Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 1 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tìm tham số m để hàm số nghịch biến trên khoảng

    Giá trị của tham số m sao cho hàm số y = {x^3} - 2m{x^2} - \left( {m + 1} ight)x + 1 nghịch biến trên khoảng (0; 2)?

    Hướng dẫn:

    Ta có: y' = 3{x^2} - 4mx - m - 1

    Hàm số nghịch biến trên khoảng (0; 2)

    => 3{x^2} - 4mx - m - 1 \leqslant 0,x \in \left[ {0;2} ight]

    => 3{x^2} - 1 \leqslant 3\left( {4x + 1} ight) \Leftrightarrow \frac{{3{x^2} - 1}}{{4x + 1}} \leqslant m,\left( {\forall x \in \left[ {0;2} ight]} ight)

    Xét hàm số g\left( x ight) = \frac{{3{x^2} - 1}}{{4x + 1}};\forall x \in \left[ {0;2} ight]

    Ta có: g'\left( x ight) = \frac{{6x\left( {4x + 1} ight) - 4\left( {3{x^2} - 1} ight)}}{{{{\left( {4x + 1} ight)}^2}}} = \frac{{12{x^2} + 6x + 4}}{{{{\left( {4x + 1} ight)}^2}}};\forall x \in \left[ {0;2} ight]

    => g(x) đồng biến trên đoạn [0; 2]

    Ta có:

    \begin{matrix}  g\left( x ight) = \dfrac{{3{x^2} - 1}}{{4x + 1}} \leqslant m;\forall x \in \left[ {0;2} ight] \hfill \\   \Rightarrow m \geqslant g\left( 2 ight) = \dfrac{{11}}{9} \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu
    Chọn biểu thức chính xác

    Gọi M,N lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số y = -
x^{3} - 3x^{2} + 9x - 1. Chọn biểu thức đúng?

    Hướng dẫn:

    Ta có: y' = - 3x^{2} - 6x + 9
\Rightarrow y'' = - 6x - 6

    y' = 0 \Leftrightarrow x^{2} + 2x -
3 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 3 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
y''(1) = - 12 \Rightarrow x_{CD} = 1;y_{CD} = 4 = M \\
y''( - 3) = 12 \Rightarrow x_{CD} = - 3;y_{CD} = - 28 = N \\
\end{matrix} ight.

    Vậy 7M + N = 7.4 - 28 = 0

  • Câu 3: Thông hiểu
    Chọn đáp án thích hợp

    Hai điểm cực trị của đồ thị hàm số y = (x
- 2)^{2}(x + 1)

    Hướng dẫn:

    Ta có:

    f^{'}(x) = 2(x - 2)(x + 1) + (x -
2)^{2}

    = 2x^{2} - 2x - 4 + x^{2} - 4x + 4 =
3x^{2} - 6x

    f^{'}(x) = 0 = > x = 1;x =
2

    Vậy hai điểm cực trị cần tìm là: A(0;4),B(2;0)

  • Câu 4: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hàm số y = \sqrt{2x -x^2}. Biết hàm số nghịch biến trên đoạn (a;b). Tính a
+ 2b.

    Đáp án: 5

    Đáp án là:

    Cho hàm số y = \sqrt{2x -x^2}. Biết hàm số nghịch biến trên đoạn (a;b). Tính a
+ 2b.

    Đáp án: 5

    Tập xác định: D = \lbrack
0;2brack.

    Ta có: y^{'} = \frac{1 - x}{\sqrt{2x
- x^{2}}} = 0 \Leftrightarrow x = 1.

    Bảng xét dấu:

    Từ bảng xét dấu, ta thấy hàm số nghịch biến trên (1;2).

    Khi đó: a = 1;b = 2 \Rightarrow a + 2b =
1 + 2.2 = 5.

  • Câu 5: Thông hiểu
    Tìm giá trị của tham số để hàm số nghịch biến trên R

    Xác định giá trị của a để hàm số f\left( x ight) = \sin x - ax + b nghịch biến trên trục số.

    Hướng dẫn:

     Ta có: y' = \cos x - a

    Hàm số nghịch biến trên \mathbb{R}

    \begin{matrix}   \Rightarrow \cos x - a \leqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant \cos x,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow a \geqslant 1 \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu
    Tìm m để hàm số đạt cực đại

    Cho hàm số y = x^{3} - 3mx^{2} + 3\left(
m^{2} - 1 \right)x - 3m^{2} + 5 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số đạt cực đại tại x = 1.

    Hướng dẫn:

    Thử từng đáp án.

    ● Kiểm tra khi m = 0 thì hàm số có đạt cực đại tại x = 1 không

    Và tiếp theo tính tại x = 1^{-} (cho x = 0.9) và x = 1^{+} (cho x = 1.1)

    Vậy y' đổi dấu từ âm sang dương qua giá trị x =
1\overset{}{ightarrow}x = 1 là điểm cực tiểu.

    \overset{}{ightarrow}m = 0 loại \overset{}{ightarrow} Đáp án m = 0,\ m = 2. hoặc m = 0. sai.

    ● Tương tự kiểm tra khi m =
2

    Và tiếp theo tính tại x = 1^{-} (cho x = 0.9) và x = 1^{+} (cho x = 1.1)

    Ta thấy y' đổi dấu từ dương sang âm qua giá trị x =
1\overset{}{ightarrow}x = 1 là điểm cực đại.

    \overset{}{ightarrow} m=2 thỏa mãn \overset{}{ightarrow} Đáp án m = 2. chính xác.

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} - mx^{2} + (2m - 1)x - m + 2 nghịch biến trên khoảng ( - 3;0)?

    Hướng dẫn:

    Ta có: y' = x^{2} - 2mx + 2m -
1

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 2m - 1 \\
\end{matrix} ight.

    Hàm số đã cho nghịch biến trên khoảng ( -
3;0) khi ( - 3;0) nằm trong khoảng hai nghiệm

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 \leq - 3 < 0 \leq 2m - 1 \\
2m - 1 \leq - 3 < 0 \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow 2m - 1 \leq - 3 \Leftrightarrow m
\leq - 1

    Vậy đáp án cần tìm là m \leq -
1.

  • Câu 8: Thông hiểu
    Tìm phương án đúng

    Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số hàm số y = \frac{1}{3}\left( m^{2} - m \right)x^{3} +
2mx^{2} + 3x - 2 đồng biến trên khoảng ( - \infty;\  + \infty)?

    Hướng dẫn:

    Ta có:

    y' = \left( m^{2} - m ight)x^{2} +
4mx + 3

    Hàm số đã cho đồng biến trên khoảng ( -
\infty;\  + \infty) \Leftrightarrow y' \geq 0 với \forall x\mathbb{\in R}.

    + Với m = 0 ta có y' = 3 > 0 với \forall x\mathbb{\in R \Rightarrow} Hàm số đồng biến trên khoảng ( - \infty;\  +
\infty).

    + Với m = 1 ta có y' = 4x + 3 > 0 \Leftrightarrow x > -
\frac{3}{4} \Rightarrow m =
1 không thảo mãn.

    + Với \left\{ \begin{matrix}
m eq 1 \\
m eq 0 \\
\end{matrix} ight. ta có y'
\geq 0 với \forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
m^{2} - m > 0 \\
\Delta' = m^{2} + 3m \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m > 1 \\
m < 0 \\
\end{matrix} ight.\  \\
- 3 \leq m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow - 3 \leq m < 0.

    Tổng hợp các trường hợp ta được - 3 \leq
m \leq 0.

    m\mathbb{\in Z \Rightarrow}m \in \left\{
- 3;\  - 2;\ \  - 1;\ 0 ight\}.

    Vậy có 4 giá trị nguyên của m thỏa mãn bài ra.

  • Câu 9: Thông hiểu
    Xác định hàm số đồng biến trên tập số thực

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Ta có hàm số y = \left( \frac{5}{4}
ight)^{x} có cơ số a =
\frac{5}{4} > 1 nên đồng biến trên \mathbb{R}.

    Ngoài ra các hàm số y = \frac{x + 4}{x +
3}; y = x^{4} - 2x^{2} +
1; y = \tan x không thể đồng biến hoặc nghịch biến trên \mathbb{R}.

  • Câu 10: Vận dụng
    Chọn mệnh đề đúng

    Cho hàm số f(x), bảng xét dấu của f'(x) như sau:

    Hàm số y = f(5 - 2x) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có y' = f'(5 - 2x) = -
2f'(5 - 2x).

    y^{'} = 0 \Leftrightarrow -
2f^{'(5 - 2x)} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
5 - 2x = - 3 \\
5 - 2x = - 1 \\
5 - 2x = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 4 \\
x = 3 \\
x = 2 \\
\end{matrix} ight..

    f'(5 - 2x) < 0 \Leftrightarrow
\left\lbrack \begin{matrix}
5 - 2x < - 3 \\
- 1 < 5 - 2x < 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x > 4 \\
2 < x < 3 \\
\end{matrix} ight.

    f'(5 - 2x) > 0 \Leftrightarrow
\left\lbrack \begin{matrix}
5 - 2x > 1 \\
- 3 < 5 - 2x < - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < 2 \\
3 < x < 4 \\
\end{matrix} ight..

    Bảng biến thiên

    Dựa vào bảng biến thiên hàm số y = f(5 -
2x) đồng biến trên khoảng (4\ ;\
5).

  • Câu 11: Thông hiểu
    Tìm khoảng đồng biến của hàm số

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{3}(2 - x)(x -
3)^{3}. Hàm số f(x) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có:

    f'(x) = (x - 1)^{3}(2 - x)(x -
3)^{3}

    \Rightarrow f'(x) = 0
\Leftrightarrow (x - 1)^{3}(2 - x)(x - 3)^{3} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    Từ bảng xét dấu của f'(x) suy ra hàm số đồng biến trên khoảng (1;2).

  • Câu 12: Vận dụng
    Số điểm cực trị của hàm số

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}. Đồ thị hàm số y f’(x) như hình vẽ bên:

    Số điểm cực trị của hàm số

    Số điểm cực trị của hàm số y = f(x) + 2x là:

    Hướng dẫn:

    Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) < 0 \Leftrightarrow f'\left( x ight) <  - 2 \Leftrightarrow x > \alpha

    Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị x = \alpha

    Từ đó ta có bảng xét dấu như sau:

    Số điểm cực trị của hàm số

    Vậy hàm số đã cho có đúng một cực trị

  • Câu 13: Vận dụng
    Tính giá trị biểu thức

    Gọi m_{1};m_{2} là giá trị của tham số m để đồ thị hàm số y = 2x^{3} - 3x^{2} + m - 1 có hai điểm cực trị là P;Q sao cho diện tích tam giác OPQ bằng 2 (O là gốc tọa độ). Khi đó giá trị biểu thức m_{1}.m_{2} bằng:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}.

    Ta có: y' = 6x^{2} - 6x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow y = m - 1 \\
x = 1 \Rightarrow y = m - 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Suy ra P(0;m - 1),Q(1;m - 2)

    \Rightarrow \overrightarrow{PQ} = (1; -
1) \Rightarrow \left| \overrightarrow{PQ} ight| =
\sqrt{2}

    Đường thẳng (PQ) đi qua điểm P(0;m -
1) và nhận \overrightarrow{n} =
(1;1) làm một vecto pháp tuyến nên có phương trình

    1(x - 0) + 1(y - m + 1) = 0
\Leftrightarrow x + y - m + 1 = 0

    d(O;PQ) = \frac{|1 -
m|}{\sqrt{2}}

    Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:

    S_{OAB} = \frac{1}{2}.d(O;PQ).PQ =
2

    \Leftrightarrow \frac{1}{2}.\frac{|1 -
m|}{\sqrt{2}}.\sqrt{2} = 2 \Leftrightarrow |1 - m| = 4

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 - m = 4 \\
1 - m = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 3 \\
m = 5 \\
\end{matrix} ight.

    Vậy m_{1}.m_{2} = - 15.

  • Câu 14: Thông hiểu
    Chọn kết luận đúng

    Đồ thị hàm số y = x^{4} - x^{2} +
1 có bao nhiêu điểm cực trị có tung độ là số dương?

    Hướng dẫn:

    Tập xác định D\mathbb{= R} .

    y' = 4x^{3} - 2x

    Khi đó y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow y = 1 \\
x = \pm \dfrac{\sqrt{2}}{2} \Rightarrow y = \dfrac{3}{4} \\
\end{matrix} ight. .

    Suy ra đồ thị có hàm số y = x^{4} - x^{2}
+ 13 điểm cực trị có tung độ là số dương.

  • Câu 15: Thông hiểu
    Tìm m để hàm số có 1 cực trị

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = x^{4} - \left( m^{2} - 9 ight)x^{2} +
2021 có một cực trị. Xác định số phần tử của tập S?

    Hướng dẫn:

    Để hàm số có một cực trị thì - \left(
m^{2} - 9 ight) \geq 0 \Leftrightarrow m^{2} - 9 \leq 0
\Leftrightarrow - 3 \leq m \leq 3

    Vậy có 7 giá trị nguyên thỏa mãn yêu cầu bài toán.

  • Câu 16: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = \sqrt {{x^2} - 6x + 5}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Tập xác định của hàm số là: D = \left( { - \infty ;1} ight] \cup \left[ {5; + \infty } ight)

    Ta có: y' = \frac{{x - 3}}{{\sqrt {{x^2} - 6x + 5} }} > 0,\forall x \in \left( {5; + \infty } ight)

    Vậy hàm số đồng biến trên khoảng (5; +∞)

  • Câu 17: Thông hiểu
    Xác định số điểm cực đại của hàm số

    Cho hàm số f(x) có đạo hàm f'(x) = x(x - 1)(x + 4)^{3},\forall
x\mathbb{\in R}. Số điểm cực đại của hàm số đã cho là

    Hướng dẫn:

    Ta có

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 4 \\
\end{matrix} ight.

    Bảng xét dấu f'(x):

    Từ bảng xét dấu suy ra hàm số có đúng 1 điểm cực đại

  • Câu 18: Thông hiểu
    Xác định số giá trị nguyên của tham số m

    Số giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} - 2mx^{2} +
4x - 5 đồng biến trên \mathbb{R}?

    Hướng dẫn:

    Theo yêu cầu bài toán \Leftrightarrow
y' = x^{2} - 4mx + 4 \geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 > 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 4m^{2} - 4 \leq 0 \Leftrightarrow
- 1 \leq m \leq 1

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1 ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 19: Thông hiểu
    Tìm số điểm cực trị của hàm số

    Cho hàm số f(x), bảng xét dấu của f'(x) như sau:

    Số điểm cực trị của hàm số đã cho là

    Hướng dẫn:

    f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 1 \\
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Từ bảng biến thiên ta thấy f'(x) đổi dấu khi x qua nghiệm - 1 và nghiệm 1; không đổi dấu khi x qua nghiệm 0 nên hàm số có hai điểm cực trị.

  • Câu 20: Thông hiểu
    Chọn đáp án chính xác

    Tìm tất cả các giá trị của tham số m để hàm số y
= x^{3} - 3(m + 1)x^{2} + 3(3m + 7)x + 1 có cực trị?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6(m + 1)x + 3(3m
+ 7)

    Để hàm số y = x^{3} - 3(m + 1)x^{2} +
3(3m + 7)x + 1 có cực trị thì y' = 0 có hai nghiệm phân biệt

    \Rightarrow \Delta' > 0
\Leftrightarrow 9m^{2} - 9m - 54 > 0 \Leftrightarrow \left\lbrack
\begin{matrix}
m < - 2 \\
m > 3 \\
\end{matrix} ight..

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo