Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 10 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính độ lệch chuẩn

    Một câu lạc bộ thể dục thể thao đã ghi lại số giờ các thành viên của mình sử dụng cơ sở vật chất của câu lạc bộ để tập luyện trong một tháng như sau:

    Thời gian (giờ)

    \lbrack 1;5) \lbrack 5;9) \lbrack 9;13) \lbrack 13;17) \lbrack 17;21) \lbrack 21;25)

    Tần số (Số người)

    10

    14

    31

    2

    5

    23

    Độ lệch chuẩn của mẫu số liệu là (kết quả làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Ta có bảng sau:

    Thời gian (giờ)

    \lbrack 1;5) \lbrack 5;9) \lbrack 9;13) \lbrack 13;17) \lbrack 17;21) \lbrack 21;25)

    Giá trị đại diện

    3

    7

    11

    15

    19

    23

    Tần số (Số người)

    10

    14

    31

    2

    5

    23

    Số trung bình của mẫu số liệu là: \overline{x} = \frac{1}{85}.(10.3 + 14.7 + 31.11 +
2.15 + 5.19 + 23.23) \approx 13,21

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{85}.(10.3^{2} + 14.7^{2}
+ 31.11^{2} + 2.15^{2} + 5.19^{2} +
23.23^{2}) - 13,21^{2} \approx 48,43

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S = \sqrt{48,43} \approx 6,96

  • Câu 2: Nhận biết
    Xác định chiều cao trung bình

    Cho biểu đồ

    Tính chiều cao trung bình của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +8.170 + 4.174 + 1.178}{21} \approx 169

  • Câu 3: Nhận biết
    Tìm số trung bình của mẫu số liệu ghép nhóm

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tìm số trung bình của mẫu số liệu ghép nhóm?

    Hướng dẫn:

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Giá trị đại diện

    75

    125

    175

    225

    275

    Số ngày

    5

    10

    9

    4

    2

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

  • Câu 4: Nhận biết
    Chọn phương án thích hợp

    Để đo mức độ phân tán về nhiệt độ không khí trung bình các tháng của năm 2023 tại Hà Nội, đại lượng thích hợp là

    Hướng dẫn:

    Đại lượng đo mức độ phân tán của mẫu số liệu là phương sai.

  • Câu 5: Nhận biết
    Xét tính đúng sai của các nhận định

    Số tiền đầu tư của một cửa hàng đối với hai lĩnh vực A, B là như nhau và số tiền thu được mỗi tháng trong 24 tháng từ hai lĩnh vực trên được ghi lại ở bảng sau (đơn vị: triệu đồng):

    a) Giá trị trung bình khi đầu tư vào 2 lĩnh vực A và B là như nhau. Đúng||Sai

    b) Phương sai của số tiền thu được từ lĩnh vực A qua các tháng là 5.Sai||Đúng

    c) Độ lệch chuẩn của số tiền thu được từ lĩnh vực B qua các tháng \approx 8, 42. Đúng||Sai

    d) Đầu tư vào lĩnh vực B rủi ro hơn. Đúng||Sai

    Đáp án là:

    Số tiền đầu tư của một cửa hàng đối với hai lĩnh vực A, B là như nhau và số tiền thu được mỗi tháng trong 24 tháng từ hai lĩnh vực trên được ghi lại ở bảng sau (đơn vị: triệu đồng):

    a) Giá trị trung bình khi đầu tư vào 2 lĩnh vực A và B là như nhau. Đúng||Sai

    b) Phương sai của số tiền thu được từ lĩnh vực A qua các tháng là 5.Sai||Đúng

    c) Độ lệch chuẩn của số tiền thu được từ lĩnh vực B qua các tháng \approx 8, 42. Đúng||Sai

    d) Đầu tư vào lĩnh vực B rủi ro hơn. Đúng||Sai

    Số tiền trung bình thu được từ lĩnh vực A, B tương ứng là

    \overline{x_{A}} = \frac{1}{24}(2.7,5 +
4.12,5 + 12.17,5 + 4.22,5 + 2.27,5) = 17,5

    \overline{x_{B}} = \frac{1}{24}(8.7,5 +
2.12,5 + 4.17,5 + 2.22,5 + 8.27,5) = 17,5

    Suy ra a) đúng.

    Phương sai của số tiền thu được hàng tháng khi đầu tư vào lĩnh vực A, B tương ứng là:

    S_{\ _{x_{A}}}^{2} = \frac{1}{24}\lbrack
2.(17,5 - 7,5)^{2} + 4.(17,5 - 12,5)^{2}

    + 12.0^{2} + 4.(17,5 - 22,5)^{2} +
2.(17,5 - 27,5)^{2}\rbrack = 25

    \Rightarrow S_{x_{A}} = 5 suy ra b) sai.

    S_{\ _{x_{B}}}^{2} = \frac{1}{24}\lbrack
8.(17,5 - 7,5)^{2} + 2.(17,5 - 12,5)^{2}

    + 4.0^{2} + 2.(17,5 - 22,5)^{2} +
8.(17,5 - 27,5)^{2}\rbrack \approx 70,8

    \Rightarrow S_{x_{B}} \approx
8,42 suy ra c) đúng.

    Do S_{x_{A}} < S_{x_{B}}nên đầu tư vào lĩnh vực B rủi ro nhiều hơn. Suy ra d) đúng.

  • Câu 6: Nhận biết
    Tính chiều cao trung bình

    Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Số cây

    16

    4

    3

    6

    21

    Tính chiều cao trung bình của 50 cây keo trên?

    Hướng dẫn:

    Cỡ mẫu N = 50

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Số cây

    16

    4

    3

    6

    21

    Chiều cao trung bình là:

    \overline{x} = \frac{16.121 + 4.123 +
3.125 + 6.127 + 21.129}{50} = 125,28.

  • Câu 7: Nhận biết
    Tìm số trung bình

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Hướng dẫn:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 8: Nhận biết
    Xét tính đúng sai của các nhậnđịnh

    Điểm thi của 32 học sinh trong kì thi Tiếng Anh có bảng ghép nhóm sau đây:

    a) Số học sinh có điểm thi thấp hơn 60 là 10. Đúng||Sai

    b) Giá trị đại diện của nhóm [70;80) là 75. Đúng||Sai

    c) Điểm thi trung bình môn tiếng anh của 32 học sinh bằng 75. Sai||Đúng

    d) Độ lệch chuẩn bằng: 100. Sai||Đúng

    Đáp án là:

    Điểm thi của 32 học sinh trong kì thi Tiếng Anh có bảng ghép nhóm sau đây:

    a) Số học sinh có điểm thi thấp hơn 60 là 10. Đúng||Sai

    b) Giá trị đại diện của nhóm [70;80) là 75. Đúng||Sai

    c) Điểm thi trung bình môn tiếng anh của 32 học sinh bằng 75. Sai||Đúng

    d) Độ lệch chuẩn bằng: 100. Sai||Đúng

    a) Đúng b) Đúng, c) Sai d) Sai.

    Số học sinh có điểm thi thấp hơn 60 là 4 + 6 =10.

    Giá trị đại diện của nhóm [70;80) là \frac{70 + 80}{2} = 75.

    Điểm thi trung bình môn tiếng anh của 32 học sinh bằng :

    \overline{x} = \frac{1}{32}.\lbrack 4.45
+ 6.55 + 10.65 + 6.75 + 4.85 + 2.95\rbrack = 66,875

    Phương sai là:

    s^{2} = \frac{4.(45 - 66,87)^{2} + 6.(55
- 66,87)^{2}}{32}+ \frac{10.(65 - 66,87)^{2} + 6.(75 -
66,87)^{2}}{32}

    + \frac{4.(85 - 66,87)^{2} + 2.(95 -
66,87)^{2}}{32} \approx 190,2344

    s = \sqrt{190,2344}

  • Câu 9: Nhận biết
    Tính điểm trung bình của từng lớp

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C và điểm trung bình của lớp 12D lần lượt là:

    Hướng dẫn:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +
3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +
4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}.

  • Câu 10: Thông hiểu
    Tìm phương sai của mẫu số liệu ghép nhóm

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Tần số

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên gần với giá trị nào sau đây nhất?

    Hướng dẫn:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Tần số

    13

    45

    24

    12

    6

    Cỡ mẫu là n = 13 + 45 + 24 + 12 + 6 = 100.

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{1}{100}\lbrack
13.19,25 + 45.19,75

    + 24.20,25 + 12.20,75 + 6.21,25) =
20,015

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{100}\lbrack
13.(19,25)^{2} + 45.(19,25)^{2}

    + 24.(19,25)^{2} + 12.(19,25)^{2} +
6.(19,25)^{2}brack - (20,015)^{2} \approx 0,277

  • Câu 11: Nhận biết
    Tính giá trị trung bình của mẫu số liệu

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Hướng dẫn:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 12: Nhận biết
    Chọn kết luận đúng

    Số đặc trưng nào không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng?

    Hướng dẫn:

    Theo các công thức tính khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn ta thấy khoảng tứ phân vị là không sử dụng thông tin của nhóm số liệu đầu và nhóm số liệu cuối.

  • Câu 13: Nhận biết
    Xét tính đúng sai của các nhận định

    Một nhà thực vật học độ chiều dài trung bình của 74 lá cây (đơn vị: milimét) và thu được bảng tần số ghép nhóm như sau:

    a) Chiều dài trung bình của 74 lá cây bằng \approx 6,4(\ mm). Sai||Đúng

    b) Khoảng biến thiên của mẫu số liệu là 2,4. Sai||Đúng

    c) Phương sai của mẫu số liệu \approx
0,35. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu trên \approx 8,93. Sai||Đúng

    (Các kết quả tính được trong bài làm tròn đến hàng phần trăm)

    Đáp án là:

    Một nhà thực vật học độ chiều dài trung bình của 74 lá cây (đơn vị: milimét) và thu được bảng tần số ghép nhóm như sau:

    a) Chiều dài trung bình của 74 lá cây bằng \approx 6,4(\ mm). Sai||Đúng

    b) Khoảng biến thiên của mẫu số liệu là 2,4. Sai||Đúng

    c) Phương sai của mẫu số liệu \approx
0,35. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu trên \approx 8,93. Sai||Đúng

    (Các kết quả tính được trong bài làm tròn đến hàng phần trăm)

    a) Chiều dài trung bình của 74 lá cây là:

    \overline{x} = \frac{1}{74}.\lbrack
5,65.5 + 6,05.9 + 6,45 \cdot 15 + 6,85 \cdot 19 + 7,25.16 + 7,65 \cdot 8
+ 8,05.2\rbrack

    = \frac{5029}{740} \approx 6,8(\
mm)

    Suy ra a) sai.

    b) Khoảng biến thiên của mẫu số liệu là 8,25 - 5,45 = 2,8 nên b) sai.

    c) Phương sai của mẫu số liệu trên là

    {S_{x}}^{2} = \frac{5.(5,65 - 6,8)^{2} +
9.(6,05 - 6,8)^{2} + 15.(6,45 - 6,8)^{2}}{74}

    + \frac{19.(6,85 - 6,8)^2+ 16.(7,25 -6,8)^{2}}{74}

    + \frac{8(7,65 - 6,8)^{2} + 2(8,05 -
6,8)^{2}}{74} \approx 0,35(\ mm)

    Vậy c) đúng.

    d) Cỡ mẫu: n = 5 + 9 + 15 + 19 + 16 + 8 +
2 = 74.

    Gọi x_{1};\ x_{2};\ \ldots;\ x_{74}là độ dài của 74 lá cây và được sắp xếp theo thứ tự không giảm.

    Tứ phân vị thứ nhất Q_{1}x_{19}. Do x_{19} thuộc nhóm \lbrack 6,25;6,65) nên ta có Q_{1} = 6,25 + \frac{\frac{74}{4} - 14}{15}.4 =
7,45.

    Tứ phân vị thứ ba Q_{3}x_{56}. Do x_{56} thuộc nhóm \lbrack 7,05;7,45) nên ta có Q_{3} = 7,05 + \frac{\frac{3.74}{4} - 48}{16}.4
\approx 8,93.

    Khi đó khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} \approx 1,48. Vậy d) sai.

  • Câu 14: Nhận biết
    Tìm đường kính trung bình

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Đường kính trung bình của cây tại hai khu vực A và B lần lượt là:

    Hướng dẫn:

    Ta có:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Suy ra

    \overline{x_{A}} = \frac{25.31 + 38.33 +
20.35 + 10.37 + 7.39}{100} = 33,72

    \overline{x_{B}} = \frac{25.31 + 27.33 +
19.35 + 18.37 + 14.39}{100} = 34,2

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng:

    Hướng dẫn:

    Mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng \sqrt{16} = 4.

  • Câu 16: Nhận biết
    Chọn đáp án đúng

    Cho mẫu số liệu ghép nhóm thống kê có phương sai bằng là 4. Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    Hướng dẫn:

    Độ lệch chuẩn là: s = \sqrt{4} =
2.

  • Câu 17: Thông hiểu
    Tìm độ lệch chuẩn của mẫu số liệu ghép nhóm

    Điều tra về số tiền mua sách (đơn vị: nghìn đồng) trong một năm của 50 học sinh trong một trường THPT, người ta có bảng sau:

    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên.

    Hướng dẫn:

    Chọn giá trị đại diện cho mẫu số liệu, ta có:

    A white rectangular box with black numbersDescription automatically generated

    Điểm trung bình là:

    \overline{x} = \frac{29 \cdot 100 + 11
\cdot 300 + 3 \cdot 500 + 4 \cdot 700 + 3 \cdot 900}{50} =
264.

    Phương sai là:

    S^{2} = \frac{1}{50}\lbrack 29 \cdot
(100)^{2} + 11 \cdot (300)^{2} + 3 \cdot (500)^{2}+ 4 \cdot (700)^{2} + 3 \cdot
(900)^{2}\rbrack - (264)^{2} = 58704.

    Độ lệch chuẩn: S = \sqrt{58704} \approx
242,29.

  • Câu 18: Nhận biết
    Chọn đáp án đúng

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Có bao nhiêu máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ?

    Hướng dẫn:

    Có 6 máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ.

  • Câu 19: Thông hiểu
    Định phương sai của mẫu số liệu ghép nhóm

    Bạn Mai rất thích múa. Thời gian tập múa mỗi ngày trong thời gian gần đây của bạn Mai được thống kê lại ở bảng sau:

    Thời gian (phút)

    \lbrack 20;\ 25) \lbrack 25;\ 30) \lbrack 30;\ 35) \lbrack 35;\ 40) \lbrack 40;\ \ 45)

    Số ngày

    6

    6

    4

    1

    1

    Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Hướng dẫn:

    + Cỡ mẫu: n = 18.

    Thời gian (phút)

    \lbrack 20;\ 25) \lbrack 25;\ 30) \lbrack 30;\ 35) \lbrack 35;\ 40) \lbrack 40;\ \ 45)

    Giá trị đại diện

    22,5

    27,5

    32,5

    37,5

    42,5

    Số ngày

    6

    6

    4

    1

    1

    + Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{22,5.6 + 27,5.6 + 32,5.4 +
37,5.1 + 42,5.1}{18} = \frac{85}{3}.

    + Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{18}(22,5^{2}.6 +
27,5^{2}.6 + 32,5^{2}.4+ 37,5^{2}.1 + 42,5^{2}.1) - \left(
\frac{85}{3} \right)^{2} = 31,25.

  • Câu 20: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm

    Thống kê tổng số giờ nắng trong tháng 9 tại một trạm quan trắc đặt ở Cà Mau trong các năm từ 2002 đến 2021 được thống kê như sau:

    Số giờ nắng

    \lbrack 80;98) \lbrack 98;116) \lbrack 116;134) \lbrack 134;152) \lbrack 152;170)

    Số năm

    3

    6

    3

    5

    3

    Độ lệch chuẩn của mẫu số liệu là (kết quả làm tròn đến hàng phần nghìn)

    Hướng dẫn:

    Ta có bảng sau:

    Số giờ nắng

    \lbrack 80;98) \lbrack 98;116) \lbrack 116;134) \lbrack 134;152) \lbrack 152;170)

    Giá trị đại diện

     89 107  125 143  161 

    Số năm

    3

    6

    3

    5

    3

    Số trung bình của mẫu số liệu là

    \overline{x} = \frac{1}{20}.(3.89 +
6.107 + 3.125 + 5.143 + 3.161) = 124,1

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}.\left( 3.89^{2} +
6.107^{2} + 3.125^{2} + 5.143^{2} + 3.161^{2} \right) - 124,1^{2} =
566,19

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S = \sqrt{566,19} \approx 23,795

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo