Cho tứ diện có
và
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có: ;
suy ra
. Ta có:
. Vậy góc giữa hai đường thẳng cần tìm là
Cho tứ diện có
và
. Tính góc giữa hai đường thẳng
và
?
Hình vẽ minh họa
Ta có: ;
suy ra
. Ta có:
. Vậy góc giữa hai đường thẳng cần tìm là
Cho tứ diện . Trên các cạnh
và
lần lượt lấy
sao cho
,
. Gọi
lần lượt là trung điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa

«Các vectơ đồng phẳng” . Sai vì
không đồng phẳng.
« Các vectơ đồng phẳng’. Đúng vì
: đồng phẳng.
“Các vectơ đồng phẳng”. Đúng. Bằng cách biểu diễn
tương tự như trên ta có
« Các vectơ đồng phẳng”. Đúng. Ta có
.
Cho hình hộp có các cạnh đều bằng
và các góc
. Tính góc giữa các cặp đường thẳng
với
;
với
.
Hình vẽ minh họa

Đặt
Ta có nên
.
Để ý rằng ,
.
Từ đó
Ta có , từ đó tính được:
.
Cho tứ diện . Lấy các điểm
lần lượt thuộc
sao cho
. Hãy xác định
để
đồng phẳng.
Hình vẽ minh họa

Cách 1.
Ta có
.
Lại có do đó
.
Vậy nếu đồng phẳng thì
hay
.
Cách 2. Đặt thì không khó khăn ta có các biểu diễn
,
,
Các điểm đồng phẳng khi và chỉ khi các vec tơ
đồng phẳng
Do các vec tơ không đồng phẳng nên điều này tương đương với
Cho tứ diện . Gọi
lần lượt là trung điểm của
và
,
là trung điểm của
). Xác định vị trí của
để
nhỏ nhất.
Hình vẽ minh họa

Ta có nên
nhỏ nhất khi
.
Cho tứ diện có
đôi một vuông góc.
là một điểm bất kì thuộc miền trong tam giác
. Tìm giá trị nhỏ nhất của biểu thức
?
Đặt . Khi đó
với
là ba số có tổng bằng 1.
Ta có:
Tương tự ta được
Do đó
Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa
Do đó
Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.
Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.
Cho hình hộp . Xác định vị trí các điểm
lần lượt trên
và
sao cho
. Tính tỉ số
bằng?
Hình vẽ minh họa

.
Giả sử .
Dễ dàng có các biểu diễn và
.
Từ đó suy ra
Để thì
Từ và
ta có:
.
Vậy các điểm được xác định bởi
.
Ta cũng có .
Cho tam giác vuông tại
và có hai đỉnh
nằm trên mặt phẳng
. Gọi
là hình chiếu vuông góc của đỉnh
lên
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì
suy ra góc
là góc tù.
Cho hình hộp đứng , trong đó mặt đáy là hình bình hành với
. Biết độ dài các cạnh
và
. Tính
.

Theo quy tắc hình hộp, ta có ,
Vậy
Với
Trong đó:
Do tổng hai góc kề của một hình bình hành là nên ta có góc
Áp dụng định lý cosin trong tam giác , ta có:
.
Vậy .
Cho hình hộp có các cạnh đều bằng
và các góc
. Tính góc giữa đường thẳng
với các đường thẳng
.
Hình vẽ minh họa

.
Trong không gian cho hình chóp có đáy
là hình bình hành tâm
. Khi đó
bằng.
Do là tâm của hình bình hành
nên
.
Áp dụng quy tắc ba điểm, ta có
Cho hình hộp . Gọi
là tâm hình bình hành
và
là tâm của hình bình hành
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì I; K lần lượt là trung điểm của AF và CF suy ra IK là đường trung bình tam giác AFC suy ra IK // AC => IK // (ABCD)
Mà GF // (ABCD); suy ra
đồng phẳng.
Cho hình chóp Lấy các điểm
lần lượt thuộc các tia
sao cho
, trong đó
là các số thay đổi. Tìm mối liên hệ giữa
để mặt phẳng
đi qua trọng tâm của tam giác
.
Nếu thì
nên
.
Suy ra đi qua trọng tâm của tam giác
=> là đáp án đúng.
Cho hình hộp có các cạnh đều bằng
và các góc
. Tính diện tích các tứ giác
và
.
Hình vẽ minh họa

Ta có:
nên
.
Dễ dàng tính được
,
.
Tính được
Vậy .
Cho tứ diện . Trên các cạnh
lần lượt lấy các điểm
sao cho
. Gọi
lần lượt là trung điểm của
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Vì lần lượt là trung điểm của
đồng phẳng sai vì
suy ra
không đồng phẳng.
Cho hình chóp có đáy là hình vuông
cạnh bằng
và các cạnh bên đều bằng
. Gọi
và
lần lượt là trung điểm của
và
. Số đo của góc
bằng:
Hình vẽ minh họa
Ta có:
vuông tại
.
Khi đó:
Cho các mệnh đề sau:
(I) Vectơ luôn đồng phẳng với hai vectơ
.
(II) Nếu có và ít nhất một trong ba số
khác không thì ba vectơ
đồng phẳng.
(III) Nếu ba vectơ không đồng phẳng và
thì
.
Hỏi có bao nhiêu mệnh đề đúng?
Do được biểu thị qua hai vectơ
nên (I) đúng.
Xét mệnh đề (II): Giả sử , khi đó:
Suy ra ba vectơ đồng phẳng. Vậy mệnh đề (II) đúng.
Do mệnh đề (III) tương đương với mệnh đề (II) nên mệnh đề (III) đúng.
Cho tứ diện có
đôi một vuông góc với nhau. Cho điểm
thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức
?
Cho tứ diện có
đôi một vuông góc với nhau. Cho điểm
thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức
?
Cho hình lập phương có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn:
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Cho hình lập phương có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn:
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Cho hình lập phương có cạnh
. Gọi
là trung điểm
. Giá trị
là:
Hình vẽ minh họa
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: