Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 14 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3). Gọi (\alpha) là mặt phẳng chứa trục Oy và cách M một khoảng lớn nhất. Phương trình của (\alpha) là:

    Hướng dẫn:

    Hình vẽ minh họa

    +) Gọi H,Klần lượt là hình chiếu vuông góc của Mtrên mặt phẳng(\alpha) và trục Oy.

    Ta có : K(0;2;0)

    d(M,(\alpha)) = MH \leq MK

    Vậy khoảng cách từ M đến mặt phẳng(\alpha) lớn nhất khi mặt phẳng(\alpha)qua K và vuông góc với MK.

    Phương trình mặt phẳng: x + 3z =
0

  • Câu 2: Vận dụng cao
    Xác định pháp tuyến của mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;0;1),B(3; - 2;0),C(1;2; - 2). Gọi (P) là mặt phẳng đi qua A sao cho tổng khoảng cách từ BC đến mặt phẳng (P) lớn nhất, biết rằng (P) không cắt đoạn BC. Khi đó pháp tuyến của mặt phẳng (P):

    Hướng dẫn:

    Hình vẽ minh họa

    Lấy M là trung điểm của đoạn BC, suy ra M(2; 0; −1).

    Gọi BB’, CC’, MM’ lần lượt là khoảng cách từ B, C, M đến mặt phẳng (P), từ đó suy ra BB’ + CC’ = 2MM’.

    Xét tam giác vuông AMM’, ta có MM' ≤ AM, từ đó suy ra để tổng khoảng cách từ B và C đến mặt phẳng (P) thì MM’ phải lớn nhất, điều này có nghĩa là M’ trùng với A hay MA ⊥ (P).

    Từ đó suy ra vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{AM} = (1;0; - 2)

  • Câu 3: Vận dụng
    Viết PT mp

    Cho tam giác ABC với A\left( {\,1,\,\, - 2,\,\,6\,} ight);\,\,B\left( {\,2,\,\,5,\,\,1} ight);\,\,C\left( {\, - 1,\,\,8,\,\,4} ight) . Viết phương trình tổng quát của mặt phẳng (R) vuông góc với mặt phẳng (ABC) song song phân giác ngoài AF của góc A?

    Hướng dẫn:

     Một vecto chỉ phương của (R)\overrightarrow n  = 12\left( {3,1,2} ight)

    Ta có :

    \begin{array}{l}A{B^2} = 75 \Rightarrow AB = 5\sqrt 3 ;A{C^2} = 108 \Rightarrow AC = 6\sqrt 3 \\6\overrightarrow {FB}  = 5\overrightarrow {FC}  \Leftrightarrow \left\{ \begin{array}{l}6\left( {2 - x} ight) = 5\left( { - 1 - x} ight)\\6\left( {5 - y} ight) = 5\left( {8 - y} ight)\\6\left( {1 - z} ight) = 5\left( {4 - z} ight)\end{array} ight. \Rightarrow F\left\{ \begin{array}{l}x = 17\\y =  - 10\\z =  - 14\end{array} ight.\end{array}

    Vecto chỉ phương thứ hai \overrightarrow {AF}  = 4\left( {4, - 2, - 5} ight)

    Suy ra vecto pháp tuyến của (R)\overrightarrow N  = \left[ {\overrightarrow n ,\overrightarrow {AF} } ight] = \left( { - 1,23, - 10} ight)

    Mp (R) đi qua A (1, -2, 6) và nhận vecto (-1, 23, -10) làm 1 VTPT có phương trình là:

    \Rightarrow \left( R ight):\left( {x - 1} ight)\left( { - 1} ight) + \left( {y + 2} ight)23 + \left( {z - 6} ight)\left( { - 10} ight) = 0

    \Leftrightarrow x - 23y + 10z - 108 = 0

  • Câu 4: Thông hiểu
    Viết phương trình mặt phẳng (P)

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;6;0),B(0;0; - 2);C( - 3;0;0). Phương trình mặt phẳng (P) đi qua ba điểm A;B;C là:

    Hướng dẫn:

    Phương trình mặt phẳng theo đoạn chắn \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Ta có \frac{x}{3} + \frac{y}{- 6} +
\frac{z}{2} = 1

    \Leftrightarrow - 2x + y - 3z =
6

    \Leftrightarrow 2x - y + 3z + 6 =
0

  • Câu 5: Vận dụng
    Viết phương trình mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho điểm N(1;1;1). Viết phương trình mặt phẳng (P) cắt các trục Ox,Oy,Oz lần lượt tại A,B,C (không trùng với gốc tọa độ O) sao cho N là tâm đường tròn ngoại tiếp tam giác ABC?

    Hướng dẫn:

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) lần lượt là giao điểm của (P) với các trục Ox,Oy,Oz

    \Rightarrow (P):\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1(a,b,c \neq 0)

    Ta có: \left\{ {\begin{array}{*{20}{c}}
  {N \in \left( P \right)} \\ 
  {NA = NB} \\ 
  {NA = NC} 
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1} \\ 
  {\left| {a - 1} \right| = \left| {b - 1} \right|} \\ 
  {\left| {a - 1} \right| = \left| {c - 1} \right|} 
\end{array}} \right. \Leftrightarrow a = b = c = 3 \Rightarrow x + y +
z - 3 = 0

  • Câu 6: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2; - 3;7),B(0;4;1), C(3;0;5),D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức \left| \overrightarrow{MA} + \overrightarrow{MB} +\overrightarrow{MC} + \overrightarrow{MD} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2; - 3;7),B(0;4;1), C(3;0;5),D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức \left| \overrightarrow{MA} + \overrightarrow{MB} +\overrightarrow{MC} + \overrightarrow{MD} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho điểm I(1; 1; 1). Phương trình mặt phẳng (P) cắt trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O) sao cho I là tâm đường tròn ngoại tiếp tam giác ABC?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm I(1; 1; 1). Phương trình mặt phẳng (P) cắt trục Ox, Oy, Oz lần lượt tại A, B, C (không trùng với gốc tọa độ O) sao cho I là tâm đường tròn ngoại tiếp tam giác ABC?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz cho điểm H(1;2;3). Viết phương trình mặt phẳng (P) đi qua điểm H và cắt các trục tọa độ tại ba điểm phân biệt A;B;C sao cho H là trực tâm của tam giác ABC?

    Hướng dẫn:

    Giả sử (P) cắt các trục tọa độ tại A(a;0;0),B(0;b;0),C(0;0;c);(abc eq
0)

    Khi đó (P):\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1

    Ta có: \left\{ \begin{matrix}
\overrightarrow{HA} = (a - 1; - 2; - 3) \\
\overrightarrow{HB} = ( - 1;b - 2; - 3) \\
\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight. mà H là trực tâm của tam giác ABC nên

    \left\{ \begin{matrix}
\overrightarrow{HA}.\overrightarrow{BC} = \overrightarrow{0} \\
\overrightarrow{HB}.\overrightarrow{AC} = \overrightarrow{0} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2b - 3c = 0 \\
a - 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow a = 2b = 3c

    Mặt khác H \in (P) \Rightarrow
\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1 \Rightarrow \frac{1}{3c} +
\frac{4}{3c} + \frac{3}{c} = 1

    \Rightarrow 14 = 3c \Leftrightarrow c =
\frac{14}{3} \Leftrightarrow \left\{ \begin{matrix}
a = 14 \\
b = 7 \\
\end{matrix} ight.

    \Rightarrow (P):\dfrac{x}{14} +\dfrac{y}{7} + \dfrac{z}{\dfrac{14}{3}} = 1 \Rightarrow (P):x + 2y + 3z -14 = 0

  • Câu 9: Vận dụng
    Chọn kết luận đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;1),B(1;0;1),C(1;1;0). Có bao nhiêu điểm M cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)?

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (0;1;1);\overrightarrow{OB} = (1;0;1) \\
\overrightarrow{OC} = (1;1;0);\overrightarrow{AB} = (1; - 1;0) \\
\overrightarrow{AC} = (1;\ 0; - 1) \\
\end{matrix} ight.

    Ta có: \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = (1;\ 1; - 1)
\Rightarrow (OAB):x + y - z = 0

    Ta có: \left\lbrack
\overrightarrow{AB};\overrightarrow{OC} ightbrack = ( - 1;1;1)
\Rightarrow (OBC): - x + y + z = 0

    Gọi điểm M(a;b;c) cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)

    Từ d\left( M,(OAB) ight) = d\left(
M,(OBC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = c(1) \\
b = c(2) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(OAC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b - c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = 0(3) \\
b = c(4) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(ABC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{|a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 0(5) \\
a = - b(6) \\
\end{matrix} ight.

    Từ (1), (3), (5) suy ra a = c = 0, b khác 0 tùy ý.

    Như vậy có vô số điểm cách đều bốn mặt phẳng

  • Câu 10: Vận dụng cao
    Tính độ dài các đoạn thẳng

    Cho tứ diện OABC, có OA,OB,OC đôi một vuông góc, M là điểm thuộc miền trong của tam giác ABC. Gọi khoảng cách từ M đến các mặt phẳng (OBC),(OCA),(OAB) lần lượt là a,b,c. Tính độ dài đoạn OA,OB,OC sao cho tứ diện OABC có thể tích nhỏ nhất.

    Hướng dẫn:

    Xét hệ trục tọa độ Oxyz sao cho A thuộc tia Ox; B thuộc tia Oy và C thuộc tia Oz.

    Ta có

    \left\{ \begin{matrix}
d\left( M;(OBC) ight) = a \\
d\left( M;(OCA) ight) = b \\
d\left( M;(OAB) ight) = c \\
\end{matrix} ight.\  \Rightarrow M(a;b;c)

    (ABC):\frac{x}{OA} + \frac{y}{OB} +
\frac{z}{OC} = 1

    Ta có: M(a;b;c) \in (ABC) \Rightarrow 1 =
\frac{a}{OA} + \frac{b}{OB} + \frac{c}{OC} \geq
3\sqrt[3]{\frac{abc}{OA.OB.OC}}

    \Rightarrow \frac{27abc}{OA.OB.OC} \leq1 \Rightarrow \dfrac{9abc}{\dfrac{1}{6}.OA.OB.OC} \leq 2

    \Rightarrow \frac{9abc}{V_{OABC}} \leq 2
\Rightarrow V_{OABC} = \frac{9abc}{2}

    Đẳng thức xảy ra khi chỉ khi \left\{
\begin{matrix}
\frac{a}{OA} = \frac{b}{OB} = \frac{c}{OC} \\
\frac{a}{OA} + \frac{b}{OB} + \frac{c}{OC} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
OA = 3a \\
OB = 3b \\
OC = 3c \\
\end{matrix} ight.

  • Câu 11: Thông hiểu
    Tính giá trị biểu thức S

    Trong không gian với hệ toạ độ Oxyz, mặt phẳng (P):ax + by + cz - 27 = 0 đi qua hai điểm A(3;2;1),B( - 3;5;2) và vuông góc với mặt phẳng (Q):3x + y + z + 4 =
0. Tính tổng S = a + b +
c.

    Hướng dẫn:

    Từ giả thiết ta có hệ phương trình:

    \left\{ \begin{matrix}
3a + 2b + c - 27 = 0 \\
- 3a + 5b + 2c - 27 = 0 \\
3a + b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 6 \\
b = 27 \\
c = - 45 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = -
12

  • Câu 12: Vận dụng cao
    Xác định tọa độ điểm B

    Trong không gian Oxyz, cho điểm A(1; - 6;1) và mặt phẳng (P):x + y + 7 = 0. Điểm B thay đổi thuộc Oz; điểm C thay đổi thuộc mặt phẳng (P). Biết rằng tam giác ABC có chu vi nhỏ nhất. Tọa độ điểm B là:

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi B1 là điểm đối xứng với B qua (P).

    P_{ABC} = AB + BC + CA = AB + B_{1}C +
CA \geq AB + AB_{1}

    Gọi M là hình chiếu của A lên trục Oz, M1 là điểm đối xứng của M qua (P)

    AB + AB_{1} \geq AM + AB_{1} \geq AM +
AM_{1} (hằng số).

    Vậy PABC nhỏ nhất khi B ≡ M và C là giao điểm của AM1 với (P).

    Từ đó suy ra tọa độ của điểm B là (0; 0; 1).

  • Câu 13: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \overrightarrow{m} = (4;3;1),\overrightarrow{n} =
(0;0;1). Gọi \overrightarrow{p} là vectơ cùng hướng với vectơ \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack (tích có hướng của hai vectơ \overrightarrow{m}\overrightarrow{n}. Biết \left| \overrightarrow{p} ight| = 15, tìm tọa độ vectơ \overrightarrow{p}.

    Hướng dẫn:

    Ta thấy \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack = (3; -
4;0)

    \overrightarrow{p} là vectơ cùng hướng với vectơ \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack = (3; -
4;0) nên \overrightarrow{p} = (3k;
- 4k;0),k\mathbb{\in R};k > 0.

    Mặt khác \left| \overrightarrow{p}
ight| = 15 \Leftrightarrow \sqrt{9k^{2} + 16k^{2} + 0} = 15
\Rightarrow k = 3

    Vậy \overrightarrow{p} = (9; -
12;0).

  • Câu 14: Vận dụng
    Tìm các giá trị b và c theo yêu cầu

    Trong không gian với hệ toạ độ Oxyz, cho A(1;0;0), B(0;b;0), C(0;0;c), (b
> 0,c > 0) và mặt phẳng (P):y
- z + 1 = 0. Xác định b và c biết mặt phẳng (ABC) vuông góc với mặt phẳng (P) và khoảng cách từ O đến (ABC) bằng \frac{1}{3}.

    Hướng dẫn:

    Phương trình mặt phẳng (ABC) có dạng \frac{x}{1} + \frac{y}{b} + \frac{z}{c}
= 1 \Leftrightarrow bcx + cy + bz - bc = 0

    Theo giả thiết: \left\{ \begin{matrix}
(ABC)\bot(P) \\
d\left( O,(ABC) \right) = \frac{1}{3} \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
c - b = 0 \\
\frac{| - bc|}{\sqrt{(bc)^{2} + c^{2} + b^{2}}} = \frac{1}{3} \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
b = c \\
\frac{b^{2}}{\sqrt{b^{4} + 2b^{2}}} = \frac{1}{3} \\
\end{matrix} \right.

    \Leftrightarrow 3b^{2} = \sqrt{b^{4} +
2b^{2}} \Leftrightarrow 8b^{4} = 2b^{2}

    \Leftrightarrow b = \frac{1}{2}
\Rightarrow c = \frac{1}{2}

  • Câu 15: Thông hiểu
    Tính tổng các tham số m thỏa mãn yêu cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 3y + 2z + 1 = 0(Q):(2m - 1)x + m(1 - 2m)y + (2m - 4)z + 14 =
0 với m là tham số thực. Tổng các giá trị của m để (P)(Q) vuông góc nhau bằng bao nhiêu?

    Hướng dẫn:

    Ta có:

    (P) có vectơ pháp tuyến \overrightarrow{n_{(P)}} = (1; - 3;2)

    (Q) có véc-tơ pháp tuyến \overrightarrow{n_{(Q)}} = \left( 2m - 1;,m(1 -
2m);2m - 4 ight)

    (P) và (Q) vuông góc với nhau khi và chỉ khi \overrightarrow{n_{(P)}}\bot\overrightarrow{n_{(Q)}}

    Điều này tương đương với

    \overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}}
= 0 \Leftrightarrow 6m^{2} + 3m - 9 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}m = 1 \\m = - \dfrac{3}{2} \\\end{matrix} ight.\  \Rightarrow T = 1 + \left( - \frac{3}{2} ight)= - \dfrac{1}{2}.

  • Câu 16: Vận dụng
    Xác định tập hợp các điểm cách đều mặt phẳng

    Trong không gian Oxyz, tìm tập hợp các điểm cách đều cặp mặt phẳng sau đây: 4x - y - 2z - 3 = 0;4x - y - 2z - 5 =
0.

    Hướng dẫn:

    Gọi điểm

    A (0; −3; 0) ∈ 4x − y − 2z − 3 = 0 (α)

    B (0; −5; 0) ∈ 4x − y − 2z − 5 = 0 (β)

    Mặt phẳng cách đều hai mặt phẳng trên có dạng: 4x − y − 2z + m = 0 (γ).

    Để mp (γ) cách đều hai mp trên thì d (A; (β)) = 2d (A; (γ)) ⇔ |m + 3| = 1

    ⇔ m = −2 hoặc m = −4

    Mặt khác điểm hai điểm A; B phải nằm về hai phía của mp (γ).

    Với m = −2 ta có (4 .0 + 3 – 2.0 − 2) (4.0 + 5 – 2.0 − 2) > 0 nên A; B cùng phía.

    Với m = −4 ta có (4 .0 + 3 – 2.0 − 4) (4.0 + 5 – 2.0 − 4) < 0 nên A; B khác phía.

    Vậy phương trình mặt phẳng cần tìm là 4x − y − 2z − 4 = 0 (γ).

  • Câu 17: Vận dụng
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, cho mặt phẳng (\alpha):x - y + z - 3 = 0. Viết phương trình mặt phẳng (\beta) sao cho phép đối xứng qua mặt phẳng (Oxy) biến mặt phẳng (\alpha) thành mặt phẳng (\beta).

    Hướng dẫn:

    Tọa độ giao điểm của mặt phẳng (α) với các trục tọa độ là A(3;0;0),B(0; - 3;0),C(0;0;3).

    Ta có A; B ∈ (Oxy)C ∈ Oz.

    Kí hiệu Đ(Oxy) là phép đối xứng qua mặt phẳng Oxy.

    Ta có Đ(Oxy):(\alpha) ightarrow (\beta)
\Rightarrow Đ(Oxy):(A;B;C) ightarrow (A;B;C'), (ảnh của A, B trùng với chính nó vì A,B \in
(Oxy)).

    Do C’ đối xứng với C(0;0;3) qua mặt phẳng Oxy, suy ra C'(0;0; -
3)

    Từ đó suy ra mặt phẳng (β) có phương trình theo đoạn chắn là:

    \frac{x}{3} + \frac{y}{- 3} + \frac{z}{-
3} = 1 \Leftrightarrow (\beta):x - y - z - 3 = 0

  • Câu 18: Vận dụng cao
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho điểm A(1; - 6;1) và mặt phẳng (P):x + y + 7 = 0. Điểm B thay đổi thuộc Oz; điểm C thay đổi thuộc mặt phẳng (P). Biết rằng tam giác ABC có chu vi nhỏ nhất. Tìm tọa độ điểm B.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm A(1; - 6;1) và mặt phẳng (P):x + y + 7 = 0. Điểm B thay đổi thuộc Oz; điểm C thay đổi thuộc mặt phẳng (P). Biết rằng tam giác ABC có chu vi nhỏ nhất. Tìm tọa độ điểm B.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Thông hiểu
    Tìm m để hai mặt phẳng vuông góc

    Trong không gian Oxyz, cho mặt phẳng (P):x - my + z - 1 = 0;(m \in
R), mặt phẳng (Q) chứa trục Ox và đi qua điểm A(1; - 3;1). Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau?

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (1; - 3;1) \\
\overrightarrow{i} = (1;0;0) \\
\end{matrix} ight.

    Mặt phẳng (Q) chứa trục Ox và đi qua điểm A(1; - 3;1)⇒ (Q) có vectơ pháp tuyến \overrightarrow{n_{(Q)}} = \left\lbrack
\overrightarrow{OA};\overrightarrow{i} ightbrack =
(0;1;3)

    Mặt phẳng (P) có véc-tơ pháp tuyến \overrightarrow{n_{(P)}} = (1; - m;1)

    Để hai mặt phẳng (P)(Q) vuông góc với nhau thì

    \overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}}
= 0 \Leftrightarrow 0.1 + 1.( - m) + 1.3 = 0 \Leftrightarrow m =
3

  • Câu 20: Vận dụng
    Tính chiều rộng bức tường

    Một công trình đang xây dựng được gắn hệ trục Oxyz (đơn vị trên mỗi trục tọa độ là mét). Ba bức tường (P),(Q),(R),(T) (như hình vẽ) của tòa nhà lần lượt có phương trình: (P):2x - y - z + 1 = 0, (Q):x + 3y - z - 2 = 0,(R):4x - 2y - 2z + 9 = 0,(T):2x + 6y - 2z + 15 = 0.

    Tính chiều rộng bức tường (Q)của tòa nhà.

    Hướng dẫn:

    Ta có:

    (P):2x - y - z + 1 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{P} = (2;
- 1; - 1)

    (Q):x + 3y - z - 2 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{Q} =
(1;3; - 1)

    (R):4x - 2y - 2z + 9 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{R}
= (4; - 2; - 2)

    (T):2x + 6y - 2z + 15 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{T}
= (2;6; - 2)

    Ta có:

    {\overrightarrow{n}}_{R} = (4; - 2; - 2)
= 2(2; - 1; - 1) \Rightarrow {\overrightarrow{n}}_{R} =
2{\overrightarrow{n}}_{P} nên hai bức tường (P)(R)song song nhau

    {\overrightarrow{n}}_{T} = (2;6; - 2) =
2(1;3; - 1) \Rightarrow {\overrightarrow{n}}_{T} =
2{\overrightarrow{n}}_{Q} nên hai bức tường (T)(Q) song song nhau

    {\overrightarrow{n}}_{P}.{\overrightarrow{n}}_{Q}
= 2.1 + ( - 1).3 + ( - 1).( - 1) = 0 \Rightarrow
{\overrightarrow{n}}_{P}\bot{\overrightarrow{n}}_{Q} nên bức tường (Q) vuông góc với hai bức tường (P)(R)

    {\overrightarrow{n}}_{R}.{\overrightarrow{n}}_{Q}
= 4.1 + ( - 2).3 + ( - 2).( - 1) = 0 \Rightarrow
{\overrightarrow{n}}_{R}\bot{\overrightarrow{n}}_{Q} nên bức tường (R) vuông góc với hai bức tường (Q)(T)

    Do hai bức tường (P)(R)song song nhau nên chiều rộng bức tường (Q) là khoảng cách giữa hai bức tường (P)(R).

    Chọn điểm N(0;0;1) \in (P)

    Do hai bức tường (P)(R) song song nhau nên:

    d\left( (P),(R) \right) = d\left( N,(R)\right)= \frac{|4.0 - 2.0 - 2.1 + 9|}{\sqrt{4 + 1 + 1}} =\frac{7}{\sqrt{6}} \approx 2,9m

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo