Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 10 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xét tính đúng sai của các nhận định

    Số tiền đầu tư của một cửa hàng đối với hai lĩnh vực A, B là như nhau và số tiền thu được mỗi tháng trong 24 tháng từ hai lĩnh vực trên được ghi lại ở bảng sau (đơn vị: triệu đồng):

    a) Giá trị trung bình khi đầu tư vào 2 lĩnh vực A và B là như nhau. Đúng||Sai

    b) Phương sai của số tiền thu được từ lĩnh vực A qua các tháng là 5.Sai||Đúng

    c) Độ lệch chuẩn của số tiền thu được từ lĩnh vực B qua các tháng \approx 8, 42. Đúng||Sai

    d) Đầu tư vào lĩnh vực B rủi ro hơn. Đúng||Sai

    Đáp án là:

    Số tiền đầu tư của một cửa hàng đối với hai lĩnh vực A, B là như nhau và số tiền thu được mỗi tháng trong 24 tháng từ hai lĩnh vực trên được ghi lại ở bảng sau (đơn vị: triệu đồng):

    a) Giá trị trung bình khi đầu tư vào 2 lĩnh vực A và B là như nhau. Đúng||Sai

    b) Phương sai của số tiền thu được từ lĩnh vực A qua các tháng là 5.Sai||Đúng

    c) Độ lệch chuẩn của số tiền thu được từ lĩnh vực B qua các tháng \approx 8, 42. Đúng||Sai

    d) Đầu tư vào lĩnh vực B rủi ro hơn. Đúng||Sai

    Số tiền trung bình thu được từ lĩnh vực A, B tương ứng là

    \overline{x_{A}} = \frac{1}{24}(2.7,5 +
4.12,5 + 12.17,5 + 4.22,5 + 2.27,5) = 17,5

    \overline{x_{B}} = \frac{1}{24}(8.7,5 +
2.12,5 + 4.17,5 + 2.22,5 + 8.27,5) = 17,5

    Suy ra a) đúng.

    Phương sai của số tiền thu được hàng tháng khi đầu tư vào lĩnh vực A, B tương ứng là:

    S_{\ _{x_{A}}}^{2} = \frac{1}{24}\lbrack
2.(17,5 - 7,5)^{2} + 4.(17,5 - 12,5)^{2}

    + 12.0^{2} + 4.(17,5 - 22,5)^{2} +
2.(17,5 - 27,5)^{2}\rbrack = 25

    \Rightarrow S_{x_{A}} = 5 suy ra b) sai.

    S_{\ _{x_{B}}}^{2} = \frac{1}{24}\lbrack
8.(17,5 - 7,5)^{2} + 2.(17,5 - 12,5)^{2}

    + 4.0^{2} + 2.(17,5 - 22,5)^{2} +
8.(17,5 - 27,5)^{2}\rbrack \approx 70,8

    \Rightarrow S_{x_{B}} \approx
8,42 suy ra c) đúng.

    Do S_{x_{A}} < S_{x_{B}}nên đầu tư vào lĩnh vực B rủi ro nhiều hơn. Suy ra d) đúng.

  • Câu 2: Thông hiểu
    Tìm độ lệch chuẩn của mẫu số liệu

    Thời gian tự học tại nhà mỗi ngày (đơn vị: phút) của một học sinh lớp 12A được ghi lại như bảng sau:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số ngày

    6

    6

    4

    1

    1

    Độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho gần nhất với giá trị nào sau đây?

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Giá trị đại diện

    22,5

    27,5

    32,5

    37,5

    42,5

    Số ngày

    6

    6

    4

    1

    1

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{6.22,5 + 6.27,5 +
4.32,5 + 1.37,5 + 1.42,5}{18} = \frac{85}{3}

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{18}\left( 6.22,5^{2} +
6.27,5^{2} + 4.32,5^{2} + 1.37,5^{2} + 1.42,5^{2} ight) - \left(
\frac{85}{3} ight)^{2} = 31,25

    Vậy độ lệch chuẩn của mẫu số liệu cần tìm là: S = \sqrt{S^{2}} \approx \sqrt{31,25} =
5,6

  • Câu 3: Nhận biết
    Chọn phương án đúng

    Để so sánh mức độ phân tán của các mẫu số liệu ghép nhóm có cùng số trung bình ta dùng đại lượng nào?

    Hướng dẫn:

    Để so sánh mức độ phân tán của các mẫu số liệu ghép nhóm có cùng số trung bình ta dùng phương sai và độ lệch chuẩn.

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Cho mẫu số liệu ghép nhóm thống kê có phương sai bằng là 4. Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    Hướng dẫn:

    Độ lệch chuẩn là: s = \sqrt{4} =
2.

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Cho mẫu số liệu ghép nhóm với bộ ba tứ phân vị lần lượt là Q_{1} = 11,5; Q_{2} = 14,5; Q_{3} = 21,3. Khi đó khoảng tứ phân vị của mẫu số liệu trên là

    Hướng dẫn:

    Khoảng tứ phân vị của mẫu số liệu là: \Delta Q = Q_{3} - Q_{1} = 21,3 - 11,5 =
9,8.

  • Câu 6: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu

    Cho bảng thống kê kết quả đo cân nặng của một số trẻ em như sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Số trẻ em

    6

    12

    19

    9

    4

    Xác định độ lệch chuẩn của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có: N = 50

    Suy ra số trung bình của mẫu số liệu là:

    \overline{x} = \frac{6.5 + 12.7 + 19.9 +
9.11 + 4.13}{50} = 8,72

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{50}\left( 6.5^{2} +
12.7^{2} + 19.9^{2} + 9.11^{2} + 4.13^{3} ight) - 8,72^{2} \approx
4,8

    Vậy độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho là: S \approx 2,2

  • Câu 7: Nhận biết
    Tìm khoảng biến thiên

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm khoảng biến thiên của mẫu dữ liệu ghép nhóm?

    Hướng dẫn:

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Số xe

    3

    7

    4

    3

    3

    Vậy khoảng biến thiên của mẫu dữ liệu ghép nhóm là R = 62 - 42 = 20.

  • Câu 8: Nhận biết
    Chọn đáp án đúng

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Có bao nhiêu máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ?

    Hướng dẫn:

    Có 6 máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ.

  • Câu 9: Nhận biết
    Chọn phương án thích hợp

    Để đo mức độ phân tán về nhiệt độ không khí trung bình các tháng của năm 2023 tại Hà Nội, đại lượng thích hợp là

    Hướng dẫn:

    Đại lượng đo mức độ phân tán của mẫu số liệu là phương sai.

  • Câu 10: Nhận biết
    Xét tính đúng sai của các nhận định

    Phỏng vấn một số học sinh lớp 11 về thời gian (giờ) ngủ của một buổi tối, thu được bảng số liệu sau:

    a) Số lượng học sinh nam là 45 bạn. Đúng||Sai

    b) Thời gian ngủ trung bình của các bạn học sinh nam là 8 giờ. Đúng||Sai

    c) Phương sai của mẫu số liệu trên là s^{2} = 3. Sai||Đúng

    d) Độ lệch chuẩn là 9. Sai||Đúng

    Đáp án là:

    Phỏng vấn một số học sinh lớp 11 về thời gian (giờ) ngủ của một buổi tối, thu được bảng số liệu sau:

    a) Số lượng học sinh nam là 45 bạn. Đúng||Sai

    b) Thời gian ngủ trung bình của các bạn học sinh nam là 8 giờ. Đúng||Sai

    c) Phương sai của mẫu số liệu trên là s^{2} = 3. Sai||Đúng

    d) Độ lệch chuẩn là 9. Sai||Đúng

    a) Đúng, b) Đúng, c) Sai, d) Sai.

    Số lượng học sinh nam là : 6 + 10 + 13 +
9 + 7 = 45

    Thời gian ngủ trung bình của các bạn học sinh nam là :

    \overline{x} = \frac{1}{45}.\lbrack
6.4,5 + 10.5,5 + 13.6,5 + 9.7,5 + 7.8,5\rbrack =
\frac{587}{90}

    Phương sai của mẫu số liệu trên là

    s^{2} = \frac{1}{45}.[ 6.4,5^{2} +10.5,5^{2} + 13.6,5^{2}+ 9.7,5^{2} + 7.8,5^{2}] - \left(\frac{587}{90} \right)^{2} = 1,5773

    Độ lệch chuẩn là s =
\sqrt{1,5773}.

  • Câu 11: Nhận biết
    Tìm số trung bình

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Hướng dẫn:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 12: Nhận biết
    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có độ lệch chuẩn bằng bằng 3 thì có phương sai bằng

    Hướng dẫn:

    Phương sai: s^{2} = 9.

  • Câu 13: Nhận biết
    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng:

    Hướng dẫn:

    Mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng \sqrt{16} = 4.

  • Câu 14: Nhận biết
    Chọn kết luận đúng

    Một mẫu số liệu ghép nhóm có phương sai bằng 25 thì có độ lệch chuẩn bằng

    Hướng dẫn:

    Ta có độ lệch chuẩn bằng căn bậc hai số học của phương sai nên s = 5.

  • Câu 15: Nhận biết
    Tìm số trung bình của mẫu số liệu ghép nhóm

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tìm số trung bình của mẫu số liệu ghép nhóm?

    Hướng dẫn:

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Giá trị đại diện

    75

    125

    175

    225

    275

    Số ngày

    5

    10

    9

    4

    2

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

  • Câu 16: Thông hiểu
    Tính phương sai của mẫu số liệu

    Cho bảng phân bố tần số ghép lớp về độ dài của 60 lá dương xỉ trưởng thành như sau:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Tần số

    8 18 24 10

    Tính phương sai bảng phân bố tần số ghép lớp đã cho

    Hướng dẫn:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Giá trị đại diện

    15 25 35 45

    Tần số

    8 18 24 10

    Trước hết ta có \overline{x} = \frac{15.8
+ 25.18 + 35.24 + 45.10}{60} = 31.

    Khi đó phương sai:

    s_{x}^{2} = \frac{8.(15
- 31)^{2} + 18 \cdot (25 - 31)^{2} + 24.(35 - 31)^{2} + 10.(45 -
31)^{2}}{60} = 84

  • Câu 17: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Mỗi ngày bác Lan đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị km) của bác Lan trong 20 ngày được thống kê lại ở bảng sau

    Phương sai của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Xét mẫu số liệu ghép nhóm cho bởi bảng sau

    A table with numbers and symbolsDescription automatically generated

    Số trung bình của mẫu số liệu là

    \overline{x} = \frac{1}{20}.(2,85.3 +
3,15.6 + 3,45.5 + 3,75.4 + 4,05.2) = 3,39.

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}(3.2,85^{2} +
6.3,15^{2} + 5.3,45^{2}+ 4.3,45^{2} + 2.4,05^{2}) - 3,39^{2} =
0,1314.

  • Câu 18: Thông hiểu
    Tính giá trị trung bình của mẫu số liệu

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Độ lệch chuẩn của mẫu số liệu đã cho là:

    Hướng dẫn:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.19,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} = 20,015

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{100}\left( 13.19,25^{2}
+ 45.19,75^{2} + 24.20,25^{2} + 12.20,75^{2} + 6.21,25^{2} ight) -
20,015^{2} \approx 0,277

    Độ lệch chuẩn của mẫu số liệu là:

    S = \sqrt{S^{2}} \approx \sqrt{0,277}
\approx 0,526

  • Câu 19: Nhận biết
    Tìm tốc độ trung bình của mẫu dữ liệu

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm tốc độ trung bình của mẫu dữ liệu ghép nhóm?

    Hướng dẫn:

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Giá trị đại diện

    44

    48

    52

    56

    60

    Số xe

    3

    7

    4

    3

    3

    Tốc độ trung bình là:

    \overline{x} = \frac{3.44 + 7.48 + 4.52
+ 3.56 + 3.60}{20} = 51,2

  • Câu 20: Nhận biết
    Xét tính đúng sai của các nhận định

    Một nhà thực vật học độ chiều dài trung bình của 74 lá cây (đơn vị: milimét) và thu được bảng tần số ghép nhóm như sau:

    a) Chiều dài trung bình của 74 lá cây bằng \approx 6,4(\ mm). Sai||Đúng

    b) Khoảng biến thiên của mẫu số liệu là 2,4. Sai||Đúng

    c) Phương sai của mẫu số liệu \approx
0,35. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu trên \approx 8,93. Sai||Đúng

    (Các kết quả tính được trong bài làm tròn đến hàng phần trăm)

    Đáp án là:

    Một nhà thực vật học độ chiều dài trung bình của 74 lá cây (đơn vị: milimét) và thu được bảng tần số ghép nhóm như sau:

    a) Chiều dài trung bình của 74 lá cây bằng \approx 6,4(\ mm). Sai||Đúng

    b) Khoảng biến thiên của mẫu số liệu là 2,4. Sai||Đúng

    c) Phương sai của mẫu số liệu \approx
0,35. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu trên \approx 8,93. Sai||Đúng

    (Các kết quả tính được trong bài làm tròn đến hàng phần trăm)

    a) Chiều dài trung bình của 74 lá cây là:

    \overline{x} = \frac{1}{74}.\lbrack
5,65.5 + 6,05.9 + 6,45 \cdot 15 + 6,85 \cdot 19 + 7,25.16 + 7,65 \cdot 8
+ 8,05.2\rbrack

    = \frac{5029}{740} \approx 6,8(\
mm)

    Suy ra a) sai.

    b) Khoảng biến thiên của mẫu số liệu là 8,25 - 5,45 = 2,8 nên b) sai.

    c) Phương sai của mẫu số liệu trên là

    {S_{x}}^{2} = \frac{5.(5,65 - 6,8)^{2} +
9.(6,05 - 6,8)^{2} + 15.(6,45 - 6,8)^{2}}{74}

    + \frac{19.(6,85 - 6,8)^2+ 16.(7,25 -6,8)^{2}}{74}

    + \frac{8(7,65 - 6,8)^{2} + 2(8,05 -
6,8)^{2}}{74} \approx 0,35(\ mm)

    Vậy c) đúng.

    d) Cỡ mẫu: n = 5 + 9 + 15 + 19 + 16 + 8 +
2 = 74.

    Gọi x_{1};\ x_{2};\ \ldots;\ x_{74}là độ dài của 74 lá cây và được sắp xếp theo thứ tự không giảm.

    Tứ phân vị thứ nhất Q_{1}x_{19}. Do x_{19} thuộc nhóm \lbrack 6,25;6,65) nên ta có Q_{1} = 6,25 + \frac{\frac{74}{4} - 14}{15}.4 =
7,45.

    Tứ phân vị thứ ba Q_{3}x_{56}. Do x_{56} thuộc nhóm \lbrack 7,05;7,45) nên ta có Q_{3} = 7,05 + \frac{\frac{3.74}{4} - 48}{16}.4
\approx 8,93.

    Khi đó khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} \approx 1,48. Vậy d) sai.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo