Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 14 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tìm phương trình mặt phẳng (P)

    Trong không gian Oxyz, cho hai điểm A(1;2; - 1),B(3;0;3). Biết mặt phẳng (P) đi qua điểm A và cách B một khoảng lớn nhất. Phương trình mặt phẳng (P)

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của B lên (P), suy ra d(B, (P)) = AH.

    Ta có BH ≤ AB.

    Dấu “=” xảy ra ⇔ H ≡ A

    ⇒ BHmax = AB khi AB ⊥ (P).

    Ta có:

    \left\{ \begin{matrix}
AB\bot(P) \\
A \in (P) \\
\end{matrix} ight.\  \Rightarrow (P):2x - 2y + 4z + 6 = 0

    \Leftrightarrow x - y + 2z + 3 =
0

  • Câu 2: Vận dụng cao
    Chọn đẳng thức đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình dạng Ax + By + Cz + D = 0, (A,B,C,D \in Z) và có UCLN\left( |A|,|B|,|C|,|D| ight) = 1. Để mặt phẳng (P) đi qua điểm B(1;2; - 1) và cách gốc tọa độ O một khoảng lớn nhất thì đẳng thức nào sau đây đúng?

    Hướng dẫn:

    Mặt phẳng (P) đi qua điểm B(1; 2; −1) suy ra A + 2B − C + D = 0 (1).

    Khi đó:

    d\left( O;(P) ight) =
\frac{|D|}{\sqrt{A^{2} + B^{2} + C^{2}}} = \frac{|A + 2B -
C|}{\sqrt{A^{2} + B^{2} + C^{2}}}

     

    \leq \frac{\sqrt{\left\lbrack 1^{2} +
2^{2} + ( - 1)^{2} ightbrack\left( A^{2} + B^{2} + C^{2}
ight)}}{\sqrt{A^{2} + B^{2} + C^{2}}} = \sqrt{6}

    Đẳng thức xảy ra khi và chỉ khi:

    \left\{ \begin{matrix}A + 2B - C + D = 0 \\\dfrac{A}{1} = \dfrac{B}{2} = \dfrac{C}{- 1} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}D = - 3B \\B = 2A = - 2C \\A;B;C\mathbb{\in Z} \\\end{matrix} ight.

    Từ đó tìm được A = - C = 1,B = 2,D = -
6 hoặc A = - C = - 1,B = - 2,D =
6.

    Vậy A^{2} + B^{2} + C^{2} + D^{2} =
42.

  • Câu 3: Vận dụng
    Xác định số mặt phẳng thỏa mãn yêu cầu

    Trong không gian Oxyz, cho điểm M( - 1;0;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại A,B,C sao cho 3OA = 2OB = OC eq 0?

    Hướng dẫn:

    Từ giả thiết, ta có thể coi A(2a;0;0),B(0;3b;0),C(0;0;6c) (với |a| = |b| = |c| eq 0).

    Khi đó, phương trình mặt phẳng (P) là \frac{x}{2a} + \frac{y}{3b} + \frac{z}{6c} =1.

    Do (P) đi qua M(−1; 0; 3) nên -\frac{1}{2a} + \frac{1}{2c} = 1.

    Theo trên có c = ±a, kết hợp với phương trình vừa thu được, ta suy ra a = −1, c = 1.

    Cũng theo trên, b = ±a, nên có 2 giá trị của b.

    Suy ra có 2 bộ (a, b, c) thỏa mãn, hay có 2 mặt phẳng thỏa yêu cầu đề bài.

  • Câu 4: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;0;1),B(3; - 2;0),C(1;2; - 2). Gọi (P) là mặt phẳng đi qua A sao cho tổng khoảng cách từ BC đến (P) lớn nhất, biết rằng (P) không cắt đoạn BC. Khi đó vectơ pháp tuyến của mặt phẳng (P) là:

    Hướng dẫn:

    Kiểm tra \overrightarrow{n} = (2; - 2; -
1): Mặt phẳng (P) có phương trình 2x − 2y − z − 1 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại \overrightarrow{n} = (2; - 2; -
1).

    Kiểm tra \overrightarrow{n} =
(1;0;2): Mặt phẳng (P) có phương trình x+ 2z −3 = 0.

    Thay tọa độ B, C vào (P) ta thấy B ∈ (P) nên loại \overrightarrow{n} = (1;0;2).

    Kiểm tra \overrightarrow{n} = ( - 1;2; -
1): Mặt phẳng (P) có phương trình −x + 2y − z + 2 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại \overrightarrow{n} = ( - 1;2; -
1).

    Kiểm tra v: Mặt phẳng (P) có phương trình x − 2z + 1 = 0.

    Thay tọa độ B, C vào (P) ta thấy B, C nằm về cùng phía (P) nên chọn \overrightarrow{n} = (1;0; -
2).

  • Câu 5: Vận dụng
    Viết phương trình mặt phẳng (P)

    Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng song song với mặt phẳng Oxz và cắt mặt cầu (x - 1)^{2} + (y + 2)^{2} + z^{2} = 12 theo đường tròn có chu vi lớn nhất. Phương trình của (P) là:

    Hướng dẫn:

    Mặt phẳng (P) cắt mặt cầu (x - 1)^{2} + (y + 2)^{2} + z^{2} = 12 theo đường tròn có chu vi lớn nhất nên mặt phẳng (P) đi qua tâm I(1; - 2;0).

    Phương trình mặt phẳng (P) song song với mặt phẳng Oxz có dạng :Ay + B = 0

    Do (P) đi qua tâm I(1; - 2;0)có phương trình dạng: y + 2 = 0.

  • Câu 6: Thông hiểu
    Chọn mặt phẳng thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P),(Q) lần lượt có phương trình là x + y - z = 0,\ x - 2y + 3z = 4 và cho điểm M(1; - 2;5). Tìm phương trình mặt phẳng (\alpha) đi qua điểm M và đồng thời vuông góc với hai mặt phẳng (P),(Q)?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (1;1; - 1) \\
\overrightarrow{n_{(Q)}} = (1; - 2;3) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}} ightbrack = (1; -
4; - 3)

    Do (\alpha) vuông góc với (P),(Q) nên \left\{ \begin{matrix}
\overrightarrow{n_{(\alpha)}}\bot\overrightarrow{n_{(P)}} \\
\overrightarrow{n_{(\alpha)}}\bot\overrightarrow{n_{(Q)}} \\
\end{matrix} ight.

    Chọn \overrightarrow{n_{(\alpha)}} =
\left\lbrack \overrightarrow{n_{(P)}};\overrightarrow{n_{(Q)}}
ightbrack = (1; - 4; - 3)

    Hơn nữa (\alpha) đi qua M(1; - 2;5) nên có phương trình là:

    (x - 1) - 4(y + 2) - 3(z - 5) =
0

    \Leftrightarrow x - 4y - 3z + 6 =
0

  • Câu 7: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho điểm I(1; 1; 1). Phương trình mặt phẳng (P) cắt trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O) sao cho I là tâm đường tròn ngoại tiếp tam giác ABC?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm I(1; 1; 1). Phương trình mặt phẳng (P) cắt trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O) sao cho I là tâm đường tròn ngoại tiếp tam giác ABC?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng
    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm M thoả mãn OM
= 7. Biết rằng khoảng cách từ M tới mặt phẳng (Oxz),(Oyz) lần lượt là 2 và 3. Tính khoảng cách từ M đến mặt phẳng (Oxy).

    Hướng dẫn:

    Ta có: (Oxz):y = 0,(Oyz):x =
0

    Giả sử M(a;b;c) khi đó ta có:

    \left\{ \begin{matrix}
OM = 7 \\
d\left( M;(Oxz) ight) = 2 \\
d\left( M;(Oyz) ight) = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} + c^{2} = 49 \\
b^{2} = 4 \\
a^{2} = 9 \\
\end{matrix} ight.\  \Rightarrow c^{2} = 36

    d\left( M;(Oxy) ight) = \sqrt{c^{2}}
= 6

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, gọi (P)là mặt phẳng chứa trục Ox và vuông góc với mặt phẳng (Q):x + y + z - 3 = 0. Phương trình mặt phẳng (P) là:

    Hướng dẫn:

    +) Trục Ox véctơ đơn vị \overrightarrow{i} = (1;0;0).

    Mặt phẳng (Q) có VTPT {\overrightarrow{n}}_{(Q)} = (1;1;1).

    Mặt phẳng (P) chứa trục Ox và vuông góc với (Q):x + y + z - 3 = 0nên (P) có VTPT \overrightarrow{n} = \left\lbrack
\overrightarrow{i},\overrightarrow{n_{(Q)}} \right\rbrack = (0; -
1;1).

    Phương trình mặt phẳng (P) là: y - z = 0.

  • Câu 10: Thông hiểu
    Tính diện tích tam giác

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;1;1),B(4;3;2),C(5;2;1). Diện tích của tam giác ABC là:

    Hướng dẫn:

    Ta có: \overrightarrow{AB} =
(3;2;1),\overrightarrow{AC} = (4;1;0)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 1;4; -
5)

    Diện tích tam giác ABC

    S = \frac{1}{2}\left| \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack ight| =
\frac{1}{2}\sqrt{( - 1)^{2} + 4^{2} + ( - 5)^{2}} =
\frac{\sqrt{42}}{2}

  • Câu 11: Vận dụng cao
    Chọn đáp án đúng

    Một phần sân trường được định vị bởi các điểm A,B,C,D, như hình vẽ.

    Bước đầu chúng được lấy “ thăng bằng” để có cùng độ cao, biết ABCD là hình thang vuông ở AB với độ dài AB = 25\ m, AD = 15\ m, BC = 18\ m. Do yêu cầu kĩ thuật, khi lát phẳng phần sân trường phải thoát nước về góc sân ở C nên người ta lấy độ cao ở các điểm B, C, D xuống thấp hơn so với độ cao ở A10\ cm, a\ cm, 6\
cmtương ứng. Giá trị của a là số nào sau đây?

    Hướng dẫn:

    Hình vẽ minh họa

    Chọn hệ trục tọa độ Oxyz sao cho: O \equiv A, tia Ox \equiv AD; tia Oy \equiv AB.

    Khi đó, A(0;\ 0;\ 0); B(0;\ 2500;\ 0); C(1800;\ 2500;\ 0);D(1500;\ 0;\ 0).

    Khi hạ độ cao các điểm ở các điểm B, C, D xuống thấp hơn so với độ cao ở A10\ cm, a\ cm, 6\
cm tương ứng ta có các điểm mới B'(0\ ;\ 2500\ ;\  - 10); C'(1800\ ;\ 2500\ ;\  - a);D'(1500\ ;\ 0\ ;\  - 6).

    Theo bài ra có bốn điểm A; B'; C'; D' đồng phẳng.

    Phương trình mặt phẳng (AB'D'):x
+ y + 250z = 0.

    Do C'(1800\ ;\ \ 2500\ ;\  - a) \in
(AB'D') nên có:

    1800 + 2500
- 250a = 0 \Leftrightarrow a = 17,2.

    Vậy a = 17,2\ cm.

  • Câu 12: Vận dụng
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz cho điểm H(1;2;3). Viết phương trình mặt phẳng (P) đi qua điểm H và cắt các trục tọa độ tại ba điểm phân biệt A;B;C sao cho H là trực tâm của tam giác ABC?

    Hướng dẫn:

    Giả sử (P) cắt các trục tọa độ tại A(a;0;0),B(0;b;0),C(0;0;c);(abc eq
0)

    Khi đó (P):\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1

    Ta có: \left\{ \begin{matrix}
\overrightarrow{HA} = (a - 1; - 2; - 3) \\
\overrightarrow{HB} = ( - 1;b - 2; - 3) \\
\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight. mà H là trực tâm của tam giác ABC nên

    \left\{ \begin{matrix}
\overrightarrow{HA}.\overrightarrow{BC} = \overrightarrow{0} \\
\overrightarrow{HB}.\overrightarrow{AC} = \overrightarrow{0} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2b - 3c = 0 \\
a - 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow a = 2b = 3c

    Mặt khác H \in (P) \Rightarrow
\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1 \Rightarrow \frac{1}{3c} +
\frac{4}{3c} + \frac{3}{c} = 1

    \Rightarrow 14 = 3c \Leftrightarrow c =
\frac{14}{3} \Leftrightarrow \left\{ \begin{matrix}
a = 14 \\
b = 7 \\
\end{matrix} ight.

    \Rightarrow (P):\dfrac{x}{14} +\dfrac{y}{7} + \dfrac{z}{\dfrac{14}{3}} = 1 \Rightarrow (P):x + 2y + 3z -14 = 0

  • Câu 13: Vận dụng cao
    Max khoảng cách từ điểm đến mp

    Trong không gian với hệ tọa độ Oxyz cho điểm A(2;1;3) và mặt phẳng (P): x+my+(2m+1)z-m-2=0,  m là tham số. Gọi là hình chiếu vuông góc của điểm trên . Tính khi khoảng cách từ điểm đến lớn nhất ?

    Hướng dẫn:

     Ta có d(A,(P))=\dfrac{\left | 6m+3 ight |}{\sqrt{5m^2+4m+2}}

    d^2(A,(P))=\dfrac{\left | 36m^2+36m+9 ight |}{5m^2+4m+2}

    Xét hàm số f(m)=\dfrac{ 36m^2+36m+9}{5m^2+4m+2}

    \Rightarrow f'(m)=\dfrac{ -36m^2+54m+36}{(5m^2+4m+2)^2}

    \Rightarrow f'(m)=0 \Leftrightarrow m=\frac{-1}{2}; m=2

    Ta lập bảng biến thiên cho hàm số trên, được:

    Max của kc

    Qua bảng biến thiên, ta thấy hàm số đạt GTLN khim=2 \Rightarrow (P): x+2y+5z-4=0

    Đường thẳng \triangle qua A và vuông góc với (P) có phương trình là \left\{\begin{matrix} x=2+t \\ y=1+2t \\ z=3+5t \end{matrix}ight.

    Ta có H\in \triangle \Rightarrow H(2+t;1+2t;3+5t)

    H\in P \Rightarrow 2+t+2(1+2t)+5(3+5t)-4=0

    \Rightarrow t=\frac{-1}{2}\Rightarrow H(\frac{3}{2};0;\frac{1}{2})\Rightarrow a+b=\frac{3}{2}

  • Câu 14: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, (\alpha)là mặt phẳng đi qua điểm A(2; - 1;5) và vuông góc với hai mặt phẳng (P):3x - 2y + z + 7 = 0(Q):5x - 4y + 3z + 1 = 0. Phương trình mặt phẳng (\alpha) là:

    Hướng dẫn:

    Mặt phẳng (P) có một VTPT\overrightarrow{n_{P}} = (3; - 2;1)

    Mặt phẳng (Q) có một VTPT\overrightarrow{n_{Q}} = (5; - 4;3)

    Mặt phẳng (\alpha)vuông góc với 2 mặt phẳng (P):3x - 2y + z + 7 = 0,(Q):5x - 4y + 3z + 1 = 0 nên có một VTPT\overrightarrow{n_{P}} =
\left\lbrack \overrightarrow{n_{P}},\overrightarrow{n_{Q}} \right\rbrack
= ( - 2; - 4; - 2).

    Phương trình mặt phẳng (\alpha) là: x + 2y + z - 5 = 0

  • Câu 16: Thông hiểu
    Tìm các giá trị thực của tham số m thỏa mãn yêu cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P):x + my + (m - 1)z + 2 = 0, (Q):2x - y + 3z - 4 = 0. Giá trị số thực m để hai mặt phẳng (P),(Q) vuông góc

    Hướng dẫn:

    Để 2 mặt phẳng (P),(Q) vuông góc

    \Rightarrow
{\overrightarrow{n}}_{p}.\overrightarrow{n_{Q}} = 0 \Leftrightarrow 1.2
+ m.( - 1) + (m - 1).3 = 0 \Leftrightarrow m = \frac{1}{2}.

    Vậy m = \frac{1}{2}.

  • Câu 17: Vận dụng
    Tìm số điểm M thỏa mãn yêu cầu

    Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P):x + y + z - 9 = 0. Hỏi có bao nhiêu điểm M(a;b;c) thuộc mặt phẳng (P) với a,b,c là các số nguyên không âm.

    Hướng dẫn:

    Ta có (P):x + y + z - 9 = 0 \Rightarrow
\frac{x}{9} + \frac{y}{9} + \frac{z}{9} = 1 nên mặt phẳng (P) đi qua các điểm A(9; 0; 0), B(0; 9; 0), C(0; 0; 9).

    Từ đó suy ra tất cả các điểm có toạ độ nguyên của mặt phẳng (P) đều nằm trong miền tam giác ABC.

    Tam giác ABC đều có các cạnh bằng 9\sqrt{2}, chiếu các điểm có toạ độ nguyên của hình tam giác ABC xuống mặt phẳng (Oxy) ta được các điểm có toạ độ nguyên của hình tam giác OAB.

    Mà số điểm có toạ độ nguyên của tam giác OAB bằng 1\  + \ 2\  + \ ...\  + \ 10\  = \ 55

  • Câu 18: Vận dụng
    PT mp cắt khối tứ diện

    Cho tứ giác ABCD có A\left( {0,1, - 1} ight);\,\,\,\,B\left( {1,1,2} ight);\,\,C\left( {1, - 1,0} ight);\,\,\,\left( {0,0,1} ight). Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng \frac{1}{27} .

    Hướng dẫn:

    Tỷ số thể tích hai khối AMNE và ABCD: {\left( {\frac{{AM}}{{AB}}} ight)^3} = \frac{1}{{27}}

    \Rightarrow \frac{{AM}}{{AB}} = \frac{1}{3} \Rightarrow M chia cạnh BA theo tỷ số -2

    \Rightarrow E\left\{ \begin{array}{l}x=\dfrac{{1 + 2.0}}{3} = \dfrac{1}{3}\\y = \dfrac{{1 + 2.1}}{3} = 1\\z = \dfrac{{2 + 2\left( { - 1} ight)}}{3} = 0\end{array} ight.;\,\,

    \overrightarrow {BC}  =  - 2\left( {0,1,1} ight);\,\,\overrightarrow {BD}  =  - \left( {1,1,1} ight)

    Vecto pháp tuyến của \left( Q ight):\overrightarrow n  = \left( {0,1, - 1} ight)

    \begin{array}{l} \Rightarrow M \in \left( Q ight) \Rightarrow \left( Q ight):\left( {x - \frac{1}{3}} ight)0 + \left( {y - 1} ight)1 + \left( {z - 0} ight)\left( { - 1} ight) = 0\\ \Rightarrow \left( P ight):y - z - 1 = 0\end{array}

  • Câu 19: Vận dụng cao
    Viết PT mp vuông góc chung

    Cho điểm M\left( { - 3,2, - 1} ight) và hai mặt phẳng \left( \alpha  ight):x + 3y - 5z + 3 = 0,\left( \beta  ight):2x - y - 2z - 5 = 0.

    Gọi (P) là mặt phẳng chứa điểm M , vuông góc với cả hai mặt phẳng (\alpha)(\beta) . Phương trình mặt phẳng (P):

    Hướng dẫn:

     Theo đề bài, ta có:

    \left( \alpha  ight):x + 3y - 5z + 3 = 0 có vectơ pháp tuyến \overrightarrow a  = \left( {1,3, - 5} ight)

    \left( \beta  ight):2x - y - 2z - 5 = 0 có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1, - 2} ight)

    Suy ra tích có hướng giữa 2 vecto là \left[ {\overrightarrow a ,\overrightarrow b } ight] = \overrightarrow n  = \left( {1, - 8, - 7} ight)

    Ta chọn \vec{n} làm vectơ pháp tuyến cho mặt phẳng (P)

    Phương trình (P) có dạng x - 8y - 7z + D = 0

    Mặt khác, ta có M \in \left( \alpha  ight) \Leftrightarrow  - 3 - 16 + 7 + D = 0 \Leftrightarrow D = 12

    Vậy phương trình cần tìm là: (P): x - 8y - 7z + 12 = 0

  • Câu 20: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho hai điểm A(2; - 2;4),B( - 3;3; - 1) và mặt phẳng (P):2x - y + 2z - 8 = 0. Xét M là điểm thay đổi thuộc (P), tính giá trị nhỏ nhất của 2MA^{2} + 3MB^{2} ?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho hai điểm A(2; - 2;4),B( - 3;3; - 1) và mặt phẳng (P):2x - y + 2z - 8 = 0. Xét M là điểm thay đổi thuộc (P), tính giá trị nhỏ nhất của 2MA^{2} + 3MB^{2} ?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo