Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 14 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Viết phương trình mặt phẳng (P)

    Trong không gian Oxyz, cho điểm M(1;2;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x'Ox,y'Oy,z'Oz lần lượt tại các điểm A,B,C sao cho OA = OB = 2OC eq 0?

    Hướng dẫn:

    Đặt A(a;0;0),B(0;b;0),C(0;0;c) với abc eq 0.

    Phương trình mặt phẳng (P) đi qua ba điểm A, B, C có dạng \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Do OA = OB = 2OC nên ta có |a| = |b| = 2|c|.

    Suy ra a = ±2c, b = ±2c.

    Nếu a = 2cb = 2c thì mặt phẳng (P) có dạng \frac{x}{2c} + \frac{y}{2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{2c} +
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{9}{2}.

    Ta có (P): x + y + 2z − 9 = 0.

    Nếu a = 2cb = −2c thì mặt phẳng (P) có dạng \frac{x}{2c} + \frac{y}{- 2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{2c} -
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{5}{2}

    Ta có (P): x − y + 2z − 5 = 0.

    Nếu a = −2cb = 2c thì mặt phẳng (P) có dạng \frac{x}{- 2c} + \frac{y}{2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{- 2c} +
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{7}{2}

    Ta có (P): − x + y + 2z − 7 = 0.

    Nếu a = −2cb = −2c thì mặt phẳng (P) có dạng \frac{x}{- 2c} + \frac{y}{- 2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{- 2c} +
\frac{2}{- 2c} + \frac{3}{c} = 1 \Rightarrow c =
\frac{3}{2}

    Ta có (P): − x − y + 2z − 3 = 0.

    Vậy có bốn mặt phẳng thỏa yêu cầu bài toán.

  • Câu 2: Thông hiểu
    Chọn đáp án thích hợp

    Trong không gian Oxyz, cho hai mặt phẳng (P):x + my + (m - 1)z + 1 =
0(Q):x + y + 2z = 0. Tập hợp tất cả các giá trị m để hai mặt phẳng này không song song là:

    Hướng dẫn:

    Ta có A(0;0;0) \in (Q).

    (P)//(Q) \Leftrightarrow \left\{\begin{matrix}\dfrac{1}{1} = \dfrac{m}{1} = \dfrac{m - 1}{2} \\A(0;0;0) otin (P) \\\end{matrix} ight. hệ này vô nghiệm

    Hệ này vô nghiệm.

    Do đó (P) không song song với (Q), với mọi giá trị của m.

  • Câu 3: Thông hiểu
    Tìm phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz cho các điểm A(0;1;2),B(2; - 2;1),C( - 2;0;1). Phương trình mặt phẳng đi qua A và vuông góc với BC là:

    Hướng dẫn:

    Ta có: \overrightarrow{n} =
\frac{1}{2}\overrightarrow{BC} = ( - 2;1;0)

    Vậy phương trình mặt phẳng đi qua A và vuông góc với BC là:

    - 2(x - 0) + 1(y - 1) = 0

    \Leftrightarrow - 2x + y - 1 =
0

    \Leftrightarrow 2x - y + 1 =
0

  • Câu 4: Thông hiểu
    Chọn phương án thích hợp

    Trong không gian với hệ toạ độ Oxyz,cho hai đường thẳng d_{1},d_{2}lần lượt có phương trình d_{1}:\frac{x - 2}{2} = \frac{y - 2}{1} = \frac{z
- 3}{3}, d_{2}:\frac{x - 1}{2} =
\frac{y - 2}{- 1} = \frac{z - 1}{4}. Phương trình mặt phẳng (\alpha) cách đều hai đường thẳng d_{1},d_{2} là:

    Hướng dẫn:

    Ta có d_{1} đi qua A(2;2;3) và có \overrightarrow{u_{d_{1}}} = (2;1;3), d_{2} đi qua B(1;2;1) và có \overrightarrow{u_{d_{2}}} = (2; -
1;4)

    \overrightarrow{AB} = ( - 1;1; -
2);\left\lbrack \overrightarrow{u_{d_{1}}};\overrightarrow{u_{d_{2}}}
\right\rbrack = (7; - 2; - 4);

    \Rightarrow \left\lbrack
\overrightarrow{u_{d_{1}}};\overrightarrow{u_{d_{2}}}
\right\rbrack\overrightarrow{AB} = - 1 \neq 0 nên d_{1},d_{2} chéo nhau.

    Do (\alpha) cách đều d_{1},d_{2} nên (\alpha) song song với d_{1},d_{2} \Rightarrow
\overrightarrow{n_{\alpha}} = \left\lbrack
\overrightarrow{u_{d_{1}}};\overrightarrow{u_{d_{2}}} \right\rbrack =
(7; - 2; - 4)

    \Rightarrow (\alpha) có dạng 7x - 2y - 4z + d = 0

    Theo giả thiết thì d\left( A,(\alpha)
\right) = d\left( B,(\alpha) \right)

    \Leftrightarrow \frac{|d -
2|}{\sqrt{69}} = \frac{|d - 1|}{\sqrt{69}} \Leftrightarrow d =
\frac{3}{2}

    \Rightarrow (\alpha):14x - 4y - 8z + 3 =
0

  • Câu 5: Vận dụng
    Viết phương trình mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho điểm N(1;1;1). Viết phương trình mặt phẳng (P) cắt các trục Ox,Oy,Oz lần lượt tại A,B,C (không trùng với gốc tọa độ O) sao cho N là tâm đường tròn ngoại tiếp tam giác ABC?

    Hướng dẫn:

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) lần lượt là giao điểm của (P) với các trục Ox,Oy,Oz

    \Rightarrow (P):\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1(a,b,c \neq 0)

    Ta có: \left\{ {\begin{array}{*{20}{c}}
  {N \in \left( P \right)} \\ 
  {NA = NB} \\ 
  {NA = NC} 
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}
  {\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 1} \\ 
  {\left| {a - 1} \right| = \left| {b - 1} \right|} \\ 
  {\left| {a - 1} \right| = \left| {c - 1} \right|} 
\end{array}} \right. \Leftrightarrow a = b = c = 3 \Rightarrow x + y +
z - 3 = 0

  • Câu 6: Vận dụng
    Tìm phương trình mặt phẳng thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (\alpha) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại A , B , C ( khác gốc toạ độ O ) sao cho M là trực tâm tam giác ABC . Mặt phẳng (\alpha) có phương trình là:

    Hướng dẫn:

    Hình vẽ minh họa

    Cách 1: Gọi H là hình chiếu vuông góc của Ctrên AB, K là hình chiếu vuông góc B trên AC.M là trực tâm của tam giác ABC khi và chỉ khi M = BK \cap CH

    Ta có : \left. \ \begin{matrix}
AB\bot CH \\
AB\bot CO \\
\end{matrix} \right\} \Rightarrow AB\bot(COH) \Rightarrow AB\bot OM\
(1) (1)

    Chứng minh tương tự, ta có: AC\bot
OM (2).

    Từ (1) và (2), ta có: OM\bot(ABC)

    Ta có: \overrightarrow{OM}(1;2;3).

    Mặt phẳng (\alpha)đi qua điểm M(1;2;3) và có một VTPT\overrightarrow{OM}(1;2;3) nên có phương trình là:

    (x - 1) + 2(y - 2) + 3(z
- 3) = 0 \Leftrightarrow x + 2y + 3z - 14 = 0.

    Cách 2:

    +) Do A,B,C lần lượt thuộc các trục Ox,Oy,Oznên A(a;0;0),B(0;b;0),C(0;0;c)(a,b,c\ \  \neq 0).

    Phương trình đoạn chắn của mặt phẳng (ABC) là: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    +) Do M là trực tâm tam giác ABC nên \left\{ \begin{matrix}
\overrightarrow{AM}.\overrightarrow{BC} = 0 \\
\overrightarrow{BM}.\overrightarrow{AC} = 0 \\
M \in (ABC) \\
\end{matrix} \right. .

    Giải hệ điều kiện trên ta được a,b,c

    Vậy phương trình mặt phẳng: x + 2y + 3z -
14 = 0.

  • Câu 7: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng
    Tìm tọa độ đỉnh D

    Trong không gian Oxyz, cho ba điểm A(1;2;3),B(1;0; - 1),C(2; -
1;2). Điểm D thuộc tia Oz sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện ABCD bằng \frac{3\sqrt{30}}{10} có tọa độ là

    Hướng dẫn:

    Ta có D thuộc tia Oz nên D(0; 0; d) với d > 0.

    Tính \left\{ \begin{matrix}
\overrightarrow{AB} = (0; - 2; - 4) \\
\overrightarrow{AC} = (1; - 3; - 1) \\
\end{matrix} ight.

    Mặt phẳng (ABC): có vectơ pháp tuyến \overrightarrow{n_{(ABC)}} = \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 10; -
4;2) và đi qua điểm A(1; 2; 3).

    \Rightarrow (ABC): - 10(x - 1) - 4(y -
2) + 2(z - 3) = 0

    \Leftrightarrow 5x + 2y - y - 6 =
0

    Ta có d\left( D;(ABC) ight) =
\frac{3\sqrt{30}}{10} \Leftrightarrow \frac{|d + 6|}{\sqrt{30}} =
\frac{3\sqrt{30}}{10}

    \Leftrightarrow |d + 6| = 9
\Leftrightarrow \left\lbrack \begin{matrix}
d = 3(tm) \\
d = - 15(ktm) \\
\end{matrix} ight.

    Vậy D(0;0;3).

  • Câu 9: Vận dụng cao
    Tính giá trị biểu thức T

    Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) đi qua hai điểm M(1;8;0),C(0;0;3) cắt các tia Ox,Oy lần lượt tại A;B sao cho OG nhỏ nhất, với G là trọng tâm tam giác ABC. Biết G(a;b;c), hãy tính T = a + b + c.

    Hướng dẫn:

    Gọi A(m;0;0),B(0;n;0) với m,n > 0.

    Khi đó phương trình của (ABC):\frac{x}{m}
+ \frac{y}{n} + \frac{z}{3} = 1.

    M \in (ABC) nên \frac{1}{m} + \frac{8}{n} = 1. Kết hợp với điều kiện m > 0,n > 0 suy ra m > 1n > 8.

    Cũng từ trên ta có m = \frac{n}{n -
8}.

    Trọng tâm G của tam giác ABC có tọa độ \left( \frac{m}{3};\frac{n}{3};1
ight).

    OG^{2} = |\overrightarrow{OG}|^{2} =
\left( \frac{m}{3} ight)^{2} + \left( \frac{n}{3} ight)^{2} + 1^{2}
= \frac{1}{9}\left\lbrack \left( \frac{n}{n - 8} ight)^{2} + n^{2}
ightbrack + 1

    Xét hàm số f(n) = \left( \frac{n}{n - 8}
ight)^{2} + n^{2} với n >
8.

    Ta có f^{'}(n) = 2 \cdot \frac{n}{n -
8} \cdot \frac{- 8}{(n - 8)^{2}} + 2n = 2n\left\lbrack \frac{- 8}{(n -
8)^{3}} + 1 ightbrack.

    f^{'}(n) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = 0 \\
n = 10 \\
\end{matrix} \Leftrightarrow n = 10 ight.

    Bảng biến thiên

    OG đạt giá trị nhỏ nhất khi và chỉ khi f(n) đạt giá trị nhỏ nhất. Điều này xảy ra khi n = 10; lúc đó m = 5G\left( \frac{5}{3};\frac{10}{3};1
ight).

    Vậy T = a + b + c = 6

  • Câu 10: Vận dụng cao
    Xác định pháp tuyến của mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;0;1),B(3; - 2;0),C(1;2; - 2). Gọi (P) là mặt phẳng đi qua A sao cho tổng khoảng cách từ BC đến mặt phẳng (P) lớn nhất, biết rằng (P) không cắt đoạn BC. Khi đó pháp tuyến của mặt phẳng (P):

    Hướng dẫn:

    Hình vẽ minh họa

    Lấy M là trung điểm của đoạn BC, suy ra M(2; 0; −1).

    Gọi BB’, CC’, MM’ lần lượt là khoảng cách từ B, C, M đến mặt phẳng (P), từ đó suy ra BB’ + CC’ = 2MM’.

    Xét tam giác vuông AMM’, ta có MM' ≤ AM, từ đó suy ra để tổng khoảng cách từ B và C đến mặt phẳng (P) thì MM’ phải lớn nhất, điều này có nghĩa là M’ trùng với A hay MA ⊥ (P).

    Từ đó suy ra vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{AM} = (1;0; - 2)

  • Câu 11: Vận dụng
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz cho điểm H(1;2;3). Viết phương trình mặt phẳng (P) đi qua điểm H và cắt các trục tọa độ tại ba điểm phân biệt A;B;C sao cho H là trực tâm của tam giác ABC?

    Hướng dẫn:

    Giả sử (P) cắt các trục tọa độ tại A(a;0;0),B(0;b;0),C(0;0;c);(abc eq
0)

    Khi đó (P):\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1

    Ta có: \left\{ \begin{matrix}
\overrightarrow{HA} = (a - 1; - 2; - 3) \\
\overrightarrow{HB} = ( - 1;b - 2; - 3) \\
\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight. mà H là trực tâm của tam giác ABC nên

    \left\{ \begin{matrix}
\overrightarrow{HA}.\overrightarrow{BC} = \overrightarrow{0} \\
\overrightarrow{HB}.\overrightarrow{AC} = \overrightarrow{0} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2b - 3c = 0 \\
a - 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow a = 2b = 3c

    Mặt khác H \in (P) \Rightarrow
\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1 \Rightarrow \frac{1}{3c} +
\frac{4}{3c} + \frac{3}{c} = 1

    \Rightarrow 14 = 3c \Leftrightarrow c =
\frac{14}{3} \Leftrightarrow \left\{ \begin{matrix}
a = 14 \\
b = 7 \\
\end{matrix} ight.

    \Rightarrow (P):\dfrac{x}{14} +\dfrac{y}{7} + \dfrac{z}{\dfrac{14}{3}} = 1 \Rightarrow (P):x + 2y + 3z -14 = 0

  • Câu 12: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;1; - 1)B(1;0;1) và mặt phẳng (P):x + 2y - z = 0. Viết phương trình mặt phẳng (Q) qua A;B và vuông góc với (P)?

    Hướng dẫn:

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n_{1}} = (1;2; -
1);\overrightarrow{AB} = ( - 1; - 1;2)

    Mặt phẳng (Q) có một vectơ pháp tuyến là \overrightarrow{n} = \left\lbrack
\overrightarrow{n_{1}};\overrightarrow{AB} ightbrack = (3; -
1;1)

    Từ đó, phương trình mặt phẳng (Q)(Q):3x
- y + z - 4 = 0.

  • Câu 13: Thông hiểu
    Tính diện tích hình bình hành

    Trong không gian Oxyz, cho hình bình hành ABCD với A(1;1;0),B(1;1;2),D(1;0;2). Diện tích hình bình hành ABCD bằng:

    Hướng dẫn:

    Gọi S là diện tích hình bình hành ABCD khi đó S = \left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AD} ightbrack
ight|

    \overrightarrow{AB} =
(0;0;2);\overrightarrow{AD} = (0; - 1;2)

    \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AD} ightbrack =
(2;0;0)

    \Rightarrow \left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AD} ightbrack ight| = 2
\Rightarrow S = 2

    Vậy diện tích hình bình hành ABCD bằng 2.

  • Câu 14: Vận dụng
    Xác định số mặt phẳng thỏa mãn yêu cầu

    Trong không gian với hệ tọa độ Oxyz có bao nhiêu mặt phẳng song song với mặt phẳng (Q):x + y + z + 3 = 0, cách điểm M(3;2;1) một khoảng bằng 3\sqrt{3} biết rằng tồn tại một điểm X(a;b;c) trên mặt phẳng đó thỏa mãn a + b + c < - 2?

    Hướng dẫn:

    Mặt phẳng song song với (Q) có dạng (P):x
+ y + z + m = 0,(m eq 3)

    d\left( M,(P) ight) = \frac{|3 + 2 + 1
+ m|}{\sqrt{3}} = 3\sqrt{3} \Leftrightarrow \left\lbrack \begin{matrix}
m = 3(ktm) \\
m = - 15 \\
\end{matrix} ight.

    Với m = −15 thì với mọi X(a;b;c) \in
(P) ta có a + b + c - 15 = 0
\Leftrightarrow a + b + c = 15 > - 2

    Do đó không có mặt phẳng nào thỏa mãn đề bài

  • Câu 15: Vận dụng
    Tính khoảng cách từ điểm đến đường thẳng

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Xét hình chóp S.ABCD trong hệ tọa độ Oxyz như hình vẽ.

    Khi đó ta có:

    H(0;0;0),A\left( - \frac{a}{2};0;0
\right),B\left( \frac{a}{2};0;0 \right)

    S\left( 0;0;\frac{a\sqrt{3}}{2}
\right),C\left( 0;\frac{a\sqrt{3}}{2};0 \right),D\left( -
a;\frac{a\sqrt{3}}{2};0 \right)

    Có MN // AD nên suy ra P là trung điểm của CD.

    Theo công thức trung điểm, ta suy ra

    M\left( \frac{-
a}{4};0;\frac{a\sqrt{3}}{4} \right),N\left( \frac{-
a}{2};\frac{a\sqrt{3}}{4};\frac{a\sqrt{3}}{4} \right)

    P\left( \frac{-
a}{2};\frac{a\sqrt{3}}{2};0 \right),K\left( \frac{-
a}{4};\frac{a\sqrt{3}}{4};\frac{a\sqrt{3}}{4} \right)

    Ta có: \overrightarrow{MN} = \left(
\frac{a}{4};\frac{a\sqrt{3}}{4};0 \right);\overrightarrow{HM} = \left( -
\frac{a}{4};0;\frac{a\sqrt{3}}{4} \right)

    Vectơ pháp tuyến của mặt phẳng (HMN) là \overrightarrow{n} = \left\lbrack
\overrightarrow{MN};\overrightarrow{HM} \right\rbrack = \left(
\frac{3a^{2}}{16};\frac{a^{3}\sqrt{3}}{16};\frac{a^{3}\sqrt{3}}{16}
\right)

    Phương trình mặt phẳng (HMN) là

    \frac{3a^{2}}{16}(x - 0) +
\frac{a^{3}\sqrt{3}}{16}(y - 0) + \frac{a^{3}\sqrt{3}}{16}(z - 0) =
0

    \Leftrightarrow \sqrt{3}x + y + z =
0

    Vậy khoảng cách cần tìm là:

    d\left\lbrack K,(HMN) \right\rbrack =
\dfrac{\left| - \dfrac{a\sqrt{3}}{4} + \dfrac{a\sqrt{3}}{4} +
\dfrac{a\sqrt{3}}{4} \right|}{\sqrt{3 + 1 + 1}} =
\dfrac{a\sqrt{15}}{20}

  • Câu 16: Vận dụng
    Tìm các giá trị b và c theo yêu cầu

    Trong không gian với hệ toạ độ Oxyz, cho A(1;0;0), B(0;b;0), C(0;0;c), (b
> 0,c > 0) và mặt phẳng (P):y
- z + 1 = 0. Xác định b và c biết mặt phẳng (ABC) vuông góc với mặt phẳng (P) và khoảng cách từ O đến (ABC) bằng \frac{1}{3}.

    Hướng dẫn:

    Phương trình mặt phẳng (ABC) có dạng \frac{x}{1} + \frac{y}{b} + \frac{z}{c}
= 1 \Leftrightarrow bcx + cy + bz - bc = 0

    Theo giả thiết: \left\{ \begin{matrix}
(ABC)\bot(P) \\
d\left( O,(ABC) \right) = \frac{1}{3} \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
c - b = 0 \\
\frac{| - bc|}{\sqrt{(bc)^{2} + c^{2} + b^{2}}} = \frac{1}{3} \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
b = c \\
\frac{b^{2}}{\sqrt{b^{4} + 2b^{2}}} = \frac{1}{3} \\
\end{matrix} \right.

    \Leftrightarrow 3b^{2} = \sqrt{b^{4} +
2b^{2}} \Leftrightarrow 8b^{4} = 2b^{2}

    \Leftrightarrow b = \frac{1}{2}
\Rightarrow c = \frac{1}{2}

  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho hai điểm A(2; - 2;4),B( - 3;3; - 1) và mặt phẳng (P):2x - y + 2z - 8 = 0. Xét M là điểm thay đổi thuộc (P), tính giá trị nhỏ nhất của 2MA^{2} + 3MB^{2} ?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho hai điểm A(2; - 2;4),B( - 3;3; - 1) và mặt phẳng (P):2x - y + 2z - 8 = 0. Xét M là điểm thay đổi thuộc (P), tính giá trị nhỏ nhất của 2MA^{2} + 3MB^{2} ?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Vận dụng cao
    Chọn khẳng định đúng

    Trong không gian Oxyz, biết mặt phẳng (P) đi qua điểm M(1;4;9) và cắt các tia dương Ox,Oy,Oz lần lượt tại ba điểm A,B,C khác gốc tọa độ O, sao cho OA
+ OB + OC đạt giá trị nhỏ nhất. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Vì mặt phẳng (P) cắt các tia dương của trục Ox,Oy,Oz nên ta có

    \frac{x}{OA} + \frac{y}{OB} +
\frac{z}{OC} = 1

    Ta có M \in (P) \Rightarrow \frac{1}{OA}
+ \frac{4}{OB} + \frac{9}{OC} = 1

    Khi đó, áp dụng bất đẳng thức Bunhiacopxki ta có:

    (OA + OB + OC)\left( \frac{1}{OA} +
\frac{4}{OB} + \frac{9}{OC} ight)

    \geq \left(
\sqrt{OA}.\frac{1}{\sqrt{OA}} + \sqrt{OB}.\frac{2}{\sqrt{OB}} +
\sqrt{OC}.\frac{3}{\sqrt{OC}} ight)^{2} = 36

    \Rightarrow OA + OB + OC \geq
36

    Dấu bằng xảy ra khi: \left\{\begin{matrix}\dfrac{1}{OA} + \dfrac{4}{OB} + \dfrac{9}{OC} = 1 \\OA = \dfrac{OB}{2} = \dfrac{OC}{3} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}OA = 6 \\OB = 12 \\OC = 18 \\\end{matrix} ight.

    Suy ra độ dài ba cạnh OA;OB;OC theo thứ tự lập thành một cấp số cộng.

  • Câu 19: Vận dụng
    Xác định số mặt phẳng thỏa mãn yêu cầu

    Trong không gian Oxyz, cho điểm M( - 1;0;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại A,B,C sao cho 3OA = 2OB = OC eq 0?

    Hướng dẫn:

    Từ giả thiết, ta có thể coi A(2a;0;0),B(0;3b;0),C(0;0;6c) (với |a| = |b| = |c| eq 0).

    Khi đó, phương trình mặt phẳng (P) là \frac{x}{2a} + \frac{y}{3b} + \frac{z}{6c} =1.

    Do (P) đi qua M(−1; 0; 3) nên -\frac{1}{2a} + \frac{1}{2c} = 1.

    Theo trên có c = ±a, kết hợp với phương trình vừa thu được, ta suy ra a = −1, c = 1.

    Cũng theo trên, b = ±a, nên có 2 giá trị của b.

    Suy ra có 2 bộ (a, b, c) thỏa mãn, hay có 2 mặt phẳng thỏa yêu cầu đề bài.

  • Câu 20: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz,cho (P):x + 4y - 2z - 6 = 0 ,(Q):x - 2y + 4z - 6 = 0. Lập phương trình mặt phẳng (\alpha) chứa giao tuyến của(P),(Q) và cắt các trục tọa độ tại các điểm A,B,C sao cho hình chóp O.ABC là hình chóp đều.

    Hướng dẫn:

    Chọn M(6;0;0),N(2;2;2) thuộc giao tuyến của(P),(Q)

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) lần lượt là giao điểm của (\alpha) với các trục Ox,Oy,Oz

    \Rightarrow (\alpha):\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1(a,b,c \neq 0)

    (\alpha) chứa M,N \Rightarrow \left\{ \begin{matrix}
\frac{6}{a} = 1 \\
\frac{2}{a} + \frac{2}{b} + \frac{2}{c} = 1 \\
\end{matrix} \right.

    Hình chóp O.ABC là hình chóp đều\Rightarrow OA = OB = OC

    \Rightarrow |a| = |b| = |c|

    Vây phương trình x + y + z - 6 =
0.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo