Tìm tất cả các giá trị thực của tham số để hàm số
có các điểm cực trị nhỏ hơn
Ta có
Yêu cầu bài toán có hai nghiệm phân biệt
.
Tìm tất cả các giá trị thực của tham số để hàm số
có các điểm cực trị nhỏ hơn
Ta có
Yêu cầu bài toán có hai nghiệm phân biệt
.
Có bao nhiêu giá trị nguyên của tham số để hàm số
nghịch biến trên khoảng
?
Tập xác định ;
.
Hàm số nghịch biến trên khoảng
khi và chỉ khi:
.
Vì
.
Cho hàm số với
là tham số. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số nghịch biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Ta có:
Theo yêu cầu bài toán
Mà
Vậy tập hợp T có tất cả 3 phần tử.
Tìm để hàm số
đồng biến trên khoảng
?
Điều kiện xác định:
Ta có:
Hàm số đồng biến trên
khi và chỉ khi
Vậy đáp án cần tìm là
Cho hàm số , bảng xét dấu của
như sau:
Hàm số đồng biến trên khoảng nào dưới đây?
Ta có .
.
.
Bảng biến thiên
Dựa vào bảng biến thiên hàm số đồng biến trên khoảng
.
Giá trị thực của tham số để hàm số
đạt cực tiểu tại điểm
thuộc khoảng nào sau đây?
Tập xác định
Ta có:
Để hàm số đạt cực tiểu tại thì
Vậy .
Tìm tất cả các giá trị thực của tham số để hàm số
có hai cực trị?
Ta có:
Để hàm số đã cho có hai cực trị thì có hai nghiệm phân biệt
Vậy với thì hàm số
có hai cực trị.
Cho hàm số có hai điểm cực trị
. Tính độ dài đoạn thẳng
?
Ta có:
Nhận thấy phương trình có hai nghiệm phân biệt nên đồ thị hàm số có hai điểm cực trị là
Tìm tất cả các giá trị của tham số thực để hàm số
đồng biến trên
.
TH1: là hàm hằng nên loại
.
TH2: . Ta có:
.
Hàm số đồng biến trên
Điều kiện của tham số để hàm số
nghịch biến trên từng khoảng xác định là:
Xét hàm số ta có:
Tập xác định
Ta có:
Hàm số nghịch biến trên từng khoảng xác định
Vậy đáp án cần tìm là .
Để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
. Tìm giá trị tham số
thỏa mãn yêu cầu bài toán?
Để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác có diện tích bằng
. Tìm giá trị tham số
thỏa mãn yêu cầu bài toán?
Trong các hàm số sau, hàm số nào đồng biến trên ?
Ta có:
Ta có: y’ = 0 chỉ tại x = 1
Vậy đồng biến trên
Biết rằng hàm số
nhận
là một điểm cực trị. Mệnh đề nào sau đây là đúng?
Ta có .
Hàm số nhận là một điểm cực trị nên suy ra
.
Cho hàm số có bảng xét dấu đạo hàm như sau:
Hàm số nghịch biến trên khoảng nào dưới đây?
Xét hàm số ta có:
Đặt
Xét hàm số có
. Hàm số nghịch biến khi
Vậy hàm số nghịch biến trên khoảng
.
Cho hàm số f(x) có đạo hàm . Gọi P là giá trị cực đại của hàm số đã cho. Chọn khẳng định đúng.
Ta có:
Ta có bảng biến thiên như sau:

Dựa vào bảng biến thiên ta có giá trị cực đại của hàm số là P = f(-3)
Gọi A, B, C là các điểm cực trị của đồ thị hàm số . Bán kính của đường tròn nội tiếp tam giác ABC bằng:
Ta có:
=> Đồ thị hàm số có ba điểm cực trị là A(0; 4), B(1; 3), C(-1;; 3)
Tính được
Áp dụng công thức tính bán kính đường tròn nội tiếp tam giác ABC ta có:
Cho hàm số có đạo hàm trên
và số
có đồ thị như hình vẽ sau. Tìm số điểm cực tiểu của hàm số
.
Đáp án: 2
Cho hàm số có đạo hàm trên
và số
có đồ thị như hình vẽ sau. Tìm số điểm cực tiểu của hàm số
.
Đáp án: 2
Ta có
Ta có bảng biến thiên:
Từ bảng biến thiên ta có hàm số đạt cực tiểu tại
và
. Do đó hàm số
có
điểm cực tiểu.
Hàm số nào sau đây đồng biến trên ?
Hàm số có
Hàm số nghịch biến trên khoảng nào dưới đây?
Ta có
Hàm số có bao nhiêu điểm cực trị?
Tập xác định
Ta có: suy ra hàm số nghịch biến trên mỗi khoảng
và
Do đó hàm số không có điểm cực trị.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: