Diện tích hình phẳng giới hạn bởi hai đồ thị được cho bởi công thức nào sau đây?
Ta có:
Với
Với
Ta có:
Diện tích hình phẳng giới hạn bởi hai đồ thị được cho bởi công thức nào sau đây?
Ta có:
Với
Với
Ta có:
Gọi là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Cho hàm số . Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số
, trục tung, trục hoành và đường thẳng
Ta có:
Cho hình phẳng D giới hạn bởi đường cong , trục hoành và các đường thẳng
,
. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?
Thể tích khối tròn xoay được tạo nên bởi hình phẳng giới hạn bởi các đường ,
,
và trục hoành khi quay quanh Ox là:
(đvtt).
Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
Diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
.
Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành, đường thẳng
như hình vẽ sau:
Hỏi khẳng định nào dưới đây là khẳng định đúng?
Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số trục hoành, đường thẳng
ta có:
.
Cho hình phẳng giới hạn bởi các đường
. Thể tích vật thể tròn xoay có được khi
quay quanh trục
bằng:
Gọi là thể tích khối tròn xoay cần tính. Ta có:
Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường , trục
và hai đường thẳng
;
khi quay quanh trục hoành được tính bởi công thức nào?
Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số , trục
,
và
được tính bởi công thức
.
Cho hàm số liên tục trên
. Gọi
là hình phẳng giới hạn bởi hai đồ thị
và các đường thẳng
. Diện tích hình
được tính theo công thức?
Ta có diện tích hình (H) được tính bằng công thức .
Tính diện tích của hình phẳng giới hạn bởi đồ thị hàm số
trục hoành và hai đường thẳng
.
Diện tích hình phẳng được tính như sau:
.
Tính thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục :
.
Thể tích khối tròn xoay
.
Cho hàm số liên tục trên
, có đồ thị hàm số
như sau:
Mệnh đề nào dưới đây là đúng?
Theo ý nghĩa hình học của tích phân thì là diện tích hình thang cong
.
Cho đồ thị hàm số như hình vẽ:
Diện tích của hình phẳng được giới hạn bởi đồ thị hàm số
và trục
(phần gạch sọc) được tính bởi công thức
Từ đồ thị hàm số ta thấy
Do đó:
Cho tam giác vuông tại
, cạnh
và
là trung điểm của cạnh
. Khi đó thể tích của khối tròn xoay do tam giác
quanh cạnh
là:
Hình vẽ minh họa
Khi quay tam giác BMC quanh cạnh AB tạo ra 2 khối tròn xoay có thể tích là
Một khu đất trồng cây cảnh (phần được tô đậm) là hình phẳng giới hạn bởi và
như hình bên dưới (đơn vị trên mỗi trục toạ độ là m). Cần tính diện tích của khu đất để báo cho đơn vị thiết kế trước trồng cây cảnh khi kí hợp đồng. Diện tích của khu đất là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười).
Đáp án: 3,3 m2
Một khu đất trồng cây cảnh (phần được tô đậm) là hình phẳng giới hạn bởi và
như hình bên dưới (đơn vị trên mỗi trục toạ độ là m). Cần tính diện tích của khu đất để báo cho đơn vị thiết kế trước trồng cây cảnh khi kí hợp đồng. Diện tích của khu đất là bao nhiêu mét vuông (làm tròn kết quả đến hàng phần mười).
Đáp án: 3,3 m2
Phương trình hoành độ giao điểm của các đồ thị hàm số
Diện tích của hình phẳng cần tìm là
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: