Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 6 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn mệnh đề đúng

    Cho tam giác ABC vuông tại A và có hai đỉnh B;C nằm trên mặt phẳng (P). Gọi A' là hình chiếu vuông góc của đỉnh A lên (P). Trong các mệnh đề sau, mệnh đề nào đúng?

    Hướng dẫn:

    Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì

    \overrightarrow{A'B}.\overrightarrow{A'C}
= \overrightarrow{A'A}.\overrightarrow{A'C} +
\overrightarrow{AB}.\overrightarrow{A'C}

    =
\overrightarrow{AB}.\overrightarrow{A'C} =
\overrightarrow{AB}.\left( \overrightarrow{A'A} +
\overrightarrow{AC} ight)

    =
\overrightarrow{AB}.\overrightarrow{A'A} = -
\overrightarrow{AB}.\overrightarrow{AA'} < 0 suy ra góc \widehat{BA'C} là góc tù.

  • Câu 2: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương B^{'}C có đường chéo A^{'}C =
\frac{3}{16}. Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn: \overrightarrow{OS} =
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD}+ \overrightarrow{OA^{'}} +
\overrightarrow{OB^{'}} + \overrightarrow{OC^{'}} +
\overrightarrow{OD^{'}}. Khi đó độ dài của đoạn OS bằng \frac{a\sqrt{3}}{b} với a,b \in \mathbb{N}\frac{a}{b} là phân số tối giản. Tính giá trị của biểu thức P = a^{2} +
b^{2}.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu
    Tìm cosin góc giữa hai đường thẳng

    Cho tứ diện đều ABCD với I;J lần lượt là trung điểm của AB;CD. Tính cosin của góc giữa hai đường thẳng CI;AJ?

    Hướng dẫn:

    Hình vẽ minh họa

    Giả sử cạnh tứ diện đều bằng a. Khi đó:

    \overrightarrow{AB}.\overrightarrow{AC}
= \overrightarrow{AC}.\overrightarrow{AD} =
\overrightarrow{AD}.\overrightarrow{AB} = \frac{a^{2}}{2}

    Ta có: \overrightarrow{AJ} =
\frac{1}{2}\overrightarrow{AD} +
\frac{1}{2}\overrightarrow{AC}

    \overrightarrow{CI} =
\overrightarrow{AI} - \overrightarrow{AC} =
\frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}

    Do đó: \overrightarrow{CI}.\overrightarrow{AJ} =
\frac{1}{4}\left( \overrightarrow{AB} - 2\overrightarrow{AC}
ight)\left( \overrightarrow{AC} + \overrightarrow{AD} ight) = -
\frac{1}{2}a^{2}

    Ta lại có AJ = CI =
\frac{a\sqrt{3}}{2} suy ra \cos\left( \overrightarrow{CI};\overrightarrow{AJ}
ight) = - \frac{2}{3}

    Vậy đáp án cần tìm là \frac{2}{3}.

  • Câu 4: Vận dụng
    Chọn kết quả đúng

    Cho hình hộp đứng ABCD.A'B'C'D', trong đó mặt đáy là hình bình hành với \widehat{DAB}
= 120{^\circ}. Biết độ dài các cạnh AB = 25cm,AD = 12cmAA' = 12cm. Tính \left| \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'} \right|.

    Hướng dẫn:

    Theo quy tắc hình hộp, ta có \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'} = \overrightarrow{AC'},

    Vậy \left| \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} \right| = \left|
\overrightarrow{AC'} \right| = AC'

    Với AC' = \sqrt{AC^{2} +
A{A'}^{2}}

    Trong đó: AA' = 12(cm)

    Do tổng hai góc kề của một hình bình hành là 180{^\circ} nên ta có góc \widehat{ABC} = 60{^\circ}

    Áp dụng định lý cosin trong tam giác ABC, ta có:

    AC^{2} = AB^{2} + BC^{2} - 2AB.BC.cos\widehat{ABC}

    = 25^{2} + 12^{2} - 2.25.12.cos60{^0} = 469.

    Vậy AC' = \sqrt{AC^{2} +
A{A'}^{2}} = \sqrt{469 + 144} = \sqrt{613}(cm).

  • Câu 5: Vận dụng
    Ghi đáp án vào chỗ trống

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Thông hiểu
    Tìm tích vô hướng hai vectơ

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tích vô hướng của hai vectơ \overrightarrow{AB}\overrightarrow{A'C'} có giá trị bằng:

    Hướng dẫn:

    Ta có:

    \left(
\overrightarrow{A'C'};\overrightarrow{AB} ight) = \left(
\overrightarrow{AC};\overrightarrow{AB} ight) = \widehat{BAC} =
45^{0}

    \Rightarrow
\overrightarrow{A'C'}.\overrightarrow{AB} = \left|
\overrightarrow{A'C'} ight|.\left| \overrightarrow{AB}
ight|.cos\left( \overrightarrow{A'C'};\overrightarrow{AB}
ight) = a.a.1 = a^{2}

  • Câu 7: Thông hiểu
    Tính góc giữa hai vecto

    Cho tứ diện đều ABCD có cạnh bằng a. Tính góc \left( \overrightarrow{AB},\overrightarrow{CD}
\right).

    Hướng dẫn:

    Gọi M là trung điểm CD.

    Khi đó, \overrightarrow{AB}.\overrightarrow{CD} = \left(
\overrightarrow{AM} + \overrightarrow{MB} \right).\overrightarrow{CD} =
\overrightarrow{AM}.\overrightarrow{CD} +
\overrightarrow{MB}.\overrightarrow{CD}

    Do tam giác ACD đều nên AM\bot CD \Rightarrow
\overrightarrow{AM}.\overrightarrow{CD} = 0

    Và tam giác BCD đều nên BM\bot CD \Rightarrow
\overrightarrow{BM}.\overrightarrow{CD} = 0

    Vậy \overrightarrow{AB}.\overrightarrow{CD} = \left(\overrightarrow{AM} + \overrightarrow{MB} \right).\overrightarrow{CD}=\overrightarrow{AM}.\overrightarrow{CD} +\overrightarrow{MB}.\overrightarrow{CD} = 0\Rightarrow\overrightarrow{AB}\bot\overrightarrow{CD}.

    Kết luận \left(
\overrightarrow{AB},\overrightarrow{CD} \right) =
90{^\circ}.

  • Câu 8: Thông hiểu
    Chọn khẳng định đúng

    Cho tứ diện ABCDAC = \frac{3}{2}AD;\widehat{CAB} = \widehat{DAB} =
60^{0};CD = AD. Gọi \varphi là góc giữa ABCD. Chọn khẳng định đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \cos(AB;CD) = \frac{\left|
\overrightarrow{AB}.\overrightarrow{CD} ight|}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{CD} ight|} =
\frac{\left| \overrightarrow{AB}.\overrightarrow{CD}
ight|}{AB.CD}

    Mặt khác \overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{AB}.\left( \overrightarrow{AD} - \overrightarrow{AC}
ight) = \overrightarrow{AB}.\overrightarrow{AD} -
\overrightarrow{AB}.\overrightarrow{AC}

    = \left| \overrightarrow{AB}ight|.\left| \overrightarrow{AD} ight|.\cos\left(\overrightarrow{AB};\overrightarrow{AD} ight) - \left|\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|\cos\left(\overrightarrow{AB};\overrightarrow{AC} ight)

    = AB.AD.\frac{1}{2} -
AB.\frac{3}{2}.AD.\frac{1}{2} = - \frac{1}{4}AB.AD = -
\frac{1}{4}AB.CD

    Do đó: \cos(AB;CD) = \frac{\left| -\dfrac{1}{4}AB.CD ight|}{AB.CD} = \dfrac{1}{4}

    Vậy \cos\varphi =
\frac{1}{4}

  • Câu 9: Thông hiểu
    Chọn khẳng định đúng

    Cho hình chóp S.ABCDcó đáy ABCD là hình bình hành. Gọi M,N lần lượt là các điểm thuộc đoạn thẳng SA,SB sao cho SM = \frac{1}{2}AM;\ SN = \frac{1}{2}BN. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}SM = \dfrac{1}{2}AM \\SN = \dfrac{1}{2}BN \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}SM = \dfrac{1}{3}SA \\SN = \dfrac{1}{3}SB \\\end{matrix} ight.

    \Rightarrow MN = \frac{1}{3}AB =\frac{1}{3}CD.

    Nên \overrightarrow{MN} = -\frac{1}{3}\overrightarrow{CD}.

  • Câu 10: Vận dụng
    Chọn phương án đúng

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1} có cạnh a. Gọi M là trung điểm AD. Giá trị \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}} là:

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}} =
\left( \overrightarrow{B_{1}B} + \overrightarrow{BA} +
\overrightarrow{AM} ight)\left( \overrightarrow{BA} +
\overrightarrow{AD} + \overrightarrow{DD_{1}} ight)

    =
\overrightarrow{B_{1}B}.\overrightarrow{DD_{1}} +
{\overrightarrow{BA}}^{2} +
\overrightarrow{AM}.\overrightarrow{AD} = - a^{2} + a^{2} + \frac{a^{2}}{2} =
\frac{a^{2}}{2}

  • Câu 11: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Cho điểm M thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức P =\sqrt{3}MA + MB + MC + MD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Cho điểm M thay đổi trong không gian. Giá trị nhỏ nhất của biểu thức P =\sqrt{3}MA + MB + MC + MD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Vận dụng
    Xác định giá trị thực của k

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MNP là một điểm bất kì trong không gian. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{PI} =
k.\left( \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}
+ \overrightarrow{PD} ight)?

    Hướng dẫn:

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của các cạnh AC;BD nên ta có: \left\{ \begin{matrix}
\overrightarrow{IA} + \overrightarrow{IC} = 2\overrightarrow{IM} \\
\overrightarrow{IB} + \overrightarrow{ID} = 2\overrightarrow{IN} \\
\end{matrix} ight..

    Mặt khác \overrightarrow{IM} +
\overrightarrow{IN} = \overrightarrow{0} (vì I là trung điểm của MN) suy ra \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} =
\overrightarrow{0}

    Theo bài ra ta có:

    \overrightarrow{PA} +
\overrightarrow{PB} + \overrightarrow{PC} +
\overrightarrow{PD}

    = 4\overrightarrow{PI} +
\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} +
\overrightarrow{ID} = 4\overrightarrow{PI}

    \Rightarrow 4k = 1 \Rightarrow k =
\frac{1}{4}

  • Câu 13: Vận dụng
    Phân tích vectơ

    Cho hình hộp ABCD.A'B'C'D'. Điểm M được xác định bởi đẳng thức vectơ \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} + \overrightarrow{MD} + \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = \overrightarrow{0}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Gọi \left\{ \begin{matrix}
O = AC \cap BD \\
O' = A'C' \cap B'D' \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0} \\
\overrightarrow{OA'} + \overrightarrow{OB'} +
\overrightarrow{OC'} + \overrightarrow{OD'} = \overrightarrow{0}
\\
\end{matrix} ight.

    Ta có:

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} +
\overrightarrow{MD}

    = \left( \overrightarrow{MO} +
\overrightarrow{OA} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OB} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OC} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OD} ight)

    = \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} +
4\overrightarrow{MO} = \overrightarrow{0} + 4\overrightarrow{MO} =
4\overrightarrow{MO}

    Tương tự ta cũng có: \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = 4\overrightarrow{MO'}

    Từ đó suy ra

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} +
\overrightarrow{MA'} + \overrightarrow{MB'} +
\overrightarrow{MC'} + \overrightarrow{MD'} =
\overrightarrow{0}

    \Leftrightarrow 4\overrightarrow{MO} +
4\overrightarrow{MO'} = \overrightarrow{0} \Leftrightarrow 4\left(
\overrightarrow{MO} + \overrightarrow{MO'} ight) =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{MO} +
\overrightarrow{MO'} = \overrightarrow{0}

    Vậy điểm M cần tìm là trung điểm của OO'.

  • Câu 14: Thông hiểu
    Chọn đẳng thức đúng

    Cho hình lăng trụ tam giác ABC.A_{1}B_{1}C_{1}. Đặt \overrightarrow{AA_{1}} =
\overrightarrow{a},\overrightarrow{AB} =
\overrightarrow{b},\overrightarrow{AC} =
\overrightarrow{c},\overrightarrow{BC} =
\overrightarrow{d},trong các đẳng thức sau, đẳng thức nào đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    + Dễ thấy: \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}
\Rightarrow \overrightarrow{b} + \overrightarrow{d} - \overrightarrow{c}
= \overrightarrow{0}.

  • Câu 15: Vận dụng cao
    Tìm giá trị nhỏ nhất của biểu thức

    Cho hình chóp S.ABCSA = a,SB = b,SC = c. Một mặt phẳng (\alpha) luôn đi qua trọng tâm của tam giác ABC, cắt các cạnh SA,SB,SC lần lượt tại A',B',C'. Tìm giá trị nhỏ nhất của \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}}.

    Hướng dẫn:

    Gọi G là trọng tâm của tam giác ABC. Ta có 3\overrightarrow{SG} = \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC}

    =
\frac{SA}{SA'}\overrightarrow{SA'} +
\frac{SB}{SB'}\overrightarrow{SB'} +
\frac{SC}{SC'}\overrightarrow{SC'}.

    G,A',B',C' đồng phẳng nên \frac{SA}{SA'} +\frac{SB}{SB'} + \frac{SC}{SC'} = 3\Leftrightarrow\frac{a}{SA'} + \frac{b}{SB'} + \frac{c}{SC'} =3

    Theo BĐT Cauchy schwarz:

    Ta có \left( \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}} \right)\left( a^{2} +
b^{2} + c^{2} \right) \geq \left( \frac{a}{SA'} + \frac{b}{SB'}
+ \frac{c}{SC'} \right)^{2}

    \Leftrightarrow \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}} \geq \frac{9}{a^{2} +
b^{2} + c^{2}}.

    Đẳng thức xảy ra khi

    \frac{1}{aSA'} = \frac{1}{bSB'} =
\frac{1}{cSC'} kết hợp với \frac{a}{SA'} + \frac{b}{SB'} +
\frac{c}{SC'} = 3 ta được;

    SA' = \frac{a^{2} + b^{2} + c^{2}}{3a},SB'
= \frac{a^{2} + b^{2} + c^{2}}{3b},SC' = \frac{a^{2} + b^{2} +
c^{2}}{3c}.

    Vậy GTNN của \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}}\frac{9}{a^{2} + b^{2} + c^{2}}.

  • Câu 16: Vận dụng cao
    Tìm k để các điểm đồng phẳng

    Cho tứ diện ABCD. Lấy các điểm M,N,P,Q lần lượt thuộc AB,BC,CD,DA sao cho \overrightarrow{AM} =\frac{1}{3}\overrightarrow{AB},\overrightarrow{BN} =\frac{2}{3}\overrightarrow{BC},\overrightarrow{AQ} =\frac{1}{2}\overrightarrow{AD},\overrightarrow{DP} =k\overrightarrow{DC}. Hãy xác định k để M,N,P,Q đồng phẳng.

    Hướng dẫn:

    Hình vẽ minh họa

    Cách 1.

    Ta có \overrightarrow{AM} =
\frac{1}{3}\overrightarrow{AB} \Rightarrow \overrightarrow{BM} -
\overrightarrow{BA} = - \frac{1}{3}\overrightarrow{BA}

    \Rightarrow \overrightarrow{BM} =
\frac{2}{3}\overrightarrow{BA}.

    Lại có \overrightarrow{BN} =
\frac{2}{3}\overrightarrow{BC} do đó MN//AC.

    Vậy nếu M,N,P,Q đồng phẳng thì (MNPQ) \cap (ACD) = PQ \parallel
AC

    \Rightarrow \frac{PC}{PD} = \frac{QA}{QD}
= 1 hay \overrightarrow{DP} =
\frac{1}{2}\overrightarrow{DC} \Rightarrow k = \frac{1}{2}.

    Cách 2. Đặt \overrightarrow{DA} =
\overrightarrow{a},\overrightarrow{DB} =
\overrightarrow{b},\overrightarrow{DC} = \overrightarrow{c} thì không khó khăn ta có các biểu diễn

    \overrightarrow{MN} = -
\frac{2}{3}\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}, \overrightarrow{MP} = -
\frac{2}{3}\overrightarrow{a} - \frac{1}{3}\overrightarrow{b} +
k\overrightarrow{c}, \overrightarrow{MN} = -
\frac{1}{6}\overrightarrow{a} -
\frac{1}{3}\overrightarrow{b}

    Các điểm M,N,P,Q đồng phẳng khi và chỉ khi các vec tơ \overrightarrow{MN},\overrightarrow{MP},\overrightarrow{MQ} đồng phẳng \Leftrightarrow \exists
x,y:\overrightarrow{MP} = x\overrightarrow{MN} +
y\overrightarrow{MQ}

    \Leftrightarrow -
\frac{2}{3}\overrightarrow{a} - \frac{1}{3}\overrightarrow{b} +
k\overrightarrow{c} = x\left( - \frac{2}{3}\overrightarrow{a} +
\frac{2}{3}\overrightarrow{c} \right) + y\left( -
\frac{1}{6}\overrightarrow{a} - \frac{1}{3}\overrightarrow{b}
\right)

    Do các vec tơ \overrightarrow{a},\overrightarrow{b,}\overrightarrow{c} không đồng phẳng nên điều này tương đương với

    \left\{ \begin{matrix}
- \frac{2}{3}x - \frac{1}{6}y = - \frac{2}{3} \\
- \frac{1}{3}y = - \frac{1}{3} \\
\frac{2}{3}x = k \\
\end{matrix} \right.\  \Leftrightarrow x = \frac{3}{4},y = 1,k =
\frac{1}{2}.

  • Câu 17: Vận dụng
    Tính tỉ số hai cạnh

    Cho hình hộp ABCD.A'B'C'D'. Một đường thẳng \Delta cắt các đường thẳng AA',BC,C'D' lần lượt tại M,N,P sao cho \overrightarrow{NM} =
2\overrightarrow{NP}. Tính \frac{MA}{MA'}.

    Hướng dẫn:

    Hình vẽ minh họa

    Đặt \overrightarrow{AD} =
\overrightarrow{a},\overrightarrow{AB} =
\overrightarrow{b},\overrightarrow{AA'} =
\overrightarrow{c}.

    M \in AA' nên \overrightarrow{AM} = k\overrightarrow{AA'} =
k\overrightarrow{c}

    N \in BC \Rightarrow \overrightarrow{BN}
= l\overrightarrow{BC} = l\overrightarrow{a}, P \in C'D' \Rightarrow
\overrightarrow{C'P} = m\overrightarrow{b}

    Ta có \overrightarrow{NM} =
\overrightarrow{NB} + \overrightarrow{BA} + \overrightarrow{AM} = -
l\overrightarrow{a} - \overrightarrow{b} +
k\overrightarrow{c}

    \overrightarrow{NP} =
\overrightarrow{BN} + \overrightarrow{BB'} +
\overrightarrow{B'C'} + \overrightarrow{C'P} = (1 -
l)\overrightarrow{a} + m\overrightarrow{b} +
\overrightarrow{c}

    Do \overrightarrow{NM} =
2\overrightarrow{NP} \Rightarrow - l\overrightarrow{a} -
\overrightarrow{b} + k\overrightarrow{c} = 2\lbrack(1 -
l)\overrightarrow{a} + m\overrightarrow{b} +
\overrightarrow{c}\rbrack

    \Leftrightarrow \left\{ \begin{matrix}
- l = 2(1 - l) \\
- 1 = 2m \\
k = 2 \\
\end{matrix} \right.\  \Leftrightarrow k = 2,m = - \frac{1}{2},l =
2.

    Vậy \frac{MA}{MA'} =
2.

  • Câu 18: Vận dụng
    Xác định vị trí điểm M

    Trong không gian cho tam giác ABC. Tìm M sao cho giá trị của biểu thức P = MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất?

    Hướng dẫn:

    Gọi G là trọng tâm tam giác ABC

    Suy ra G cố định và \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} =
\overrightarrow{0}

    P = MA^{2} + MB^{2} +
MC^{2}

    P = \left( \overrightarrow{MG} +
\overrightarrow{GA} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GB} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GC} ight)^{2}

    P = 3{\overrightarrow{MG}}^{2} +
2\overrightarrow{MG}.\left( \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} ight)^{2} + GA^{2} + GB^{2} + GC^{2}

    P = 3MG^{2} + GA^{2} + GB^{2} + GC^{2}
\geq GA^{2} + GB^{2} + GC^{2}

    Dấu “=” xảy ra khi M \equiv
G

    Vậy P_{\min} = GA^{2} + GB^{2} +
GC^{2} với M \equiv G là trọng tâm tam giác ABC.

  • Câu 19: Vận dụng
    Chọn kết quả đúng nhất

    Cho tam giác ABC, thì công thức tính diện tích nào sau đây là đúng nhất.

    Hướng dẫn:

    Ta có:

    S_{ABC} = \frac{1}{2}ABAC\sin A =
\frac{1}{2}\sqrt{AB^{2}AB^{2}sin^{2}A}

    = \frac{1}{2}\sqrt{AB^{2}AC^{2}\left( 1
- cos^{2}A \right)}

    = \frac{1}{2}\sqrt{AB^{2}AC^{2} - \left(
\overrightarrow{AB}.\overrightarrow{AC} \right)^{2}}.

  • Câu 20: Vận dụng cao
    Chọn phương án thích hợp

    Một chiếc ô tô được đặt trên mặt đáy dưới cùa một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật ABCD, mặt phẳng (ABCD) song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc E của chiếc cần cẩu sao cho các đoạn dây cáp EA,EB,EC,ED có độ dài bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc bằng 60{^\circ}. Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng.

    A screenshot of a computerDescription automatically generated

    Tính trọng lượng của chiếc xe ô tô (làm tròn đến hàng đơn vị), biết rằng các lực căng \overrightarrow{F_{1}},\
\overrightarrow{F_{2}},\ \overrightarrow{F_{3}},\
\overrightarrow{F_{4}} đều có cường độ là 4700N và trọng lượng của khung sắt là 3000N.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi A_{1},\ B_{1},\ C_{1},D_{1} lần lượt là các điểm sao cho \overrightarrow{EA_{1}} = \overrightarrow{F_{1}},\
\overrightarrow{EB_{1}} = \overrightarrow{F_{2}},\
\overrightarrow{EC_{1}} = \overrightarrow{F_{3}},\
\overrightarrow{ED_{1}} = \overrightarrow{F_{4}}.

    EA,EB,EC,ED có độ dài bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc bằng 60^{o} nên EA_{1},EB_{1},EC_{1},ED_{1} có độ dài bằng nhau và cùng tạo với mặt phẳng \left(
A_{1}B_{1}C_{1}D_{1} \right) một góc bằng 60^{o}.

    ABCD là hình chữ nhật nên A_{1}B_{1}C_{1}D_{1} cũng là hình chữa nhật.

    Gọi O là tâm của hình chữ nhật A_{1}B_{1}C_{1}D_{1}. Ta suy ra EO\bot\left( A_{1}B_{1}C_{1}D_{1}
\right).

    Do đó góc giữa đường thẳng EA_{1} và mặt phẳng \left( A_{1}B_{1}C_{1}D_{1} \right) bằng góc \widehat{EA_{1}O} suy ra \widehat{EA_{1}O} = 60^{o}.

    Ta có \left| \overrightarrow{F_{1}}
\right| = \left| \overrightarrow{F_{2}} \right| = \left|
\overrightarrow{F_{3}} \right| = \left| \overrightarrow{F_{4}} \right| =
4700N nên EA_{1} = EB_{1} = EC_{1}
= ED_{1} = 4700N.

    Tam giác EOA_{1} vuông tại O nên EO =
EA_{1}.sin\widehat{EA_{1}O} = 4700.sin60{^\circ} =
2350\sqrt{3}.

    Ta có:

    \overrightarrow {{F_1}}  + \,\overrightarrow {{F_2}}  + \,\overrightarrow {{F_3}}  + \overrightarrow {{F_4}}

    = \overrightarrow {E{A_1}}  + \,\overrightarrow {E{B_1}}  + \overrightarrow {E{C_1}}  + \overrightarrow {E{D_1}}

    = 4\overrightarrow {EO}  + \overrightarrow {O{A_1}}  + \overrightarrow {O{C_1}}  + \,\overrightarrow {O{B_1}}  + \overrightarrow {O{D_1}}  = 4\overrightarrow {EO}.

    Vì chiếc khung sắt chứa xe ô tô ở vị trí cân bằng nên \overrightarrow{F_{1}} + \ \overrightarrow{F_{2}}
+ \ \overrightarrow{F_{3}} + \overrightarrow{F_{4}} =
\overrightarrow{P}, với \overrightarrow{P} là trọng lực tác dụng lên khung sắt chứa xe ô tô.

    Suy ra trọng lượng của khung sắt chứa chiếc xe ô tô là: \left| \overrightarrow{P} \right| = 4\left|
\overrightarrow{EO} \right| = 4.2350\sqrt{3} =
9400\sqrt{3}N

    Vì trọng lượng của khung sắt là 3000N nên trọng lượng của chiếc xe ô tô là: 9400\sqrt{3} - 3000 \approx
13281N.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo