Cho hai biến cố và
có
. Tính
.
Theo công thức tính xác suất có điều kiện ta có:
.
Vì và
là hai biến cố xung khắc và
nên theo tính chất của xác suất, ta có:
.
Cho hai biến cố và
có
. Tính
.
Theo công thức tính xác suất có điều kiện ta có:
.
Vì và
là hai biến cố xung khắc và
nên theo tính chất của xác suất, ta có:
.
Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn , biết rằng có ít nhất một con đã ra mặt 5 chấm.
Gọi : "ít nhất một con đã ra mặt 5 chấm".
Và : "tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10 ".
Ta có: .
Biến cố có các trường hợp
.
Biến cố có 3 trường hợp xảy ra:
có xác suất là:
.
Vậy .
Theo thống kê ở các gia đình có hai con thì xác suất để con thứ nhất và con thứ hai là đều con trai là và hai con đều là gái là
, còn xác suất con thứ nhất và con thứ hai có một trai và một gái là đồng khả năng. Biết khi xét một gia đình được chọn ngẫu nhiên có con thứ nhất là con gái, tìm xác suất để con thứ hai là trai.
Gọi là 'con thứ nhất là con trai' và
là 'con thứ hai là con trai' thì theo đề bài ta có:
,
và
Ta cần tìm .
Ta có
Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. An lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa. Xét các biến cố:
: "Quả bóng lấy ra lần đầu có số chẵn"
: "Quả bóng lấy ra lần hai có số lẻ".
Tính xác suất có điều kiện .
Xác định không gian mẫu Ω và các biến cố.
Ta có .
⇒
;
⇒
.
Vậy .
Một trường trung học phổ thông có 600 học sinh, trong đó có 245 học sinh nam và 355 học sinh nữ. Tổng kết học kỳ I, có 170 học sinh đạt danh hiệu học sinh giỏi, trong đó có 80 học sinh nam và 90 học sinh nữ. Chọn ra ngẫu nhiên một học sinh trong số 600 học sinh đó. Tính xác suất để học sinh được chọn có danh hiệu học sinh giỏi và là nam (làm tròn kết quả đến hàng phần trăm).
Xét hai biến cố sau:
A: "Học sinh được chọn ra đạt điểm giỏi";
: "Học sinh được chọn ra là học sinh nam".
Khi đó, xác suất để học sinh được chọn ra đạt danh hiệu học sinh giỏi và là nam, chính là xác suất của với điểu kiện
.
Do có 245 học sinh nam nên .
Vì thế, ta có;
Vậy xác suất để học sinh được chọn ra đạt danh hiệu học sinh giỏi và là nam bằng .
Một gia đình có 2 đứa trẻ. Biết rằng có ít nhất 1 đứa trẻ là con gái. Hỏi xác suất 2 đứa trẻ đều là con gái là bao nhiêu? Cho biết xác suất để một đứa trẻ là trai hoặc gái là bằng nhau.
Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.
Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng:
(trai, trai), (gái, gái), (gái, trai), (trai, gái).
Gọi A là biến cố “Cả hai đứa trẻ đều là con gái”
Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”
Ta có
Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:
Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
3 cuốn sách lấy ra không cùng một loại
.
Để tìm số phần tử của , ta đi tìm số phần tử của biến cố
, với biến cố
là 3 cuốn sách lấy ra cùng một loại.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Để thành lập đội tuyển quốc gia về một môn học, người ta tổ chức một cuộc thi tuyển gồm 3 vòng. Vòng thứ nhất lấy thí sinh; vòng thứ hai lấy
thí sinh đã qua vòng thứ nhất và vòng thứ ba lấy
thí sinh đã qua vòng thứ hai. Để vào được đội tuyển, thí sinh phải vượt qua được cả 3 vòng thi. Tính xác suất để một thí sinh bất kỳ bị loại ở vòng thứ hai, biết rằng thí sinh này bị loại?
Gọi là "thí sinh vượt qua vòng thứ
' thì ta có
và
Gọi là biến cố thí sinh được vào đội tuyển thì
xảy ra nếu thí sinh vượt qua cả 3 vòng, nghĩa là
Gọi là biến cố "thí sinh bị loại ở vòng 2, biết thí sinh này bị loại'.
Ta biểu diễn .
vì
Cho hai biến cố có
. Xác định
?
Theo công thức tính xác suất có điều kiện ta có:
Vì và
là hai biến cố xung khắc và
nên theo tính chất của xác suất ta có:
Trong một túi có một số viên kẹo cùng loại, chỉ khác màu, trong đó có 6 viên kẹo màu trắng, còn lại là kẹo màu xanh. Bạn T lấy ngẫu nhiên 1 viên kẹo từ trong túi, không trả lại. Sau đó T lại lấy ngẫu nhiên thêm 1 viên kẹo khác từ trong túi. Hỏi ban đầu trong túi có bao nhiêu viên kẹo? Biết rằng xác suất T lấy được cả hai viên kẹo màu trắng là .
Gọi A là biến cố “T lấy được viên kẹo màu trắng ở lần thứ nhất”
Gọi B là biến cố “T lấy được viên kẹo màu trắng ở lần thứ hai”.
Ta có xác suất để T lấy được cả hai viên kẹo màu trắng là:
Gọi số kẹo ban đầu trong túi là: (viên)
Điều kiện
Ta có:
Theo công thức nhân xác suất, ta có:
Mà
Vậy ban đầu trong túi có 10 viên kẹo.
Bốn quả bóng giống nhau được đánh số 1, 2, 3 và 4 rồi cho vào hộp. Một quả bóng được rút ngẫu nhiên ra khỏi hộp và không được trả lại vào hộp. Quả bóng thứ hai sau đó được rút ngẫu nhiên từ chiếc hộp. Xác suất để số đầu tiên được rút ra là số 2 nếu biết số đó tổng số ghi trê 2 quả lấy ra ít nhất là 4 bằng
Gọi A là biến cố quả thứ 2 rút ra mang số 2.
Gọi B là biến cố để tổng các số trên 2 quả lấy ra ít nhất là 4.
Ta có: .
Lại có: các cặp số có tổng ít nhất bằng 4 là:
Các cặp số có tổng ít nhất bằng 4 nhưng quả thứ 2 mang số 2 là
Do đó: ;
.
Vậy .
Giả sử trong một nhóm người có người là không nhiễm bệnh. Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm đó. Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là
, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là
. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.
Cách 1: Sơ đồ hình cây
Gọi : “Người được chọn ra không nhiễm bệnh”.
Và : “Người được chọn ra có phản ứng dương tính”
Theo bài ta có:
Do đó:
Ta có sơ đồ hình cây như sau:

Vậy: .
Cách 2: Sử dụng công thức
Một tổ có 15 sinh viên trong đó có 5 sinh viên học giỏi môn Toán. Cần chia làm 5 nhóm, mỗi nhóm 3 sinh viên. Tính xác suất để nhóm nào cũng có một sinh viên học giỏi môn Toán?
Gọi là biến cố 'nhóm thứ
có 1 người giỏi Toán' và
là sự kiện nhóm nào cũng có người giỏi Toán, thì dễ dàng nhận thấy:
Ta có:
Áp dụng công thức xác suất của tích ta có:
Một tập gồm 10 chứng từ, trong đó có 2 chứng từ không hợp lệ. Một cán bộ kế toán rút ngẫu nhiên 1 chứng từ và tiếp đó rút ngẫu nhiên 1 chứng từ khác để kiểm tra. Tính xác suất để cả 2 chứng từ rút ra đều hợp lệ?
Gọi A là biến cố cả 2 chứng từ rút ra đều hợp lệ
B là biến cố trong 3 chứng từ rút ra, chỉ có chứng từ thứ 3 không hợp lệ.
Theo yêu cầu của đầu bài ta phải tính xác xác suất
Nếu gọi Ai là biến cố chứng từ rút ra lần thứ i là hợp lệ} (i = 1,3).
Khi đó ta có: và
Vì vậy các xác suất cần tìm là:
Trong một đội tuyển có ba vận động viên và
thi đấu với xác suất chiến thắng lần lượt là
và
. Giả sử mỗi người thi đấu một trận độc lập với nhau. Tính xác suất để
thua trong trường hợp đội tuyển thắng hai trận.
Gọi là biến cố “vận động viên
chiến thắng”, ta có
;
là biến cố “vận động viên
chiến thắng” thì
;
là biến cố “vận động viên
chiến thắng” thì
.
Gọi là biến cố “đội tuyển thắng hai trận”. Ta có
.
Vậy xác suất cần tính là
.
Một bài trắc nghiệm có 10 câu hỏi, mỗi câu hỏi có 4 phương án lựa chọn trong đó có 1 đáp án đúng được 5 điểm và mỗi câu trả lời sai bị trừ đi 2 điểm. Một học sinh không học bài nên đánh hàng loạt một câu trả lời. Tìm xác suất để học sinh này nhận điểm dưới 1.
Tìm xác suất để học sinh trả lời câu đúng và câu sai.
Gọi x là câu trả lời đúng. Từ đó tính số điểm học sinh đạt được theo x.
Từ giả thiết học sinh được điểm dưới 1 tìm x
Từ đó sử dụng quy tắc cộng xác suất để tìm xác suất của bài toán
Xác suất để học sinh trả lời đúng 1 câu là và trả lời sai 1 câu là
.
Gọi là số câu trả lời đúng
là số câu trả lời sai.
Số điểm học sinh đạt được là:
Học sinh nhận được điểm dưới 1 khi
Mà
Gọi là biến cố: "Học sinh trả lời đúng
câu"
là biến cố "Học sinh nhận điểm dưới 1"
Suy ra và
Mà nên
Tung một con xúc sắc hai lần độc lập nhau. Biết rằng lần tung thứ nhất được số chấm chẵn. Tính xác suất tổng số chấm hai lần tung bằng ?
Gọi Ti: "Tổng số nốt hai lần tung bằng i"
Nj,k: "Số nốt trên lần tung thứ j bằng k"
Ta tìm
Một học sinh làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là . Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ hai là
. Nhưng nếu làm sai bài thứ nhất thì khả năng làm đúng bài thứ hai là
. Tính xác suất học sinh đó làm đúng cả hai bài?
Gọi A: “Làm đúng bài thứ nhất”.
Và B: “Làm đúng bài thứ hai”
Khi đó biến cố: “làm đúng cả hai bài” là
Theo bài ta có:
Do đó:
Ta có sơ đồ hình cây như sau:
Vậy
Một xí nghiệp mỗi ngày sản xuất ra sản phẩm trong đó có
sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Đáp án: 0,02
Một xí nghiệp mỗi ngày sản xuất ra sản phẩm trong đó có
sản phẩm lỗi. Lần lượt lấy ra ngẫu nhiên hai sản phẩm không hoàn lại để kiểm tra. Tính xác suất của biến cố: Sản phẩm lấy ra lần thứ hai bị lỗi (làm tròn kết quả đến hàng phần trăm).
Đáp án: 0,02
Xét các biến cố:
: Sản phẩm lấy ra lần thứ nhất bị lỗi.
Khi đó, ta có: ;
.
: Sản phẩm lấy ra lần thứ hai bị lỗi.
Khi sản phẩm lấy ra lần thứ nhất bị lỗi thì còn sản phẩm và trong đó có
sản phẩm lỗi nên ta có:
, suy ra
.
Khi sản phẩm lấy ra lần thứ nhất không bị lỗi thì còn sản phẩm trong đó có
sản phẩm lỗi nên ta có:
, suy ra
.
Khi đó, xác suất để sản phẩm lấy ra lần thứ hai bị lỗi là:
.
Đáp số: .
Cuối tuần M đến sân chơi để bắn cung, biết khoảng cách bắn tên thay đổi liên tục và khả năng bạn M bắn trúng bia tỉ lệ nghịch với khoảng cách bắn. M bắn lần đầu ở khoảng cách với xác suất trúng bia là
, nếu bị trượt M bắn tiếp mũi tên thứ hai ở khoảng cách
, nếu lại trượt M bắn mũi tên thứ ba ở khoảng cách
. Tính xác suất để M bắn trúng bia?
Gọi A là biến cố “M bắn trúng bia ở lần thứ nhất”
Gọi B là biến cố “M bắn trúng bia ở lần thứ hai”
Gọi C là biến cố “M bắn trúng bia ở lần thứ ba”
Ta có:
Vì xác suất bắn trúng bia trong mỗi lần bắn tỷ lệ nghịch với khoảng cách bắn nên ta có:
Ta có sơ đồ cây như sau:
Xác suất để M bắn trúng bia là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: