Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 10 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính chiều cao trung bình

    Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Số cây

    16

    4

    3

    6

    21

    Tính chiều cao trung bình của 50 cây keo trên?

    Hướng dẫn:

    Cỡ mẫu N = 50

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Số cây

    16

    4

    3

    6

    21

    Chiều cao trung bình là:

    \overline{x} = \frac{16.121 + 4.123 +
3.125 + 6.127 + 21.129}{50} = 125,28.

  • Câu 2: Nhận biết
    Tính số trung bình của mẫu số liệu ghép nhóm

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Tính số trung bình của mẫu số liệu?

    Hướng dẫn:

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

  • Câu 3: Thông hiểu
    Xác định phương sai của mẫu số liệu

    Cho mẫu số liệu ghép nhóm về chiều cao của 25 cây dừa giống như sau:

    Phương sai của mẫu số liệu trên:

    Hướng dẫn:

    Chiều cao trung bình của 25 cây dừa là:

    \overline{x} = \frac{4.5 + 6.15 + 7.25 +5.35 + 3.45}{25}= 23,8.

    Phương sai

    s^{2} = \frac{4.5^{2} + 6.15^{2} +
7.25^{2} + 5.35^{2} + 3.45^{2}}{25} - 23,8^{2} = 154,56.

  • Câu 4: Nhận biết
    Tìm số trung bình

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Hướng dẫn:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 5: Nhận biết
    Tìm đường kính trung bình

    Kiểm lâm thực hiện đo đường kính của một số cây thân gỗ tại hai khu vực A và B thu được kết quả như sau:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Đường kính trung bình của cây tại hai khu vực A và B lần lượt là:

    Hướng dẫn:

    Ta có:

    Đường kính (cm)

    [30; 32)

    [32; 34)

    [34; 36)

    [36; 38)

    [38; 40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    A

    25

    28

    20

    10

    7

    B

    22

    27

    19

    18

    14

    Suy ra

    \overline{x_{A}} = \frac{25.31 + 38.33 +
20.35 + 10.37 + 7.39}{100} = 33,72

    \overline{x_{B}} = \frac{25.31 + 27.33 +
19.35 + 18.37 + 14.39}{100} = 34,2

  • Câu 6: Nhận biết
    Chọn kết luận đúng

    Số đặc trưng nào không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng?

    Hướng dẫn:

    Theo các công thức tính khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn ta thấy khoảng tứ phân vị là không sử dụng thông tin của nhóm số liệu đầu và nhóm số liệu cuối.

  • Câu 7: Nhận biết
    Chọn phương án thích hợp

    Để đo mức độ phân tán về nhiệt độ không khí trung bình các tháng của năm 2023 tại Hà Nội, đại lượng thích hợp là

    Hướng dẫn:

    Đại lượng đo mức độ phân tán của mẫu số liệu là phương sai.

  • Câu 8: Thông hiểu
    Chọn phát biểu đúng

    Hai mẫu số lię̂u ghép nhóm M_{1},M_{2} có bảng tần số ghép nhóm như sau:

    M_{1}

    Nhóm

    \lbrack 8;10)

    [10;12)

    \lbrack 12;14)

    \lbrack 14;16)

    \lbrack 16;18)

    Tần số

    3

    4

    8

    6

    4

    M_{2}

    Nhóm

    \lbrack 8;10)

    [10;12)

    \lbrack 12;14)

    \lbrack 14;16)

    \lbrack 16;18)

    Tằn số

    6

    8

    16

    12

    8

    Gọi s_{1},s_{2} lần lượt là độ lệch chuẩn của mẫu số liệu ghép nhóm M_{1},M_{2}. Phát biểu nào sau đây là đúng?

    Hướng dẫn:

    Dùng máy tính casio tính được độ lệch chuẩn: \left\{ \begin{matrix}
s_{1} \approx 2,444913086 \\
s_{2} \approx 2,444913086 \\
\end{matrix} ight.

  • Câu 9: Thông hiểu
    Xét tính đúng sai của các kết luận

    Kết quả bài kiểm tra môn Toán của học sinh các lớp 12A và 12B được cho bởi bảng sau:

    Điểm số

    \lbrack 0;2) \lbrack 2;4) \lbrack 4;6) \lbrack 6;8) \lbrack 8;10brack

    Số học sinh lớp 12A

    4 1 16 16 3

    Số học sinh lớp 12B

    3 6 4 26 1

    a) [NB] Điểm trung bình bài kiểm tra môn Toán của hai lớp bằng nhau. Đúng||Sai

    b) [TH] Phương sai của mẫu số liệu lớp 12A nhỏ hơn 3. Đúng||Sai

    c) [TH] Độ lệch chẩn của mẫu số liệu lớp 12B nhỏ hơn 2. Sai||Đúng

    d) [VD] Điểm kiểm tra môn Toán của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    Đáp án là:

    Kết quả bài kiểm tra môn Toán của học sinh các lớp 12A và 12B được cho bởi bảng sau:

    Điểm số

    \lbrack 0;2) \lbrack 2;4) \lbrack 4;6) \lbrack 6;8) \lbrack 8;10brack

    Số học sinh lớp 12A

    4 1 16 16 3

    Số học sinh lớp 12B

    3 6 4 26 1

    a) [NB] Điểm trung bình bài kiểm tra môn Toán của hai lớp bằng nhau. Đúng||Sai

    b) [TH] Phương sai của mẫu số liệu lớp 12A nhỏ hơn 3. Đúng||Sai

    c) [TH] Độ lệch chẩn của mẫu số liệu lớp 12B nhỏ hơn 2. Sai||Đúng

    d) [VD] Điểm kiểm tra môn Toán của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    Ta có:

    a) Đúng.

    Điểm trung bình bài kiểm tra của lớp 12A là

    \overline{x} = \frac{1 + 4.3 + 16.5 +
16.7 + 3.9}{40} = 5,8

    Điểm trung bình bài kiểm tra của lớp 12B là

    \overline{y} = \frac{3 + 6.3 + 4.5 +
26.7 + 1.9}{40} = 5,8

    b) Đúng. Phương sai của mẫu số liệu lớp 12A là

    s_{1}^{2} = \frac{1(1 - 5,8)^{2} + 4(3 -
5,8)^{2} + 16(5 - 5,8)^{2} + 16(7 - 5,8)^{2} + 3(9 - 5,8)^{2}}{40} =
2,96

    c) Sai. Phương sai của mẫu số liệu lớp 12B là

    s_{2}^{2} = \frac{3(1 - 5,8)^{2} + 6(3 -
5,8)^{2} + 4(5 - 5,8)^{2} + 26(7 - 5,8)^{2} + (9 - 5,8)^{2}}{40} =
4,16

    Độ lệch chẩn của mẫu số liệu lớp 12B là \sqrt{s_{2}^{2}} = \sqrt{4,16} > 2

    d) Sai. Ta có s_{1}^{2} <
s_{2}^{2} nên điểm kiểm tra môn Toán của lớp 12A đồng đều hơn so với lớp 12B.

  • Câu 10: Nhận biết
    Chọn phương án đúng

    Để so sánh mức độ phân tán của các mẫu số liệu ghép nhóm có cùng số trung bình ta dùng đại lượng nào?

    Hướng dẫn:

    Để so sánh mức độ phân tán của các mẫu số liệu ghép nhóm có cùng số trung bình ta dùng phương sai và độ lệch chuẩn.

  • Câu 11: Thông hiểu
    Chọn kết luận đúng

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Chọn kết luận đúng?

    Hướng dẫn:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Phương sai của mẫu số liệu ghép nhóm là:

    {S_{A}}^{2} = \frac{1}{20}.\left(
4.5,5^{2} + 5.6,5^{2} + 5.7,5^{2} + 4.8,5^{2} + 2.9,5^{2} ight) -
7,25^{2} = 1,5875

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    S_{A} = \sqrt{1,5875} \approx
1,26

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

    Phương sai của mẫu số liệu ghép nhóm là:

    {S_{B}}^{2} = \frac{1}{20}.\left(
3.5,5^{2} + 6.6,5^{2} + 5.7,5^{2} + 5.8,5^{2} + 1.9,5^{2} ight) -
7,25^{2} = 1,2875

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    S_{B} = \sqrt{1,2875} \approx
1,13

    Vậy kết luận đúng là: S_{A} \approx
1,26;S_{B} \approx 1,13.

  • Câu 12: Thông hiểu
    Tính phương sai của mẫu số liệu

    Cho bảng phân bố tần số ghép lớp về độ dài của 60 lá dương xỉ trưởng thành như sau:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Tần số

    8 18 24 10

    Tính phương sai bảng phân bố tần số ghép lớp đã cho

    Hướng dẫn:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Giá trị đại diện

    15 25 35 45

    Tần số

    8 18 24 10

    Trước hết ta có \overline{x} = \frac{15.8
+ 25.18 + 35.24 + 45.10}{60} = 31.

    Khi đó phương sai:

    s_{x}^{2} = \frac{8.(15
- 31)^{2} + 18 \cdot (25 - 31)^{2} + 24.(35 - 31)^{2} + 10.(45 -
31)^{2}}{60} = 84

  • Câu 13: Nhận biết
    Tính thời gian trung bình của mẫu số liệu

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Tính thời gian sử dụng pin trung bình?

    Hướng dẫn:

    Ta có:

    Thời gian (giờ)

    [7,2; 7,4)

    [7,4; 7,6)

    [7,6; 7,8)

    [7,8; 8,0)

    Giá trị đại diện

    7,3

    7,5

    7,7

    7,9

    Số máy vi tính

    2

    4

    7

    5

    Thòi gian trung bình là:

    \overline{x} = \frac{2.7,3 + 4.7,5 +
7.7,7 + 5.7,9}{18} = \frac{23}{3} \approx 7,7 giờ

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Có bao nhiêu máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ?

    Hướng dẫn:

    Có 6 máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ.

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng:

    Hướng dẫn:

    Mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng \sqrt{16} = 4.

  • Câu 16: Nhận biết
    Tìm khoảng biến thiên

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm khoảng biến thiên của mẫu dữ liệu ghép nhóm?

    Hướng dẫn:

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Số xe

    3

    7

    4

    3

    3

    Vậy khoảng biến thiên của mẫu dữ liệu ghép nhóm là R = 62 - 42 = 20.

  • Câu 17: Nhận biết
    Xét tính đúng sai của các nhậnđịnh

    Điểm thi của 32 học sinh trong kì thi Tiếng Anh có bảng ghép nhóm sau đây:

    a) Số học sinh có điểm thi thấp hơn 60 là 10. Đúng||Sai

    b) Giá trị đại diện của nhóm [70;80) là 75. Đúng||Sai

    c) Điểm thi trung bình môn tiếng anh của 32 học sinh bằng 75. Sai||Đúng

    d) Độ lệch chuẩn bằng: 100. Sai||Đúng

    Đáp án là:

    Điểm thi của 32 học sinh trong kì thi Tiếng Anh có bảng ghép nhóm sau đây:

    a) Số học sinh có điểm thi thấp hơn 60 là 10. Đúng||Sai

    b) Giá trị đại diện của nhóm [70;80) là 75. Đúng||Sai

    c) Điểm thi trung bình môn tiếng anh của 32 học sinh bằng 75. Sai||Đúng

    d) Độ lệch chuẩn bằng: 100. Sai||Đúng

    a) Đúng b) Đúng, c) Sai d) Sai.

    Số học sinh có điểm thi thấp hơn 60 là 4 + 6 =10.

    Giá trị đại diện của nhóm [70;80) là \frac{70 + 80}{2} = 75.

    Điểm thi trung bình môn tiếng anh của 32 học sinh bằng :

    \overline{x} = \frac{1}{32}.\lbrack 4.45
+ 6.55 + 10.65 + 6.75 + 4.85 + 2.95\rbrack = 66,875

    Phương sai là:

    s^{2} = \frac{4.(45 - 66,87)^{2} + 6.(55
- 66,87)^{2}}{32}+ \frac{10.(65 - 66,87)^{2} + 6.(75 -
66,87)^{2}}{32}

    + \frac{4.(85 - 66,87)^{2} + 2.(95 -
66,87)^{2}}{32} \approx 190,2344

    s = \sqrt{190,2344}

  • Câu 18: Nhận biết
    Hoàn thành bảng số liệu

    Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

    Hoàn thành bảng số liệu sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Đáp án là:

    Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

    Hoàn thành bảng số liệu sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

     Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

  • Câu 19: Nhận biết
    Tính giá trị trung bình của mẫu số liệu

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Hướng dẫn:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 20: Nhận biết
    Chọn công thức đúng

    Xét mẫu số liệu ghép nhóm cho ở bảng dưới đây. Gọi \overline{x} là số trung bình cộng của mẫu số liệu ghép nhóm. Độ lệch chuẩn của mẫu số liệu ghép nhóm đó được tính bằng công thức nào trong các công thức sau?

    Hướng dẫn:

    Độ lệch chuẩn của mẫu số liệu ghép nhóm được tính bởi công thức:

    • s = \sqrt {\frac{{{n_1}{{\left( {{x_1} - \bar x} \right)}^2} + {n_2}{{\left( {{x_2} - \bar x} \right)}^2} + ... + {n_m}{{\left( {{x_m} - \bar x} \right)}^2}}}{n}} .

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo