Cho hàm số xác định và liên tục trên đoạn
và có đạo hàm
trên khoảng
. Đồ thị của hàm số
như hình vẽ sau:
Mệnh đề nào sau đây đúng?
Dựa vào đồ thị ta thấy và dấu “=” chỉ xảy ra tại
nên hàm số đồng biến trên khoảng
.
Cho hàm số xác định và liên tục trên đoạn
và có đạo hàm
trên khoảng
. Đồ thị của hàm số
như hình vẽ sau:
Mệnh đề nào sau đây đúng?
Dựa vào đồ thị ta thấy và dấu “=” chỉ xảy ra tại
nên hàm số đồng biến trên khoảng
.
Cho hàm số liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:
Hàm số nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:
Hàm số nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Hàm số nghịch biến trên khoảng nào dưới đây?
Ta có:
Ta có bảng xét dấu như sau:
Suy ra hàm số nghịch biến trên khoảng và
.
Cho hàm số có bảng xét dấu của đạo hàm như hình vẽ. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Từ bảng xét dấu ta thấy hàm số đã cho nghịch biến trên khoảng và
.
Vậy hàm số đã cho nghịch biến trên khoảng .
Cho hàm số với
là tham số. Tìm giá trị của tham số
để đồ thị hàm số
có cực đại tại
và cực tiểu tại
sao cho
?
Ta có:
Hàm số có cực đại tại và cực tiểu tại
khi và chỉ khi
Theo bài ra ta có:
Vậy đáp án cần tìm là .
Số điểm cực trị của hàm số là:
Tập xác định
Ta có:
Ta có bảng xét dấu:
Vậy hàm số có hai điểm cực trị.
Cho đồ thị hàm số . Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Do đó hàm số nghịch biến trên từng khoảng xác định.
Vậy khẳng định đúng là: “Hàm số nghịch biến trên các khoảng và
”.
Cho hàm số với
là tham số. Gọi
là tập hợp tất cả các giá trị nguyên của
để hàm số nghịch biến trên các khoảng xác định. Tìm số phần tử của
.
;
Hàm số nghịch biến trên các khoảng xác định khi
.
Mà nên có
giá trị thỏa mãn.
Tìm tất cả các giá trị thực của tham số để hàm số
có hai cực trị?
Ta có:
Để hàm số đã cho có hai cực trị thì có hai nghiệm phân biệt
Vậy với thì hàm số
có hai cực trị.
Tìm tập hợp tất cả các giá trị thực của tham số để hàm số
nghịch biến trên khoảng
?
Tìm tập hợp tất cả các giá trị thực của tham số để hàm số
nghịch biến trên khoảng
?
Cho hàm số với
là tham số. Định điều kiện của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì đồ thị hàm số
có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dương
thỏa mãn
Hàm số đồng biến trên tập hợp nào trong các tập hợp được cho dưới đây?
Ta có: ;
.
Dựa vào bảng biến thiên thì hàm số đã cho đồng biến trên khoảng .
Có bao nhiêu giá trị của tham số để hàm số
có điểm cực đại là
?
Ta có:
Hàm số có điểm cực đại là khi
Hàm số có đạo hàm
,
. Hỏi
có bao nhiêu điểm cực đại?
Ta có
.
Bảng biến thiên
Dựa vào bảng biến thiên suy ra hàm số có điểm cực đại.
Cho hàm số . Điều kiện cần và đủ của tham số
để hàm số nghịch biến trên
là:
Tập xác định
Ta có:
Để hàm số đã cho nghịch biến trên thì
Vậy giá trị cần tìm là .
Cho hàm số với
là tham số. Tìm tập hợp tất cả các giá trị của tham số
để hàm số đã cho đạt cực tiểu tại
?
Tập xác định .
Ta có: . Để hàm số đạt cực tiểu tại
thì
vậy tập hợp tất cả các giá trị của tham số m thỏa mãn yêu cầu bài toán là .
Cho hàm số liên tục trên
. Hàm số
có đồ thị như hình vẽ. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có .
Từ đó suy ra hàm số đồng biến trên khoảng
.
Cho hàm số bậc ba có đồ thị như hình vẽ sau:
Khi đó số điểm cực trị của hàm số là:
Từ giả thiết ta có đồ thị của hàm số như sau:
Vậy hàm số có ba điểm cực trị.
Cho hàm số (với
là tham số) có đồ thị
. Giả sử các điểm
là các điểm cực trị của
. Để tam giác
đều thì giá trị của tham số
nằm trong khoảng nào sau đây?
Tập xác định
Ta có:
Hàm số có ba điểm cực trị khi và chỉ khi phương trình có ba nghiệm phân biệt hay
có hai nghiệm khác 0
Khi đó
Đồ thị có ba điểm cực trị là
;
;
.
Ta có:
Do đó tam giác đều
Kết hợp với điều kiện .
Vậy đáp án cần tìm là .
Cho hàm số với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho có hai điểm cực trị nằm bên trái trục
?
Ta có:
Đồ thị của hàm số đã cho có hai điểm cực trị nằm bên trái trục tung khi và chỉ khi phương trình có hai nghiệm âm phân biệt
Vậy đáp án cần tìm là .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: