Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường thẳng trong không gian CTST (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Điểm đối xứng qua đường thẳng

    Cho điểm {m{A(2, - 1,1)}} và đường thẳng (\Delta ):\left\{ \begin{array}{l}y + z - 4 = 0\\2x - y - z + 2 = 0\end{array} ight.. Gọi A'  là điểm đối xứng của A qua (\triangle) . Tọa độ điểm A'  là:

    Hướng dẫn:

    Đưa phương trình (\triangle) về dạng tham số: \left\{ \begin{array}{l}x = 1\\y = 4 - t\\z = t\end{array} ight.

    Gọi (P) là mặt phẳng qua A và vuông góc với (\triangle).

    Phương trình mp (P) có dạng - y + z + D = 0 , qua A nên D =  -2

    Phương trình (P) là: y - z + 2 = 0

    Thế x, y, z từ phương trình (\triangle) vào phương trình (P) được t=1

    \Rightarrow (\triangle ) \cap (\alpha ) = (1,3,1).

    I là trung điểm của AA' nên: {x_{A'}} + 2 = 2;{y_{A'}} - 1 = 6;{z_{A'}} + 1 = 2

    \Rightarrow A'(0,7,1).

  • Câu 2: Vận dụng cao
    Xác định số đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \left( d_{1} \right):\frac{x - 1}{1} = \frac{y +
1}{- 2} = \frac{z + 1}{1}, \left(
d_{2} \right):\frac{x}{1} = \frac{y}{- 2} = \frac{z - 1}{1}, \left( d_{3} \right):\frac{x - 1}{2} =
\frac{y + 1}{1} = \frac{z - 1}{1}, \left( d_{4} \right):\frac{x}{1} = \frac{y - 1}{-
1} = \frac{z}{- 1}. Số đường thẳng trong không gian cắt cả đường thẳng trên là

    Hướng dẫn:

    \left( d_{1} \right) đi qua điểm M_{1}(3; - 1; - 1) và có VTCP \overrightarrow{u_{1}} = (1; - 2;1).

    \left( d_{2} \right) đi qua điểm M_{2}(0;0;1) và có VTCP \overrightarrow{u_{2}} = (1; - 2;1).

    \overrightarrow{M_{1}M_{2}} = ( -
3;1;2).

    \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} \right\rbrack =
\overrightarrow{0}\left\lbrack
\overrightarrow{u_{1}};\overrightarrow{M_{1}M_{2}} \right\rbrack = ( -
5; - 5; - 5) \neq \overrightarrow{0} nên \left( d_{1} \right) song song với \left( d_{2} \right).

    Gọi (P) là mặt phẳng chứa hai đường thẳng \left( d_{1} \right)\left( d_{2} \right).

    (P) đi qua điểm M_{2}(0;0;1) và có \overrightarrow{n_{P}} = \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{M_{1}M_{2}} \right\rbrack = ( -
5; - 5; - 5) hay \overrightarrow{n}
= (1;1;1) có phương trình 1(x - 1)
+ 1(y - 0) + 1(z - 1) = 0 \Leftrightarrow x + y + z - 1 =
0.

    Gọi A = \left( d_{3} \right) \cap
(P). Xét hệ phương trình \left\{
\begin{matrix}
x = 1 + 2t \\
y = - 1 + t \\
z = 1 + t \\
x + y + z - 1 = 0 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 1 \\
z = 1 \\
t = 0 \\
\end{matrix} \right.\  \Rightarrow A(1; - 1;1).

    Gọi B = \left( d_{4} \right) \cap
(P). Xét hệ phương trình \left\{
\begin{matrix}
x = t' \\
y = 1 - t' \\
z = - t' \\
x + y + z - 1 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 1 \\
z = 0 \\
t' = 0 \\
\end{matrix} \right.\  \Rightarrow B(0;1;0).

    \overrightarrow{BA} = (1; -
2;1) cùng phương với \overrightarrow{u_{1}} nên (d) không thỏa mãn.

  • Câu 3: Vận dụng cao
    Tìm phương trình đường thẳng d

    Trong không gian với hệ tọa độ Oxyz, cho tam giác nhọn ABCH(2;2;1);K\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} \right); O(0;0;0) lần lượt là hình chiếu vuông góc của A;B;C trên các cạnh BC;CA;AB. Đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC) có phương trình là:

    Hướng dẫn:

    Cách 1: I:OH = 3;OK = 4;HK = 5. Gọi I là trực tâm tam giác ABC

    Ta có: \left\{ \begin{matrix}x_{I} = \dfrac{4.2 + 5.0 + 3.\left( - \dfrac{8}{3} \right)}{12} = 0 \\y_{I} = \dfrac{3.\dfrac{4}{3} + 4.2 + 5.0}{12} = 1 \\z_{I} = \dfrac{3.\dfrac{8}{3} + 4.1 + 5.0}{12} = 1 \\\end{matrix} \right.\  \Rightarrow I(0;1;1)

    \overrightarrow{IH} = (2;1;0)
\Rightarrow (\Delta):\left\{ \begin{matrix}
x = 2t \\
y = 1 + t \\
z = 1 \\
\end{matrix} \right.

    A \in IH \Rightarrow A(2t;1 +
t;1)

    \overrightarrow{OA}.\overrightarrow{OI}
= 0 \Leftrightarrow t = - 2

    Suy ra \left\{ \begin{matrix}
A( - 4; - 1;1) \in d \\
\overrightarrow{u_{d}} = \left\lbrack
\overrightarrow{OI};\overrightarrow{OH} \right\rbrack = ( - 1;2; - 2) \\
\end{matrix} \right.\  \Rightarrow (d):\frac{x + 4}{1} = \frac{y + 1}{-
2} = \frac{z - 1}{2}

    Cách 2: VTPT của (ABC)\overrightarrow{n} = \left\lbrack
\overrightarrow{OH};\overrightarrow{OK} \right\rbrack = 4(1; -
2;2).

    \overrightarrow{OH}.\overrightarrow{OK} = 0
\Rightarrow \widehat{HOK} = 90^{0}.

    Gọi (\alpha) là mặt phẳng đi qua O;\overrightarrow{n_{\alpha}} =
\overrightarrow{OK} = \frac{4}{3}( - 2;1;2) \Rightarrow (\alpha): - 2x +
y + 2z = 0.

    Gọi (\beta) là mặt phẳng đi qua O;\overrightarrow{n_{\beta}} =
\overrightarrow{OH} = (2;2;1) \Rightarrow (\beta):2x + 2y + z =
0.

    Ta có d\left( A;(\alpha) \right) =
d\left( A;(\beta) \right), đối chiếu phương án A;B;C;D thấy A( - 4; - 1;1) thỏa mãn.

  • Câu 4: Vận dụng
    Tính tổng các phần tử của tập S

    Trong không gian Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{2} =
\frac{y}{1} = \frac{z}{3},d_{2}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 + t \\
z = m \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Gọi S là tập hợp tất cả các số m sao cho d_{1},d_{2} chéo nhau và khoảng cách giữa chúng bằng \frac{5}{\sqrt{19}}. Tính tổng tất cả các phần tử của S.

    Hướng dẫn:

    Vectơ chỉ phương của d_{1},d_{2}\overrightarrow{u_{1}} =
(2;1;3),\overrightarrow{u_{2}} = (1;1;0)

    Khi đó: \overrightarrow{n} = \left\lbrack
\overrightarrow{u_{1}},\overrightarrow{u_{2}} ightbrack = ( -
3;3;1).

    Gọi (P) là mặt phẳng chứa d_{1} song song với d_{2}.

    Tức là, (P) qua A(1;0;0) và nhận \overrightarrow{n} làm vectơ pháp tuyến.

    Ta có phương trình (P):3x - 3y - z - 3 =
0

    Xét điểm B(1;2;m) \in d_{2}. Do d_{1},d_{2} chéo nhau nên B otin (P) \Leftrightarrow m eq -
6.

    Lại có:

    d\left( d_{1};d_{2} ight) =
\frac{5}{\sqrt{19}} \Leftrightarrow d\left( B;(P) ight) =
\frac{5}{\sqrt{19}}

    \Leftrightarrow \frac{|3 - 6 - m -
3|}{\sqrt{19}} = \frac{5}{\sqrt{19}} \Leftrightarrow \left\lbrack
\begin{matrix}
m = - 1 \\
m = - 11 \\
\end{matrix} ight.

    Vậy tổng các phần tử của S là - 1 - 11 =
- 12.

  • Câu 5: Vận dụng cao
    Tính diện tích tam giác MAB

    Trong không gian Oxyz, cho mặt phẳng (\alpha):x - z - 3 = 0 và điểm M(1;1;1). Gọi A là điểm thuộc tia Oz, B là hình chiếu của A lên (\alpha). Biết rằng tam giác MAB cân tại M. Diện tích của tam giác MAB bằng:

    Hướng dẫn:

    Gọi A(0;0;a) với a > 0. Đường thẳng AB đi qua điểm A(0;0;a) và có một vectơ chỉ phương \overrightarrow{u} = (1;0; - 1) có phương trình là: \left\{ \begin{matrix}
x = t \\
y = 0 \\
z = a - t \\
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    B \in (\alpha) \Rightarrow t - a + t - 3
= 0

    \Rightarrow t = \frac{3 + a}{2}
\Rightarrow B\left( \frac{3 + a}{2};0;\frac{a - 3}{2}
\right)

    Vì tam giác MAB cân tại M \Rightarrow MA = MB

    \Rightarrow 1 + 1 + (a - 1)^{2} = \left(
\frac{a + 1}{2} \right)^{2} + 1 + \left( \frac{a - 5}{2}
\right)^{2}

    \Rightarrow a^{2} - 2a + 1 + 1 =
\frac{a^{2} + 2a + 1}{4} + \frac{a^{2} - 10a + 25}{4}

    \Rightarrow 4a^{2} - 8a + 8 = 2a^{2} -
8a + 26

    \Rightarrow 2a^{2} = 18 \Rightarrow a =
3 \Rightarrow A(0;0;3),B(3;0;0)

    Cách 1: Ta có:

    \overrightarrow{AM} = (1;1; -
2),\overrightarrow{BM} = ( - 2;1;1)

    \Rightarrow \left\lbrack
\overrightarrow{AM}.\overrightarrow{BM} \right\rbrack =
(3;3;3)

    \Rightarrow S_{ABM} = \frac{1}{2}.\left|
\left\lbrack \overrightarrow{AM}.\overrightarrow{BM} \right\rbrack
\right| = \frac{3\sqrt{3}}{2}

    Cách 2: Gọi I là trung điểm của AB. Ta có I\left( \frac{3}{2};0;\frac{3}{2}
\right).

    IM = \sqrt{\left( \frac{1}{2} \right)^{2}
+ ( - 1)^{2} + \left( \frac{1}{2} \right)^{2}} =
\frac{\sqrt{6}}{2}.

    AB = \sqrt{3^{2} + 0^{2} + ( - 3)^{2}} =
3\sqrt{2}.

    Do đó S_{ABM} = \frac{1}{2}IM.AB =
\frac{1}{2}.\frac{\sqrt{6}}{2}.3\sqrt{2} =
\frac{3\sqrt{3}}{2}.

  • Câu 6: Vận dụng
    Vị trí tương đối của 2 đường thẳng

    Hai đường thẳng \left( {d'} ight):x = 8t - 1;\,\,y =  - 1 - 14t;\,\,z =  - 12t và  \left( d ight):x - 2y + 3z - 1 = 0;\,\,\,2x + 2y - z + 4 = 0\,\,\,\left( {t \in R } ight)

    Hướng dẫn:

    Ta có đường thẳng (d’) qua E (-1, -1, 0) có vecto chỉ phương \overrightarrow a  = \left( {8, - 14, - 12} ight)

    Hai pháp vecto của hai đường thẳng \left( d ight):x - 2y + 3z - 1 = 0;\,\,\,2x + 2y - z + 4 = 0\,\,\,\left( {t \in R } ight) lần lượt là \overrightarrow {{n_1}}  = \left( {1, - 2,3} ight);\overrightarrow {{n_2}}  = \left( {2,2, - 1} ight)

    Vecto chỉ phương của \left( d ight):\overrightarrow b  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( { - 4,7,6} ight)

    Ta có: \frac{8}{{ - 4}} = \frac{{ - 14}}{7} = \frac{{ - 12}}{6} =  - 2 và tọa độ E\left( { - 1, - 1,0} ight) thỏa mãn phương trình của \left( d ight) \Rightarrow \left( D ight) \equiv \left( d ight)

  • Câu 7: Vận dụng
    Khoảng cách giữa 2 đường thẳng

    Khoảng cánh giữa hai đường thẳng : {(d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. và  ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. là:

    Hướng dẫn:

     Chuyển d1 về dạng tham số :({d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. \Rightarrow ({d_1}):\left\{ \begin{array}{l}x = t\\y =  - t\\z =  - 4 - 2t\end{array} ight.

    Qua đó, ta có A(0,0, - 4) \in ({d_1}) và 1 vectơ chỉ phương của (d1): \overrightarrow a  = (1, - 1, - 2).

    Chuyển (d2) về dạng tham số : ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. \Rightarrow ({d_2}):\left\{ \begin{array}{l}x =  - 5 + 3t\\y = 2 - t\\z = t\end{array} ight.

    Qua đó, ta có B( - 5,2,0) \in ({d_2}) và 1 vectơ chỉ phương của ({d_2}):\overrightarrow b (3, - 1,1).

    Áp dụng công thức tính Khoảng cách d1 và d2 , ta được:

    d = \frac{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB} } ight|}}{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight]} ight|}} = \frac{9}{{\sqrt {62} }}

    .

  • Câu 8: Vận dụng
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = - 2 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và điểm A(1;0;2).

    a) Điểm B(2;1; - 1) không thuộc đường thẳng d. Đúng||Sai

    b) Đường thẳng d có một vectơ chỉ phương \overrightarrow{u} =
(1;0;1). Sai||Đúng

    c) Đường thẳng \Delta đi qua điểm A(1;0;2), đồng thời vuông góc và cắt đường thẳng d\frac{x + 1}{2} = \frac{y}{1} = \frac{z + 2}{-
3}. Sai||Đúng

    d) M(a;b;c)là một điểm nằm trên đường thẳng d và cách điểm A một khoảng có độ dài bằng \sqrt{26}. Khi b > 0 thì a + b + c = 3. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng (d):\left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = - 2 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và điểm A(1;0;2).

    a) Điểm B(2;1; - 1) không thuộc đường thẳng d. Đúng||Sai

    b) Đường thẳng d có một vectơ chỉ phương \overrightarrow{u} =
(1;0;1). Sai||Đúng

    c) Đường thẳng \Delta đi qua điểm A(1;0;2), đồng thời vuông góc và cắt đường thẳng d\frac{x + 1}{2} = \frac{y}{1} = \frac{z + 2}{-
3}. Sai||Đúng

    d) M(a;b;c)là một điểm nằm trên đường thẳng d và cách điểm A một khoảng có độ dài bằng \sqrt{26}. Khi b > 0 thì a + b + c = 3. Sai||Đúng

    a) Đúng

    b) Sai

    c) Sai

    d) Sai

    Phương án a) đúng: Thay tọa độ điểm B(1;2; - 1) vào phương trình đường thẳng d ta được: \left\{ \begin{matrix}
2 = 2 + t \\
1 = t \\
- 1 = - 2 + t
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
t = 0 \\
t = 0 \\
t = 0
\end{matrix} \right.\  \Rightarrow B(1;2; - 1) \notin d.

    Phương án b) sai: Đường thẳng d có một vectơ chỉ phương \overrightarrow{u} = (1;1;1).

    Phương án c) sai: Gọi H = d \cap \Delta
\Leftrightarrow H \in d nên H(2 +
t;t; - 2 + t).

    Ta có: \overrightarrow{AH} = (1 + t;t; -
4 + t) là một vectơ chỉ phương của đường thẳng \Delta.

    \Delta\bot d \Rightarrow
\overrightarrow{AH}.\overrightarrow{u} = 0 \Leftrightarrow 1(1 + t) + 1.t + 1( - 4 + t) = 0
\Leftrightarrow t = 1

    \Rightarrow \overrightarrow{AH} = (2;1;
- 3)

    Suy ra \Delta:\frac{x - 1}{2} =
\frac{y}{1} = \frac{z - 2}{- 3}

    Phương án d) sai: Ta có M \in d
\Rightarrow M(2 + t;t;2 + t) nên \overrightarrow{AM} = (1 + t;t; - 4 +
t).

    AM = \sqrt{26} \Leftrightarrow \sqrt{(1 +
t)^{2} + t^{2} + ( - 4 + t)^{2}} = \sqrt{26}

    \Leftrightarrow 3t^{2} - 6t - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = - 1 \\
t = 3
\end{matrix} \right.

    b > 0 \Rightarrow t >
0. Vậy M(5;3;1) \Rightarrow a + b +
c = 9.

  • Câu 9: Vận dụng
    Xác định phương trình đường thẳng

    Trong không gian Oxyz, cho mặt phẳng (P): x − 4y + z + 1 = 0 và hai điểm A(1; 0; 2), B(2; 5; 3). Đường thẳng d đi qua điểm A và song song với mặt phẳng (P) sao cho khoảng cách từ điểm B đến đường thẳng d nhỏ nhất có phương trình là

    Hướng dẫn:

    Giả sử đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (1;b;c)

    Phương trình đường thẳng d có dạng \left\{ \begin{matrix}
x = 1 + t \\
y = bt \\
z = 2 + ct \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do đường thẳng d k (P) nên 1 - 4b + c = 0
\Rightarrow c = 4b - 1.

    Khoảng cách từ B đến đường thẳng d là:

    d(B;d) = \frac{\left| \overrightarrow{u}
\land \overrightarrow{AB} ight|}{\left| \overrightarrow{u} ight|} =
\frac{\sqrt{378b^{2} - 216b + 54}}{\sqrt{17b^{2} - 8b + 2}}

    Xét hàm số f(b) = \frac{378b^{2} - 216b +
54}{17b^{2} - 8b + 2}

    f'(b) = \frac{648b^{2} -
324b}{\left( 17b^{2} - 8b + 2 ight)^{2}} \Rightarrow f'(b) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
b = 0 \\
b = \frac{1}{2} \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta được khoảng cách từ B đến d nhỏ nhất tại b = \frac{1}{2}

    Khi đó \overrightarrow{u} = \left(
1;\frac{1}{2};1 ight), chọn \overrightarrow{u} = (2;1;2).

    Phương trình đường thẳng d:\frac{x -
3}{2} = \frac{y - 1}{1} = \frac{z - 2}{2} hay \frac{x - 3}{2} = \frac{1 - y}{- 1} = \frac{z -
4}{2}.

  • Câu 10: Vận dụng
    Chọn phương án đúng

    Trong không gian với hệ tọa độ  Oxyz  cho điểm I(1;1;2), hai đường thẳng \Delta_{1}:\left\{ \begin{matrix}
x = 3 + t \\
y = - 1 + 2t \\
z = 4 \\
\end{matrix} \right.\Delta_{2}:\frac{x + 2}{1} = \frac{y}{1} = \frac{z
- 2}{2}. Phương trình đường thẳng d đi qua điểm I và cắt hai đường thẳng \Delta_{1},\Delta_{2} là.

    Hướng dẫn:

    Gọi \left( \alpha_{1} ight) là mặt phẳng qua I\Delta_{1}

    \Delta_{1} đi qua M_{1}(3; - 1;4) và có vectơ chỉ phương \overrightarrow{a_{1}} =
(1;2;0)

    \overrightarrow{IM_{1}} = (2; -
2;2)

    \left( \alpha_{1} ight) có vectơ pháp tuyến \overrightarrow{n_{1}} =
\left\lbrack \overrightarrow{a_{1}},\overrightarrow{IM_{1}}
ightbrack = (4; - 2; - 6)

    Gọi \left( \alpha_{2} ight) là mặt phẳng qua I\Delta_{2}

     

    \Delta_{2} đi qua M_{2}( - 2;0;2) và có vectơ chỉ phương \overrightarrow{a_{2}} =
(1;1;2)

    \overrightarrow{IM_{2}} = ( - 3; -
1;0)

    \left( \alpha_{2} ight) có vectơ pháp tuyến \overrightarrow{n_{2}} =
\left\lbrack \overrightarrow{a_{2}},\overrightarrow{IM_{2}}
ightbrack = (2; - 6;2)

    d đi qua điểm I(1;1;2) và có vectơ chỉ phương \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ightbrack = ( - 40; -
20; - 20)

    Vậy phương trình đường thẳng d\left\{ \begin{matrix}
x = 1 + 2t \\
y = 1 + t \\
z = 2 + t \\
\end{matrix} ight.

  • Câu 11: Thông hiểu
    Tìm tọa độ điểm C

    Hai đương thẳng (d_{1}):\left\{
\begin{matrix}
x = 2t - 3 \\
y = 3t - 2 \\
z = 4t + 6 \\
\end{matrix} \right.(d_{2}) : \left\{ \begin{matrix}
x = 5 + t' \\
y = - 1 - 4t' \\
z = 20 + t' \\
\end{matrix} \right. cắt nhau tại C.

    Tọa độ điểm C là:

    Hướng dẫn:

    Hệ phương trình \left\{ \begin{matrix}
2t - 3 = 5 + t' \\
3t - 2 = - 1 - 4t' \\
4t + 6 = 20 + t' \\
\end{matrix} \right.có nghiệm t =
3,t' = - 2 .

    Từ đó có C(3,7,18) .

  • Câu 12: Thông hiểu
    Xác định vectơ chỉ phương

    Trong không gian Oxyz, cho tam giác ABC với A(1;1;1),B( - 1;1;0),C(1;3;2). Đường trung tuyến xuất phát từ đỉnh A của tam giác ABC nhận vectơ nào dưới đây làm một véc-tơ chỉ phương?

    Hướng dẫn:

    Gọi M là trung điểm của BC, suy ra tọa độ điểm M(0;2;1).

    Đường trung tuyến xuất phát từ đỉnh A có vectơ chỉ phương là \overrightarrow{AM} = ( - 1;1;0).

  • Câu 13: Thông hiểu
    Tìm khoảng cách từ điểm đến đường thẳng

    Trong không gian với hệ tọa độ Oxyzkhoảng cách từ điểm M(1;3;2) đến đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + t \\
y = 1 + t \\
z = - t \\
\end{matrix} \right. bằng

    Hướng dẫn:

    Đường thẳng \Delta đi qua A(1;1;0) và có một VTCP là \overrightarrow{u} = (1;1; - 1)

    Suy ra \overrightarrow{AM} =
(0;2;2); \left\lbrack
\overrightarrow{u};\overrightarrow{AM} \right\rbrack = (4; -
2;2)

    Vậy d(M;\Delta) = \frac{\left|
\left\lbrack \overrightarrow{u};\overrightarrow{AM} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = 2\sqrt{2}

  • Câu 14: Vận dụng cao
    Tính tổng các tham số

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{1} = \frac{y + 2}{- 1} = \frac{z}{-
2}. Mặt phẳng (P) chứa đường thẳng d và tạo với trục tung góc lớn nhất. Biết rằng phương trình (P) có dạng là ax + by + cz + 9 = 0. Tính tổng a + b + c

    Hướng dẫn:

    Hình vẽ minh họa

    Đường thẳng d đi qua điểm M(1; −2; 0), có véc-tơ chỉ phương \overrightarrow{u} = (1; - 1; - 2)

    Gọi ∆ là đường thẳng đi qua M và song song với trục Oy.

    Phương trình tham số của \Delta:\left\{
\begin{matrix}
x = 1 \\
y = - 2 + t \\
z = 0 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Lấy điểm N(1; 2; 0) ∈ ∆.

    Gọi H, K lần lượt là hình chiếu vuông góc của N lên mặt phẳng (P) và đường thẳng d.

    Khi đó \left( (P),d ight) = \left(
(P),\Delta ight) = \widehat{NMH}

    Lại có: \cos\widehat{NMH} = \frac{MH}{NM}
\leq \frac{MK}{NM}

    Vậy \widehat{NMH}lớn nhất khi và chỉ khi H trùng với K

    Suy ra (P) đi qua d và vuông góc với mặt phẳng (Q), ((Q) là mặt phẳng chứa d và song song với Oy).

    Vectơ pháp tuyến của (Q) là \overrightarrow{n_{Q}} = \left\lbrack
\overrightarrow{u},\overrightarrow{j} ightbrack =
(2;0;1)

    Vectơ pháp tuyến của (P) là \overrightarrow{n_{P}} = \left\lbrack
\overrightarrow{n_{Q}},\overrightarrow{u} ightbrack = (1;5; -
2)

    Phương trình mặt phẳng (P) là 1(x - 1) +
5(y + 2) - 2(z - 0) = 0

    \Leftrightarrow x + 5y - 2z + 9 =
0

    Vậy a + b + c = 4

  • Câu 15: Vận dụng
    Tính khoảng cách từ O đến (P)

    Trong không gian với hệ toạ độ Oxyz, cho điểm A(2;5;3) và đường thẳng d:\frac{x - 1}{2} = \frac{y}{1} = \frac{z -
2}{2}. Gọi (P) là mặt phẳng chứa d sao cho khoảng cách từ điểm A đến (P) là lớn nhất. Khoảng cách từ gốc tọa độ O đến (P) bằng:

    Hướng dẫn:

    Gọi K là hình chiếu vuông góc của A trên d và H là hình chiếu vuông góc của A trên (P) thì d(A,(P)) = AH ≤ AK không đổi.

    Vậy d(A,(P)) lớn nhất khi và chỉ khi H ≡ K, khi đó (P) là mặt phẳng chứa d và vuông góc với AK.

    Ta tìm được (P):x - 4y + z - 3 = 0
\Rightarrow d\left( O;(P) ight) = \frac{3}{\sqrt{18}} =
\frac{1}{\sqrt{2}}.

  • Câu 16: Vận dụng cao
    PT hình chiếu của đường thẳng

    Cho hai đường thẳng: ({d_1}):\frac{{x - 3}}{{ - 7}} = \frac{{y - 1}}{2} = \frac{{z - 1}}{3},({d_2}):\frac{{x - 7}}{1} = \frac{{y - 3}}{2} = \frac{{z - 9}}{{ - 1}}

    và mặt phẳng (\alpha ):x + y + z + 3 = 0 .

    Hình chiếu của ({d_2}) theo phương của ({d_1})  lên mặt phẳng (\alpha ) có phương trình tổng quát:

    Hướng dẫn:

    Vectơ chỉ phương của ({d_1}):\overrightarrow a  = ( - 7,2,3). Vectơ chỉ phương của ({d_2}):\overrightarrow b  = (1,2, - 1).

    Phương trình của mặt phẳng chứa ({d_2}) và có phương của ({d_1})có dạng: 

    2x + y + 4z + D = 0

    Điểm A (7, 3, 9) thuộc mặt phẳng này 

    => D = -53

    Giao tuyến của mặt phẳng này với mặt phẳng (\alpha ) là hình chiếu của ({d_2}) theo phương của ({d_1}) lên (\alpha ): \left\{ \begin{array}{l}2x + y + 4z - 53 = 0\\x + y + z + 3 = 0\end{array} ight.

  • Câu 17: Vận dụng
    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ  Oxyz,  cho ba đường thẳng d_{1}:\left\{ \begin{matrix}
x = t \\
y = 4 - t \\
z = - 1 + 2t \\
\end{matrix} \right. d_{2}:\frac{x}{1} = \frac{y - 2}{- 3} = \frac{z}{-
3}d_{2}:\frac{x + 1}{5} =
\frac{y - 1}{2} = \frac{z + 1}{1}. Gọi \Delta là đường thẳng cắt d_{1},d_{2},d_{3} lần lượt tại các điểm A,B,C sao cho AB = BC. Phương trình đường thẳng \Delta

    Hướng dẫn:

    Gọi A \in d_{1},B \in d_{2},C \in
d_{3}

    Ta có: A(a;4 - a; - 1 + 2a),B(b;2 - 3b; -
3b),C( - 1 + 5c;1 + 2c; - 1 + c)

    Yêu cầu bài toán \Leftrightarrow
A,B,C thẳng hàng và AB =
BC

    \Leftrightarrow B là trung điểm AC \Leftrightarrow \left\{ \begin{matrix}
a - 1 + 5c = 2b \\
4 - a + 1 + 2c = 2(2 - 3b) \\
- 1 + 2a - a + c = 2( - 3b) \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 0 \\
\end{matrix} ight.\  ight.

    Suy ra A(1;3;1),B(0;2;0),,C( - 1;1; -
1)

    \Delta đi qua điểm B(0;2;0và có vecto chỉ phương là \overrightarrow{CB} = (1;1;1)

    Vậy phương trình đường thẳng \Delta\frac{x}{1} = \frac{y - 2}{1} =
\frac{z}{1}

  • Câu 18: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2; - 2),B(2;2; - 4). Giả sử I(a;b;c) là tâm đường tròn ngoại tiếp tam giác OAB. Tính T = a^{2} + b^{2} + c^{2}.

    Hướng dẫn:

    Ta có OA = AB = 2\sqrt{2} nên tam giác OAB cân tại OAB, vì vậy I thuộc đường trung tuyến qua A(d):\left\{ \begin{matrix}
x = 1 + t \\
y = 1 - t \\
z = - 2 \\
\end{matrix} \right.\  \Rightarrow I(1 + t;1 - t; - 2)

    IA = IO \Leftrightarrow t = 0
\Rightarrow I(2;0; - 2)

    Do đó T = 8

  • Câu 19: Thông hiểu
    Chọn phương án thích hợp

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \left( \alpha  \right):2x - y + 2z - 3 = 0. Phương trình đường thẳng d đi qua điểm A(2;-3;-1), song song với hai mặt phẳng \left( \alpha  \right);\left( {Oyz} \right) là.

    Hướng dẫn:

    \left( \alpha  ight) có vectơ pháp tuyến \overrightarrow {{n_\alpha }}  = \left( {2; - 1;2} ight)

    (Oyz) có vectơ pháp tuyến \overrightarrow i  = \left( {1;0;0} ight)

    d đi qua điểm A và có vectơ chỉ phương là \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{n_{\alpha}},\overrightarrow{i} ightbrack =
(0;2;1)

    Vậy phương của d là \left\{ \begin{matrix}
x = 2 \\
y = - 3 + 2t \\
z = - 1 + t \\
\end{matrix} ight.

  • Câu 20: Vận dụng cao
    Tính giá trị của biểu thức

    Trong không gian hệ tọa độ Oxyz, cho điểm A(1;4;5), B(3;4;0), C(2; - 1;0) và mặt phẳng (P):3x - 3y - 2z - 12 = 0. Gọi M(a;b;c) thuộc (P) sao cho MA^{2} + MB^{2} + 3MC^{2} đạt giá trị nhỏ nhất. Tính tổng a + b + c.

    Hướng dẫn:

    Giả sử I(x;y;z) là điểm thỏa mãn \overrightarrow{IA} + \overrightarrow{IB} +
3\overrightarrow{IC} = \overrightarrow{0}.

    Khi đó \left\{ \begin{matrix}
\overrightarrow{IA} = (1 - x;4 - y;5 - z) \\
\overrightarrow{IB} = (3 - x;4 - y; - z) \\
\overrightarrow{IC} = (2 - x; - 1 - y; - z) \\
\end{matrix} \right.

    \overrightarrow{IA} + \overrightarrow{IB}
+ 3\overrightarrow{IC} = (10 - 5x;5 - 5y;5 - 5z);

    \overrightarrow{IA} + \overrightarrow{IB}
+ 3\overrightarrow{IC} = \overrightarrow{0} \Leftrightarrow \left\{
\begin{matrix}
x = 2 \\
y = 1 \\
z = 1 \\
\end{matrix} \right.\  \Rightarrow I(2;1;1);

    MA^{2} + MB^{2} + 3MC^{2} =
{\overrightarrow{MA}}^{2} + {\overrightarrow{MB}}^{2} +
3{\overrightarrow{MC}}^{2}

    = \left( \overrightarrow{MI} +
\overrightarrow{IA} \right)^{2} + \left( \overrightarrow{MI} +
\overrightarrow{IB} \right)^{2} + 3\left( \overrightarrow{MI} +
\overrightarrow{IC} \right)^{2}

    = 5MI^{2} + 2\overrightarrow{MI}\left(
\overrightarrow{IA} + \overrightarrow{IB} + 3\overrightarrow{IC} \right)
+ IA^{2} + IB^{2} + IC^{2}

    = 5MI^{2} + IA^{2} + IB^{2} +
IC^{2} (vì \overrightarrow{IA} +
\overrightarrow{IB} + 3\overrightarrow{IC} =
\overrightarrow{0})

    Vì I cố định nên MA^{2} + MB^{2} +
3MC^{2} đạt giá trị nhỏ nhất khi MI nhỏ nhất, khi đó M là hình chiếu vuông góc của I lên (P).

    Gọi \Delta là đường thẳng qua I và vuông góc với (P)

    Phương trình đường thẳng \Delta:\left\{
\begin{matrix}
x = 2 + 3t \\
y = 1 - 3t \\
z = 1 - 2t \\
\end{matrix} \right..

    Tọa độ của M là nghiệm hệ phương trình:

    \left\{ \begin{matrix}x = 2 + 3t \\y = 1 - 3t \\z = 1 - 2t \\3x - 3y - 2z - 12 = 0 \\\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}t = \dfrac{1}{2} \\x = \dfrac{7}{2} \\y = - \dfrac{1}{2} \\x = 0 \\\end{matrix} \right.

    \Rightarrow M\left( \frac{7}{2}; -
\frac{1}{2};0 \right) \Rightarrow a + b + c = 3

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo