Cho hình lập phương có cạnh
. Gọi
là trung điểm của
. Tính tích vô hướng
?
Hình vẽ minh họa
Ta có:
Ta có: hay
Do đó
Cho hình lập phương có cạnh
. Gọi
là trung điểm của
. Tính tích vô hướng
?
Hình vẽ minh họa
Ta có:
Ta có: hay
Do đó
Cho hình hộp có các cạnh đều bằng
và các góc
. Tính diện tích các tứ giác
và
.
Hình vẽ minh họa

Ta có:
nên
.
Dễ dàng tính được
,
.
Tính được
Vậy .
Cho hình hộp . Chọn khẳng định đúng?
Hình vẽ minh họa

lần lượt là trung điểm của
.
Ta có
đồng phẳng.
Cho hình hộp và các điểm
xác định bởi
. Hãy tính
theo
để ba điểm
thẳng hàng.
Hình vẽ minh họa

Đặt .
Từ giả thiết ta có :
Từ đó ta có
.
Ba điểm thẳng hàng khi và chỉ khi tồn tại
sao cho
.
Thay các vectơ vào
và lưu ý
không đồng phẳng ta tính được
.
Cho tứ diện. Gọi
là trung điểm của
và
. Chọn khẳng định đúng?
Ta có : và
nên .
Vậy
Cho tứ diện có
. Gọi
là diện tích toàn phần (tổng diện tích tất cả các mặt). Tính giá trị lớn nhất của
.
Do tứ diện có
nên
.
Gọi là diện tích và
là bán kính đường tròn ngoại tiếp mỗi mặt đó thì
, nên bất đẳng thức cần chứng minh:
.
Theo công thức Leibbnitz:
Với điểm bất kì và
là trọng tâm của tam giác
thì
Cho trùng với tâm đường tròn ngoại tiếp tam giác
ta được:
.
Cho tứ diện . Trên các cạnh
lần lượt lấy các điểm
sao cho
. Gọi
lần lượt là trung điểm của
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Vì lần lượt là trung điểm của
đồng phẳng sai vì
suy ra
không đồng phẳng.
Cho hình chóp có đáy
là hình bình hành. Một mặt phẳng
cắt các cạnh
lần lượt tại
.Đẳng thức nào sau đây đúng?
Hình vẽ minh họa

Gọi là tâm của hình bình hành
thì
Do đồng phẳng nên đẳng thức trên
.
Cho và
có
vuông góc với vectơ
và
. Khi đó:
+Vì vuông góc với vectơ
nên:
Ta có . Suy ra
.
Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực , được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp
sao cho
và
là tam giác đều, đồng thời các cạnh
tạo với mặt phẳng
một góc có
(như hình vẽ).
Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)
Đáp án: 1333(N)
Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực , được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp
sao cho
và
là tam giác đều, đồng thời các cạnh
tạo với mặt phẳng
một góc có
(như hình vẽ).
Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)
Đáp án: 1333(N)
Đặt thì
.
Chú ý thêm là:
Ta có:
với
là trọng tâm
.
Vì hình chóp đều nên
Do đó , suy ra
.
Khi gắn các lực vào ta có:
Từ đó: .
Vậy lực căng mỗi sợi dây là .
Cho hình chóp có
theo thứ tự là trung điểm của
. Biết rằng
. Tính góc giữa hai đường thẳng
?
Hình vẽ minh họa
Ta có:
Do đó
Vậy góc giữa hai đường thẳng cần tìm là .
Cho tứ diện có
và
. Gọi
và
lần lượt là trung điểm của
và
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Xét tam giác có
là trung điểm đoạn
.
Ta có:
Vì tam giác có
và
Nên tam giác đều. Suy ra:
Tương tự ta có tam giác đều nên
.
Xét .
Suy ra . Hay góc giữa cặp vectơ
và
bằng
.
Gọi lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
và
là một điểm bất kì trong không gian. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Hình vẽ minh họa
Vì lần lượt là trung điểm của các cạnh
nên ta có:
.
Mặt khác (vì I là trung điểm của MN) suy ra
Theo bài ra ta có:
Trong không gian cho tam giác . Tìm
sao cho giá trị của biểu thức
đạt giá trị nhỏ nhất?
Gọi G là trọng tâm tam giác ABC
Suy ra G cố định và
Dấu “=” xảy ra khi
Vậy với
là trọng tâm tam giác
.
Cho hình hộp có tâm
. Gọi
là tâm hình bình hành
. Đặt
,
,
,
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa

Ta phân tích:
.
.
.
.
Cho hình chóp có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ bằng
. Sai||Đúng
c) Tích vô hướng của bằng
. Đúng||Sai
d) Độ dài vectơ là
. Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ bằng
. Sai||Đúng
c) Tích vô hướng của bằng
. Đúng||Sai
d) Độ dài vectơ là
. Sai||Đúng
a) Sai
Ta thấy ABCD là hình chữ nhật nên
Suy ra hai vectơ là hai vectơ cùng phương, ngược hướng.
b) Sai
Ta có ABCD là hình chữ nhật nên
Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.
Suy ra
Ta có:
c) Đúng
Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.
Suy ra
Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:
Lại có M là trung điểm của SB nên
Ta tính được
Mà
d) Sai
Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD
Do đó
Suy ra
Cho hai vectơ và
thỏa mãn
và hai vectơ
và
vuông góc với nhau. Xác định góc
giữa hai vectơ
và
Ta có
Suy ra
Cho hình lăng trụ tam giác đều có
và. Góc giữa hai đường thẳng
và
bằng
Hình vẽ minh họa
Ta có
.
Suy ra .
Cho hình hộp có các cạnh đều bằng
và các góc
. Tính góc giữa đường thẳng
với các đường thẳng
.
Hình vẽ minh họa

.
Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc
và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 124 N
Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc
và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 124 N
Gọi hai lực tạo với nhau một góc là
và
, ta có
N.
Lực còn lại là , ta có
N.
Gọi là hợp lực của ba lực trên ta có
.
N
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: