Gọi là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Gọi là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Cho hình giới hạn bởi các đường
, trục hoành. Quay hình phẳng
quanh trục
ta được khối tròn xoay có thể tích là:
Phương trình hoành độ giao điểm của là:
Khi đó .
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng
.
Xét phương trình .
Ta có:
Cho hình phẳng giới hạn bởi các đường
. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:
Ta có:
Theo công thức thể tích giới hạn bởi các đường ta có:
Cho hàm số . Gọi
là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành. Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm:
Diện tích hình phẳng cần tìm là:
((do trong khoảng (0; 1) và (1; 2) phương trình
vô nghiệm)
Vậy mệnh đề sai là: .
Diện tích hình phẳng giới hạn bởi các đường bằng:
Gọi S là diện tích hình phẳng cần tìm. Khi đó
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và
:
Giao điểm tại
Cho hình phẳng giới hạn bởi các đường
. Thể tích vật thể tròn xoay có được khi
quay quanh trục
bằng:
Gọi là thể tích khối tròn xoay cần tính. Ta có:
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường quay xung quanh
.
Thể tích vật thể bằng:
.
Thể tích khối tròn xoay tạo thành khi quay quanh trục Ox hình phẳng được giới hạn bởi đồ thị hàm số và hai trục tọa độ là
Ta có:
cắt trục hoành tại điểm có hoành độ bằng 2
Thể tích
Sử dụng phương pháp tích phân thành phần
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và các trục tọa độ. Chọn kết quả đúng?
Ta có:
Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
Diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
.
Dựng một lều trại có dạng parabol, với kích thước: nền trại là một hình chữ nhật có chiều rộng là mét, chiều sâu là
mét, đỉnh của parabol cách mặt đất là
mét. Tính thể tích phần không gian phía bên trong trại để số lượng người tham dự trại phù hợp?
Giả sử nền trại là hình chữ nhật ABCD có AB = 3 mét, BC = 6 mét, đỉnh của parabol là I.
Chọn hệ trục tọa độ Oxy sao cho: O là trung điểm của cạnh AB, A, B và I, phương trình của parabol có dạng .
Do I, A, B thuộc nên ta có .
Vậy thể tích phần không gian phía trong trại là .
Diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng
,
là
Ta có .
Khi cắt một vật thể hình chiếc niêm bởi mặt phẳng vuông góc với trục tại điểm có hoành độ
, mặt cắt là tam giác vuông có một góc
và độ dài một cạnh góc vuông là
(như hình vẽ). Tính thể tích vật thể hình chiếc niêm trên.

Diện tích tam giác vuông cân là:
Thể tích vật thể là:
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: