}

  • Câu 20: Nhận biết
    Chọn khẳng định sai

    Trong không gian cho tứ diện ABCD, gọi M;N lần lượt là trung điểm của AD;BC. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của AD;BC suy ra \left\{ \begin{matrix}
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{AB} +
\overrightarrow{DC} ight) \\
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{BD} +
\overrightarrow{AC} ight) \\
\end{matrix} ight.

    Xét các phương án như sau:

    \overrightarrow{AB};\overrightarrow{DC};\overrightarrow{MN} đồng phẳng đúng vì \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{AB} + \overrightarrow{DC}
ight)

    \overrightarrow{AB};\overrightarrow{AC};\overrightarrow{MN} không đồng phẳng đúng vì MN không nằm trong (ABC)

    \overrightarrow{AN};\overrightarrow{CM};\overrightarrow{MN} đồng phẳng sai vì AN không nằm trong (MNC)

    \overrightarrow{BD};\overrightarrow{AC};\overrightarrow{MN} đồng phẳng đúng vì \overrightarrow{MN} =
\frac{1}{2}\left( \overrightarrow{BD} + \overrightarrow{AC}
ight).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo