Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Nguyên hàm của một số hàm số sơ cấp (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn đáp án đúng

    Tìm H = \int_{}^{}\frac{x^{2}dx}{\left(
x\sin x + \cos x \right)^{2}}?

    Hướng dẫn:

    Ta có : H =
\int_{}^{}{\frac{x^{2}}{\left( x\sin x + \cos x \right)^{2}}dx =
\int_{}^{}{\frac{x\cos x}{\left( x\sin x + \cos x
\right)^{2}}.\frac{x}{\cos x}dx}}

    Đặt \left\{ \begin{matrix}u = \dfrac{x}{\cos x} \\dv = \dfrac{x\cos x}{\left( x\sin x + \cos x \right)^{2}}dx =\dfrac{d\left( x\sin x + \cos x \right)}{\left( x\sin x + \cos x\right)^{2}} \\\end{matrix} \right.

    \Rightarrow \left\{ \begin{matrix}du = \dfrac{x\sin x + \cos x}{cos^{2}x}dx \\v = - \dfrac{1}{x\sin x + \cos x} \\\end{matrix} \right.

    \Rightarrow H = - \frac{x}{\cos
x}.\frac{1}{xsinx + \cos x} +
\int_{}^{}{\frac{1}{cos^{2}x}dx}

    = \frac{- x}{\cos x\left( x\sin x + \cos
x \right)} + \tan x + C

  • Câu 2: Vận dụng
    Tính nguyên hàm của I

    Tìm nguyên hàm I = \int_{}^{}{x\ln(2x -
1)dx}.

    Hướng dẫn:

    Đặt u = \ln(2x - 1) \Rightarrow du =
\frac{2}{2x - 1}dx;dv = xdx \Rightarrow v = \frac{x^{2}}{2}

    Khi đó

    \int_{}^{}{x\ln(2x - 1)dx} =\frac{x^{2}}{2}.\ln(2x - 1) - \int_{}^{}{\frac{x^{2}}{2}.\frac{2}{2x -
1}}dx

    = \frac{x^{2}}{2}.\ln|2x - 1| -
\int_{}^{}{\frac{x^{2}}{2x - 1}dx}

    = \frac{x^{2}}{2}.\ln|2x - 1| -
\int_{}^{}{\left( \frac{x}{2} + \frac{1}{4} + \frac{1}{4(2x - 1)}
ight)dx}

    = \frac{x^{2}}{2}.\ln|2x - 1| - \left(
\frac{x^{2}}{4} + \frac{x}{4} + \frac{1}{8}.\ln\left| (2x - 1) ight|
ight) + C

    = \frac{4x^{2} - 1}{8}.\ln|2x - 1| -
\frac{x(x + 1)}{4} + C

  • Câu 3: Vận dụng
    Xác định nguyên hàm của hàm số

    Nguyên hàm của I =
\int_{}^{}{xsin^{2}x}dx là:

    Hướng dẫn:

    Ta biến đổi:

    I = \int_{}^{}{xsin^{2}x}dx =
\int_{}^{}{x\left( \frac{1 - cos2x}{2} \right)dx}

    = \frac{1}{2}\int_{}^{}{xdx -
\frac{1}{2}\int_{}^{}{xcos2x}}dx = \frac{1}{4}x^{2} -
\frac{1}{2}\underset{I_{1}}{\overset{\int_{}^{}{xcos2xdx}}{︸}} +
C_{1}

    \mathbf{I}_{\mathbf{1}}\mathbf{=}\int_{}^{}{\mathbf{x}\mathbf{cos2}\mathbf{xdx}}.

    Đặt\left\{ \begin{matrix}
u = x \\
dv = cos2x \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = \frac{1}{2}sin2x \\
\end{matrix} \right..

    \Rightarrow I_{1} = \int_{}^{}{xcos2xdx}
= \frac{1}{2}xsin2x - \frac{1}{2}\int_{}^{}{sin2xdx =} \frac{1}{2}xsin2x + \frac{1}{4}cos2x +
C.

    \Rightarrow I = \frac{1}{4}\left( x^{2} -
\frac{1}{2}cos2x - xsin2x \right) + C = \frac{1}{8}\left( 2x^{2} - 2xsin2x - cos2x
\right) + C

    = - \frac{1}{8}cos2x + \frac{1}{4}\left(
x^{2} + xsin2x \right) + C.

  • Câu 4: Thông hiểu
    Chọn phương án đúng

    Tìm nguyên hàm I = \int_{}^{}{\frac{1}{4
- x^{2}}dx}

    Hướng dẫn:

    Ta có

    \int_{}^{}{\frac{1}{a^{2} - x^{2}}dx =
\int_{}^{}{\frac{1}{(a + x)(a - x)}dx}}

    = \frac{1}{2a}\int_{}^{}{\left(
\frac{1}{a - x} + \frac{1}{a + x} ight)dx}

    = \frac{1}{2a}.\ln\left| \frac{x + a}{x -
a} ight| + C

    Áp dụng vào bài ta chọn I =
\frac{1}{4}\ln\left| \frac{x + 2}{x - 2} ight| + C.

  • Câu 5: Thông hiểu
    Tính giá trị của biểu thức

    Biết F(x) là một nguyên hàm của hàm số f(x) = \sin^{3}x.\cos x và F(0) = \pi. TìmF\left( \frac{\pi}{2} \right).

    Hướng dẫn:

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =\int_{}^{}{\sin^{3}x.\cos x.dx}}

    = \int_{}^{}{\sin^{3}x.d\left( \sin x
ight) = \frac{1}{4}\sin^{4}x + C}

    F(0) \Rightarrow \pi \Rightarrow C = \pi
\Rightarrow F(x) = \frac{1}{4}\sin^{4}x + \pi

    \Rightarrow F\left( \frac{\pi}{2} ight)
= \frac{1}{4} + \pi

  • Câu 6: Thông hiểu
    Tìm kết quả đúng

    Tìm \int_{}^{}{xsin2xdx} ta thu được kết quả nào sau đây?

    Hướng dẫn:

    Ta có: I =
\int_{}^{}{xsin2xdx}

    Đặt: \left\{ \begin{matrix}
u = x \\
dv = sin2xdx \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = - \frac{1}{2}cos2x \\
\end{matrix} \right.

    Khi đó:

    I = uv - \int_{}^{}{vdu = -
\frac{1}{2}xcos2x + \frac{1}{2}}\int_{}^{}{cos2xdx}

    = - \frac{1}{2}xcos2x + \frac{1}{4}sin2x +
C

  • Câu 7: Thông hiểu
    Tính giá trị biểu thức T

    Cho hàm số f(x) xác định trên \mathbb{R}\left\{ 1 ight\}thỏa mãn f'(x) = \frac{1}{x - 1}; f(0) = 2017;f(2) = 2018. Tính T = f(3) - f( - 1)?

    Hướng dẫn:

    Trên khoảng (1; + \infty) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(x - 1) + C_{1}

    \Rightarrow f(x) = \ln(x - 1) +
C_{1}

    f(2) = 2018 \Rightarrow C_{1} =
2018

    Trên khoảng ( - \infty;1) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(1 - x) + C_{2}

    \Rightarrow f(x) = \ln(1 - x) +
C_{2}

    f(0) = 2017 \Rightarrow C_{2} =
2017

    Vậy f(x) = \left\{ \begin{matrix}
\ln(x - 1) + 2018\ \ \ khi\ x\  > \ 1 \\
\ln(1 - x) + 2017\ \ \ khi\ x\  < \ 1 \\
\end{matrix} ight.

    \Rightarrow T = f(3) - f( - 1) =
1.

  • Câu 8: Vận dụng
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{x\sqrt{x^{2} + 1}}

    Hướng dẫn:

    Ta có:

    \int_{}^{}{\frac{1}{x\sqrt{x^{2} + 1}}dx
= \int_{}^{}{\frac{xdx}{x^{2}\sqrt{x^{2} + 1}} =
\frac{1}{2}\int_{}^{}\frac{d\left( x^{2} + 1 ight)}{x^{2}.\sqrt{x^{2}
+ 1}}}}

    = \int_{}^{}{\frac{d\left( \sqrt{x^{2} +
1} ight)}{x^{2}} = \int_{}^{}{\frac{d\left( \sqrt{x^{2} + 1}
ight)}{\left( \sqrt{x^{2} + 1} ight)^{2} - 1} =
\frac{1}{2}.ln\frac{\sqrt{x^{2} + 1} - 1}{\sqrt{x^{2} + 1} + 1} +
C}}

    (Áp dụng công thức \int_{}^{}{\frac{du}{u^{2} - a^{2}} =
\frac{1}{2a}.ln\left| \frac{u - a}{u + a} ight| + C})

  • Câu 9: Vận dụng
    Tìm nguyên hàm của hàm số

    Cho F(x) = x^{2} là một nguyên hàm của hàm số f(x)e^{2x}. Tìm nguyên hàm của hàm số f'(x)e^{2x}?

    Hướng dẫn:

    Cách 1: Sử dụng tính chất của nguyên hàm

    \int_{}^{}{f(x)dx = F(x) \Rightarrow
F'(x) = f(x)}.

    Từ giả thiết, ta có:

    \int_{}^{}{f(x)}e^{2x}dx = F(x)
\Rightarrow f(x)e^{2x} = F'(x) = \left( x^{2} ight)' = 2x
\Rightarrow f(x) = \frac{2x}{e^{2x}}

    Suy ra f'(x) = \frac{(2x)'.e^{2x}
- 2x.\left( e^{2x} ight)'}{\left( e^{2x} ight)^{2}} = \frac{(2 -
4x)e^{2x}}{\left( e^{2x} ight)^{2}} = \frac{2 -
4x}{e^{2x}}.

    Vậy \int_{}^{}{f'(x)e^{2x}dx
=}\int_{}^{}{\frac{2 - 4x}{e^{2x}}.e^{2x}dx = (2 - 4x)dx = 2x - 2x^{2}}
+ C

    Cách 2: Sử dụng công thức nguyên hàm từng phần.

    Nếu u, v là hai hàm số có đạo hàm liên tục trên K thì:

    \int_{}^{}{u(x)}v'(x)dx = u(x).v(x) -
\int_{}^{}{v(x).u'(x)}dx.

    Ta có \int_{}^{}{e^{2x}.f'(x)dx =
e^{2x}.f(x) - \int_{}^{}{f(x).2e^{2x}dx = f(x)e^{2x} -
2\int_{}^{}{f(x)e^{2x}dx}}}

    Từ giả thiết: \int_{}^{}{f(x)e^{2x}dx} =
F(x) = x^{2} \Rightarrow f(x)e^{2x} = F'(x) = \left( x^{2}
ight)' = 2x.

    Vậy \int_{}^{}{f'(x)e^{2x}dx = 2x -
2x^{2} + C}.

  • Câu 10: Vận dụng cao
    Chọn mệnh đề đúng trong các mệnh đề sau

    Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên \left( {0; + \infty } ight) và thỏa mãn f(1) = 1, f\left( x ight) = f'\left( x ight)\sqrt {3x + 1} ,\forall x > 0. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: f\left( x ight) > 0f\left( x ight) = f'\left( x ight)\sqrt {3x + 1}

    => \frac{{f'\left( x ight)}}{{f\left( x ight)}} = \frac{1}{{\sqrt {3x + 1} }}

    => \int {\frac{{f'\left( x ight)}}{{f\left( x ight)}}dx}  = \int {\frac{1}{{\sqrt {3x + 1} }}} dx \Rightarrow \ln f\left( x ight) = \frac{{2\sqrt {3x + 1} }}{3} + C

    Mà f(1) = 1 => C =  - \frac{4}{3}f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}}.f\left( 5 ight) = {e^{\frac{4}{3}}} \approx 3,79

  • Câu 11: Thông hiểu
    Tính giá trị biểu thức

    Cho \int_{}^{}{\frac{1}{x^{2} - 1}dx} =
a\ln|x - 1| + b\ln|x + 1| + C với a;b là các số hữu tỉ. Khi đó a - b bằng:

    Hướng dẫn:

    Ta có: \frac{1}{x^{2} - 1} = \frac{1}{(x
- 1)(x + 1)} = \frac{1}{x - 1} - \frac{1}{x + 1}

    \Rightarrow \int_{}^{}{\frac{1}{x^{2} -
1}dx} = \int_{}^{}{\left( \frac{1}{x - 1} - \frac{1}{x + 1} ight)dx} =
\frac{1}{2}\ln|x - 1| - \frac{1}{2}\ln|x + 1| + C

    Suy ra a = \frac{1}{2};b = - \frac{1}{2}
\Rightarrow a - b = 1.

  • Câu 12: Vận dụng
    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm I = \int_{}^{}{(x -1)\sin2x.dx}

    Hướng dẫn:

    I = \int_{}^{}{(x -1)\sin2xdx}

    Đặt x - 1 = u \Rightarrow dx =
du.

    \sin2xdx = dv \Rightarrow v = -\dfrac{1}{2}.\cos2x

    Khi đó I = \frac{- (x - 1)}{2}.\cos2x +\frac{1}{2}\int_{}^{}{\cos2xdx}

    = \frac{(1 - x)\cos2x}{2} +\frac{1}{4}.\sin2x + C

  • Câu 13: Vận dụng
    Chọn đáp án đúng

    Theo phương pháp đổi biến số (x
\rightarrow t), nguyên hàm của I =
\int_{}^{}\frac{2sinx + 2cosx}{\sqrt[3]{1 - sin2x}}dx là:

    Hướng dẫn:

    Ta có:

    I = \int_{}^{}\frac{2sinx +
2cosx}{\sqrt[3]{1 - sin2x}}dx = \int_{}^{}\frac{2\left( \sin x + \cos x
\right)}{\sqrt[3]{\left( \sin x - \cos x \right)^{2}}}dx.

    Đặt t = \sin x - \cos x \Rightarrow dt =
\left( \sin x + \cos x \right)dx.

    \Rightarrow I =
\int_{}^{}\frac{2}{\sqrt[3]{t^{2}}}dt = 2.\frac{1}{1 + \left( -
\frac{2}{3} \right)}t^{\frac{1}{3}} + C = 6\sqrt[3]{t} + C.

  • Câu 14: Vận dụng
    Chọn đáp án đúng

    Một nguyên hàm của f(x) =
\frac{x}{sin^{2}x} là :

    Hướng dẫn:

    Ta có: I =\int_{}^{}{\frac{x}{sin^2x}dx}

    Đặt: \left\{ \begin{matrix}
u = x \\
dv = \frac{1}{sin^{2}x}dx \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = - \cot x \\
\end{matrix} \right.

    Khi đó: I = uv - \int_{}^{}{vdu} = -x\cot x + \int_{}^{}{\cot xdx}= - x\cot x + \ln\left| \sin x \right| +C

  • Câu 15: Vận dụng
    Tính giá trị của biểu thức

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{2}{{x - 1}};f\left( 0 ight) = 3;f\left( 2 ight) = 4. Tính giá trị của biểu thức  N = f\left( { - 2} ight) + f\left( 5 ight)

    Hướng dẫn:

     

    f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\frac{2}{{x - 1}}dx}  = \ln \left| {2x - 1} ight| + C

    => f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {2\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  }}1} \\   {2\ln \left| {1 - x} ight| + {C_2}{\text{ khi x  <  }}1} \end{array}} ight.

    Theo bài ra ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 3 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 3} \\   {f\left( 2 ight) = 4 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 3} \\   {{C_1} = 4} \end{array}} ight.

    => f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {2\ln \left( {x - 1} ight) + 4{\text{ khi x  >  }}1} \\   {2\ln \left| {1 - x} ight| + 3{\text{ khi x  <  }}1} \end{array}} ight.

    => N = f\left( { - 2} ight) + f\left( 5 ight) = \left\{ {2\ln \left[ {1 - \left( { - 2} ight)} ight] + 3} ight\} + \left\{ {2\ln \left( {5 - 1} ight) + 4} ight\}

    = 2\ln 3 + 2\ln 4 + 7

  • Câu 16: Vận dụng cao
    Giá trị của biểu thức T

    Biết F\left( x ight) = \left( {a{x^2} + bx + c} ight)\sqrt {2x - 3} là một nguyên hàm của hàm số f\left( x ight) = \frac{{20{x^2} - 30x + 11}}{{\sqrt {2x - 3} }} trên khoảng \left( {\frac{3}{2}; + \infty } ight). Giá trị của biểu thức T = a + b + c bằng

    Hướng dẫn:

     \begin{matrix}  f\left( x ight) = F'\left( x ight)\left[ {\left( {a{x^{u2}} + bx + c} ight)\sqrt {2x - 3} } ight]' = \dfrac{{5a{x^2} + x\left( {3b - 6a} ight) + c - 3b}}{{\sqrt {2x - 3} }} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {5a = 20} \\   {3b - 6a =  - 30} \\   {c - 3b = 11} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 4} \\   {b =  - 2} \\   {c = 5} \end{array}} ight. \Rightarrow T = 7 \hfill \\ \end{matrix}

  • Câu 17: Vận dụng
    Xác định số cực trị của đồ thị hàm số

    Biết F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}}. Hỏi đồ thị của hàm số y = F(x) có bao nhiêu điểm cực trị?

    Hướng dẫn:

    F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}} nên suy ra F'(x) = f(x) = \frac{x - \cos
x}{x^{2}}

    Ta có: F'(x) = 0 \Leftrightarrow
\frac{x - \cos x}{x^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x - \cos x = 0 \\
x \in \lbrack - 1;1brack\backslash\left\{ 0 ight\} \\
\end{matrix} ight.\ (1)

    Xét hàm số g(x) = x - \cos x trên \lbrack - 1;1brack, ta có: g'(x) = 1 + \sin x \geq 0;\forall x \in
\lbrack - 1;1brack suy ra hàm số g(x) đồng biến trên \lbrack - 1;1brack.

    Vậy phương trình g(x) = x - \cos x = 0 có nhiều nhất một nghiệm trên \lbrack -
1;1brack (2)

    Mặt khác ta có hàm số g(x) = x - \cos
x liên tục trên (0;1)\left\{ \begin{matrix}
g(0) = 0 - cos0 = - 1 < 0 \\
g(1) = 1 - cos1 > 0 \\
\end{matrix} ight. nên g(0)g(1)
< 0.

    Suy ra tồn tại x_{0} \in
(0;1) sao cho g\left( x_{0} ight)
= 0 (3)

    Từ (1); (2); (3) suy ra phương trình F'(x) = 0 có nghiệm duy nhất x_{0} eq 0.

    Đồng thời vì x_{0} là nghiệm bội lẻ nên F'(x) đổi dấu qua x = x_{0}

    Vậy đồ thị hàm số y = F(x) có một điểm cực trị.

  • Câu 18: Thông hiểu
    Tính giá trị biểu thức

    Cho hàm số f(x) có đạo hàm với mọi x\mathbb{\in R}f'(x) = 2x + 1. Giá trị của f(2) - f(1) bằng:

    Hướng dẫn:

    Ta có:

    f'(x) = 2x + 1 \Rightarrow\int_{}^{}{f'(x)dx = \int_{}^{}{(2x + 1)dx}}

    = x^{2} + x + C \Rightarrow \existsC_{1}\mathbb{\in R}:f(x) = x^{2} + x + C

    \Rightarrow f(2) - f(1) = 2^{2} + 2 +C_{1} - \left( 1^{2} + 1 + C_{1} ight) = 4

  • Câu 19: Thông hiểu
    Tính giá trị biểu thức

    Biết rằng F(x) = \left( ax^{2} + bx + c
ight)e^{- x} là một nguyên hàm của hàm số f(x) = \left( 2x^{2} - 5x + 2 ight)e^{-
x} trên \mathbb{R}. Giá trị của biểu thức f\left( F(0)
ight) bằng:

    Hướng dẫn:

    Ta có: \left( F(x) ight)' =
\left\lbrack \left( ax^{2} + bx + c ight)e^{- x}
ightbrack'

    = \left\lbrack - ax^{2} + (2a - b)x + b
- c ightbrack e^{- x}

    = \left( 2x^{2} - 5x + 2 ight)e^{-
x} suy ra \left\{ \begin{matrix}a = - 2 \\2a - b = - 5 \\b - c = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - 2 \\b = 1 \\c = - 1 \\\end{matrix} ight.\Rightarrow F(x) = \left( 2x^{2} + x - 1ight)e^{- x}

    \Rightarrow F(0) = - 1 \Rightarrow
f\left( F(0) ight) = f( - 1) = 9e

  • Câu 20: Vận dụng
    Chọn đáp án đúng

    Với phương pháp đổi biến số (x
\rightarrow t), nguyên hàm I =
\int_{}^{}{\frac{1}{\sqrt{- x^{2} + 2x + 3}}dx} bằng:

    Hướng dẫn:

    Ta biến đổi: I =
\int_{}^{}{\frac{1}{\sqrt{4 - (x - 1)^{2}}}dx}.

    Đặt x - 1 = 2sint,t \in \left\lbrack -
\frac{\pi}{2},\frac{\pi}{2} \right\rbrack \Rightarrow dx =
2costdt.

    \Rightarrow I = \int_{}^{}{dt = t +
C}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo