Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 6 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn khẳng định đúng

    Cho hình hộp ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình bình hành ABCD. Đặt \overrightarrow{AC'} =
\overrightarrow{u},\overrightarrow{CA'} =
\overrightarrow{v}, \overrightarrow{BD'} =
\overrightarrow{x}, \overrightarrow{DB'} =
\overrightarrow{y}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta phân tích:

    \overrightarrow{u} + \overrightarrow{v} =\overrightarrow{AC'} + \overrightarrow{CA'}= \left(\overrightarrow{AC} + \overrightarrow{CC'} \right) + \left(\overrightarrow{CA} + \overrightarrow{AA'} \right) =2\overrightarrow{AA'}.

    \overrightarrow{x} + \overrightarrow{y} =\overrightarrow{BD'} + \overrightarrow{DB'}= \left(\overrightarrow{BD} + \overrightarrow{DD'} \right) + \left(\overrightarrow{DB} + \overrightarrow{BB'} \right) =2\overrightarrow{BB'} = 2\overrightarrow{AA'}.

    \Rightarrow \overrightarrow{u} +
\overrightarrow{v} + \overrightarrow{x} + \overrightarrow{y} =
4\overrightarrow{AA'} = - 4\overrightarrow{A'A} = -
4.2\overrightarrow{OI}.

    \Rightarrow 2\overrightarrow{OI} = -
\frac{1}{4}\left( \overrightarrow{u} + \overrightarrow{v} +
\overrightarrow{x} + \overrightarrow{y} \right).

  • Câu 2: Vận dụng cao
    Ghi đáp án vào ô trống

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Đáp án là:

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Gọi hai lực tạo với nhau một góc 80^{\circ}\overrightarrow{F_{1}}\overrightarrow{F_{2}}, ta có \left| \overrightarrow{F_{1}} ight| = \left|
\overrightarrow{F_{2}} ight| = 50N.

    Lực còn lại là \overrightarrow{F_{3}}, ta có \left| \overrightarrow{F_{3}} ight| =
60N.

    Gọi \overrightarrow{F} là hợp lực của ba lực trên ta có

    \left| \overrightarrow{F} ight|^{2} =
\left( \overrightarrow{F_{1}} + \overrightarrow{F_{2}} +
\overrightarrow{F_{3}} ight)^{2}

    = \left| \overrightarrow{F_{1}}
ight|^{2} + \left| \overrightarrow{F_{2}} ight|^{2} + \left|
\overrightarrow{F_{3}} ight|^{2} + 2\lbrack\left|
\overrightarrow{F_{1}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{1}},\overrightarrow{F_{2}}
ight)

    + \left| \overrightarrow{F_{1}}
ight|.\left| \overrightarrow{F_{3}} ight|.cos\left(
\overrightarrow{F_{1}},\overrightarrow{F_{3}} ight) + \left|
\overrightarrow{F_{3}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{3}},\overrightarrow{F_{2}}
ight)brack

    = 50^{2} + 50^{2} + 60^{2} + 2\lbrack
50.50.cos80^{0}+ 50.60.cos60^{0} +
60.50.cos60^{0}brack \approx 15468.

    \Rightarrow |F| \approx 124 N

  • Câu 3: Vận dụng
    Tính góc giữa hai đường thẳng

    Cho hình hộp ABCD.A'B'C'D' có các cạnh đều bằng a và các góc \widehat{B'A'D'} =
60^{0},\widehat{B'A'A} = \widehat{D'A'A} =
120^{0}. Tính góc giữa các cặp đường thẳng AB với A'D; AC' với B'D.

    Hướng dẫn:

    Hình vẽ minh họa

    Đặt \overrightarrow{AA'} =
\overrightarrow{a},\overrightarrow{A'B'} =
\overrightarrow{b},\overrightarrow{A'D'} =
\overrightarrow{c}

    Ta có \overrightarrow{A'D} =
\overrightarrow{a} + \overrightarrow{c} nên

    \cos\left( \widehat{AB,A'D} \right)
= \left| \cos\left( \overrightarrow{AB},\overrightarrow{A'D} \right)
\right|

    = \frac{\left|
\overrightarrow{AB}.\overrightarrow{A'D} \right|}{\left|
\overrightarrow{AB} \right|\left| \overrightarrow{A'D} \right|} =
\frac{\left| \overrightarrow{a}\left( \overrightarrow{a} +
\overrightarrow{c} \right) \right|}{\left| \overrightarrow{a}
\right|\left| \overrightarrow{a} + \overrightarrow{c}
\right|}.

    Để ý rằng \left| \overrightarrow{a} +
\overrightarrow{c} \right| = a, \overrightarrow{a}\left( \overrightarrow{a} +
\overrightarrow{c} \right) = \frac{a^{2}}{2}.

    Từ đó \cos\left( \widehat{AB,A'D}
\right) = \frac{1}{2} \Rightarrow \widehat{(AB,A'D)} =
60^{0}

    Ta có \overrightarrow{AC'} =
\overline{b} + \overrightarrow{c} -
\overrightarrow{a},\overrightarrow{B'D} = \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}, từ đó tính được:

    \overrightarrow{AC'}\overrightarrow{B'D} =\left( \overrightarrow{b} + \overrightarrow{c} - \overrightarrow{a}\right)\left( \overrightarrow{a} - \overrightarrow{b} +\overrightarrow{c} \right) = 0\Rightarrow \widehat{(AC',B'D)} =90^{0}.

  • Câu 4: Vận dụng
    Xác định số khẳng định đúng

    Một em nhỏ cân nặng m = 25(kg) trượt trên cầu trượt dài 3,5(m) (như trong hình dưới đây). Biết rằng, cầu trượt có góc nghiêng so với phương nằm ngang là 30{^\circ}. Trong các khẳng định sau, có bao nhiêu khẳng định đúng?

    + Với gia tốc rơi tự do \overrightarrow{g} có độ lớn là g = 9,8\left( m/s^{2} \right) thì độ lớn của trọng lực \overrightarrow{P} =
m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là 245(N).

    + Góc giữa độ dịch chuyển \overrightarrow{d} so với trọng lực \overrightarrow{P}30{^\circ}.

    + Công A(J) sinh bởi một lực \overrightarrow{F} có độ dịch chuyển \overrightarrow{d} được tính bởi công thức A = \left| \overrightarrow{F}
\right|.\left| \overrightarrow{d} \right|.cos\left(
\overrightarrow{F};\overrightarrow{d} \right) thì công sinh bởi trọng lực \overrightarrow{P} khi em nhỏ trượt hết chiều dài cầu trượt là 428,75(J).

    A drawing of a child on a slideDescription automatically generated

    Hướng dẫn:

    » Với gia tốc rơi tự do \overrightarrow{g} có độ lớn là g = 9,8\left( m/s^{2} \right) thì độ lớn của trọng lực \overrightarrow{P} =
m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là \left| \overrightarrow{P} \right| = m\left|
\overrightarrow{g} \right| = 25.9,8 = 245(N).

    » Em nhỏ trượt từ điểm A tới điểm B nên khi đó góc giữa độ dịch chuyển \overrightarrow{d} so với trọng lực \overrightarrow{P}\left( \overrightarrow{d,}\overrightarrow{P}
\right) = \left( \overrightarrow{AB,}\overrightarrow{P} \right) =
60{^\circ}.

    » Ta có độ lớn của trọng lực \overrightarrow{P} = m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là \left|
\overrightarrow{P} \right| = m\left| \overrightarrow{g} \right| = 25.9,8
= 245(N) nên công sinh bởi trọng lực \overrightarrow{P} khi em nhỏ trượt hết chiều dài cầu trượt là A = \left|
\overrightarrow{P} \right|.\left| \overrightarrow{d} \right|.cos\left(
\overrightarrow{P,}\overrightarrow{d} \right) = 245.3,5.cos60{^\circ} =
428,75(J).

  • Câu 5: Vận dụng
    Chọn đáp án đúng

    Cho hình lăng trụ tam giác đều ABC.A'B'C'AB = a và. Góc giữa hai đường thẳng AB'BC'bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có \overrightarrow{AB'}.\overrightarrow{BC'}
= \left( \overrightarrow{AB} + \overrightarrow{BB'} ight)\left(
\overrightarrow{BC} + \overrightarrow{CC'} ight)

    =
\overrightarrow{AB}.\overrightarrow{BC} +
\overrightarrow{AB}.\overrightarrow{CC'} +
\overrightarrow{BB'}.\overrightarrow{BC} +
\overrightarrow{BB'}.\overrightarrow{CC'}

    =
\overrightarrow{AB}.\overrightarrow{BC} +
\overrightarrow{AB}.\overrightarrow{CC'} +
\overrightarrow{BB'}.\overrightarrow{BC} +
\overrightarrow{BB'}.\overrightarrow{CC'}

    = - \frac{a^{2}}{2} + 0 + 0 + 2a^{2} =
\frac{3a^{2}}{2}.

    Suy ra \cos\left(
\overrightarrow{AB^{'}},\overrightarrow{BC^{'}} ight) =
\frac{\overrightarrow{AB^{'}}.\overrightarrow{BC^{'}}}{\left|
\overrightarrow{AB^{'}} ight|.\left| \overrightarrow{BC^{'}}
ight|}=
\dfrac{\dfrac{3a^{2}}{2}}{a\sqrt{3}.a\sqrt{3}} = \dfrac{1}{2} \Rightarrow
\widehat{(AB',BC')} = 60{^\circ}.

  • Câu 6: Thông hiểu
    Tính tích vô hướng của hai vectơ

    Cho tứ diện ABCD. Gọi E;F lần lượt là trung điểm của AD;BC, các điểm M;N lần lượt nằm trên AB;DC sao cho AM = MB;DN = 2NC. Biết biểu diễn \overrightarrow{EF} = m.\overrightarrow{EM} +
n.\overrightarrow{EN}. Tính tổng giá trị m;n?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{EF} =
\frac{\overrightarrow{AB} + \overrightarrow{DC}}{2}

    = \frac{\overrightarrow{AE} +
\overrightarrow{EM} + \overrightarrow{MB} + \overrightarrow{DE} +
\overrightarrow{EN} + \overrightarrow{NC}}{2}

    = \frac{\overrightarrow{EM} +
\overrightarrow{MB} + \overrightarrow{EN} +
\overrightarrow{NC}}{2}

    = \dfrac{\overrightarrow{EM} +\dfrac{1}{3}\overrightarrow{AB} + \overrightarrow{EN} +\dfrac{1}{3}\overrightarrow{DC}}{2}

    = \dfrac{\overrightarrow{EM} +\dfrac{1}{2}\overrightarrow{AN} + \overrightarrow{EN} +\dfrac{1}{2}\overrightarrow{DN}}{2}

    = \dfrac{\overrightarrow{EM} +\dfrac{1}{2}\left( \overrightarrow{AE} + \overrightarrow{EM} ight) +\overrightarrow{EN} + \dfrac{1}{2}\left( \overrightarrow{DE} +\overrightarrow{EN} ight)}{2}

    = \dfrac{\dfrac{3}{2}\overrightarrow{EM} +\dfrac{3}{2}\overrightarrow{EN}}{2} = \dfrac{3}{4}\overrightarrow{EM} +\frac{3}{4}\overrightarrow{EN}

    Suy ra m = n = \frac{3}{4} \Rightarrow m
+ n = \frac{3}{2}

  • Câu 7: Vận dụng cao
    Tìm điều kiện của các hệ số a; b; c

    Cho hình chóp S.ABC. Lấy các điểm A';B';C' lần lượt thuộc các tia SA;SB;SC sao cho \frac{SA}{SA'} = a;\frac{SB}{SB'} =
b;\frac{SC}{SC'} = c trong đó a;b;c là các hệ số biến thiên. Để mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC thì tổng các hệ số bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi G là trọng tâm tam giác ABC suy ra \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}

    Khi đó 3\overrightarrow{GS} +
\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} =
\overrightarrow{0}\overrightarrow{SA} =
a\overrightarrow{SA'};\overrightarrow{SB} =
b\overrightarrow{SB'};\overrightarrow{SC} =
c\overrightarrow{SC'}

    Suy ra 3\overrightarrow{SG} =
a\overrightarrow{SA'} + b\overrightarrow{SB'} +
c\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'}

    Vì mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC suy ra \overrightarrow{GA'};\overrightarrow{GB'};\overrightarrow{GC'} đồng phẳng.

    Do đó tồn tại ba số l;m;n sao cho l^{2} + m^{2} + n^{2} eq 0) và l\overrightarrow{GA'} +
m\overrightarrow{GB'} + n\overrightarrow{GC'} =
\overrightarrow{0}

    \Leftrightarrow l\left(
\overrightarrow{GS} + \overrightarrow{SA'} ight) + m\left(
\overrightarrow{GS} + \overrightarrow{SB'} ight) + n\left(
\overrightarrow{GS} + \overrightarrow{SC'} ight) =
\overrightarrow{0}s

    \Leftrightarrow (l + m +
n)\overrightarrow{SG} = l\overrightarrow{SA'} +
m\overrightarrow{SB'} + n\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{l}{l + m + n}\overrightarrow{SA'} + \frac{m}{l + m +
n}\overrightarrow{SB'} + \frac{n}{l + m +
n}\overrightarrow{SC'}

    \Leftrightarrow
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'} = \frac{l}{l + m +
n}\overrightarrow{SA'} + \frac{m}{l + m + n}\overrightarrow{SB'}
+ \frac{n}{l + m + n}\overrightarrow{SC'}

    Suy ra \frac{a}{3} + \frac{b}{3} +
\frac{c}{3} = \frac{l}{l + m + n} + \frac{m}{l + m + n} + \frac{n}{l + m
+ n} = 1

    \Rightarrow a + b + c = 3

  • Câu 8: Vận dụng
    Xác định mối liên hệ giữa các hệ số

    Cho hình chóp S.ABC Lấy các điểm A',B',C' lần lượt thuộc các tia SA,SB,SC sao cho SA = a.SA',\ SB = b.SB',\ SC =
c.SC', trong đó a,b,c là các số thay đổi. Tìm mối liên hệ giữa a,b,cđể mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC.

    Hướng dẫn:

    Nếu a = b = c = 1 thì SA = SA',SB = SB',SC = SC' nên (ABC) \equiv
(A'B'C').

    Suy ra (A'B'C') đi qua trọng tâm của tam giác ABC

    =>a + b + c = 3 là đáp án đúng.

  • Câu 9: Vận dụng
    Phân tích vectơ

    Cho hình hộp ABCD.A'B'C'D'. Điểm M được xác định bởi đẳng thức vectơ \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} + \overrightarrow{MD} + \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = \overrightarrow{0}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Gọi \left\{ \begin{matrix}
O = AC \cap BD \\
O' = A'C' \cap B'D' \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0} \\
\overrightarrow{OA'} + \overrightarrow{OB'} +
\overrightarrow{OC'} + \overrightarrow{OD'} = \overrightarrow{0}
\\
\end{matrix} ight.

    Ta có:

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} +
\overrightarrow{MD}

    = \left( \overrightarrow{MO} +
\overrightarrow{OA} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OB} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OC} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OD} ight)

    = \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} +
4\overrightarrow{MO} = \overrightarrow{0} + 4\overrightarrow{MO} =
4\overrightarrow{MO}

    Tương tự ta cũng có: \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = 4\overrightarrow{MO'}

    Từ đó suy ra

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} +
\overrightarrow{MA'} + \overrightarrow{MB'} +
\overrightarrow{MC'} + \overrightarrow{MD'} =
\overrightarrow{0}

    \Leftrightarrow 4\overrightarrow{MO} +
4\overrightarrow{MO'} = \overrightarrow{0} \Leftrightarrow 4\left(
\overrightarrow{MO} + \overrightarrow{MO'} ight) =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{MO} +
\overrightarrow{MO'} = \overrightarrow{0}

    Vậy điểm M cần tìm là trung điểm của OO'.

  • Câu 10: Vận dụng
    Tính giá trị của k

    Cho hình chóp S.ABC, mặt phẳng (\alpha) cắt các tia SA,SB,SC,SG( G là trọng tâm tam giác ABC) lần lượt tại các điểm A',B',C',G'.Ta có \frac{SA}{SA'} + \frac{SB}{SB'} +
\frac{SC}{SC'} = k\frac{SG}{SG'}. Hỏi k bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa

    Do G là trọng tâm của \Delta ABC nên \overrightarrow{GA} + \overrightarrow{GB} +\overrightarrow{GC} = \overrightarrow{0}

    \Rightarrow3\overrightarrow{SG} = \overrightarrow{SA} + \overrightarrow{SB} +\overrightarrow{SC}

    \begin{matrix}
\Leftrightarrow 3\frac{SG}{SG'}\overrightarrow{SG'} =
\frac{SA}{SA'}\overrightarrow{SA'} +
\frac{SB}{SB'}\overrightarrow{SB'} \\
+ \frac{SC}{SC'}\overrightarrow{SC'} \\
\end{matrix}

    Mặt khác A',B',C',G' đồng phẳng nên

    \frac{SA}{SA'} + \frac{SB}{SB'} +
\frac{SC}{SC'} = 3\frac{SG}{SG'}.

  • Câu 11: Thông hiểu
    Chỉ ra đẳng thức sai

    Cho hình hộp ABCD.A'B'C'D' với tâm O. Hãy chỉ ra đẳng thức sai trong các đẳng thức sau đây:

    Hướng dẫn:

    Ta có :\overrightarrow{AB} +
\overrightarrow{AA'} = \overrightarrow{AD} +
\overrightarrow{DD'} \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{AD\ }(vô lí)

  • Câu 12: Vận dụng
    Chọn đáp án đúng

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi điểm I \in CC' sao cho \overrightarrow{C'I} =
\frac{1}{3}\overrightarrow{C'C}, G là trọng tâm tứ diện BAB'C'. Biểu diễn vectơ \overrightarrow{IG} qua các vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Đáp án nào dưới đây đúng?

    Hướng dẫn:

    Ta có G là trọng tâm của tứ diện BA'B'C' nên

    4\overrightarrow{IG} =
\overrightarrow{IB} + \overrightarrow{IA'} +
\overrightarrow{IB'} + \overrightarrow{IC'}

    \Leftrightarrow 4\overrightarrow{IG} =
\left( \overrightarrow{IC} + \overrightarrow{CB} ight) + \left(
\overrightarrow{IC'} + \overrightarrow{C'A'} ight) +
\left( \overrightarrow{IC'} + \overrightarrow{C'B'} ight)
+ \overrightarrow{IC'}

    \Leftrightarrow 4\overrightarrow{IG} =
\overrightarrow{IC'} + \left( 2\overrightarrow{IC'} +
\overrightarrow{IC} ight) + \left( \overrightarrow{CB} +
\overrightarrow{C'B'} ight) +
\overrightarrow{C'A'}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{CC'} + \overrightarrow{0} +
2\overrightarrow{CB} - \overrightarrow{AC}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{AA'} + 2\overrightarrow{CB} -
\overrightarrow{AC}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{a} + 2\left( \overrightarrow{b} -
\overrightarrow{c} ight) - \overrightarrow{c}

    \Leftrightarrow \overrightarrow{IG} =
\frac{1}{4}\left( \frac{1}{3}\overrightarrow{a} + \overrightarrow{b} -
2\overrightarrow{c} ight)

  • Câu 13: Thông hiểu
    Xác định độ lớn góc giữa hai vectơ

    Cho hình chóp S.ABCSA = SB = SC\widehat{ASB} = \widehat{BSC} =
\widehat{CSA}. Góc giữa cặp vectơ \overrightarrow{SA}\overrightarrow{BC} là:

    Hướng dẫn:

    Ta có: \overrightarrow{SA}.\overrightarrow{BC} =
\overrightarrow{SA}.\left( \overrightarrow{SC} - \overrightarrow{SB}
ight)

    =
\overrightarrow{SA}.\overrightarrow{SC} -
\overrightarrow{SA}.\overrightarrow{SB}

    = \left| \overrightarrow{SA}ight|.\left| \overrightarrow{SC} ight|.\cos\widehat{ASC} - \left|\overrightarrow{SA} ight|.\left| \overrightarrow{SB}ight|.\cos\widehat{ASB} = 0

    Vậy góc giữa cặp vectơ \overrightarrow{SA}\overrightarrow{BC}90^{0}.

  • Câu 14: Vận dụng
    Chọn đẳng thức đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Một mặt phẳng (\alpha) cắt các cạnh SA,SB,SC,SD lần lượt tại A',B',C',D'.Đẳng thức nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi O là tâm của hình bình hành ABCD thì \overrightarrow{SA} + \overrightarrow{SC} =
\overrightarrow{SB} + \overrightarrow{SD} =
2\overrightarrow{SO}

    \Leftrightarrow
\frac{SA}{SA'}\overrightarrow{SA'} +
\frac{SB}{SB'}\overrightarrow{SC'} =
\frac{SB}{SB'}\overrightarrow{SB'} +
\frac{SC}{SC'}\overrightarrow{SC'}

    Do A',B',C',D' đồng phẳng nên đẳng thức trên \Leftrightarrow
\frac{SA}{SA'} + \frac{SC}{SC'} = \frac{SB}{SB'} +
\frac{SD}{SD'}.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Cho tứ diện ABCD. Gọi M;N lần lượt là trung điểm của các cạnh AB;CD. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{MN} = k.\left( \overrightarrow{AC}
+ \overrightarrow{BD} ight)?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có N là trung điểm của CD nên \overrightarrow{MC} + \overrightarrow{MD} =
2\overrightarrow{MN}

    M là trung điểm của AB nên \overrightarrow{MA} + \overrightarrow{MB} =
\overrightarrow{0}

    Suy ra \overrightarrow{MN} =
\frac{1}{2}.\left( \overrightarrow{MC} + \overrightarrow{MD}
ight)

    = \frac{1}{2}.\left( \overrightarrow{MA}
+ \overrightarrow{AC} + \overrightarrow{MB} + \overrightarrow{BD}
ight)

    = \frac{1}{2}.\left( \overrightarrow{AC}
+ \overrightarrow{BD} ight)

    \Rightarrow \overrightarrow{MN} =
\frac{1}{2}.\left( \overrightarrow{AC} + \overrightarrow{BD} ight)
\Rightarrow k = \frac{1}{2}

  • Câu 16: Thông hiểu
    Chọn khẳng định đúng

    Cho ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} không đồng phẳng. Xét các vectơ \overrightarrow{x} = 2\overrightarrow{a} +\overrightarrow{b},\overrightarrow{y} = \overrightarrow{a} -\overrightarrow{b} - \overrightarrow{c},\overrightarrow{z} = -3\overrightarrow{b} - 2\overrightarrow{c}. Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Giả sử ba vectơ \overrightarrow{x},\overrightarrow{y},\overrightarrow{z} đồng phẳng, khi đó \overrightarrow{x} =m\overrightarrow{y} + n\overrightarrow{z}

    Ta có: \left\{ \begin{matrix}m\overrightarrow{y} = m\overrightarrow{a} - m\overrightarrow{b} -m\overrightarrow{c} \\overrightarrow{z} = - 3n\overrightarrow{b} - 2n\overrightarrow{c} \\\end{matrix} ight.

    \Rightarrow m\overrightarrow{y} +n\overrightarrow{z} = m\overrightarrow{a} - (m + 3n)\overrightarrow{b} -(m + 2n)\overrightarrow{c}

    Khi đó:

    2\overrightarrow{a} + \overrightarrow{b}= m\overrightarrow{a} - (m + 3n)\overrightarrow{b} - (m +2n)\overrightarrow{c}

    \Leftrightarrow \left\{ \begin{matrix}
m = 2 \\
m + 3n = - 1 \\
m + 2n = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 2 \\
n = - 1 \\
\end{matrix} ight.

    Vậy ba vectơ \overrightarrow{x},\overrightarrow{y},\overrightarrow{z} đồng phẳng.

    Vậy khẳng định đúng là: “Ba vectơ \overrightarrow{x},\overrightarrow{y},\overrightarrow{z} đồng phẳng”.

  • Câu 17: Vận dụng cao
    Chọn phương án thích hợp

    Một chiếc ô tô được đặt trên mặt đáy dưới cùa một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật ABCD, mặt phẳng (ABCD) song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc E của chiếc cần cẩu sao cho các đoạn dây cáp EA,EB,EC,ED có độ dài bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc bằng 60{^\circ}. Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng.

    A screenshot of a computerDescription automatically generated

    Tính trọng lượng của chiếc xe ô tô (làm tròn đến hàng đơn vị), biết rằng các lực căng \overrightarrow{F_{1}},\
\overrightarrow{F_{2}},\ \overrightarrow{F_{3}},\
\overrightarrow{F_{4}} đều có cường độ là 4700N và trọng lượng của khung sắt là 3000N.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi A_{1},\ B_{1},\ C_{1},D_{1} lần lượt là các điểm sao cho \overrightarrow{EA_{1}} = \overrightarrow{F_{1}},\
\overrightarrow{EB_{1}} = \overrightarrow{F_{2}},\
\overrightarrow{EC_{1}} = \overrightarrow{F_{3}},\
\overrightarrow{ED_{1}} = \overrightarrow{F_{4}}.

    EA,EB,EC,ED có độ dài bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc bằng 60^{o} nên EA_{1},EB_{1},EC_{1},ED_{1} có độ dài bằng nhau và cùng tạo với mặt phẳng \left(
A_{1}B_{1}C_{1}D_{1} \right) một góc bằng 60^{o}.

    ABCD là hình chữ nhật nên A_{1}B_{1}C_{1}D_{1} cũng là hình chữa nhật.

    Gọi O là tâm của hình chữ nhật A_{1}B_{1}C_{1}D_{1}. Ta suy ra EO\bot\left( A_{1}B_{1}C_{1}D_{1}
\right).

    Do đó góc giữa đường thẳng EA_{1} và mặt phẳng \left( A_{1}B_{1}C_{1}D_{1} \right) bằng góc \widehat{EA_{1}O} suy ra \widehat{EA_{1}O} = 60^{o}.

    Ta có \left| \overrightarrow{F_{1}}
\right| = \left| \overrightarrow{F_{2}} \right| = \left|
\overrightarrow{F_{3}} \right| = \left| \overrightarrow{F_{4}} \right| =
4700N nên EA_{1} = EB_{1} = EC_{1}
= ED_{1} = 4700N.

    Tam giác EOA_{1} vuông tại O nên EO =
EA_{1}.sin\widehat{EA_{1}O} = 4700.sin60{^\circ} =
2350\sqrt{3}.

    Ta có:

    \overrightarrow {{F_1}}  + \,\overrightarrow {{F_2}}  + \,\overrightarrow {{F_3}}  + \overrightarrow {{F_4}}

    = \overrightarrow {E{A_1}}  + \,\overrightarrow {E{B_1}}  + \overrightarrow {E{C_1}}  + \overrightarrow {E{D_1}}

    = 4\overrightarrow {EO}  + \overrightarrow {O{A_1}}  + \overrightarrow {O{C_1}}  + \,\overrightarrow {O{B_1}}  + \overrightarrow {O{D_1}}  = 4\overrightarrow {EO}.

    Vì chiếc khung sắt chứa xe ô tô ở vị trí cân bằng nên \overrightarrow{F_{1}} + \ \overrightarrow{F_{2}}
+ \ \overrightarrow{F_{3}} + \overrightarrow{F_{4}} =
\overrightarrow{P}, với \overrightarrow{P} là trọng lực tác dụng lên khung sắt chứa xe ô tô.

    Suy ra trọng lượng của khung sắt chứa chiếc xe ô tô là: \left| \overrightarrow{P} \right| = 4\left|
\overrightarrow{EO} \right| = 4.2350\sqrt{3} =
9400\sqrt{3}N

    Vì trọng lượng của khung sắt là 3000N nên trọng lượng của chiếc xe ô tô là: 9400\sqrt{3} - 3000 \approx
13281N.

  • Câu 18: Vận dụng cao
    Tính bán kính đường tròn

    Trong không gian Oxyz, cho các điểm A\left( 0\ ;\ 4\sqrt{2}\ ;\ 0 \right), B\left( 0\ ;\ 0\ ;\ 4\sqrt{2}\right), điểm C \in (Oxy) và tam giác OAC vuông tại C, hình chiếu vuông góc của O trên BC là điểm H. Khi đó điểm H luôn thuộc đường tròn cố định có bán kính bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Dễ thấy B \in Oz. Ta có A \in (Oxy)C \in (Oxy), suy ra OB\bot(OAC).

    Ta có \left\{ \begin{matrix}
AC\bot OC \\
AC\bot OB \\
\end{matrix} ight. \Rightarrow
AC\bot(OBC), mà OH \subset(OBC). Suy ra AC \bot OH (1).

    Mặt khác ta có OH\bot
BC (2), .

    Từ (1)(2) suy ra OH\bot(ABC) \Rightarrow OH\bot ABOH\bot HA.

    Với OH\bot AB suy ra H thuộc mặt phẳng (P) với (P) là mặt phẳng đi qua O và vuông góc với đường thẳng AB.

    Phương trình của (P) là: y - z
= 0.

    Với OH\bot HA \Rightarrow \Delta OHA vuông tại H.

    Do đó H thuộc mặt cầu (S) có tâm I\left( 0\ ;\ 2\sqrt{2}\ ;\ 0 ight) là trung điểm của OA và bán kính R = \frac{OA}{2} = 2\sqrt{2}.

    Do đó điểm H luôn thuộc đường tròn (T) cố định là giao tuyến của mp (P) với mặt cầu (S).

    Giả sử (T) có tâm K và bán kính r thì IK =
d\left( I,(P) ight) = 2r =
\sqrt{R^{2} - IK^{2}} = 2.

    Vậy điểm H luôn thuộc đường tròn cố định có bán kính bằng 2.

  • Câu 19: Vận dụng
    Chọn khẳng định đúng

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Chọn khẳng định đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    + \ M,N,P,Q lần lượt là trung điểm của AB,\ \
AA_{1},DD_{1},CD.

    Ta có CD_{1}//(MNPQ);\ \ AD//(MNPQ);\ \
A_{1}C//(MNPQ)

    \Rightarrow
\overrightarrow{CD_{1}},\overrightarrow{AD},\overrightarrow{A_{1}C} đồng phẳng.

  • Câu 20: Thông hiểu
    Tìm câu sai

    Cho tứ diện ABCD có các cạnh đều bằng a. Xác định câu sai trong các câu dưới đây?

    Hướng dẫn:

    Hình vẽ minh họa

    ABCD là tứ diện đều nên các tam giác ABC,BCD,CDA,ABD là các tam giác đều.

    Đáp án \overrightarrow{AD} +
\overrightarrow{CB} + \overrightarrow{BC} + \overrightarrow{DA} =
\overrightarrow{0}.

    Đúng vì \overrightarrow{AD} + \overrightarrow{CB} +
\overrightarrow{BC} + \overrightarrow{DA} = \overrightarrow{DA} +
\overrightarrow{AD} + \overrightarrow{BC} + \overrightarrow{CB} =
\overrightarrow{0}.

    Đáp án \overrightarrow{AB}.\overrightarrow{BC} = -
\frac{a^{2}}{2}.

    Đúng vì \overrightarrow{AB}.\overrightarrow{BC} = -\overrightarrow{BA}.\overrightarrow{BC}= - a.a.\cos60^{0} = \frac{-
a^{2}}{2}.

    Đáp án \overrightarrow{AC}.\overrightarrow{AD} =
\overrightarrow{AC}.\overrightarrow{CD}.

    Sai vì \overrightarrow{AC}.\overrightarrow{AD} =a.a.\cos60^{0} = \frac{a^{2}}{2}; \overrightarrow{AC}.\overrightarrow{CD} = -
\overrightarrow{CA}.\overrightarrow{CD} = - a.a.\cos60^{0} = -
\frac{a^{2}}{2}

    Đáp án AB\bot CD hay \overrightarrow{AB}.\overrightarrow{CD} =
0.

    Đúng vì \overrightarrow{AB}\bot\overrightarrow{CD}
\Rightarrow \overrightarrow{AB}.\overrightarrow{CD} = 0.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo