Cho hình hộp có các cạnh đều bằng
và các góc
. Tính diện tích các tứ giác
và
.
Hình vẽ minh họa

Ta có:
nên
.
Dễ dàng tính được
,
.
Tính được
Vậy .
Cho hình hộp có các cạnh đều bằng
và các góc
. Tính diện tích các tứ giác
và
.
Hình vẽ minh họa

Ta có:
nên
.
Dễ dàng tính được
,
.
Tính được
Vậy .
Cho hình chóp , mặt phẳng
cắt các tia
(
là trọng tâm tam giác
) lần lượt tại các điểm
.Ta có
. Hỏi k bằng bao nhiêu?
Hình vẽ minh họa

Do là trọng tâm của
nên
Mặt khác đồng phẳng nên
.
Gọi lần lượt là trung điểm của các cạnh
và
của tứ diện
. Gọi
là trung điểm đoạn
và
là 1 điểm bất kỳ trong không gian. Tìm giá trị của
thích hợp điền vào đẳng thức vectơ:
.
Ta có ,
nên
Vậy
Cho hình lập phương có cạnh
. Gọi
là trung điểm
. Giá trị
là:
Hình vẽ minh họa
Ta có:
Cho hình lăng trụ có
là trung điểm của
. Đặt
. Đẳng thức nào sau đây đúng?
Ta có: M là trung điểm của BB’ khi đó
Khi đó:
Vậy đẳng thức đúng là .
Trong không gian cho tam giác . Tìm
sao cho giá trị của biểu thức
đạt giá trị nhỏ nhất?
Gọi G là trọng tâm tam giác ABC
Suy ra G cố định và
Dấu “=” xảy ra khi
Vậy với
là trọng tâm tam giác
.
Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực , được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp
sao cho
và
là tam giác đều, đồng thời các cạnh
tạo với mặt phẳng
một góc có
(như hình vẽ).
Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)
Đáp án: 1333(N)
Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực , được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp
sao cho
và
là tam giác đều, đồng thời các cạnh
tạo với mặt phẳng
một góc có
(như hình vẽ).
Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)
Đáp án: 1333(N)
Đặt thì
.
Chú ý thêm là:
Ta có:
với
là trọng tâm
.
Vì hình chóp đều nên
Do đó , suy ra
.
Khi gắn các lực vào ta có:
Từ đó: .
Vậy lực căng mỗi sợi dây là .
Cho tứ diện có
đôi một vuông góc.
là một điểm bất kì thuộc miền trong tam giác
. Tìm giá trị nhỏ nhất của biểu thức
?
Đặt . Khi đó
với
là ba số có tổng bằng 1.
Ta có:
Tương tự ta được
Do đó
Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa
Do đó
Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.
Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.
Cho hình chóp Lấy các điểm
lần lượt thuộc các tia
sao cho
, trong đó
là các số thay đổi. Tìm mối liên hệ giữa
để mặt phẳng
đi qua trọng tâm của tam giác
.
Nếu thì
nên
.
Suy ra đi qua trọng tâm của tam giác
=> là đáp án đúng.
Cho hình chóp có
và
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Ta có
Cho hình chóp . Gọi
là giao điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa

“Nếu thì
là hình thang » Đúng
Vì và
.
Vì và
thẳng hàng nên đặt
.
Mà không cùng phương nên
và
“Nếu là hình bình hành thì
.“. Đúng.
Hs tự biến đổi bằng cách chêm điểm vào vế trái.
“Nếu là hình thang thì
. ». Sai.
Vì nếu là hình thang cân có 2 đáy là
thì sẽ sai.
“Nếu thì
là hình bình hành ». Đúng.
Tương tự đáp án A với là trung điểm 2 đường chéo.
Cho hình hộp đứng , trong đó mặt đáy là hình bình hành với
. Biết độ dài các cạnh
và
. Tính
.

Theo quy tắc hình hộp, ta có ,
Vậy
Với
Trong đó:
Do tổng hai góc kề của một hình bình hành là nên ta có góc
Áp dụng định lý cosin trong tam giác , ta có:
.
Vậy .
Cho tứ diện . Gọi
lần lượt là trung điểm của
và
là trung điểm của
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Vì lần lượt là trung điểm của
suy ra
Mà là trung điểm của
Khi đó
Vậy khẳng định sai là: .
Cho hình hộp . Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
Hình vẽ minh họa
Ta có:
.
Vậy .
Cho hình lăng trụ tam giác đều có
và. Góc giữa hai đường thẳng
và
bằng
Hình vẽ minh họa
Ta có
.
Suy ra .
Một chiếc ô tô được đặt trên mặt đáy dưới cùa một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật , mặt phẳng
song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc
của chiếc cần cẩu sao cho các đoạn dây cáp
có độ dài bằng nhau và cùng tạo với mặt phẳng
một góc bằng
. Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng.

Tính trọng lượng của chiếc xe ô tô (làm tròn đến hàng đơn vị), biết rằng các lực căng đều có cường độ là
và trọng lượng của khung sắt là
.
Hình vẽ minh họa

Gọi lần lượt là các điểm sao cho
.
Vì có độ dài bằng nhau và cùng tạo với mặt phẳng
một góc bằng
nên
có độ dài bằng nhau và cùng tạo với mặt phẳng
một góc bằng
.
Vì là hình chữ nhật nên
cũng là hình chữa nhật.
Gọi là tâm của hình chữ nhật
. Ta suy ra
.
Do đó góc giữa đường thẳng và mặt phẳng
bằng góc
suy ra
.
Ta có nên
.
Tam giác vuông tại
nên
.
Ta có:
.
Vì chiếc khung sắt chứa xe ô tô ở vị trí cân bằng nên , với
là trọng lực tác dụng lên khung sắt chứa xe ô tô.
Suy ra trọng lượng của khung sắt chứa chiếc xe ô tô là:
Vì trọng lượng của khung sắt là nên trọng lượng của chiếc xe ô tô là:
.
Cho hình chóp có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ bằng
. Sai||Đúng
c) Tích vô hướng của bằng
. Đúng||Sai
d) Độ dài vectơ là
. Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật. Biết rằng cạnh
, cạnh bên
và vuông góc với mặt đáy. Gọi
lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:
a) Hai vectơ là hai vectơ cùng phương, cùng hướng. Sai||Đúng
b) Góc giữa hai vectơ bằng
. Sai||Đúng
c) Tích vô hướng của bằng
. Đúng||Sai
d) Độ dài vectơ là
. Sai||Đúng
a) Sai
Ta thấy ABCD là hình chữ nhật nên
Suy ra hai vectơ là hai vectơ cùng phương, ngược hướng.
b) Sai
Ta có ABCD là hình chữ nhật nên
Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.
Suy ra
Ta có:
c) Đúng
Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.
Suy ra
Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:
Lại có M là trung điểm của SB nên
Ta tính được
Mà
d) Sai
Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD
Do đó
Suy ra
Cho tứ diện . Lấy các điểm
lần lượt thuộc
sao cho
. Hãy xác định
để
đồng phẳng.
Hình vẽ minh họa

Cách 1.
Ta có
.
Lại có do đó
.
Vậy nếu đồng phẳng thì
hay
.
Cách 2. Đặt thì không khó khăn ta có các biểu diễn
,
,
Các điểm đồng phẳng khi và chỉ khi các vec tơ
đồng phẳng
Do các vec tơ không đồng phẳng nên điều này tương đương với
Cho hình lập phương có cạnh bằng
Gọi
lần lượt là trung điểm của
và
Tích vô hướng
(
là số thập phân). Giá trị của
bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)
Đáp án: -0,5||- 0,5
Cho hình lập phương có cạnh bằng
Gọi
lần lượt là trung điểm của
và
Tích vô hướng
(
là số thập phân). Giá trị của
bằng bao nhiêu? (Kết quả ghi dưới dạng số thập phân)
Đáp án: -0,5||- 0,5
Hình vẽ minh họa
Vì nên
Ta có:
Vậy
Cho hình lập phương có cạnh bằng
. Tích vô hướng của hai vectơ
và
có giá trị bằng:
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: