Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 14 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tính tổng?

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;2;0), B(1;0;-2) và mặt

    phẳng(P): x+2y-z-1=0. Gọi M(a;b;c) là điểm thuộc mặt phẳng (P) sao cho MA=MB

    và góc \widehat{ABM} có số đo lớn nhất. Khi đó giá trị a+4b+c bằng ?

    Hướng dẫn:

    MA=MB nên M thuộc mặt phẳng mặt phẳng trung trực của đoạn thẳng AB. Ta có phương trình trung trực của AB là (Q); y+z=0

     M thuộc giao tuyến của hai mặt phẳng (P) và (Q) nên M thuộc đường thẳng

    (d): \left\{\begin{matrix} x=1+3t \\ y=-t \\ z=t \end{matrix}ight..

    Gọi M( 1+3t;-t;t) , ta có \cos\widehat{AMB}=\dfrac{\left | \vec{MA}.\vec{MB} ight | }{MA.MB}=\dfrac{11t^2-2t+1}{11t^2-2t+5}.

    Khảo sát hàm số f(t)=\dfrac{11t^2-2t+1}{11t^2-2t+5} , ta được f(t)=\frac{5}{27} khi t=\frac{1}{11} .

    Suy ra \widehat{AMB}  có số đo lớn nhất khi t=\frac{1}{11} , ta có M(\frac{14}{11}; \frac{-1}{11};\frac{1}{11}).

    Khi đó giá trị a+4b+c=1.

  • Câu 2: Thông hiểu
    Tìm các giá trị thực của tham số m và n

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):3x + (m - 1)y + 4z - 2 = 0, (\beta):nx + (m + 2)y + 2z + 4 = 0. Với giá trị thực của m,n bằng bao nhiêu để (\alpha) song song (\beta)

    Hướng dẫn:

    Để (\alpha) song song (\beta) \Rightarrow \frac{3}{n} = \frac{m - 1}{m +
2} = \frac{4}{2} \neq \frac{4}{- 2}

    \Leftrightarrow m = - 3;n =
6.

    Vậy m = - 3;n = 6.

  • Câu 3: Vận dụng
    Chọn kết luận đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;1),B(1;0;1),C(1;1;0). Có bao nhiêu điểm M cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)?

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (0;1;1);\overrightarrow{OB} = (1;0;1) \\
\overrightarrow{OC} = (1;1;0);\overrightarrow{AB} = (1; - 1;0) \\
\overrightarrow{AC} = (1;\ 0; - 1) \\
\end{matrix} ight.

    Ta có: \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = (1;\ 1; - 1)
\Rightarrow (OAB):x + y - z = 0

    Ta có: \left\lbrack
\overrightarrow{AB};\overrightarrow{OC} ightbrack = ( - 1;1;1)
\Rightarrow (OBC): - x + y + z = 0

    Gọi điểm M(a;b;c) cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)

    Từ d\left( M,(OAB) ight) = d\left(
M,(OBC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = c(1) \\
b = c(2) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(OAC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b - c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = 0(3) \\
b = c(4) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(ABC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{|a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 0(5) \\
a = - b(6) \\
\end{matrix} ight.

    Từ (1), (3), (5) suy ra a = c = 0, b khác 0 tùy ý.

    Như vậy có vô số điểm cách đều bốn mặt phẳng

  • Câu 4: Vận dụng
    Tìm m ?

    Với giá trị nào của thì hai mặt phẳng sau song song:

    \left( P ight):(m - 2)x - 3my + 6z - 6 = 0;\,\,\,\,\,\left( Q ight):(m - 1)x + 2y + (3 - m)z + 5 = 0

    Hướng dẫn:

    Áp dụng điều kiện để 2 mp song song, ta xét:

    {A_1}{B_2} - {A_2}{B_1} = \left( {m - 2} ight)2 + \left( {m - 1} ight)3m = 3{m^2} - m - 4 = 0

    \Leftrightarrow m =  - 1,m = \frac{4}{3}

    {B_1}{C_2} - {B_2}{C_1} =  - 3m\left( {3 - m} ight) - 2.6 = 3{m^2} - 9m - 12 = 0

    \Leftrightarrow m =  - 1,m = 4

    {C_1}{A_2} - {C_1}{A_1} = 6\left( {m - 1} ight) - \left( {3 - m} ight)\left( {m - 2} ight) = {m^2} + m = 0

    \Leftrightarrow m =  - 1,m = 0

    Với m=-1 thoả mãn cả 3 điều kiện trên \Rightarrow \left( P ight)//\left( Q ight)

  • Câu 5: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2; - 3;7),B(0;4;1), C(3;0;5),D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức \left| \overrightarrow{MA} + \overrightarrow{MB} +\overrightarrow{MC} + \overrightarrow{MD} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2; - 3;7),B(0;4;1), C(3;0;5),D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức \left| \overrightarrow{MA} + \overrightarrow{MB} +\overrightarrow{MC} + \overrightarrow{MD} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;1;1),B(0;1;2),C( - 2;1;4) và mặt phẳng (P):x - y + z + 2 = 0. Tìm điểm N \in (P) sao cho S = 2NA^{2} + NB^{2} + NC^{2} đạt giá trị nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;1;1),B(0;1;2),C( - 2;1;4) và mặt phẳng (P):x - y + z + 2 = 0. Tìm điểm N \in (P) sao cho S = 2NA^{2} + NB^{2} + NC^{2} đạt giá trị nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Vận dụng
    Tính giá trị biểu thức

    Trong hệ tục toạ độ không gian Oxyz, cho A(1;0;0),B(0;b;0),C(0;0;c), biết b,c > 0, phương trình mặt phẳng (P):y - z + 1 = 0. Tính M = b + c biết (ABC)\bot(P),d\left( O;(ABC) ight) =
\frac{1}{3}?

    Hướng dẫn:

    Ta có (ABC):\frac{x}{1} + \frac{y}{b} +
\frac{z}{c} = 1

    \Rightarrow (ABC):bcx + cy + bz - bc =
0

    Hai mặt phẳng(ABC);(P) có vectơ pháp tuyến lần lượt là \overrightarrow{n_{1}} =
(bc;c;b),\overrightarrow{n_{2}} = (0;1; - 1)

    (P)\bot(ABC) nên c - b = 0 \Leftrightarrow b = c.

    Theo giả thiết

    d\left( O;(ABC) ight) = \frac{1}{3}
\Leftrightarrow \frac{| - bc|}{\sqrt{bc^{2} + c^{2} + b^{2}}} =
\frac{1}{3}

    \Leftrightarrow 3b^{2} = \sqrt{b^{4} +
2b^{2}} \Leftrightarrow 3b^{2} = b\sqrt{b^{2} + 2}

    \Leftrightarrow 3b = \sqrt{b^{2} + 2}
\Leftrightarrow 9b^{2} = b^{2} + 2 \Leftrightarrow b =
\frac{1}{2} (vì b >
0).

    Suy ra c = 2. Vậy M = b + c = 1.

  • Câu 8: Vận dụng cao
    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật. Biết A(0;0;0),D(2;0;0),B(0;4;0),S(0;0;4). Gọi M là trung điểm của SB. Tính khoảng cách từ B đến mặt phẳng (CDM).

    Hướng dẫn:

    Hình vẽ minh họa:

    Tứ giác ABCD là hình chữ nhật nên \left\{ \begin{matrix}
x_{A} + x_{C} = x_{B} + x_{D} \\
y_{A} + y_{C} = y_{B} + y_{D} \\
z_{A} + z_{C} = z_{B} + z_{D} \\
\end{matrix} \right.\Rightarrow \left\{ \begin{matrix}
x_{C} = 2 \\
y_{C} = 4 \\
z_{C} = 0 \\
\end{matrix} \right.\  \Rightarrow C(2;4;0).

    M là trung điểm của SB \Rightarrow M(0;2;2).

    Viết phương trình mặt phẳng (CDM):

    \overrightarrow{CD} = (0; -
4;0), \overrightarrow{CM} = ( - 2;
- 2;2) \Rightarrow \overrightarrow{CD} \land \overrightarrow{CM} = ( -
8;0; - 8).

    (CDM) có một véc tơ pháp tuyến \overrightarrow{n} = (1;0;1).

    Suy ra (CDM) có phương trình: x + z - 2 = 0.

    Vậy d\left( B;(CDM) \right) = \frac{|0 +
0 - 2|}{\sqrt{1^{2} + 0^{2} + 1^{2}}} = \sqrt{2}.

  • Câu 9: Vận dụng
    Viết PT mp

    Cho hai điểm A\left( { - 2,3, - 1} ight),B\left( {1, - 2, - 3} ight) và mặt phẳng \left( \beta  ight):3x - 2y + z + 9 = 0. Mặt phẳng (\alpha) chứa hai điểm A,B và vuông góc với mặt phẳng (\beta) có phương trình:

    Hướng dẫn:

    Theo đề bài, ta có: A\left( { - 2,3, - 1} ight),B\left( {1, - 2, - 3} ight) ; \left( \beta  ight):3x - 2y + z + 9 = 0.

    Suy ra \overrightarrow {AB}  = \left( {3, - 5, - 2} ight); (\beta) có vectơ pháp tuyến \overrightarrow n  = \left( {3, - 2,1} ight)

    Ta có \left[ {\overrightarrow {AB} ,\overrightarrow n } ight] = \left( { - 9, - 9,9} ight) cùng phương với vectơ \overrightarrow p  = \left( {1,1, - 1} ight)

    Chọn \vec{p} làm 1 vectơ pháp tuyến cho mặt phẳng (\alpha) .

    Phương trình mặt phẳng (\alpha) có dạng: x + y - z + D = 0

    A \in \left( \alpha  ight) \Leftrightarrow  - 2 + 3 + 1 + D = 0 \Leftrightarrow D =  - 2

    Mặt phẳng :(\alpha): x + y - z - 2 = 0

  • Câu 10: Thông hiểu
    Viết PT mặt phẳng song song với 1 vecto

    Cho hai điểmA\left( {1, - 4,5} ight),B\left( { - 2,3, - 4} ight) và vectơ \overrightarrow a  = \left( {2, - 3, - 1} ight). Mặt phẳng chứa hai điểm A, B và song song với vectơ \vec{a} có phương trình:

    Hướng dẫn:

    Theo đề bài, ta có: A\left( {1, - 4,5} ight);B\left( { - 2,3, - 4} ight)

    \Rightarrow \overrightarrow {AB}  = \left( { - 3,7, - 9} ight);\overrightarrow a  = \left( {2, - 3, - 1} ight)

    Như vậy, \vec{AB}\vec{a} sẽ là cặp vectơ chỉ phương của (\beta)

    \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow a } ight] = \left( { - 34, - 21, - 5} ight) =\vec{n}

    Chọn \overrightarrow n  = \left( {34,21,5} ight) làm vectơ pháp tuyến của  (\beta)

    Phương trình mặt phẳng (\beta) có dạng 34x + 21y + 5z + D = 0

    Mặt khác, vì điểm A \in (\beta) nên thay tọa độ điểm A vào phương trình mặt phẳng (\beta)  được: 34 - 84 + 25 + D = 0 \Leftrightarrow D = 25

    Vậy (\beta) có phương trình là: 34x + 21y + 5z + 25 = 0

  • Câu 11: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Vận dụng cao
    Max khoảng cách từ điểm đến mp

    Trong không gian với hệ tọa độ Oxyz cho điểm A(2;1;3) và mặt phẳng (P): x+my+(2m+1)z-m-2=0,  m là tham số. Gọi là hình chiếu vuông góc của điểm trên . Tính khi khoảng cách từ điểm đến lớn nhất ?

    Hướng dẫn:

     Ta có d(A,(P))=\dfrac{\left | 6m+3 ight |}{\sqrt{5m^2+4m+2}}

    d^2(A,(P))=\dfrac{\left | 36m^2+36m+9 ight |}{5m^2+4m+2}

    Xét hàm số f(m)=\dfrac{ 36m^2+36m+9}{5m^2+4m+2}

    \Rightarrow f'(m)=\dfrac{ -36m^2+54m+36}{(5m^2+4m+2)^2}

    \Rightarrow f'(m)=0 \Leftrightarrow m=\frac{-1}{2}; m=2

    Ta lập bảng biến thiên cho hàm số trên, được:

    Max của kc

    Qua bảng biến thiên, ta thấy hàm số đạt GTLN khim=2 \Rightarrow (P): x+2y+5z-4=0

    Đường thẳng \triangle qua A và vuông góc với (P) có phương trình là \left\{\begin{matrix} x=2+t \\ y=1+2t \\ z=3+5t \end{matrix}ight.

    Ta có H\in \triangle \Rightarrow H(2+t;1+2t;3+5t)

    H\in P \Rightarrow 2+t+2(1+2t)+5(3+5t)-4=0

    \Rightarrow t=\frac{-1}{2}\Rightarrow H(\frac{3}{2};0;\frac{1}{2})\Rightarrow a+b=\frac{3}{2}

  • Câu 13: Thông hiểu
    Chọn đáp án thích hợp

    Trong không gian Oxyz, cho hai mặt phẳng (P):x + my + (m - 1)z + 1 =
0(Q):x + y + 2z = 0. Tập hợp tất cả các giá trị m để hai mặt phẳng này không song song là:

    Hướng dẫn:

    Ta có A(0;0;0) \in (Q).

    (P)//(Q) \Leftrightarrow \left\{\begin{matrix}\dfrac{1}{1} = \dfrac{m}{1} = \dfrac{m - 1}{2} \\A(0;0;0) otin (P) \\\end{matrix} ight. hệ này vô nghiệm

    Hệ này vô nghiệm.

    Do đó (P) không song song với (Q), với mọi giá trị của m.

  • Câu 14: Vận dụng
    PT mp cắt khối tứ diện

    Cho tứ giác ABCD có A\left( {0,1, - 1} ight);\,\,\,\,B\left( {1,1,2} ight);\,\,C\left( {1, - 1,0} ight);\,\,\,\left( {0,0,1} ight) . Viết phương trình của mặt phẳng (P) qua A, B và chia tứ diện thành hai khối ABCE và ABDE có tỉ số thể tích bằng 3.

    Hướng dẫn:

     PT mp cắt khối tứ diện

    Theo đề bài, ta có mp (P) cắt cạnh CD tại E, E chia đoạn CD theo tỷ số -3

    \Rightarrow E\left\{ \begin{array}{l}x = \dfrac{{{x_C} + 3{x_D}}}{4} = \dfrac{{1 + 3.0}}{4} = \dfrac{1}{4}\\y = \dfrac{{{y_C} + 3{y_D}}}{4} = \dfrac{{ - 1 + 3.0}}{4} = \dfrac{{ - 1}}{4}\\z = \dfrac{{{z_C} + 3{z_D}}}{4} = \dfrac{{0 + 3.1}}{4} = \dfrac{3}{4}\end{array} ight.

    Từ đó, ta suy ra: \overrightarrow {AB}  = \left( {1,0,3} ight);\,\,\overrightarrow {AE}  = \left( {\frac{1}{4}; - \frac{5}{4};\frac{7}{4}} ight) = \frac{1}{4}\left( {1, - 5,7} ight)

    Như vậy, VTPT mp (P) là: \left( P ight):\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {AE} } ight] = \left( {15, - 4, - 5} ight)

    \Rightarrow \left( P ight):\left( {x - 0} ight)15 + \left( {y - 1} ight)\left( { - 4} ight) + \left( {z + 1} ight)\left( { - 5} ight) = 0

    \Leftrightarrow 15x - 4y - 5z - 1 = 0

  • Câu 15: Thông hiểu
    Mặt phẳng chứa giao tuyến

    Phương trình tổng quát của mặt phẳng (\alpha) chứa giao tuyến của hai mặt phẳng 2x - y + 3z + 4 = 0x + 3y - 2z + 7 = 0, chứa điểm M\left( { - 1,2,4} ight) là:

    Hướng dẫn:

    Vì mặt phẳng (\alpha) chứa giao tuyến của hai mặt phẳng 2x - y + 3z + 4 = 0x + 3y - 2z + 7 = 0 nên thuộc chùm mặt phẳng 2x - y + 3z + 4 + m\left( {x + 3y - 2z + 7} ight) = 0

    \Leftrightarrow \left( {m + 2} ight)x + \left( {3m - 1} ight)y - \left( {2m - 3} ight)z + 7m + 4 = 0\left( * ight)

    Mặt khác, ta có M \in (\alpha)

    \begin{array}{l} \Rightarrow (*) \Leftrightarrow \left( {m + 2} ight).\left( { - 1} ight) + \left( {3m - 1} ight).2 - \left( {2m - 3} ight).4 + 7m + 4 = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow 4m + 12 = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow m =  - 3\end{array}

    Thế vào (*):\,\,\,\,\,x + 10y - 9z + 17 = 0.

  • Câu 16: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz,cho (P):x + 4y - 2z - 6 = 0 ,(Q):x - 2y + 4z - 6 = 0. Lập phương trình mặt phẳng (\alpha) chứa giao tuyến của(P),(Q) và cắt các trục tọa độ tại các điểm A,B,C sao cho hình chóp O.ABC là hình chóp đều.

    Hướng dẫn:

    Chọn M(6;0;0),N(2;2;2) thuộc giao tuyến của(P),(Q)

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) lần lượt là giao điểm của (\alpha) với các trục Ox,Oy,Oz

    \Rightarrow (\alpha):\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1(a,b,c \neq 0)

    (\alpha) chứa M,N \Rightarrow \left\{ \begin{matrix}
\frac{6}{a} = 1 \\
\frac{2}{a} + \frac{2}{b} + \frac{2}{c} = 1 \\
\end{matrix} \right.

    Hình chóp O.ABC là hình chóp đều\Rightarrow OA = OB = OC

    \Rightarrow |a| = |b| = |c|

    Vây phương trình x + y + z - 6 =
0.

  • Câu 17: Vận dụng
    Tìm giá trị biểu thức S

    Trong không gian tọa độ Oxyz, mặt phẳng (\alpha) đi qua M(1; - 3;8) và chắn trên tia Oz một đoạn thẳng dài gấp đôi các đoạn thẳng mà nó chắn trên các tia OxOy. Giả sử (P):ax + by + cz + d = 0, với a,b,c,d\mathbb{\in Z},d eq 0. Tính S = \frac{a + b + c}{d}.

    Hướng dẫn:

    Từ giả thiết, ta suy ra các giao điểm của (α) với các tia Ox, Oy, Oy lần lượt là A(a; 0; 0), B(0; a; 0) ,C(0; 0; 2a),  a > 0.

    Suy ra phương trình (đoạn chắn) của (α) là \frac{x}{a} + \frac{y}{a} + \frac{z}{2a} =
1.

    Do (α) đi qua M nên a = 2.

    Suy ra (α): 2x + 2y + z − 4 = 0.

    Từ đó, ta tính được: S = \frac{a + b +
c}{d} = \frac{2 + 2 + 1}{- 4} = - \frac{5}{4}.

  • Câu 18: Vận dụng cao
    Xác định tổng các tham số m

    Trong không gian Oxyz cho mặt phẳng (P):2x + y + z - 3 = 0 và hai điểm A(m;1;0),B(1; - m;2). Gọi E;F lần lượt là hình chiếu của A;B lên mặt phẳng (P). Biết EF = \sqrt{5}. Tổng tất cả các giá trị của tham số m là

    Hướng dẫn:

    Hình vẽ minh họa

    Xét trường hợp m = 1. Khi đó cả A;B đều thuộc (P). Trong trường hợp này EF = AB = 2\sqrt{2} (loại).

    Khi m eq 1. Ta tính toán các đại lượng:

    d\left( A;(P) ight) = \frac{|2m -
2|}{\sqrt{6}};d\left( B;(P) ight) = \frac{|1 -
m|}{\sqrt{6}}

    Từ đó suy ra A;B khác phía với (P) và d\left( A;(P) ight) = 2d\left(
B;(P) ight)

    Gọi H là giao điểm của AB với (P).

    Theo Thales ta có:

    EH = \frac{2\sqrt{5}}{3};AH =
\frac{2}{3}AB = \frac{2}{3}\sqrt{(1 - m)^{2} + (m + 1)^{2} +
2^{2}}

    Áp dụng định lý Pythagore cho tam giác AEH ta có:

    AE^{2} + EH^{2} = AH^{2}

    \Leftrightarrow \frac{(2m - 2)^{2}}{6} +
\left( \frac{2\sqrt{5}}{3} ight)^{2} = \frac{4}{9}\left\lbrack (1 -
m)^{2} + (m + 1)^{2} + 4 ightbrack

    \Leftrightarrow \frac{3\left( 4m^{2} -
8m + 4 ight)}{18} + \frac{40}{18} = \frac{8\left( 2m^{2} + 6
ight)}{18}

    \Leftrightarrow 4m^{2} + 24m - 4 =
0

    Phương trình này có hai nghiệm và tổng hai nghiệm đó bằng: - \frac{24}{4} = - 6.

  • Câu 19: Thông hiểu
    Xác định diện tích tam giác ABC

    Trong không gian Oxyz, cho A(1;2;0),B(3; - 1;1),C(1;1;1). Tính diện tích tam giác ABC?

    Hướng dẫn:

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3;1) \\
\overrightarrow{AC} = (0; - 1;1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( - 2; - 2; -
2)

    Lại có diện tích tam giác ABC là:

    S_{ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\sqrt{3}

  • Câu 20: Vận dụng
    PT mp có hệ số là CSN

    Cho mặt phẳng (P) qua điểm M\left( {2, - 4,1} ight) và chắn trên ba trục tọa độ Ox, Oy, Oz theo ba đoạn có số đo đại số a, b, c. Viết phương trình tổng quát của (P) khi a, b, c tạo thành một cấp số nhân có công bội bằng 2.

    Hướng dẫn:

    Theo đề bài, ta có a, b, c là cấp số nhân với công bội q=2

    \Rightarrow a,\,b = 2a;c = 4a;\,a e 0

    Phương trình của \left( P ight):\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1

    \Leftrightarrow \frac{x}{a} + \frac{y}{{2a}} + \frac{z}{{4a}} = 1 \Leftrightarrow 4x + 2y + z - 4a = 0

    (P) qua M\left( {2, - 4,1} ight) \Rightarrow 8 - 8 + 1 - 4a = 0 \Leftrightarrow a = \frac{1}{4}

    \Rightarrow \left( P ight):4x + 2y + z - 1 = 0

     

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo