Cho hàm số . Định
để hàm số đạt cực đại tại
?
Ta có:
Hàm số đạt cực đại tại điểm khi
Vậy đáp án cần tìm là .
Cho hàm số . Định
để hàm số đạt cực đại tại
?
Ta có:
Hàm số đạt cực đại tại điểm khi
Vậy đáp án cần tìm là .
Có bao nhiêu giá trị nguyên của tham số để hàm số
có hai cực tiểu và một cực đại?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số có hai cực tiểu và một cực đại thì đồ thị hàm số
có dạng
Ta có: . Đồ thị nhánh ngoài của hàm số hướng lên nên hàm số có hệ số
Khi đó để thỏa mãn yêu cầu bài toán ta có:
Vì m là số nguyên nên có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Gọi là hai điểm cực trị của hàm số
. Tìm các giá trị của tham số
để
Ta có .
Do nên hàm số luôn có hai điểm cực trị
.
Theo định lí Viet, ta có .
Yêu cầu bài toán
.
Khoảng cách giữa hai điểm cực trị của đồ thị hàm số là
- Tìm hai điểm cực trị.
- Áp dụng công thức khoảng cách giữa hai điểm :
- Tìm cực trị của hàm số.
Ta có:
⇒ Khoảng cách giữa hai điểm cực trị là .
Cho hàm số có đồ thị như hình vẽ
Hàm số đồng biến trên khoảng nào dưới đây
Hàm số có
Do đó hàm số đồng biến trên .
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số không có cực trị. Số phần tử của S là:
Xét hàm số ta có:
Hàm số đã cho không có cực trị
=> Phương trình y’ = 0 vô nghiệm hoặc có nghiệm kép
=>
Do m là số nguyên nên
Vậy tập S có 4 phần tử.
Cho hàm số có đồ thị như hình vẽ:
Hàm số nghịch biến trên khoảng nào?
Ta có:
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số . Mệnh đề nào dưới đây đúng?
TXĐ:
Suy ra hàm số đồng biến trên các khoảng ,
; hàm số nghịch biến trên các khoảng
,
. Vậy hàm số nghịch biến trên khoảng
.
Cách 2: Dùng chức năng mode 7 trên máy tính kiểm tra từng đáp án.
Tìm giá trị của tham số để hàm số
nghịch biến trên khoảng
Tìm giá trị của tham số để hàm số
nghịch biến trên khoảng
Tìm tất cả các giá trị thực của tham số để hàm số
đồng biến trên khoảng
?
Điều kiện xác định
Ta có:
Hàm số đồng biến trên khoảng khi và chỉ khi
Vậy đáp án cần tìm là .
Cho hàm số có bảng xét dấu của đạo hàm như sau
Hàm số đồng biến trên khoảng nào dưới đây?
Ta có:
Với , lại có
Vậy hàm số đồng biến trên khoảng
và
Chú ý:
+) Ta xét
Suy ra hàm số nghịch biến trên khoảng nên loại hai phương án
+) Tương tự ta xét
Suy ra hàm số nghịch biến trên khoảng
Số điểm cực trị của hàm số là:
Ta có:
Khi đó
Phương trình (*) có ba nghiệm bội lẻ
Vậy hàm số ban đầu có ba điểm cực trị.
Cho hàm số . Xét các mệnh đề sau đây
1) Hàm số có 3 điểm cực trị.
2) Hàm số đồng biến trên các khoảng ;
.
3) Hàm số có 1 điểm cực trị.
4) Hàm số nghịch biến trên các khoảng ;
.
Có bao nhiêu mệnh đề đúng trong bốn mệnh đề trên?
Ta có:
Bảng xét dấu:
Hàm số có điểm cực trị, đồng biến trên khoảng
;
và nghịch biến trên khoảng
;
. Vậy mệnh đề
,
,
đúng.
Cho hàm số có bảng xét dấu
như sau:
Hàm số nghịch biến trên khoảng nào dưới đây?
Ta có:
Vậy khoảng nghịch biến của hàm số là:
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho đạt cực đại tại . Đúng||Sai
b) Hàm số đã cho đạt cực tiểu tại . Sai|| Đúng
c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là . Sai|| Đúng
d) Đồ thị hàm số có điểm cực đại là
. Sai|| Đúng
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Hàm số đã cho đạt cực đại tại . Đúng||Sai
b) Hàm số đã cho đạt cực tiểu tại . Sai|| Đúng
c) Hàm số đã cho có giá trị cực đại và cực tiểu lần lượt là . Sai|| Đúng
d) Đồ thị hàm số có điểm cực đại là
. Sai|| Đúng
Ta có:
Bảng biến thiên
a) Dựa vào bảng biến thiên ta thấy hàm số đạt cực đại tại
b) Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại
c) Dựa vào bảng biến thiên ta thấy hàm số giá trị cực đại và cực tiểu lần lượt là
d) Dựa vào bảng biến thiên ta thấy hàm số có được bằng cách tịnh tiến đồ thị
lên trên 3 đơn vị. Suy ra đồ thị hàm số
có điểm cực đại là
.
Giá trị thực của tham số để hàm số
đạt cực tiểu tại điểm
thuộc khoảng nào sau đây?
Tập xác định
Ta có:
Để hàm số đạt cực tiểu tại thì
Vậy .
Hàm số nào dưới đây không có cực trị?
Xét hàm số .
Tập xác định ,
.
Nên hàm số luôn đồng biến trên từng khoảng xác định.
Do đó hàm số không có cực trị.
Cho hàm số . Mệnh đề nào sau đây đúng?
Tập xác định của hàm số là:
Ta có:
Vậy hàm số đồng biến trên khoảng (5; +∞)
Có tất cả bao nhiêu giá trị nguyên của tham số để hàm số
đồng biến trên
.
Ta có .
Với .
Vậy hàm số đồng biến trên .
Với . Hàm số đã cho đồng biến trên
khi và chỉ khi
.
Vì .
Cho hàm số , bảng xét dấu của
như sau:
Số điểm cực trị của hàm số đã cho là
Từ bảng biến thiên ta thấy đổi dấu khi
qua nghiệm
và nghiệm
; không đổi dấu khi
qua nghiệm
nên hàm số có hai điểm cực trị.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: