Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 10 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Cỡ mẫu: n = 20.

    Số trung bình của mẫu số liệu ghép nhóm là

    \overline{x} = \frac{2,85.3 + 3,15.6 +
3,45.5 + 3,75.4 + 4,05.2}{20} = 3,39.

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}\left( 2,85^{2}.3 +
3,15^{2}.6 + 3,45^{2}.5 + 3,75^{2}.4 + 4,05^{2}.2 ight) - 3,39^{2}
\approx 0,13

  • Câu 2: Thông hiểu
    Xác định nhận xét sai

    Bộ phận kiểm tra chất lượng sản phẩm dùng máy để đo (chính xác đến 0,001\ mm) độ dày của một chi tiết máy. Kết quả đo một số sản phẩm được thống kê trong bảng sau:

    A table with numbers and lettersDescription automatically generated

    Nhận xét nào sau đây sai?

    Hướng dẫn:

    Ta có cỡ mẫu n = 60.

    Số trung bình của mẫu số liệu là

    \overline{x} = \frac{3 \cdot 18,5 + 7
\cdot 19,5 + 23 \cdot 20,5 + 25 \cdot 21,5 + 2 \cdot 22,5}{60} =
\frac{623}{30} \approx 20,77.

    Phương sai của mẫu số liệu là

    S^{2} = \frac{1}{60}( 3 \cdot18,5^{2} + 7 \cdot 19,5^{2} + 23 \cdot 20,5^{2}+ 25 \cdot 21,5^{2} + 2\cdot 22,5^{2} ) - \left( \frac{623}{30} \right)^{2} =\frac{179}{225}.

    Độ lệch chuẩn của mẫu số liệu là S^{2} =
\sqrt{\frac{179}{225}} = \frac{\sqrt{179}}{15} \approx
0,89.

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Cho mẫu số liệu ghép nhóm thống kê có phương sai bằng là 4. Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    Hướng dẫn:

    Độ lệch chuẩn là: s = \sqrt{4} =
2.

  • Câu 4: Nhận biết
    Chọn kết luận đúng

    Số đặc trưng nào không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng?

    Hướng dẫn:

    Theo các công thức tính khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn ta thấy khoảng tứ phân vị là không sử dụng thông tin của nhóm số liệu đầu và nhóm số liệu cuối.

  • Câu 5: Nhận biết
    Tìm đường kính trung bình

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Đường kính trung bình của cây tại hai khu vực A và B lần lượt là:

    Hướng dẫn:

    Ta có:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Suy ra

    \overline{x_{A}} = \frac{25.31 + 38.33 +
20.35 + 10.37 + 7.39}{100} = 33,72

    \overline{x_{B}} = \frac{25.31 + 27.33 +
19.35 + 18.37 + 14.39}{100} = 34,2

  • Câu 6: Nhận biết
    Xét tính đúng sai của các nhậnđịnh

    Điểm thi của 32 học sinh trong kì thi Tiếng Anh có bảng ghép nhóm sau đây:

    a) Số học sinh có điểm thi thấp hơn 60 là 10. Đúng||Sai

    b) Giá trị đại diện của nhóm [70;80) là 75. Đúng||Sai

    c) Điểm thi trung bình môn tiếng anh của 32 học sinh bằng 75. Sai||Đúng

    d) Độ lệch chuẩn bằng: 100. Sai||Đúng

    Đáp án là:

    Điểm thi của 32 học sinh trong kì thi Tiếng Anh có bảng ghép nhóm sau đây:

    a) Số học sinh có điểm thi thấp hơn 60 là 10. Đúng||Sai

    b) Giá trị đại diện của nhóm [70;80) là 75. Đúng||Sai

    c) Điểm thi trung bình môn tiếng anh của 32 học sinh bằng 75. Sai||Đúng

    d) Độ lệch chuẩn bằng: 100. Sai||Đúng

    a) Đúng b) Đúng, c) Sai d) Sai.

    Số học sinh có điểm thi thấp hơn 60 là 4 + 6 =10.

    Giá trị đại diện của nhóm [70;80) là \frac{70 + 80}{2} = 75.

    Điểm thi trung bình môn tiếng anh của 32 học sinh bằng :

    \overline{x} = \frac{1}{32}.\lbrack 4.45
+ 6.55 + 10.65 + 6.75 + 4.85 + 2.95\rbrack = 66,875

    Phương sai là:

    s^{2} = \frac{4.(45 - 66,87)^{2} + 6.(55
- 66,87)^{2}}{32}+ \frac{10.(65 - 66,87)^{2} + 6.(75 -
66,87)^{2}}{32}

    + \frac{4.(85 - 66,87)^{2} + 2.(95 -
66,87)^{2}}{32} \approx 190,2344

    s = \sqrt{190,2344}

  • Câu 7: Nhận biết
    Xác định chiều cao trung bình

    Cho biểu đồ

    Tính chiều cao trung bình của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +8.170 + 4.174 + 1.178}{21} \approx 169

  • Câu 8: Nhận biết
    Tính điểm trung bình của từng lớp

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C và điểm trung bình của lớp 12D lần lượt là:

    Hướng dẫn:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +
3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +
4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}.

  • Câu 9: Thông hiểu
    Định phương sai của mẫu số liệu ghép nhóm

    Bạn Mai rất thích múa. Thời gian tập múa mỗi ngày trong thời gian gần đây của bạn Mai được thống kê lại ở bảng sau:

    Thời gian (phút)

    \lbrack 20;\ 25) \lbrack 25;\ 30) \lbrack 30;\ 35) \lbrack 35;\ 40) \lbrack 40;\ \ 45)

    Số ngày

    6

    6

    4

    1

    1

    Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Hướng dẫn:

    + Cỡ mẫu: n = 18.

    Thời gian (phút)

    \lbrack 20;\ 25) \lbrack 25;\ 30) \lbrack 30;\ 35) \lbrack 35;\ 40) \lbrack 40;\ \ 45)

    Giá trị đại diện

    22,5

    27,5

    32,5

    37,5

    42,5

    Số ngày

    6

    6

    4

    1

    1

    + Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{22,5.6 + 27,5.6 + 32,5.4 +
37,5.1 + 42,5.1}{18} = \frac{85}{3}.

    + Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{18}(22,5^{2}.6 +
27,5^{2}.6 + 32,5^{2}.4+ 37,5^{2}.1 + 42,5^{2}.1) - \left(
\frac{85}{3} \right)^{2} = 31,25.

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Bạn Trang thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ lớp 12C và lớp 12D ở bảng sau:

    Chiều cao (cm)

    [155; 160) [160; 165) [165; 170) [170; 175) [175; 180) [180; 185)

    Số học sinh nữ lớp 12C

    2

    7

    12

    3

    1

    1

    Số học sinh nữ lớp 12D

    5

    9

    8

    2

    2

    0

    Xét tính đúng/sai của các mệnh đề sau:

    a) [NB] Giá trị đại điện của nhóm \lbrack
165;\ 170)167,5. Đúng||Sai

    b) [TH] Khoảng biến thiên của mẫu số liệu ghép nhóm của lớp 12D là 30. Sai|||Đúng

    c) [VD, VDC] Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12C có chiều cao trung bình đồng đều hơn học sinh nữ lớp 12D. Đúng||Sai

    d) [VD, VDC] Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12D có chiều cao trung bình đồng đều hơn. Sai|||Đúng

    Đáp án là:

    Bạn Trang thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ lớp 12C và lớp 12D ở bảng sau:

    Chiều cao (cm)

    [155; 160) [160; 165) [165; 170) [170; 175) [175; 180) [180; 185)

    Số học sinh nữ lớp 12C

    2

    7

    12

    3

    1

    1

    Số học sinh nữ lớp 12D

    5

    9

    8

    2

    2

    0

    Xét tính đúng/sai của các mệnh đề sau:

    a) [NB] Giá trị đại điện của nhóm \lbrack
165;\ 170)167,5. Đúng||Sai

    b) [TH] Khoảng biến thiên của mẫu số liệu ghép nhóm của lớp 12D là 30. Sai|||Đúng

    c) [VD, VDC] Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12C có chiều cao trung bình đồng đều hơn học sinh nữ lớp 12D. Đúng||Sai

    d) [VD, VDC] Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12D có chiều cao trung bình đồng đều hơn. Sai|||Đúng

    a) Đúng

    Giá trị đại điện của nhóm \left\lbrack
\mathbf{165}\mathbf{}\mathbf{;}\mathbf{\ }\mathbf{170} ight)\frac{165 + 170}{2} = 167,5.

    b) Sai

    Khoảng biến thiên của mẫu số liệu ghép nhóm của lớp 12D là 180 - 155 = 25.

    c) Đúng

    Xét mẫu số liệu của lớp 12C:

    Cỡ mẫu n_{C} = 2 + 7 + 12 + 3 + 1 + 1 =
26.

    Gọi x_{1}\ ;\ ...\ ;\ x_{26}là mẫu số liệu gốc về chiều cao của các bạn học sinh nữ lớp 12C được xếp theo thứ tự không giảm.

    Ta có

    x_{1}\ ;\ x_{2} \in \lbrack 155\ ;\
160),

    x_{3}\ ;\ ...\ ;\ x_{9} \in \lbrack 160\
;\ 165),

    x_{10}\ ;\ ...\ ;\ x_{21} \in \lbrack
165\ ;\ 170),

    x_{22}\ ;\ x_{23}\ ;x_{24} \in \lbrack
170\ ;\ 175),

    x_{25} \in \lbrack 175\ ;\
180),

    x_{26} \in \lbrack 180\ ;\
185).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{7} \in \lbrack 160\ ;\ 165).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: 

    Q_{1} = 160 + \frac{\frac{26}{4} - 2}{7}(165 -
160) \approx 163,214.

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{20} \in \lbrack 165\ ;\ 170).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: 

    Q_{3} = 165 + \frac{\frac{3.26}{4} - (2 +
7)}{12}(170 - 165) = 169,375

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{C} = Q_{3} - Q_{1} \approx 169,375 -
163,214 \approx 6,161.

     Xét mẫu số liệu của lớp 12D:

    Cỡ mẫu n_{D} = 5 + 9 + 8 + 2 + 2 + 0 =
26.

    Gọi x_{1}\ ;\ ...\ ;\ x_{26}là mẫu số liệu gốc về chiều cao của các bạn học sinh nữ lớp 12D được xếp theo thứ tự không giảm.

    Ta có

    x_{1}\ ;\ ...\ ;x_{5} \in \lbrack 155\ ;\
160),

    x_{6}\ ;\ ...\ ;\ x_{14} \in \lbrack 160\
;\ 165),

    x_{15}\ ;\ ...\ ;\ x_{22} \in \lbrack
165\ ;\ 170),

    x_{23}\ ;\ x_{24} \in \lbrack 170\ ;\
175),

    x_{25}\ ;\ x_{26} \in \lbrack 175\ ;\
180).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{7} \in \lbrack 160\ ;\ 165). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: {Q'}_{1} = 160 + \frac{\frac{26}{4} -
5}{9}(165 - 160) \approx 160,833.

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{20} \in \lbrack 165\ ;\ 170).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: {Q'}_{3} = 165 + \frac{\frac{3.26}{4} - (5 +
9)}{8}(170 - 165) = 168,4375

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{D} = {Q'}_{3} - {Q'}_{1} \approx
168,4375 - 160,833 \approx 7,6045.

    \Delta_{C} < \Delta_{D} nên nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12C có chiều cao trung bình đồng đều hơn học sinh nữ lớp 12D.

    d) Sai

    Ta có bảng giá trị đại diện của nhóm:

    Chiều cao (cm)

    [155; 160) [160; 165) [165; 170) [170; 175) [175; 180) [180; 185)

    Giá trị đại diện

    157,5

    162,5

    167,5

    172,5

    177,5

    182,5

    Số học sinh nữ lớp 12C

    2

    7

    12

    3

    1

    1

    Số học sinh nữ lớp 12D

    5

    9

    8

    2

    2

    0

    Xét mẫu số liệu của lớp 12C:

    Số trung bình của mẫu số liệu ghép nhóm là: 

    {\overline{x}}_{C} = \frac{2.157,5 +
7.162,5 + 12.167,5 + 3.172,5 + 1.177,5 + 1.182,5}{26} =
\frac{2170}{13}.

    Phương sai của mẫu số liệu ghép nhóm là:

    S_{C}^{2} = \frac{1}{26}[
2.(157,5)^{2} + 7.(162,5)^{2} + 12.(167,5)^{2}+ 3.(172,5)^{2} +
1.(177,5)^{2} + 1.(182,5)^{2} ] - \left( \frac{2170}{13}
ight)^{2} \approx 29,475

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là: S_{C} = \sqrt{S_{C}^{2}} = \sqrt{29,475} \approx
5,429.

    Xét mẫu số liệu của lớp 12D:

    Số trung bình của mẫu số liệu ghép nhóm là: 

    {\overline{x}}_{D} = \frac{5.157,5 +
9.162,5 + 8.167,5 + 2.172,5 + 2.177,5 + 0.182,5}{26} = 165.

    Phương sai của mẫu số liệu ghép nhóm là:

    S_{D}^{2} = \frac{1}{26}[
5.(157,5)^{2} + 9.(162,5)^{2} + 8.(167,5)^{2}+ 2.(172,5)^{2} +
2.(177,5)^{2} + 0.(182,5)^{2} ]- (165)^{2} =
31,25

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là: S_{D} = \sqrt{S_{D}^{2}} = \sqrt{31,25} \approx
5,59.

    S_{C} < S_{D} nên nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh nữ lớp 12C có chiều cao trung bình đồng đều hơn.

  • Câu 11: Nhận biết
    Chọn kết luận đúng

    Nếu thay đổi tất cả các tần số trong mẫu số liệu ghép nhóm trên bằng 4 thì số đặc trưng nào sau đây không thay đổi?

    Hướng dẫn:

    Theo công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: R = a_{k + 1}- a_{1} ta thấy khoảng biến thiên không phụ thuộc vào các tần số trong mẫu số liệu ghép nhóm nên khoảng biến thiên sẽ không thay đổi khi tần số thay đổi.

  • Câu 12: Nhận biết
    Chọn công thức đúng

    Xét mẫu số liệu ghép nhóm cho ở bảng dưới đây. Gọi \overline{x} là số trung bình cộng của mẫu số liệu ghép nhóm. Độ lệch chuẩn của mẫu số liệu ghép nhóm đó được tính bằng công thức nào trong các công thức sau?

    Hướng dẫn:

    Độ lệch chuẩn của mẫu số liệu ghép nhóm được tính bởi công thức:

    • s = \sqrt {\frac{{{n_1}{{\left( {{x_1} - \bar x} \right)}^2} + {n_2}{{\left( {{x_2} - \bar x} \right)}^2} + ... + {n_m}{{\left( {{x_m} - \bar x} \right)}^2}}}{n}} .
  • Câu 13: Nhận biết
    Xét tính đúng sai của các nhận định

    Số tiền đầu tư của một cửa hàng đối với hai lĩnh vực A, B là như nhau và số tiền thu được mỗi tháng trong 24 tháng từ hai lĩnh vực trên được ghi lại ở bảng sau (đơn vị: triệu đồng):

    a) Giá trị trung bình khi đầu tư vào 2 lĩnh vực A và B là như nhau. Đúng||Sai

    b) Phương sai của số tiền thu được từ lĩnh vực A qua các tháng là 5.Sai||Đúng

    c) Độ lệch chuẩn của số tiền thu được từ lĩnh vực B qua các tháng \approx 8, 42. Đúng||Sai

    d) Đầu tư vào lĩnh vực B rủi ro hơn. Đúng||Sai

    Đáp án là:

    Số tiền đầu tư của một cửa hàng đối với hai lĩnh vực A, B là như nhau và số tiền thu được mỗi tháng trong 24 tháng từ hai lĩnh vực trên được ghi lại ở bảng sau (đơn vị: triệu đồng):

    a) Giá trị trung bình khi đầu tư vào 2 lĩnh vực A và B là như nhau. Đúng||Sai

    b) Phương sai của số tiền thu được từ lĩnh vực A qua các tháng là 5.Sai||Đúng

    c) Độ lệch chuẩn của số tiền thu được từ lĩnh vực B qua các tháng \approx 8, 42. Đúng||Sai

    d) Đầu tư vào lĩnh vực B rủi ro hơn. Đúng||Sai

    Số tiền trung bình thu được từ lĩnh vực A, B tương ứng là

    \overline{x_{A}} = \frac{1}{24}(2.7,5 +
4.12,5 + 12.17,5 + 4.22,5 + 2.27,5) = 17,5

    \overline{x_{B}} = \frac{1}{24}(8.7,5 +
2.12,5 + 4.17,5 + 2.22,5 + 8.27,5) = 17,5

    Suy ra a) đúng.

    Phương sai của số tiền thu được hàng tháng khi đầu tư vào lĩnh vực A, B tương ứng là:

    S_{\ _{x_{A}}}^{2} = \frac{1}{24}\lbrack
2.(17,5 - 7,5)^{2} + 4.(17,5 - 12,5)^{2}

    + 12.0^{2} + 4.(17,5 - 22,5)^{2} +
2.(17,5 - 27,5)^{2}\rbrack = 25

    \Rightarrow S_{x_{A}} = 5 suy ra b) sai.

    S_{\ _{x_{B}}}^{2} = \frac{1}{24}\lbrack
8.(17,5 - 7,5)^{2} + 2.(17,5 - 12,5)^{2}

    + 4.0^{2} + 2.(17,5 - 22,5)^{2} +
8.(17,5 - 27,5)^{2}\rbrack \approx 70,8

    \Rightarrow S_{x_{B}} \approx
8,42 suy ra c) đúng.

    Do S_{x_{A}} < S_{x_{B}}nên đầu tư vào lĩnh vực B rủi ro nhiều hơn. Suy ra d) đúng.

  • Câu 14: Nhận biết
    Tìm số trung bình

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Hướng dẫn:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 15: Thông hiểu
    Chọn đáp án thích hợp

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Hướng dẫn:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Phương sai của mẫu số liệu ghép nhóm của lớp 12C:

    {S_{C}}^{2} = \frac{1}{18}\left(4.5,5^{2} + 5.6,5^{2} + 3.7,5^{2} + 4.8,5^{2} + 2.9,5^{2} ight) -\left( \frac{65}{9} ight)^{2} = \frac{569}{324}

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm lớp 12C là: S_{C} = \sqrt{{S_{C}}^{2}} =\sqrt{\frac{569}{324}} \approx 1,33

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}

    Phương sai của mẫu số liệu ghép nhóm của lớp 12D:

    {S_{D}}^{2} = \frac{1}{15}\left(2.5,5^{2} + 5.6,5^{2} + 4.7,5^{2} + 3.8,5^{2} + 1.9,5^{2} ight) -\left( \frac{217}{30} ight)^{2} = \frac{284}{225}

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm lớp 12D là: S_{D} = \sqrt{{S_{D}}^{2}} =\sqrt{\frac{284}{225}} \approx 1,12

    Ta có: S_{C} > S_{D} nên nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh lớp 12D có điểm đồng đều hơn lớp 12C.

  • Câu 16: Nhận biết
    Chọn đáp án đúng

    Cho mẫu số liệu ghép nhóm với bộ ba tứ phân vị lần lượt là Q_{1} = 11,5; Q_{2} = 14,5; Q_{3} = 21,3. Khi đó khoảng tứ phân vị của mẫu số liệu trên là

    Hướng dẫn:

    Khoảng tứ phân vị của mẫu số liệu là: \Delta Q = Q_{3} - Q_{1} = 21,3 - 11,5 =
9,8.

  • Câu 17: Nhận biết
    Chọn phương án đúng

    Để so sánh mức độ phân tán của các mẫu số liệu ghép nhóm có cùng số trung bình ta dùng đại lượng nào?

    Hướng dẫn:

    Để so sánh mức độ phân tán của các mẫu số liệu ghép nhóm có cùng số trung bình ta dùng phương sai và độ lệch chuẩn.

  • Câu 18: Nhận biết
    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng:

    Hướng dẫn:

    Mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng \sqrt{16} = 4.

  • Câu 19: Nhận biết
    Xét tính đúng sai của các nhận định

    Phỏng vấn một số học sinh lớp 11 về thời gian (giờ) ngủ của một buổi tối, thu được bảng số liệu sau:

    a) Số lượng học sinh nam là 45 bạn. Đúng||Sai

    b) Thời gian ngủ trung bình của các bạn học sinh nam là 8 giờ. Đúng||Sai

    c) Phương sai của mẫu số liệu trên là s^{2} = 3. Sai||Đúng

    d) Độ lệch chuẩn là 9. Sai||Đúng

    Đáp án là:

    Phỏng vấn một số học sinh lớp 11 về thời gian (giờ) ngủ của một buổi tối, thu được bảng số liệu sau:

    a) Số lượng học sinh nam là 45 bạn. Đúng||Sai

    b) Thời gian ngủ trung bình của các bạn học sinh nam là 8 giờ. Đúng||Sai

    c) Phương sai của mẫu số liệu trên là s^{2} = 3. Sai||Đúng

    d) Độ lệch chuẩn là 9. Sai||Đúng

    a) Đúng, b) Đúng, c) Sai, d) Sai.

    Số lượng học sinh nam là : 6 + 10 + 13 +
9 + 7 = 45

    Thời gian ngủ trung bình của các bạn học sinh nam là :

    \overline{x} = \frac{1}{45}.\lbrack
6.4,5 + 10.5,5 + 13.6,5 + 9.7,5 + 7.8,5\rbrack =
\frac{587}{90}

    Phương sai của mẫu số liệu trên là

    s^{2} = \frac{1}{45}.[ 6.4,5^{2} +10.5,5^{2} + 13.6,5^{2}+ 9.7,5^{2} + 7.8,5^{2}] - \left(\frac{587}{90} \right)^{2} = 1,5773

    Độ lệch chuẩn là s =
\sqrt{1,5773}.

  • Câu 20: Nhận biết
    Hoàn thành bảng số liệu

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Đáp án là:

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

     Hoàn thảnh bảng số liệu như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo