Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường thẳng trong không gian CTST (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tính giá trị của biểu thức

    Trong hệ tọa độ không gian Oxyz, cho mặt phẳng (P):x - 2y + 2z - 1 =
0 và hai đường thẳng d_{1}:\frac{x
- 1}{2} = \frac{y - 3}{- 3} = \frac{z}{2};d_{2}:\frac{x - 5}{6} =
\frac{y}{4} = \frac{z + 5}{- 5} . Biết rằng có 2 điểm M_{1};M_{2} trên d_{1} và hai điểm N_1;N_2 trên d_{2} sao cho M_{1}N_{1};N_{1}N_{2} song song mặt phẳng (P) đồng thời cách mặt phẳng (P) một khoảng bằng 2. Tính d = M_{1}N_{1} + N_{1}N_{2}.

    Hướng dẫn:

    Gọi (Q) là mặt phẳng song song với (P) sao cho khoảng cách giữa (P)(Q) bằng .

    Suy ra (Q) có phương trình dạng x - 2y + 2z + m = 0;(m \neq - 1)(Q) chứa  M_{1}N_{1}  hoặc  N_{1}N_{2} .

    Theo giả thiết khoảng cách từ mp (Q) đến (P) bằng 2 nên ta có

    \frac{|m + 1|}{3} = 2 \Leftrightarrow
\left\lbrack \begin{matrix}
m = 5 \\
m = - 7 \\
\end{matrix} \right.

    Vậy có 2 mặt phẳng song song và cách (P) một khoảng bằng 2 là:

    \left( Q_{1} \right):x - 2y + 2z + 5 =
0\left( Q_{2} \right):x - 2y +
2z - 7 = 0.

    + Theo giả thiết M_{1} = d_{1} \cap
\left( Q_{1} \right),N_{1} = d_{2} \cap \left( Q_{1} \right) suy ra M_{1}(1; - 3; - 5),N_{1}(4; - 3; - 5)
\Rightarrow M_{1}N_{1} = 5\sqrt{2}

    M_{2} = d_{1} \cap \left( Q_{2}
\right),N_{2} = d_{2} \cap \left( Q_{2} \right) suy ra M_{2}(3;0;2),N_{2}( - 1; - 4;0) \Rightarrow
M_{2}N_{2} = 6

    Vậy d = 6 + 5\sqrt{2}.

  • Câu 2: Vận dụng
    Phương trình tổng quát

    Viết phương trình tổng quát của đường thẳng (d) qua A (2, 3, 1)  cắt đường thẳng \left( {{d_1}} ight):\frac{{x - 2}}{3} = y + 3 = \frac{{z + 1}}{2} và vuông góc đường thẳng \left( {{d_2}} ight):x = t - 2;\,\,y = 4 - 2t;\,\,z = 3 - t,\,\,\,t \in R\,\,

    Hướng dẫn:

     Lấy điểm B\left( {2, - 3, - 1} ight) nằm trên đường thẳng (d1).

    Theo đề bài, ta có (d1) qua B\left( {2, - 3, - 1} ight) có vecto chỉ phương là \overrightarrow a  = \left( {3,1,2} ight)

    Ta có: \overrightarrow b  = \overrightarrow {AB}  = \left( {0, - 6, - 2} ight) =  - 2\left( {0,3,1} ight)

    Vecto pháp tuyến của mặt phẳng (P) chứa A và \left( {{d_1}} ight):\overrightarrow n  = \left[ {\overrightarrow a ,\overrightarrow b } ight] =  - \left( {5,3, - 9} ight)

    \Rightarrow \left( P ight):5\left( {x - 2} ight) + 3\left( {y - 3} ight) - 9\left( {z - 1} ight) = 0 \Leftrightarrow 5x + 3y - 9z - 10 = 0 (1)

    Xét tiếp đường thẳng có vecto chỉ phương của là vecto pháp tuyến của mặt phẳng qua A và vuông góc với . Ta có phương trình mp (Q) là

    \left( Q ight):\left( {x - 2} ight) - 2\left( {y - 3} ight) - \left( {z - 1} ight) = 0 \Leftrightarrow x - 2y - z + 5 = 0 (2)

    Từ (1) và (2) ta suy ra:

    \Rightarrow \left( d ight):5x + 3y - 9z - 10 = 0;x - 2y - z + 5 = 0

  • Câu 3: Vận dụng cao
    Vị trí tương đối của 2 đường thẳng

    Cho hai đường thẳng (d1 ): \left\{ \begin{array}{l}x - y + z - 5 = 0\\x - 3y + 6 = 0\end{array} ight.({d_2})\left\{ \begin{array}{l}2y + z - 5 = 0\\4x - 2y + 5z - 4 = 0\end{array} ight.

    Xét VTTĐ của (d1 ) và (d2 )? Tìm câu đúng ?

    Hướng dẫn:

    Chuyển đường thẳng (d1 ) và (d2 ) về dạng tham số :

    ({d_1}):\left\{ \begin{array}{l}x =  - 6 + 3t\\y = t\\z = 11 - 2t\end{array} ight. \Rightarrow ({d_1}) có vectơ chỉ phương \overrightarrow a  = (3,1, - 2) và qua A( - 6,0,11) .

    ({d_2}):\left\{ \begin{array}{l}x = \frac{{15}}{4} - 3t'\\y = 3 - t'\\z =  - 1 + 2t'\end{array} ight. \Rightarrow \left( {{d_2}} ight) có vectơ chỉ phương \overrightarrow b  = (\frac{{15}}{4},3, - 1)

    \overrightarrow a  earrow  \swarrow \overrightarrow bvà hệ phương trình \left\{ \begin{array}{l} - 6 + 3t = \frac{{15}}{4} - 3t'\\t = 3 - t'\\11 - 2t =  - 1 + 2t'\end{array} ight. vô nghiệm.

    \Rightarrow ({d_1})//(d_{2} ).

  • Câu 4: Thông hiểu
    Chọn phương án thích hợp

    Viết phương trình tham số của đường thẳng (D) qua E(2,
- 1, - 3) và vuông góc với hai đường thẳng \left( D_{1} \right):\frac{x - 1}{3} = y - 1 =
\frac{z + 2}{2};\ \ \ \ \ \ \ \ \left( D_{2} \right):\frac{x}{2} =
\frac{y + 3}{4} = 2 - z.

    Hướng dẫn:

    Hai vectơ chỉ phương của \left( D_{1}
\right)\left( D_{2}
\right):\overrightarrow{a} = (3,1,2);\overrightarrow{b} = (2,4, -
1)

    Một vectơ chỉ phương của (D):\overrightarrow{c} = \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack = ( -
9,7,10)

    \Rightarrow (D):x = 2 - 9t;y = 7t - 1;z =
10t - 1;t\mathbb{\in R}

  • Câu 5: Vận dụng
    Chọn kết quả chính xác

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 5 = 0 và hai điểm A(−3; 0; 1), B(1; −1; 3). Trong các đường thẳng đi qua A và song song với (P), đường thẳng nào cách B một khoảng cách nhỏ nhất?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi d là đường thẳng cần tìm.

    Gọi (Q) là mặt phẳng qua A(−3; 0; 1) và song song với (P): x − 2y + 2z − 5 = 0.

    ⇒ (Q): x − 2y + 2z + 1 = 0d ⊂ (Q).

    Gọi H, K lần lượt là hình chiếu của B lên d và (Q) thì BH > BK.

    Do đó d(B; d) nhỏ nhất khi và chỉ khi H ≡ K.

    Đường thẳng BK đi qua B(1; −1; 3) và vuông góc với (Q) \Rightarrow BK:\left\{ \begin{matrix}
x = 1 + t \\
y = - 1 - 2t \\
z = 3 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Lại có: K = BK \cap (Q) \Rightarrow K =
\left( \frac{- 1}{9};\frac{11}{9};\frac{7}{9} ight)

    Đường thẳng d qua A và nhận \overrightarrow{AK} = \left(
\frac{26}{9};\frac{11}{9};\frac{- 2}{9} ight) làm vectơ chỉ phương nên đường thẳng cần tìm là: \frac{x +
3}{26} = \frac{y}{11} = \frac{z - 1}{- 2}.

  • Câu 6: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyz, cho đường thẳng d:\frac{x + 1}{2} = \frac{y}{1} =
\frac{z - 2}{- 1} và hai điểm A( -
1;3;1),B(0;2; - 1). Gọi C(m;n;p) là điểm thuộc đường thẳng d sao cho diện tích tam giác ABC bằng 2\sqrt{2}. Giá trị của tổng m + n + p bằng:

    Hướng dẫn:

    Phương trình tham số của đường thẳng \left\{ \begin{matrix}
x = - 1 + 2t \\
y = t \\
x = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Vì C thuộc d nên tọa độ của C có dạng C(
- 1 + 2t;t;2 - t)

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1; - 2) \\
\overrightarrow{AC} = (2t;t - 3;1 - t) \\
\end{matrix} ight.

    Suy ra \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3t - 7; - 3t -
1;3t - 3)

    Diện tích tam giác ABC là

    S_{\Delta ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\frac{1}{2}\sqrt{(3t - 7)^{2} + ( - 3t - 1)^{2} + (3t -
3)^{2}}

    Theo bài ra ta có

    S_{\Delta ABC} = 2\sqrt{2}
\Leftrightarrow \frac{1}{2}\sqrt{27t^{2} - 54t + 59} =
2\sqrt{2}

    \Leftrightarrow 27t^{2} - 54t + 59 = 32
\Leftrightarrow (t - 1)^{2} = 0 \Leftrightarrow t = 1

    Với t = 1 thì C (1; 1; 1) nên m = 1;n =
1;p = 1

    Vậy giá trị của tổng m + n + p =
3

  • Câu 7: Vận dụng
    Tìm tọa độ giao điểm

    Trong không gian Oxyz, xét mặt phẳng (P) đi qua điểm A(2;1;3) đồng thời cắt các tia Ox,Oy,Oz lần lượt tại M,N,P sao cho tứ diện OMNP có thể tích nhỏ nhất. Giao điểm của đường thẳng \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 4 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) với (P) có toạ độ là:

    Hướng dẫn:

    Gọi M(a;0;0),N(0;b;0),P(0;0;c)

    Theo giả thiết, ta có a;b;c là các số dương.

    Phương trình mặt phẳng (P) là \frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    (P) đi qua điểm A (2; 1; 3) nên \frac{2}{a} + \frac{1}{b} + \frac{3}{c} =
1

    Ta có: \frac{2}{a} + \frac{1}{b} +
\frac{3}{c} \geq 3\sqrt[3]{\frac{2}{a}.\frac{1}{b}.\frac{3}{c}} =
\frac{3\sqrt[3]{6}}{\sqrt[3]{abc}}

    \Leftrightarrow 1 \geq
\frac{3\sqrt[3]{6}}{\sqrt[3]{abc}} \Leftrightarrow \sqrt[3]{abc} \geq
3\sqrt[3]{6} \Leftrightarrow abc \geq 112

    V_{OMNP} = \frac{abc}{6} \geq
27. Dấu bằng xảy ra khi và chỉ khi \left\{ \begin{matrix}
\frac{2}{a} = \frac{1}{b} = \frac{3}{c} \\
\frac{2}{a} + \frac{1}{b} + \frac{3}{c} = 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 6 \\
b = 3 \\
c = 9 \\
\end{matrix} ight.

    Vậy (P):\frac{x}{6} + \frac{y}{3} +
\frac{z}{9} = 1

    Tọa độ giao điểm của d và (P) là nghiệm của hệ: \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 4 + t \\
\frac{x}{6} + \frac{y}{3} + \frac{z}{9} = 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 1 \\
z = 6 \\
t = 2 \\
\end{matrix} ight..

    Vậy đáp án cần tìm là: (4; -
1;6).

  • Câu 8: Vận dụng
    Định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x + 2}{1} = \frac{y - 2}{1} =
\frac{z}{- 1} và mặt phẳng (P):x +
2y - 3z + 4 = 0. Phương trình tham số của đường thẳng d nằm trong (P), cắt và vuông góc đường thẳng \Delta là:

    Hướng dẫn:

    Gọi M = \Delta \cap (P)

    M \in \Delta \Rightarrow M( - 2 + t;2 +
t; - t)

    M \in (P) \Rightarrow t = - 1
\Rightarrow M( - 3;1;1)

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (1;2; - 3)

    \Delta có vectơ chỉ phương \overrightarrow{a_{\Delta}} = (1;1; -
1)

    \left. \ \begin{matrix}
d \subset (P) \Rightarrow
\overrightarrow{a_{d}}\bot\overrightarrow{n_{P}} \\
d\bot\Delta \Rightarrow
\overrightarrow{a_{d}}\bot\overrightarrow{a_{\Delta}} \\
\end{matrix} ight\} \Rightarrow \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{n_{P}},\overrightarrow{a_{\Delta}} ightbrack = (1; -
2; - 1)

    d đi qua điểm M( - 3;1;1) và có vectơ chỉ phương là \overrightarrow{a_{d}}

    Vậy phương trình tham số của d\left\{ \begin{matrix}
x = - 3 + t \\
y = 1 - 2t \\
z = 1 - t \\
\end{matrix} ight.\ .

  • Câu 9: Vận dụng
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \Delta_{1}:\frac{x + 1}{3} = \frac{y - 2}{1} =
\frac{z - 1}{2}\Delta_{2}:\frac{x - 1}{1} = \frac{y}{2} = \frac{z
+ 1}{3}. Phương trình đường thẳng song song với d:\left\{ \begin{matrix}
x = 3 \\
y = - 1 + t \\
z = 4 + t \\
\end{matrix} \right. và cắt hai đường thẳng \Delta_{1};\Delta_{2} là:

    Hướng dẫn:

    Gọi \Delta là đường thẳng cần tìm

    Gọi A = \Delta \cap \Delta_{1},B = \Delta
\cap \Delta_{2}

    A \in \Delta_{1} \Rightarrow A( - 1 +
3a;2 + a;1 + 2a)

    B \in \Delta_{2} \Rightarrow B(1 + b;2b;
- 1 + 3b)

    \overrightarrow{AB} = ( - 3a + b + 2; -
a + 2b - 2; - 2a + 3b - 2)

    d có vectơ chỉ phương \overrightarrow{a_{d}} = (0;1;1)

    \Delta//d \Leftrightarrow
\overrightarrow{AB},\overrightarrow{a_{d}} cùng phương

    \Leftrightarrow có một số k thỏa \overrightarrow{AB} =
k\overrightarrow{a_{d}}

    \Leftrightarrow \left\{ \begin{matrix}
- 3a + b + 2 = 0 \\
- a + 2b - 2 = k \\
- 2a + 3b - 2 = k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3a + b = - 2 \\
- a + 2b - k = 2 \\
- 2a + 3b - k = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
k = - 1 \\
\end{matrix} ight.

    Ta có A(2;3;3);B(2;2;2)

    \Delta đi qua điểm A(2;3;3) và có vectơ chỉ phương \overrightarrow{AB} = (0; - 1; - 1)

    Vậy phương trình của \Delta\left\{ \begin{matrix}
x = 2 \\
y = 3 - t \\
z = 3 - t \\
\end{matrix} ight.

  • Câu 10: Vận dụng cao
    2 đường thẳng chéo nhau viết PTTQ

    Cho hai đường thẳng chéo nhau \left( d ight):\left\{ \begin{array}{l}x = 2 + t\\y = 1 - t\\z = 2t\end{array} ight.\left( d' ight):\left\{ \begin{array}{l}x + 2z - 2 = 0\\y - 3 = 0\end{array} ight.

    Mặt phẳng song song và cách đều và có phương trình tổng quát:

    Hướng dẫn:

    Phương trình (d) cho biết A(2, 1, 0) \in (d) và (d) có vectơ chỉ phương \overrightarrow a  = \left( {1, - 1,2} ight)

    Chuyển (\triangle ) về dạng tham số \left\{ \begin{array}{l}x = 2 - 2t\\y = 3\\z = t\end{array} ight. để có B(2, 3, 0) \in (\triangle ) và vectơ chỉ phương \overrightarrow b  = \left( { - 2,0,1} ight) .

    Gọi I là trung điểm AB  thì I (2, 2, 0), M(x, y, z) bất kỳ \in (P) .

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {IM}  = 0 \Leftrightarrow x + 5y + 2z - 12 = 0là phương trình của mặt phẳng (P).

  • Câu 11: Vận dụng cao
    Tính thể tích V của khối tứ diện

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 - 2t \\
z = - 3 - t \\
\end{matrix} \right.d_{2}:\left\{ \begin{matrix}
x = 4 + 3t \\
y = 3 + 2t \\
z = 1 - t \\
\end{matrix} \right.. Trên đường thẳng d_{1} lấy hai điểm A; B sao cho AB = 3. Trên đường thẳng d_{2} lấy hai điểm C;D sao cho CD = 4. Tính thể tích V của khối tứ diện ABCD.

    Hướng dẫn:

    Ta có đường thẳng d_{1} đi qua điểm M_{1}(1;2; - 3) và có vec tơ chỉ phương \overrightarrow{u_{1}}(1; - 2; -
1)

    Ta có đường thẳng d_{2} đi qua điểm M_{2}(4;3;1) và có vec tơ chỉ phương \overrightarrow{u_{2}}(3;2; -
1)

    Ta có khoảng cách giữa d_{1};d_{2}d = \frac{\left| \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{1}}
\right\rbrack.\overrightarrow{M_{1}M_{2}} \right|}{\left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{1}} \right\rbrack} =
\frac{|42|}{\sqrt{16 + 4 + 64}} = \sqrt{21}

    Nhận xét rằng d_{1}\bot
d_{2}

    Thể tích khối tứ diện cần tìm là V =
\frac{1}{6}AB.CD.d.sin\alpha = \frac{1}{6}.3.4.\sqrt{21} =
2\sqrt{21}.

  • Câu 12: Thông hiểu
    Xác định phương trình đường thẳng d

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x + 2}{1} = \frac{y - 2}{1} =
\frac{z}{- 1} và mặt phẳng (P):x +
2y - 3z + 4 = 0. Đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với \Delta có phương trình là

    Hướng dẫn:

    Giao điểm A của \Delta(P) là nghiệm của hệ:

    \left\{ \begin{matrix}
\frac{x + 2}{1} = \frac{y - 2}{1} = \frac{z}{- 1} \\
x + 2y - 3z + 4 = 0 \\
\end{matrix} \right.\  \Rightarrow A( - 3;1;1)

    Giả sử d đi qua B(x;y;0). Khi đó, ta có:

    \left\{ \begin{matrix}
B \in (P) \\
\overrightarrow{AB}.\overrightarrow{u_{\Delta}} = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x + 2y + 44 = 0 \\
(x + 3).1 + (y - 1).1 + ( - 1).( - 1) = 0 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = - 1 \\
\end{matrix} \right.\  \Rightarrow B( - 2; - 1;0) \Rightarrow
\overrightarrow{AB} = (1; - 2; - 1)

    \Rightarrow (d):\frac{x + 3}{1} =
\frac{y - 1}{- 2} = \frac{z - 1}{- 1}

  • Câu 13: Vận dụng cao
    Mối quan hệ giữa đường thẳng và mp

    Cho 2 đường thẳng (d)\left\{ \begin{array}{l}x = 2 + 2t\\y =  - 1 + t\\z = 1\end{array} ight. và  (\triangle )\left\{ \begin{array}{l}x = 1\\y = 1 + t\\z = 3 - t\end{array} ight.

    Mặt phẳng (P) chứa (d) và song song với (\triangle ) có phương trình tổng quát :

    Hướng dẫn:

    Phương trình (d) cho A(2, - 1,1) \in (d) và vectơ chỉ phương của (d) là: \overrightarrow a  = (2,1,0)

    Phương trình (\triangle ) cho vectơ chỉ phương của (\triangle ) là : \overrightarrow b  = (0,1, - 1)

    Gọi M(x,y,z) là điểm bất kỳ thuộc mặt phẳng (P) thì :

    \begin{array}{l}\overrightarrow {AM}  = (x - 2,y + 1,z - 1);\,\,\,\,\left[ {\overrightarrow a ,\overrightarrow b } ight] = ( - 1,2,2)\\\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AM}  = 0 \Leftrightarrow  - (x - 2) + 2(y + 1) + 2(z - 1) = 0\\ \Leftrightarrow x - 2y - 2z - 2 = 0\end{array}

    Câu hỏi này cho ta thấy mối quan hệ giữa đường thẳng và mặt phẳng, từ 2 đường thảng ta có thể viết PT được của 1 mp.

  • Câu 14: Vận dụng
    Tính giá trị biểu thức

    Trong hệ trục tọa độ Oxy, cho điểm M = (1; - 1;2) và hai đường thẳng d_{1} : \left\{ \begin{matrix}
x = t \\
y = 1 - t \\
z = - 1 \\
\end{matrix} ight. d_{2}:\frac{x + 1}{2} = \frac{y - 1}{1} = \frac{z
+ 2}{1}. Đường thẳng \Delta đi qua diểm M và cắt cả hai đường thẳng d_{1},d_{2} có véc tơ chỉ phương là \overrightarrow{u_{\Delta}} = (1;a;b). Tính a + b?

    Hướng dẫn:

    Gọi A,B lần lượt là giao điểm của đường thẳng \Delta với d_{1},d_{2}

    A \in d_{1} \Rightarrow A\left( t_{1};1
- t_{1}; - 1 ight);B \in d_{2} \Rightarrow B\left( - 1 + 2t_{2};1 +
t_{2}; - 2 + t_{2} ight)

    M \in \Delta \Leftrightarrow M,A,B\
\text{thẳng\ hàng~} \Leftrightarrow \overrightarrow{MA} =
k\overrightarrow{MB}(1)

    \overrightarrow{MA} = \left( t_{1} - 1;2
- t_{1}; - 3 ight);\overrightarrow{MB} = \left( 2t_{2} - 2;t_{2} +
2;t_{2} - 4 ight)

    (1) \Leftrightarrow \left\{
\begin{matrix}
t_{1} - 1 = k(2t_{2} - 2) \\
2 - t_{1} = k(t_{2} + 2) \\
- 3 = k(t_{2} - 4) \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
t_{1} - 2kt_{2} + 2k = 1 \\
- t_{1} - kt_{2} - 2k = - 2 \\
kt_{2} - 4k = - 3 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
t_{1} = 0 \\
kt_{2} = \frac{1}{3} \\
k = \frac{5}{6} \\
\end{matrix} ight.\  ight.\  ight.

    Từ t_{1} = 0 \Rightarrow A(0;1; -
1).

    Do đường thẳng \Delta đi qua điểm AM nên một vectơ chỉ phương của đường thẳng \Delta\overrightarrow{u_{\Delta}} = \overrightarrow{AM}
= (1; - 2;3).

    Vậy a = - 2,b = 3 \Rightarrow a + b =
1

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Tính khoảng cách giữa hai đường thẳng d_{1}:\frac{x}{1} = \frac{y - 3}{2} = \frac{z -
2}{1}d_{2}:\frac{x - 3}{1} = \frac{y + 1}{- 2} = \frac{z -
2}{1}

    Hướng dẫn:

    d_{1} qua M(0;3;2) có vtcp \overrightarrow{u} = (1;2;1), d_{2} qua N(3; - 1;2) có vtcp \overrightarrow{v} = (1; - 2;1).

    \left\lbrack
\overrightarrow{u},\overrightarrow{v} \right\rbrack = (4;0; -
4), \overrightarrow{MN} = (3; -
4;0).

    d\left( d_{1},d_{2} \right) =
\frac{\left| \left\lbrack \overrightarrow{u},\overrightarrow{v}
\right\rbrack.\overrightarrow{MN} \right|}{\left| \left\lbrack
\overrightarrow{u},\overrightarrow{v} \right\rbrack \right|} =
\frac{12}{4\sqrt{2}} = \frac{3\sqrt{2}}{2}.

  • Câu 16: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2; - 2),B(2;2; - 4). Giả sử I(a;b;c) là tâm đường tròn ngoại tiếp tam giác OAB. Tính T = a^{2} + b^{2} + c^{2}.

    Hướng dẫn:

    Ta có OA = AB = 2\sqrt{2} nên tam giác OAB cân tại OAB, vì vậy I thuộc đường trung tuyến qua A(d):\left\{ \begin{matrix}
x = 1 + t \\
y = 1 - t \\
z = - 2 \\
\end{matrix} \right.\  \Rightarrow I(1 + t;1 - t; - 2)

    IA = IO \Leftrightarrow t = 0
\Rightarrow I(2;0; - 2)

    Do đó T = 8

  • Câu 17: Vận dụng
    Viết phương trình đường phân giác

    Trong không gian Oxyz, cho hai đường thẳng cắt nhau \Delta_{1}:\frac{x +1}{1} = \frac{y - 2}{2} = \frac{z + 1}{3},\Delta_{2}:\frac{x + 1}{1} =\frac{y - 2}{2} = \frac{z + 1}{- 3}. Trong mặt phẳng \left( \Delta_{1};\Delta_{2} ight), hãy viết phương trình đường phân giác d của góc nhọn tạo bởi \Delta_{1};\Delta_{2}

    Hướng dẫn:

    Hai đường thẳng đã cho cùng đi qua điểm I(−1; 2; −1) và có các vectơ chỉ phương tương ứng là \overrightarrow{u_{1}} =
(1;2;3),\overrightarrow{u_{2}} = (1;2; - 3)

    Ta có \overrightarrow{u_{1}}.\overrightarrow{u_{2}} = -
4 < 0, suy ra góc giữa hai vectơ \overrightarrow{u_{1}}\overrightarrow{u_{2}} là góc tù.

    Lại có \left| \overrightarrow{u_{1}}
ight| = \left| \overrightarrow{u_{2}} ight|

    Kết hợp hai điều này, ta suy ra d có một vectơ chỉ phương là \overrightarrow{u} = \overrightarrow{u_{1}} -
\overrightarrow{u_{2}} = (0;0;6) = 6(0;0;1)

    Tóm lại, đường thẳng cần tìm đi qua điểm I(−1; 2; −1) và có một vectơ chỉ phương là \overrightarrow{u} =
(0;0;1)

    Vậy phương trình đường thẳng d là: \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 18: Vận dụng cao
    Tìm vectơ chỉ phương của đường thẳng

    Trong không gian với hệ tọa độ Oxyz,cho bốn đường thẳng d_{1}:\frac{x - 1}{1} = \frac{y - 2}{2} =
\frac{z}{- 2}; d_{2}:\frac{x -
2}{2} = \frac{y - 2}{4} = \frac{z}{- 4}; d_{3}:\frac{x}{2} = \frac{y}{1} = \frac{z -
1}{1}; d_{4}:\frac{x - 2}{2} =
\frac{y}{2} = \frac{z - 1}{- 1}. Gọi \Delta là đường thẳng cắt cả bốn đường thẳng đã cho. Vectơ nào sau đây là vectơ chỉ phương của đường thẳng \Delta.

    Hướng dẫn:

    Ta có d_{1}//d_{2}. Phương trình mặt phẳng \left( d_{1};d_{2} \right):y - z +
2 = 0

    Gọi \left\{ \begin{matrix}A = d_{3} \cap \left( d_{1};d_{2} \right) \Rightarrow A\left(1;\dfrac{1}{2};\dfrac{3}{2} \right) \\B = d_{4} \cap \left( d_{1};d_{2} \right) \Rightarrow B(4;2;0) \\\end{matrix} \right.

    Khi đó AB là đường thẳng \Delta. \overrightarrow{AB} = \left( 3;\frac{3}{2};
- \frac{3}{2} \right) \Rightarrow \overrightarrow{u_{2}} = (2;1; -
1) là vectơ chỉ phương của đường thẳng \Delta.

  • Câu 19: Vận dụng cao
    Tính tổng các tham số

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{1} = \frac{y + 2}{- 1} = \frac{z}{-
2}. Mặt phẳng (P) chứa đường thẳng d và tạo với trục tung góc lớn nhất. Biết rằng phương trình (P) có dạng là ax + by + cz + 9 = 0. Tính tổng a + b + c

    Hướng dẫn:

    Hình vẽ minh họa

    Đường thẳng d đi qua điểm M(1; −2; 0), có véc-tơ chỉ phương \overrightarrow{u} = (1; - 1; - 2)

    Gọi ∆ là đường thẳng đi qua M và song song với trục Oy.

    Phương trình tham số của \Delta:\left\{
\begin{matrix}
x = 1 \\
y = - 2 + t \\
z = 0 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Lấy điểm N(1; 2; 0) ∈ ∆.

    Gọi H, K lần lượt là hình chiếu vuông góc của N lên mặt phẳng (P) và đường thẳng d.

    Khi đó \left( (P),d ight) = \left(
(P),\Delta ight) = \widehat{NMH}

    Lại có: \cos\widehat{NMH} = \frac{MH}{NM}
\leq \frac{MK}{NM}

    Vậy \widehat{NMH}lớn nhất khi và chỉ khi H trùng với K

    Suy ra (P) đi qua d và vuông góc với mặt phẳng (Q), ((Q) là mặt phẳng chứa d và song song với Oy).

    Vectơ pháp tuyến của (Q) là \overrightarrow{n_{Q}} = \left\lbrack
\overrightarrow{u},\overrightarrow{j} ightbrack =
(2;0;1)

    Vectơ pháp tuyến của (P) là \overrightarrow{n_{P}} = \left\lbrack
\overrightarrow{n_{Q}},\overrightarrow{u} ightbrack = (1;5; -
2)

    Phương trình mặt phẳng (P) là 1(x - 1) +
5(y + 2) - 2(z - 0) = 0

    \Leftrightarrow x + 5y - 2z + 9 =
0

    Vậy a + b + c = 4

  • Câu 20: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 2}{- 1} = \frac{y - 1}{3} =
\frac{z - 1}{2}d_{2}:\left\{
\begin{matrix}
x = 1 - 3t \\
y = - 2 + t \\
z = - 1 - t \\
\end{matrix} \right.. Phương trình đường thẳng nằm trong (\alpha):x + 2y - 3z - 2 = 0 và cắt hai đường thẳng d_{1},\ d_{2} là:

    Hướng dẫn:

    Gọi d là đường thẳng cần tìm

     

    • Gọi A = d_{1} \cap
(\alpha)

     

    \begin{matrix}
A \in d_{1} \Rightarrow A(2 - a;1 + 3a;1 + 2a) \\
A \in (\alpha) \Rightarrow a = - 1 \Rightarrow A(3; - 2; - 1) \\
\end{matrix}

     

    • Gọi B = d_{2} \cap
(\alpha)

     

    \begin{matrix}
B \in d_{2} \Rightarrow B(1 - 3b; - 2 + b; - 1 - b) \\
B \in (\alpha) \Rightarrow b = 1 \Rightarrow B( - 2; - 1; - 2) \\
\end{matrix}

     

    • d đi qua điểm A(3; - 2; - 1) và có vectơ chỉ phương \overrightarrow{AB} = ( - 5;1; -
1)

     

    Vậy phương trình chính tắc của d\frac{x - 3}{- 5} = \frac{y + 2}{1} =
\frac{z + 1}{- 1}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo