Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 10 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Hoàn thành bảng số liệu

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Đáp án là:

    Cho biểu đồ

    Hoàn thảnh bảng số liệu theo mẫu sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

     Hoàn thảnh bảng số liệu như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

  • Câu 2: Nhận biết
    Chọn kết luận đúng

    Một mẫu số liệu ghép nhóm có phương sai bằng 25 thì có độ lệch chuẩn bằng

    Hướng dẫn:

    Ta có độ lệch chuẩn bằng căn bậc hai số học của phương sai nên s = 5.

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số loại máy tính xách tay được mô tả như sau:

    Có bao nhiêu máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ?

    Hướng dẫn:

    Có 6 máy tính có thời gian sử dụng từ 7,2 giờ đến 7,6 giờ.

  • Câu 4: Nhận biết
    Xét tính đúng sai của các nhận định

    Số tiền đầu tư của một cửa hàng đối với hai lĩnh vực A, B là như nhau và số tiền thu được mỗi tháng trong 24 tháng từ hai lĩnh vực trên được ghi lại ở bảng sau (đơn vị: triệu đồng):

    a) Giá trị trung bình khi đầu tư vào 2 lĩnh vực A và B là như nhau. Đúng||Sai

    b) Phương sai của số tiền thu được từ lĩnh vực A qua các tháng là 5.Sai||Đúng

    c) Độ lệch chuẩn của số tiền thu được từ lĩnh vực B qua các tháng \approx 8, 42. Đúng||Sai

    d) Đầu tư vào lĩnh vực B rủi ro hơn. Đúng||Sai

    Đáp án là:

    Số tiền đầu tư của một cửa hàng đối với hai lĩnh vực A, B là như nhau và số tiền thu được mỗi tháng trong 24 tháng từ hai lĩnh vực trên được ghi lại ở bảng sau (đơn vị: triệu đồng):

    a) Giá trị trung bình khi đầu tư vào 2 lĩnh vực A và B là như nhau. Đúng||Sai

    b) Phương sai của số tiền thu được từ lĩnh vực A qua các tháng là 5.Sai||Đúng

    c) Độ lệch chuẩn của số tiền thu được từ lĩnh vực B qua các tháng \approx 8, 42. Đúng||Sai

    d) Đầu tư vào lĩnh vực B rủi ro hơn. Đúng||Sai

    Số tiền trung bình thu được từ lĩnh vực A, B tương ứng là

    \overline{x_{A}} = \frac{1}{24}(2.7,5 +
4.12,5 + 12.17,5 + 4.22,5 + 2.27,5) = 17,5

    \overline{x_{B}} = \frac{1}{24}(8.7,5 +
2.12,5 + 4.17,5 + 2.22,5 + 8.27,5) = 17,5

    Suy ra a) đúng.

    Phương sai của số tiền thu được hàng tháng khi đầu tư vào lĩnh vực A, B tương ứng là:

    S_{\ _{x_{A}}}^{2} = \frac{1}{24}\lbrack
2.(17,5 - 7,5)^{2} + 4.(17,5 - 12,5)^{2}

    + 12.0^{2} + 4.(17,5 - 22,5)^{2} +
2.(17,5 - 27,5)^{2}\rbrack = 25

    \Rightarrow S_{x_{A}} = 5 suy ra b) sai.

    S_{\ _{x_{B}}}^{2} = \frac{1}{24}\lbrack
8.(17,5 - 7,5)^{2} + 2.(17,5 - 12,5)^{2}

    + 4.0^{2} + 2.(17,5 - 22,5)^{2} +
8.(17,5 - 27,5)^{2}\rbrack \approx 70,8

    \Rightarrow S_{x_{B}} \approx
8,42 suy ra c) đúng.

    Do S_{x_{A}} < S_{x_{B}}nên đầu tư vào lĩnh vực B rủi ro nhiều hơn. Suy ra d) đúng.

  • Câu 5: Nhận biết
    Tính giá trị trung bình của mẫu số liệu

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Cự li ném bóng trung bình của người đó là:

    Hướng dẫn:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.9,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} \approx 20,02

  • Câu 6: Nhận biết
    Chọn đáp án đúng

    Đại lượng nào đo độ phân tán của nửa giữa của mẫu số liệu, không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu?

    Hướng dẫn:

    Khoảng tứ phân vị dùng để đo độ phân tán của nửa giữa của mẫu số liệu, không bị ảnh hưởng nhiều bởi các giá trị ngoại lệ trong mẫu số liệu.

  • Câu 7: Nhận biết
    Chọn kết luận đúng

    Nếu thay đổi tất cả các tần số trong mẫu số liệu ghép nhóm trên bằng 4 thì số đặc trưng nào sau đây không thay đổi?

    Hướng dẫn:

    Theo công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: R = a_{k + 1}- a_{1} ta thấy khoảng biến thiên không phụ thuộc vào các tần số trong mẫu số liệu ghép nhóm nên khoảng biến thiên sẽ không thay đổi khi tần số thay đổi.

  • Câu 8: Nhận biết
    Xác định chiều cao trung bình

    Cho biểu đồ

    Tính chiều cao trung bình của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +8.170 + 4.174 + 1.178}{21} \approx 169

  • Câu 9: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khỏe. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm là (làm tròn đến hàng phần trăm)

    Hướng dẫn:

    Cỡ mẫu: n = 20.

    Số trung bình của mẫu số liệu ghép nhóm là

    \overline{x} = \frac{2,85.3 + 3,15.6 +
3,45.5 + 3,75.4 + 4,05.2}{20} = 3,39.

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}\left( 2,85^{2}.3 +
3,15^{2}.6 + 3,45^{2}.5 + 3,75^{2}.4 + 4,05^{2}.2 ight) - 3,39^{2}
\approx 0,13

  • Câu 10: Thông hiểu
    Tìm phương sai của mẫu số liệu

    Cho mẫu số liệu ghép nhóm về thống kê thời gian hoàn thành (phút) một bài kiểm tra trực tuyến của 100 học sinh, ta có bảng số liệu sau:

    Thời gian

    \lbrack 33;\ 35) \lbrack 35;\ 37) \lbrack 37;\ 39) \lbrack 39;\ 41) \lbrack 41;\ 43) \lbrack 43;\ 45)

    Số học sinh

    4

    13

    38

    27

    14

    4

    Phương sai của mẫu số liệu trên là

    Hướng dẫn:

    Giá trị đại diện của mỗi nhóm số liệu là trung bình cộng của hai đầu mút.

    Ta có bảng tần số ghép nhóm theo giá trị đại diện của mỗi nhóm:

    Thời gian

    \lbrack 33;\ 35) \lbrack 35;\ 37) \lbrack 37;\ 39) \lbrack 39;\ 41) \lbrack 41;\ 43) \lbrack 43;\ 45)

    Giá trị đại diện

    34

    36

    38

    40

    42

    44

    Số học sinh

    4

    13

    38

    27

    14

    4

    Thời gian trung bình để 100 học sinh hoàn thành bài kiểm tra là:

    \overline{x} = \frac{4.34 + 13.36 + 38.38
+ 27.40 + 14.42 + 4.44}{100} = 38,92 (phút).

    Phương sai của mẫu số liệu

    S_{x}^{2} = \frac{4.(34 - 38,92)^{2} +
13.(36 - 38,92)^{2}}{100} +
\frac{38.(38 - 38,92)^{2} + 27.(40 - 38,92)^{2}}{100}

    + \frac{14.(42 - 38,92)^{2} + 4.(44 -
38,92)^{2}}{100} = 5,0736

  • Câu 11: Nhận biết
    Chọn công thức đúng

    Xét mẫu số liệu ghép nhóm cho ở bảng dưới đây. Gọi \overline{x} là số trung bình cộng của mẫu số liệu ghép nhóm. Độ lệch chuẩn của mẫu số liệu ghép nhóm đó được tính bằng công thức nào trong các công thức sau?

    Hướng dẫn:

    Độ lệch chuẩn của mẫu số liệu ghép nhóm được tính bởi công thức:

    • s = \sqrt {\frac{{{n_1}{{\left( {{x_1} - \bar x} \right)}^2} + {n_2}{{\left( {{x_2} - \bar x} \right)}^2} + ... + {n_m}{{\left( {{x_m} - \bar x} \right)}^2}}}{n}} .
  • Câu 12: Nhận biết
    Tính chiều cao trung bình

    Kết quả đo chiều cao của 50 cây keo trong vườn được thống kê lại trong bảng sau:

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Số cây

    16

    4

    3

    6

    21

    Tính chiều cao trung bình của 50 cây keo trên?

    Hướng dẫn:

    Cỡ mẫu N = 50

    Chiều cao (cm)

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Số cây

    16

    4

    3

    6

    21

    Chiều cao trung bình là:

    \overline{x} = \frac{16.121 + 4.123 +
3.125 + 6.127 + 21.129}{50} = 125,28.

  • Câu 13: Nhận biết
    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có độ lệch chuẩn bằng bằng 3 thì có phương sai bằng

    Hướng dẫn:

    Phương sai: s^{2} = 9.

  • Câu 14: Nhận biết
    Chọn kết luận đúng

    Số đặc trưng nào không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng?

    Hướng dẫn:

    Theo các công thức tính khoảng biến thiên, khoảng tứ phân vị, phương sai, độ lệch chuẩn ta thấy khoảng tứ phân vị là không sử dụng thông tin của nhóm số liệu đầu và nhóm số liệu cuối.

  • Câu 15: Thông hiểu
    Tìm phương sai của mẫu số liệu

    Thời gian truy cập Internet mỗi buổi tối (đơn vị: phút) của một số học sinh được thống kê ở bảng sau:

    Thời gian

    [10,5; 12,5)

    [12,5; 14,5)

    [14,5; 16,5)

    [16,5; 18,5)

    [18,5; 20,5)

    Số học sinh

    3

    12

    15

    24

    2

    Phương sai của mẫu số liệu trên là:

    Hướng dẫn:

    Ta viết lại bảng ở đề bài như sau:

    Thời gian

    [10,5; 12,5)

    [12,5; 14,5)

    [14,5; 16,5)

    [16,5; 18,5)

    [18,5; 20,5)

     

    Giá trị đại diện

    11,5

    13,5

    15,5

    17,5

    19,5

     

    Số học sinh

    3

    12

    15

    24

    2

    n = 56

    Số trung bình cộng của mẫu số liệu ghép nhóm biểu thị số phút truy cập internet mỗi buổi tối của một số học sinh là:

    \overline{x} = \frac{3.11,5 + 12.13,5 +
15.15,5 + 24.17,5 + 2.19,5}{56} \approx 15,86(phút)

    Vậy phương sai của mẫu số liệu ghép nhóm biểu thị số phút truy cập internet mỗi buổi tối của một số học sinh là:

    s^{2} = \frac{1}{56}\lbrack 3.(11,5 -
15,86)^{2} + 12.(13,5 - 15,86)^{2} + 15.(15,5 - 15,86)^{2}

    + 24.(17,5 - 15,86)^{2} + 2.(19,5 -
15,86)^{2}\rbrack \approx 3,87

  • Câu 16: Thông hiểu
    Xét tính đúng sai của các mệnh đề

    Thời gian (phút) để học sinh hoàn thành một câu hỏi thi được cho như sau:

    Xét tính đúng/sai các mệnh đề sau:

    a) [NB] Số trung bình của mẫu số liệu lớp 11A là: 23,9 (làm tròn đến hàng phần mười). Đúng||Sai

    b) [TH] Độ lệch chuẩn của mẫu số liệu lớp 11A là: 11,77 (làm tròn đến hàng phần trăm).Sai||Đúng

    c) [TH] Độ lệch chuẩn của mẫu số liệu lớp 11B là: 11,55 (làm tròn đến hàng phần trăm). Sai||Đúng

    d) [VD, VDC] Nếu so sánh theo độ lệch chuẩn thì thời gian để học sinh hoàn thành một câu hỏi thi của lớp 11A ít phân tán hơn lớp 11B. Đúng||Sai

    Đáp án là:

    Thời gian (phút) để học sinh hoàn thành một câu hỏi thi được cho như sau:

    Xét tính đúng/sai các mệnh đề sau:

    a) [NB] Số trung bình của mẫu số liệu lớp 11A là: 23,9 (làm tròn đến hàng phần mười). Đúng||Sai

    b) [TH] Độ lệch chuẩn của mẫu số liệu lớp 11A là: 11,77 (làm tròn đến hàng phần trăm).Sai||Đúng

    c) [TH] Độ lệch chuẩn của mẫu số liệu lớp 11B là: 11,55 (làm tròn đến hàng phần trăm). Sai||Đúng

    d) [VD, VDC] Nếu so sánh theo độ lệch chuẩn thì thời gian để học sinh hoàn thành một câu hỏi thi của lớp 11A ít phân tán hơn lớp 11B. Đúng||Sai

    Ta có bảng giá trị như sau:

    a) Đúng. Số trung bình của mẫu số liệu lớp 11A là: 23,9 (làm tròn đến hàng phần mười).

    Xét mẫu số liệu của lớp 11A:

    Cỡ mẫu là n_{1} = 2 + 10 + 6 + 4 + 3 =
25

    Số trung bình:

    {\overline{x}}_{1} = \frac{5,5.2 +
15,5.10 + 25,5.6 + 35,5.4 + 45,5.3}{25} = 23,9.

    a) Sai.

    Phương sai:

    S_{1}^{2} = \frac{1}{25}(2.5,5^{2} +
10.15,5^{2} + 6.25,5^{2}+ 4.35,5^{2} + 3.45,5^{2}) - 23,9^{2} =
133,44.

    S_{1} = \sqrt{133,44} \approx
11,55.

    a) Sai.

    Xét mẫu số liệu của lớp 11B:

    Cỡ mẫu là n_{2} = 3 + 8 + 10 + 2 + 4 =
27.

    Số trung bình:

    {\overline{x}}_{2} = \frac{1}{27}(5,5.3
+ 15,5.8+ 25,5.10 + 35,5.2 + 45,5.4) = \frac{648,5}{27} \approx
24,02

    Phương sai của mẫu số liệu của lớp 11B là:

    S_{2}^{2} = \frac{1}{27}(3.5,5^{2} +
8.15,5^{2} + 10.25,5^{2}+ 2.35,5^{2} + 4.45,5^{2}) - 24,02^{2} \approx
138,47

    Độ lệch chuẩn của mẫu số liệu của lớp 11B là:

    S_{2} \approx \sqrt{138,47} \approx
11,77

    d) Đúng. Ta có: S_{1} <
S_{2} .

    Nên nếu so sánh theo độ lệch chuẩn thì thời gian để học sinh hoàn thành một câu hỏi thi của lớp 11A ít phân tán hơn lớp 11B.

  • Câu 17: Nhận biết
    Hoàn thành bảng số liệu

    Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

    Hoàn thành bảng số liệu sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Đáp án là:

    Cho biểu đồ mức lương của công nhân hai phân xưởng A và B (đơn vị: triệu đồng) như sau:

    Hoàn thành bảng số liệu sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

     Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

  • Câu 18: Nhận biết
    Tìm số trung bình

    Thống kê mức lương (đơn vị: triệu đồng) của nhân viên hai phân xưởng A và B được ghi lại trong bảng sau:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Phân xưởng A

    4

    5

    5

    4

    2

    Phân xưởng B

    3

    6

    5

    5

    1

    Số trung bình của mẫu số liệu ghép nhóm của đối tương A và đối tượng B lần lượt là:

    Hướng dẫn:

    Ta có:

    Mức lương

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

     

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

     

    Phân xưởng A

    4

    5

    5

    4

    2

    N = 20

    Phân xưởng B

    3

    6

    5

    5

    1

    N’ = 20

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng A là:

    \overline{x_{A}} = \frac{4.5,5 + 5.6,5 +
5.7,5 + 4.8,5 + 2.9,5}{20} = 7,25

    Số trung bình của mẫu số liệu ghép nhóm của đối tượng B là:

    \overline{x_{B}} = \frac{3.5,5 + 6.6,5 +
5.7,5 + 5.8,5 + 1.9,5}{20} = 7,25

  • Câu 19: Nhận biết
    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng:

    Hướng dẫn:

    Mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng \sqrt{16} = 4.

  • Câu 20: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm

    Cho bảng phân bố tần số ghép lớp về độ dài của 60 lá dương xỉ trưởng thành như sau sau:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Tần số

    8 18 24 10

    Tính độ lệch chuẩn bảng phân bố tần số ghép lớp đã cho

    Hướng dẫn:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Giá trị đại diện

     15 25  35  45 

    Tần số

    8 18 24 10

    Trước hết ta có \overline{x} = \frac{15.8
+ 25.18 + 35.24 + 45.10}{60} = 31.

    Khi đó phương sai

    s_{x}^{2} = \lbrack 8.(15 - 31)^{2} + 18
\cdot (25 - 31)^{2} + 24.(35 - 31)^{2} + 10.(45 -
31)^{2}\rbrack.\frac{1}{60} = 84.

    s_{x} = \sqrt{s_{x}^{2}} = \sqrt{84}
\approx 9,2

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo