Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 6 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính tích vô hướng

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1} có cạnh a. Gọi M là trung điểm của AD. Tính tích vô hướng \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}}?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{BD_{1}} =
\overrightarrow{BA} + \overrightarrow{AD_{1}} = - \overrightarrow{AB} +
\overrightarrow{AA_{1}} + \overrightarrow{AD}

    Ta có: \overrightarrow{B_{1}M} =
\overrightarrow{B_{1}A} + \overrightarrow{AM} hay \overrightarrow{B_{1}M} = - \overrightarrow{AB} -
\overrightarrow{AA_{1}} + \frac{1}{2}\overrightarrow{AD}

    Do đó \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}} =
AB^{2} - A_{1}A^{2} + \frac{1}{2}AD^{2} = \frac{a^{2}}{2}

  • Câu 2: Vận dụng
    Tính góc giữa hai đường thẳng

    Cho hình hộp ABCD.A'B'C'D' có các cạnh đều bằng a và các góc \widehat{B'A'D'} =
60^{0},\widehat{B'A'A} = \widehat{D'A'A} =
120^{0}. Tính diện tích các tứ giác A'B'CDACC'A'.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{A'C} =
\overrightarrow{a} + \overrightarrow{b} +
\overrightarrow{c},\overrightarrow{B'D} = \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}

    \Rightarrow
\overrightarrow{A'C}.\overrightarrow{B'D} = \left(
\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}
\right)\left( \overrightarrow{a} - \overrightarrow{b} +
\overrightarrow{c} \right) = 0

    \Rightarrow A'C\bot B'D nên S_{A'B'DC} =
\frac{1}{2}A'C.B'D.

    Dễ dàng tính được A'C =a\sqrt{2},B'D = a\sqrt{2}

    \Rightarrow S_{A'B'CD} =\frac{1}{2}a\sqrt{2}a.\sqrt{2} = a^{2}

    S_{AA'C'C} = AA'AC\sin\left(
\overrightarrow{AA'},\overrightarrow{AC} \right), AA' = a,Ac = a\sqrt{3}.

    Tính được \sin\left(
\overrightarrow{AA'},\overrightarrow{AC} \right) = \sqrt{1 -
cos^{2}\left( \overrightarrow{AA'},\overrightarrow{AC} \right)} =
\frac{\sqrt{6}}{3}

    Vậy S_{AA'C'C} =
AA'AC\sin\left( \overrightarrow{AA'},\overrightarrow{AC} \right)
= a.a\sqrt{3}.\frac{\sqrt{6}}{3} = a^{2}\sqrt{2}.

  • Câu 3: Vận dụng
    Chọn khẳng định đúng

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Chọn khẳng định đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    + \ M,N,P,Q lần lượt là trung điểm của AB,\ \
AA_{1},DD_{1},CD.

    Ta có CD_{1}//(MNPQ);\ \ AD//(MNPQ);\ \
A_{1}C//(MNPQ)

    \Rightarrow
\overrightarrow{CD_{1}},\overrightarrow{AD},\overrightarrow{A_{1}C} đồng phẳng.

  • Câu 4: Vận dụng cao
    Tính x; y theo k để ba điểm thẳng hàng

    Cho hình hộp ABCD.A'B'C'D' và các điểm M,N,P xác định bởi

    \overrightarrow{MA} =
k\overrightarrow{MB'}(k \neq 0),\overrightarrow{NB} =
x\overrightarrow{NC'},\overrightarrow{PC} =
y\overrightarrow{PD'}. Hãy tính x,y theo k để ba điểm M,N,P thẳng hàng.

    Hướng dẫn:

    Hình vẽ minh họa

    Đặt \overrightarrow{AD} =
\overrightarrow{a},\overrightarrow{AB} =
\overrightarrow{b},\overrightarrow{AA'} =
\overrightarrow{c}.

    Từ giả thiết ta có :

    \overrightarrow{AM} = \frac{k}{k -
1}\left( \overrightarrow{b} + \overrightarrow{c} \right)\ \ \
(1)

    \overrightarrow{AN} = \overrightarrow{b}+ \frac{x}{x - 1}\left( \overrightarrow{a} + \overrightarrow{c} \right) (2)

    \overrightarrow{AP} = \overrightarrow{a} + \overrightarrow{b} +\frac{y}{y - 1}\left( \overrightarrow{c} - \overrightarrow{b}\right)(3)

    Từ đó ta có

    \overrightarrow{MN} =\overrightarrow{AN} - \overrightarrow{AM}= \frac{x}{x -1}\overrightarrow{a} - \frac{1}{k - 1}\overrightarrow{b} + \left(\frac{x}{x - 1} - \frac{k}{k - 1} \right)\overrightarrow{c}

    + \left( \frac{x}{x - 1} - \frac{y}{y -
1} \right)\overrightarrow{c}.

    \overrightarrow{MP} =\overrightarrow{AP} - \overrightarrow{AM}= \overrightarrow{a} -(\frac{y}{y - 1} + \frac{1}{k - 1})\overrightarrow{b} + \left(\frac{y}{y - 1} - \frac{k}{k - 1} \right)\overrightarrow{c}

    Ba điểm M,N,P thẳng hàng khi và chỉ khi tồn tại \lambda sao cho \overrightarrow{MN} =
\lambda\overrightarrow{MP}\ \ (*).

    Thay các vectơ \overrightarrow{MN},\overrightarrow{MP} vào (*) và lưu ý \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} không đồng phẳng ta tính được x = \frac{1 +
k}{1 - k},y = - \frac{1}{k}.

  • Câu 5: Thông hiểu
    Chọn khẳng định đúng

    Cho tứ diệnABCD. Gọi P,\ Q là trung điểm của ABCD. Chọn khẳng định đúng?

    Hướng dẫn:

    Ta có : \overrightarrow{PQ} =
\overrightarrow{PB} + \overrightarrow{BC} + \overrightarrow{CQ}\overrightarrow{PQ} = \overrightarrow{PA}
+ \overrightarrow{AD} + \overrightarrow{DQ}

    nên 2\overrightarrow{PQ} = \left(
\overrightarrow{PA} + \overrightarrow{PB} ight) + \overrightarrow{BC}
+ \overrightarrow{AD} + \left( \overrightarrow{CQ} + \overrightarrow{DQ}
ight) = \overrightarrow{BC} + \overrightarrow{AD}.

    Vậy \overrightarrow{PQ} = \frac{1}{2}\left(
\overrightarrow{BC} + \overrightarrow{AD} ight)

  • Câu 6: Vận dụng cao
    Tính giá trị lớn nhất của biểu thức

    Cho tứ diện ABCDBC = DA = a,CA = DB = b,AB = DC = c. Gọi S là diện tích toàn phần (tổng diện tích tất cả các mặt). Tính giá trị lớn nhất của \frac{1}{a^{2}b^{2}} + \frac{1}{b^{2}c^{2}} +
\frac{1}{c^{2}a^{2}}.

    Hướng dẫn:

    Do tứ diện ABCDBC = DA = a,CA = DB = b,AB = DC = c nên \Delta BCD = \Delta ADC = \Delta DAB =
\Delta CBA.

    Gọi S' là diện tích và R là bán kính đường tròn ngoại tiếp mỗi mặt đó thì S = 4S' =
\frac{abc}{R}, nên bất đẳng thức cần chứng minh:

    \frac{1}{a^{2}b^{2}} + \frac{1}{b^{2}c^{2}} +
\frac{1}{c^{2}a^{2}} \leq \frac{9}{S^{2}} \Leftrightarrow a^{2} + b^{2}
+ c^{2} \leq 9R^{2}.

    Theo công thức Leibbnitz:

    Với điểm M bất kì và G là trọng tâm của tam giác ABC thì

    MA^{2} + MB^{2} + MC^{2}

    = GA^{2} + GB^{2} +BC^{2} + 3MG^{2}

    = \frac{1}{3}\left( a^{2} + b^{2} + c^{2} + 9MG^{2}\right)

    Cho M trùng với tâm đường tròn ngoại tiếp tam giác ABC ta được:

    9R^{2} = aa^{2} + b^{2} + c^{2} + 9OG^{2}
\geq a^{2} + b^{2} + c^{2}.

  • Câu 7: Thông hiểu
    Tìm khẳng định sai

    Cho tứ diện ABCD. Trên các cạnh AD;BC lần lượt lấy các điểm M;N sao cho AM = 3MD;BN = 3NC. Gọi P;Q lần lượt là trung điểm của AD;BC. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của PD;QC

    \overrightarrow{BD};\overrightarrow{AC};\overrightarrow{MN} đồng phẳng sai vì \left\{ \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AC} +
\overrightarrow{CN} \\
\overrightarrow{MN} = \overrightarrow{MD} + \overrightarrow{DB} +
\overrightarrow{BN} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AC} +
\overrightarrow{CN} \\
3\overrightarrow{MN} = 3\overrightarrow{MD} + 3\overrightarrow{DB} +
3\overrightarrow{BN} \\
\end{matrix} ight.

    \Rightarrow 4\overrightarrow{MN} =
\overrightarrow{AC} - 3\overrightarrow{DB} +
\frac{1}{2}\overrightarrow{BC} suy ra \overrightarrow{BD};\overrightarrow{AC};\overrightarrow{MN} không đồng phẳng.

  • Câu 8: Vận dụng
    Chọn đẳng thức đúng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Một mặt phẳng (\alpha) cắt các cạnh SA,SB,SC,SD lần lượt tại A',B',C',D'.Đẳng thức nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi O là tâm của hình bình hành ABCD thì \overrightarrow{SA} + \overrightarrow{SC} =
\overrightarrow{SB} + \overrightarrow{SD} =
2\overrightarrow{SO}

    \Leftrightarrow
\frac{SA}{SA'}\overrightarrow{SA'} +
\frac{SB}{SB'}\overrightarrow{SC'} =
\frac{SB}{SB'}\overrightarrow{SB'} +
\frac{SC}{SC'}\overrightarrow{SC'}

    Do A',B',C',D' đồng phẳng nên đẳng thức trên \Leftrightarrow
\frac{SA}{SA'} + \frac{SC}{SC'} = \frac{SB}{SB'} +
\frac{SD}{SD'}.

  • Câu 9: Thông hiểu
    Chọn kết luận đúng

    Cho \overrightarrow{a}\overrightarrow{b}\overrightarrow{a} + 2\overrightarrow{b} vuông góc với vectơ 5\overrightarrow{a} -
4\overrightarrow{b}\left|
\overrightarrow{a} \right| = \left| \overrightarrow{b} \right|. Khi đó:

    Hướng dẫn:

    +Vì \overrightarrow{a} +
2\overrightarrow{b} vuông góc với vectơ 5\overrightarrow{a} - 4\overrightarrow{b} nên:

    \left( \overrightarrow{a} +
2\overrightarrow{b} ight).\left( 5\overrightarrow{a} -
4\overrightarrow{b} ight) = 0

    \Leftrightarrow
5{\overrightarrow{a}}^{2} - 8{\overrightarrow{b}}^{2} +
6\overrightarrow{a}\overrightarrow{b} = 0

    \Leftrightarrow
\overrightarrow{a}\overrightarrow{b} = \frac{- 5{\overrightarrow{a}}^{2}
+ 8{\overrightarrow{b}}^{2}}{6}

    Ta có \left| \overrightarrow{a} ight| =
\left| \overrightarrow{b} ight| \Leftrightarrow \left|
\overrightarrow{a} ight|^{2} = \left| \overrightarrow{b}
ight|^{2}. Suy ra \overrightarrow{a}\overrightarrow{b} =
\frac{3{\overrightarrow{a}}^{2}}{6}

    \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} =
\dfrac{\dfrac{3{\overrightarrow{a}}^{2}}{6}}{{\overrightarrow{a}}^{2}} =
\dfrac{1}{2}.

  • Câu 10: Vận dụng cao
    Ghi đáp án vào ô trống

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đáp án là:

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đặt \overrightarrow{F} ={\overrightarrow{F}}_{1} + {\overrightarrow{F}}_{2} +{\overrightarrow{F}}_{3} thì \left|\overrightarrow{F} ight| = 2000(N).

    Chú ý thêm là: \left|{\overrightarrow{F}}_{1} ight| = \left| {\overrightarrow{F}}_{2}ight| = \left| {\overrightarrow{F}}_{3} ight|

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AC}+ \overrightarrow{AD} = 3\overrightarrow{AG} với G là trọng tâm \Delta BCD.

    Vì hình chóp A.BCD đều nên AG\bot mp(BCD)

    Do đó \widehat{ABG} = 30^{0}, suy ra AG = AB.sin30^{0} = \frac{AB}{2}\Rightarrow AB = 2AG.

    Khi gắn các lực vào ta có:

    \overrightarrow{F} =\overrightarrow{F_{1}} + \overrightarrow{F_{2}} + \overrightarrow{F_{3}}= - \overrightarrow{F_{AB}} - \overrightarrow{F_{AC}} -\overrightarrow{F_{AD}} = - 3\overrightarrow{F_{AG}}

    \Rightarrow \left| {\overrightarrow F } ight| = 3\left| {\overrightarrow {{F_{AG}}} } ight| \Rightarrow \left| {\overrightarrow {{F_{AG}}} } ight| = \frac{{2000}}{3}\left( N ight)

    Từ đó: \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{AB}} ight| = 2\left|\overrightarrow{F_{AG}} ight| = \frac{4000}{3}(N).

    Vậy lực căng mỗi sợi dây là \frac{4000}{3}\ N \approx 1333\ N.

  • Câu 11: Thông hiểu
    Tính góc giữa hai đường thẳng

    Cho hình chóp A.BCDM;N theo thứ tự là trung điểm của BC;AD. Biết rằng AB = 10;CD = 6;MN = 7. Tính góc giữa hai đường thẳng AB;CD?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: 2\overrightarrow{MN} =
\overrightarrow{MN} + \overrightarrow{MN}

    = \left( \overrightarrow{MB} +
\overrightarrow{BA} + \overrightarrow{AN} ight) + \left(
\overrightarrow{MC} + \overrightarrow{CD} + \overrightarrow{DN}
ight)

    = \left( \overrightarrow{MB} +
\overrightarrow{MC} ight) + \left( \overrightarrow{AN} +
\overrightarrow{DN} ight) + \left( \overrightarrow{BA} +
\overrightarrow{CD} ight)

    \overrightarrow{BA} +
\overrightarrow{CD}

    Do đó

    4MN^{2} = \left( \overrightarrow{BA} +
\overrightarrow{CD} ight)^{2}

    \Rightarrow 196 = BA^{2} + CD^{2} +
2\overrightarrow{BA}.\overrightarrow{CD}

    \Rightarrow 196 = 100^{2} + 36^{2} +
2.10.6.cos\left( \overrightarrow{BA};\overrightarrow{CD}
ight)

    \Rightarrow \cos\left(
\overrightarrow{BA};\overrightarrow{CD} ight) =
\frac{1}{2}

    Vậy góc giữa hai đường thẳng cần tìm là 60^{0}.

  • Câu 12: Vận dụng
    Xác định góc giữa cặp vectơ

    Cho tứ diệnABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} = 60^{0},\
\widehat{CAD} = 90^{0}. Gọi IJ lần lượt là trung điểm của ABCD. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{IJ}?

    Hướng dẫn:

    Hình vẽ minh họa

    Xét tam giácICDJ là trung điểm đoạn CD.

    Ta có: \overrightarrow{I J} =
\frac{1}{2}\left( \overrightarrow{IC} + \overrightarrow{ID}
ight)

    Vì tam giác ABCAB = AC\widehat{BAC} = 60{^\circ}

    Nên tam giác ABC đều. Suy ra: CI\bot AB

    Tương tự ta có tam giác ABD đều nên DI\bot AB.

    Xét \overrightarrow{IJ}.\overrightarrow{AB} =
\frac{1}{2}\left( \overrightarrow{IC} + \overrightarrow{ID}
ight).\overrightarrow{AB}=
\frac{1}{2}\overrightarrow{IC}.\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{ID}.\overrightarrow{AB} =
\overrightarrow{0}.

    Suy ra \overrightarrow{I
J}\bot\overrightarrow{AB}. Hay góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{IJ} bằng 90^{0}.

  • Câu 13: Vận dụng
    Xác định giá trị thực của k

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MNP là một điểm bất kì trong không gian. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{PI} =
k.\left( \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}
+ \overrightarrow{PD} ight)?

    Hướng dẫn:

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của các cạnh AC;BD nên ta có: \left\{ \begin{matrix}
\overrightarrow{IA} + \overrightarrow{IC} = 2\overrightarrow{IM} \\
\overrightarrow{IB} + \overrightarrow{ID} = 2\overrightarrow{IN} \\
\end{matrix} ight..

    Mặt khác \overrightarrow{IM} +
\overrightarrow{IN} = \overrightarrow{0} (vì I là trung điểm của MN) suy ra \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} =
\overrightarrow{0}

    Theo bài ra ta có:

    \overrightarrow{PA} +
\overrightarrow{PB} + \overrightarrow{PC} +
\overrightarrow{PD}

    = 4\overrightarrow{PI} +
\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} +
\overrightarrow{ID} = 4\overrightarrow{PI}

    \Rightarrow 4k = 1 \Rightarrow k =
\frac{1}{4}

  • Câu 14: Vận dụng
    Xác định vị trí điểm M

    Trong không gian cho tam giác ABC. Tìm M sao cho giá trị của biểu thức P = MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất?

    Hướng dẫn:

    Gọi G là trọng tâm tam giác ABC

    Suy ra G cố định và \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} =
\overrightarrow{0}

    P = MA^{2} + MB^{2} +
MC^{2}

    P = \left( \overrightarrow{MG} +
\overrightarrow{GA} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GB} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GC} ight)^{2}

    P = 3{\overrightarrow{MG}}^{2} +
2\overrightarrow{MG}.\left( \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} ight)^{2} + GA^{2} + GB^{2} + GC^{2}

    P = 3MG^{2} + GA^{2} + GB^{2} + GC^{2}
\geq GA^{2} + GB^{2} + GC^{2}

    Dấu “=” xảy ra khi M \equiv
G

    Vậy P_{\min} = GA^{2} + GB^{2} +
GC^{2} với M \equiv G là trọng tâm tam giác ABC.

  • Câu 15: Vận dụng
    Chọn khẳng định đúng

    Cho hình hộp ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình bình hành ABCD. Đặt \overrightarrow{AC'} =
\overrightarrow{u},\overrightarrow{CA'} =
\overrightarrow{v}, \overrightarrow{BD'} =
\overrightarrow{x}, \overrightarrow{DB'} =
\overrightarrow{y}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta phân tích:

    \overrightarrow{u} + \overrightarrow{v} =\overrightarrow{AC'} + \overrightarrow{CA'}= \left(\overrightarrow{AC} + \overrightarrow{CC'} \right) + \left(\overrightarrow{CA} + \overrightarrow{AA'} \right) =2\overrightarrow{AA'}.

    \overrightarrow{x} + \overrightarrow{y} =\overrightarrow{BD'} + \overrightarrow{DB'}= \left(\overrightarrow{BD} + \overrightarrow{DD'} \right) + \left(\overrightarrow{DB} + \overrightarrow{BB'} \right) =2\overrightarrow{BB'} = 2\overrightarrow{AA'}.

    \Rightarrow \overrightarrow{u} +
\overrightarrow{v} + \overrightarrow{x} + \overrightarrow{y} =
4\overrightarrow{AA'} = - 4\overrightarrow{A'A} = -
4.2\overrightarrow{OI}.

    \Rightarrow 2\overrightarrow{OI} = -
\frac{1}{4}\left( \overrightarrow{u} + \overrightarrow{v} +
\overrightarrow{x} + \overrightarrow{y} \right).

  • Câu 16: Vận dụng
    Xác định tính đúng sai của từng phương án

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết rằng cạnh AB = a, AD = 2a, cạnh bên SA = 2a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:

    a) Hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, cùng hướng. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{SC};\overrightarrow{AC} bằng 60^{0}. Sai||Đúng

    c) Tích vô hướng của \overrightarrow{AM};\overrightarrow{AB} bằng \frac{a^{2}}{2}. Đúng||Sai

    d) Độ dài vectơ \overrightarrow{AM} -
\overrightarrow{AN}\frac{a\sqrt{3}}{2}. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết rằng cạnh AB = a, AD = 2a, cạnh bên SA = 2a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:

    a) Hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, cùng hướng. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{SC};\overrightarrow{AC} bằng 60^{0}. Sai||Đúng

    c) Tích vô hướng của \overrightarrow{AM};\overrightarrow{AB} bằng \frac{a^{2}}{2}. Đúng||Sai

    d) Độ dài vectơ \overrightarrow{AM} -
\overrightarrow{AN}\frac{a\sqrt{3}}{2}. Sai||Đúng

     

    a) Sai

     

    Ta thấy ABCD là hình chữ nhật nên AB//CD

    Suy ra hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, ngược hướng.

    b) Sai

    Ta có ABCD là hình chữ nhật nên AC =
\sqrt{AB^{2} + AD^{2}} = a\sqrt{5}

    Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.

    Suy ra \tan\widehat{SAC} = \frac{SA}{SC}
= \frac{2a}{a\sqrt{5}} \Rightarrow \widehat{SAC} \approx
41^{0}48'

    Ta có: \left(
\overrightarrow{SC};\overrightarrow{AC} ight) = \left(
\overrightarrow{CS};\overrightarrow{CA} ight) = \widehat{SAC} \approx
41^{0}48'

    c) Đúng

    Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.

    Suy ra SB = \sqrt{SA^{2} +
AB^{2}} = a\sqrt{5}

    Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:

    AM = \frac{1}{2}SB =
\frac{a\sqrt{5}}{2}

    Lại có M là trung điểm của SB nên MB =
\frac{1}{2}SB = \frac{a\sqrt{5}}{2}

    Ta tính được \cos MAB = \frac{MA^{2} +
AB^{2} - MB^{2}}{2MA.AB} = \frac{\sqrt{5}}{5}

    \left(
\overrightarrow{AM};\overrightarrow{AB} ight) =
\widehat{MAB}

    \Rightarrow
\overrightarrow{AM}.\overrightarrow{AB} = \left| \overrightarrow{AM}
ight|.\left| \overrightarrow{AB} ight|.cos\left(
\overrightarrow{AM};\overrightarrow{AB} ight) =
\frac{a\sqrt{5}}{2}.a.\frac{\sqrt{5}}{5} = \frac{a^{2}}{2}

    d) Sai

    Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD

    Do đó MN = \frac{1}{2}BD = \sqrt{AB^{2} +
AD^{2}} = \frac{a\sqrt{5}}{2}

    Suy ra \left| \overrightarrow{AM} -
\overrightarrow{AN} ight| = \left| \overrightarrow{MN} ight| =
\frac{a\sqrt{5}}{2}

  • Câu 17: Thông hiểu
    Chọn đáp án đúng

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} thỏa mãn \left| \overrightarrow{a} \right| = \left|
\overrightarrow{b} \right| = 1 và hai vectơ \overrightarrow{u} = \frac{2}{5}\overrightarrow{a}
- 3\overrightarrow{b}\overrightarrow{v} = \overrightarrow{a} +
\overrightarrow{b} vuông góc với nhau. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b}.

    Hướng dẫn:

    Ta có \overrightarrow{u}\bot\overrightarrow{v}
\Rightarrow \overrightarrow{u}.\overrightarrow{v} = 0

    \Leftrightarrow \left(
\frac{2}{5}\overrightarrow{a} - 3\overrightarrow{b} ight)\left(
\overrightarrow{a} + \overrightarrow{b} ight) = 0

    \Leftrightarrow
\frac{2}{5}{\overrightarrow{a}}^{2} -
\frac{13}{5}\overrightarrow{a}\overrightarrow{b} -
3{\overrightarrow{b}}^{2} = 0

    \overset{\left| \overrightarrow{a}
ight| = \left| \overrightarrow{b} ight| =
1}{ightarrow}\overrightarrow{a}.\overrightarrow{b} = - 1

    Suy ra \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = - 1 \Rightarrow \left(
\overrightarrow{a},\overrightarrow{b} ight) = 180^{0}

  • Câu 18: Vận dụng
    Chọn đáp án đúng

    Cho hình lăng trụ tam giác đều ABC.A'B'C'AB = a và. Góc giữa hai đường thẳng AB'BC'bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có \overrightarrow{AB'}.\overrightarrow{BC'}
= \left( \overrightarrow{AB} + \overrightarrow{BB'} ight)\left(
\overrightarrow{BC} + \overrightarrow{CC'} ight)

    =
\overrightarrow{AB}.\overrightarrow{BC} +
\overrightarrow{AB}.\overrightarrow{CC'} +
\overrightarrow{BB'}.\overrightarrow{BC} +
\overrightarrow{BB'}.\overrightarrow{CC'}

    =
\overrightarrow{AB}.\overrightarrow{BC} +
\overrightarrow{AB}.\overrightarrow{CC'} +
\overrightarrow{BB'}.\overrightarrow{BC} +
\overrightarrow{BB'}.\overrightarrow{CC'}

    = - \frac{a^{2}}{2} + 0 + 0 + 2a^{2} =
\frac{3a^{2}}{2}.

    Suy ra \cos\left(
\overrightarrow{AB^{'}},\overrightarrow{BC^{'}} ight) =
\frac{\overrightarrow{AB^{'}}.\overrightarrow{BC^{'}}}{\left|
\overrightarrow{AB^{'}} ight|.\left| \overrightarrow{BC^{'}}
ight|}=
\dfrac{\dfrac{3a^{2}}{2}}{a\sqrt{3}.a\sqrt{3}} = \dfrac{1}{2} \Rightarrow
\widehat{(AB',BC')} = 60{^\circ}.

  • Câu 19: Vận dụng
    Tính góc giữa hai đường thẳng

    Cho hình hộp ABCD.A'B'C'D' có các cạnh đều bằng a và các góc \widehat{B'A'D'} =
60^{0},\widehat{B'A'A} = \widehat{D'A'A} =
120^{0}. Tính góc giữa đường thẳng AC' với các đường thẳng AB,AD,AA'.

    Hướng dẫn:

    Hình vẽ minh họa

    \left( \widehat{AC',AB} \right) =
\left( \widehat{AC',AD} \right) = \left( \widehat{AC',AA'}
\right) = \arccos\frac{\sqrt{6}}{3}.

  • Câu 20: Vận dụng cao
    Ghi đáp án vào ô trống

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Đáp án là:

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Gọi hai lực tạo với nhau một góc 80^{\circ}\overrightarrow{F_{1}}\overrightarrow{F_{2}}, ta có \left| \overrightarrow{F_{1}} ight| = \left|
\overrightarrow{F_{2}} ight| = 50N.

    Lực còn lại là \overrightarrow{F_{3}}, ta có \left| \overrightarrow{F_{3}} ight| =
60N.

    Gọi \overrightarrow{F} là hợp lực của ba lực trên ta có

    \left| \overrightarrow{F} ight|^{2} =
\left( \overrightarrow{F_{1}} + \overrightarrow{F_{2}} +
\overrightarrow{F_{3}} ight)^{2}

    = \left| \overrightarrow{F_{1}}
ight|^{2} + \left| \overrightarrow{F_{2}} ight|^{2} + \left|
\overrightarrow{F_{3}} ight|^{2} + 2\lbrack\left|
\overrightarrow{F_{1}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{1}},\overrightarrow{F_{2}}
ight)

    + \left| \overrightarrow{F_{1}}
ight|.\left| \overrightarrow{F_{3}} ight|.cos\left(
\overrightarrow{F_{1}},\overrightarrow{F_{3}} ight) + \left|
\overrightarrow{F_{3}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{3}},\overrightarrow{F_{2}}
ight)brack

    = 50^{2} + 50^{2} + 60^{2} + 2\lbrack
50.50.cos80^{0}+ 50.60.cos60^{0} +
60.50.cos60^{0}brack \approx 15468.

    \Rightarrow |F| \approx 124 N

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo