Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường thẳng trong không gian CTST (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Xác định phương trình đường thẳng d

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABCA(2;1;
- 2),B(4; - 1;1),C(0; - 3;1). Phương trình d đi qua trọng tâm của tam giác ABC và vuông góc với mặt phẳng (ABC)

    Hướng dẫn:

    Gọi G là trọng tâm ABC, ta có G(2 ; -1 ; 0)

    Gọi \overrightarrow{a_{d}} là vectơ chỉ phương của d

    \overrightarrow{AB} = (2; -
2;3)

    \overrightarrow{AC} = ( - 2; -
4;3)

    d\bot(ABC) \Rightarrow \left\{
\begin{matrix}
d\bot AB \\
d\bot AC \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
{\overrightarrow{a}}_{d}\bot\overrightarrow{AB} \\
{\overrightarrow{a}}_{d}\bot\overrightarrow{AC} \\
\end{matrix} ight.

    \Rightarrow {\overrightarrow{a}}_{d} =
\left\lbrack \overrightarrow{AB};\overrightarrow{AC} ightbrack = (6;
- 12; - 12) = 6(1; - 2; - 2)

    d đi qua G(2; - 1;0) và có vectơ chỉ phương là \overrightarrow{a_{d}} = (1; - 2; -
2)

    Vậy phương trình tham số của d\left\{ \begin{matrix}
x = 2 + t \\
y = - 1 - 2t \\
z = - 2t \\
\end{matrix} ight.

  • Câu 2: Vận dụng cao
    Tính giá trị của biểu thức

    Trong không gian hệ tọa độ Oxyz, cho điểm A(1;4;5), B(3;4;0), C(2; - 1;0) và mặt phẳng (P):3x - 3y - 2z - 12 = 0. Gọi M(a;b;c) thuộc (P) sao cho MA^{2} + MB^{2} + 3MC^{2} đạt giá trị nhỏ nhất. Tính tổng a + b + c.

    Hướng dẫn:

    Giả sử I(x;y;z) là điểm thỏa mãn \overrightarrow{IA} + \overrightarrow{IB} +
3\overrightarrow{IC} = \overrightarrow{0}.

    Khi đó \left\{ \begin{matrix}
\overrightarrow{IA} = (1 - x;4 - y;5 - z) \\
\overrightarrow{IB} = (3 - x;4 - y; - z) \\
\overrightarrow{IC} = (2 - x; - 1 - y; - z) \\
\end{matrix} \right.

    \overrightarrow{IA} + \overrightarrow{IB}
+ 3\overrightarrow{IC} = (10 - 5x;5 - 5y;5 - 5z);

    \overrightarrow{IA} + \overrightarrow{IB}
+ 3\overrightarrow{IC} = \overrightarrow{0} \Leftrightarrow \left\{
\begin{matrix}
x = 2 \\
y = 1 \\
z = 1 \\
\end{matrix} \right.\  \Rightarrow I(2;1;1);

    MA^{2} + MB^{2} + 3MC^{2} =
{\overrightarrow{MA}}^{2} + {\overrightarrow{MB}}^{2} +
3{\overrightarrow{MC}}^{2}

    = \left( \overrightarrow{MI} +
\overrightarrow{IA} \right)^{2} + \left( \overrightarrow{MI} +
\overrightarrow{IB} \right)^{2} + 3\left( \overrightarrow{MI} +
\overrightarrow{IC} \right)^{2}

    = 5MI^{2} + 2\overrightarrow{MI}\left(
\overrightarrow{IA} + \overrightarrow{IB} + 3\overrightarrow{IC} \right)
+ IA^{2} + IB^{2} + IC^{2}

    = 5MI^{2} + IA^{2} + IB^{2} +
IC^{2} (vì \overrightarrow{IA} +
\overrightarrow{IB} + 3\overrightarrow{IC} =
\overrightarrow{0})

    Vì I cố định nên MA^{2} + MB^{2} +
3MC^{2} đạt giá trị nhỏ nhất khi MI nhỏ nhất, khi đó M là hình chiếu vuông góc của I lên (P).

    Gọi \Delta là đường thẳng qua I và vuông góc với (P)

    Phương trình đường thẳng \Delta:\left\{
\begin{matrix}
x = 2 + 3t \\
y = 1 - 3t \\
z = 1 - 2t \\
\end{matrix} \right..

    Tọa độ của M là nghiệm hệ phương trình:

    \left\{ \begin{matrix}x = 2 + 3t \\y = 1 - 3t \\z = 1 - 2t \\3x - 3y - 2z - 12 = 0 \\\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}t = \dfrac{1}{2} \\x = \dfrac{7}{2} \\y = - \dfrac{1}{2} \\x = 0 \\\end{matrix} \right.

    \Rightarrow M\left( \frac{7}{2}; -
\frac{1}{2};0 \right) \Rightarrow a + b + c = 3

  • Câu 3: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ  Oxyz,  cho đường thẳng d:\frac{x - 3}{2} = \frac{y + 2}{1} = \frac{z +
1}{- 1}, mặt phẳng (P):x + y + z +
2 = 0 . Gọi M là giao điểm của d(P). Gọi \Delta là đường thẳng nằm trong (P) vuông góc với d và cách M một khoảng bằng \sqrt{42}. Phương trình đường thẳng (P) là.

    Hướng dẫn:

    Gọi M = d \cap (P)

    \mathbf{M \in d \Rightarrow M}\left(
\mathbf{3}\mathbf{+}\mathbf{2}\mathbf{t}\mathbf{;}\mathbf{-}\mathbf{2}\mathbf{+
t}\mathbf{;}\mathbf{-}\mathbf{1}\mathbf{- t} ight)

    \mathbf{M \in}\left( \mathbf{P}
ight)\mathbf{\Rightarrow t = -}\mathbf{1}\mathbf{\Rightarrow M}\left(
\mathbf{1;}\mathbf{-}\mathbf{3;0} ight)

    \left( \mathbf{P} ight) có vectơ pháp tuyến \overrightarrow{\mathbf{n}_{\mathbf{P}}}\mathbf{=}\left(
\mathbf{1;1;1} ight)

    \mathbf{d} có vectơ chỉ phương \overrightarrow{\mathbf{a}_{\mathbf{d}}}\mathbf{=}\left(
\mathbf{2;1;}\mathbf{-}\mathbf{1} ight)

    \mathbf{\Delta}có vectơ chỉ phương \overrightarrow{\mathbf{a}_{\mathbf{\Delta}}}\mathbf{=}\left\lbrack
\overrightarrow{\mathbf{a}_{\mathbf{d}}}\mathbf{,}\overrightarrow{\mathbf{n}_{\mathbf{P}}}
ightbrack\mathbf{=}\left( \mathbf{2;}\mathbf{-}\mathbf{3;1}
ight)

    Gọi N(x;y;z) là hình chiếu vuông góc của M trên \Delta, khi đó \overrightarrow{MN} = (x - 1;y +
3;z).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MN}\bot\overrightarrow{a_{\Delta}} \\
N \in (P) \\
MN = \sqrt{42} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2x - 3y + z - 11 = 0 \\
x + y + z + 2 = 0 \\
(x - 1)^{2} + (y + 3)^{2} + z^{2} = 42 \\
\end{matrix} ight.

    Giải hệ ta tìm được hai điểm N(5; - 2; -
5)N( - 3; - 4;5)

    Với N(5; - 2; -
5), ta có \Delta:\frac{x - 5}{2} = \frac{y + 2}{- 3} =
\frac{z + 5}{1}

    Với N( - 3; - 4;5), ta có \Delta:\frac{x + 3}{2} = \frac{y + 4}{- 3} =
\frac{z - 5}{1}

  • Câu 4: Vận dụng
    Tính diện tích tam giác

    Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng (\alpha):x - z - 3 = 0 và điểm M(1;1;1). Gọi A là điểm thuộc tia Oz, gọi B là hình chiếu của A lên (\alpha). Biết rằng tam giác MAB cân tại M. Diện tích của tam giác MAB bằng:

    Hướng dẫn:

    Gọi A (0; 0; a).

    Đường thẳng AB qua A và vuông góc với (α) nên có phương trình \left\{ \begin{matrix}
x = t \\
y = 0 \\
z = a - t \\
\end{matrix} ight.

    B là hình chiếu của A lên (α) nên tọa độ B thỏa mãn hệ \left\{ \begin{matrix}x = t \\y = 0 \\z = a - t \\x - z - 3 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{a + 3}{2} \\y = 0 \\z = \dfrac{a - 3}{2} \\\end{matrix} ight.

    Suy ra B\left( \frac{a + 3}{2};0;\frac{a
- 3}{2} ight)

    Tam giác MAB cân tại M nên MA =
MB

    \Leftrightarrow 1 + 1 + (1 - a)^{2} =
\left( \frac{a + 1}{2} ight)^{2} + 1 + \left( \frac{a - 5}{2}
ight)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 3 \\
a = - 3 \\
\end{matrix} ight.

    Nếu a = 3 thì tọa độ A (0; 0; 3), B (3; 0; 0). Diện tích tam giác MAB là S = \frac{1}{2}\left| \left\lbrack
\overrightarrow{MA};\overrightarrow{MB} ightbrack ight| =
\frac{3\sqrt{3}}{2}

    Nếu a = −3 thì tọa độ A (0; 0; −3) và B (0; 0; −3) trùng nhau nên không thỏa mãn.

    Vậy diện tích của tam giác MAB bằng: \frac{3\sqrt{3}}{2}.

  • Câu 5: Vận dụng cao
    Tính thể tích V của khối tứ diện

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + t \\
y = 2 - 2t \\
z = - 3 - t \\
\end{matrix} \right.d_{2}:\left\{ \begin{matrix}
x = 4 + 3t \\
y = 3 + 2t \\
z = 1 - t \\
\end{matrix} \right.. Trên đường thẳng d_{1} lấy hai điểm A; B sao cho AB = 3. Trên đường thẳng d_{2} lấy hai điểm C;D sao cho CD = 4. Tính thể tích V của khối tứ diện ABCD.

    Hướng dẫn:

    Ta có đường thẳng d_{1} đi qua điểm M_{1}(1;2; - 3) và có vec tơ chỉ phương \overrightarrow{u_{1}}(1; - 2; -
1)

    Ta có đường thẳng d_{2} đi qua điểm M_{2}(4;3;1) và có vec tơ chỉ phương \overrightarrow{u_{2}}(3;2; -
1)

    Ta có khoảng cách giữa d_{1};d_{2}d = \frac{\left| \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{1}}
\right\rbrack.\overrightarrow{M_{1}M_{2}} \right|}{\left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{1}} \right\rbrack} =
\frac{|42|}{\sqrt{16 + 4 + 64}} = \sqrt{21}

    Nhận xét rằng d_{1}\bot
d_{2}

    Thể tích khối tứ diện cần tìm là V =
\frac{1}{6}AB.CD.d.sin\alpha = \frac{1}{6}.3.4.\sqrt{21} =
2\sqrt{21}.

  • Câu 6: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyzcho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 1 + 2t \\
z = 3 + t \\
\end{matrix} \right. và mặt phẳng (P):x - y + 3 = 0.

    a) [NB] Đường thẳng d có một vectơ chỉ phương là: \overrightarrow{u} = ( - 1;2;1). Đúng||Sai

    b) [TH] Góc giữa đường thẳng d và mặt phẳng (P) bằng 30^{0}. Sai||Đúng

    c) [TH] Đường thẳng d cắt mặt phẳng (P) tại điểm M(a;b;c) với a + b - c = - 1. Đúng||Sai

    d) [VD,VDC] Phương trình đường thẳng \Delta chứa trong mặt phẳng (P), vuông góc và cắt đường thẳng d\frac{x}{1} = \frac{y - 3}{1} = \frac{z - 4}{-
1}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyzcho đường thẳng d:\left\{ \begin{matrix}
x = 1 - t \\
y = 1 + 2t \\
z = 3 + t \\
\end{matrix} \right. và mặt phẳng (P):x - y + 3 = 0.

    a) [NB] Đường thẳng d có một vectơ chỉ phương là: \overrightarrow{u} = ( - 1;2;1). Đúng||Sai

    b) [TH] Góc giữa đường thẳng d và mặt phẳng (P) bằng 30^{0}. Sai||Đúng

    c) [TH] Đường thẳng d cắt mặt phẳng (P) tại điểm M(a;b;c) với a + b - c = - 1. Đúng||Sai

    d) [VD,VDC] Phương trình đường thẳng \Delta chứa trong mặt phẳng (P), vuông góc và cắt đường thẳng d\frac{x}{1} = \frac{y - 3}{1} = \frac{z - 4}{-
1}. Đúng||Sai

    a) Đúng. Đường thẳng d có một vec tơ chỉ phương \overrightarrow{u} = ( -
1;2;1).

    b) Sai. Mặt phẳng (P) có một vectơ pháp tuyến \overrightarrow{n} = (1; -
1;0).

    Gọi \alpha là góc giữa đường thẳng d và mặt phẳng (P) khi đó ta có:

    \sin\alpha = \frac{\left|
\overrightarrow{u}.\overrightarrow{n} ight|}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{n} ight|}= \frac{\left| - 1.1 + 2.( -
1) + 1.0 ight|}{\sqrt{( - 1)^{2} + 2^{2} + 1^{1}}.\sqrt{1^{2} + ( -
1)^{2} + 0^{2}}} = \frac{\sqrt{3}}{2}

    \Rightarrow \alpha =
60^{0}.

    c) Đúng. Tọa độ giao điểm giữa đường thẳng d và mặt phẳng (P) là nghiệm hệ phương trình:

    \left\{ \begin{matrix}
x = 1 - t \\
y = 1 + 2t \\
z = 3 + t \\
x - y + 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 - t \\
y = 1 + 2t \\
z = 3 + t \\
1 - t - 1 - 2t + 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 3 \\
z = 4 \\
t = 1 \\
\end{matrix} ight..

    Vậy đường thẳng d cắt mặt phẳng (P) tại M(0;3;4).

    d) Đúng. Đường thẳng \Delta chứa trong mặt phẳng (P), vuông góc với đường thẳng d nên có 1 vectơ chỉ phương \overrightarrow{u_{\Delta}} =
\left\lbrack \overrightarrow{u},\overrightarrow{n} ightbrack = (1;1;
- 1).

    Mặt khác đường thẳng \Delta cắt đường thẳng d nên \Delta đi qua giao điểm M(0;3;4).

    Vậy phương trình của đường thẳng \Delta:\frac{x}{1} = \frac{y - 3}{1} = \frac{z -
4}{- 1}.

  • Câu 7: Vận dụng
    Định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 2}{2} = \frac{y}{1} = \frac{z +
2}{1}, mặt phẳng (P):2x - y - z + 5
= 0M(1; - 1;0). Đường thẳng \Delta đi qua điểm M, cắt d và tạo với (P) một góc 30^{0}. Phương trình đường thẳng \Delta là.

    Hướng dẫn:

    Gọi N = \Delta \cap d

    N \in d \Rightarrow N(2 + 2t;t; - 2 +
t)

    \Delta có vectơ chỉ phương \overrightarrow{MN} = (1 + 2t;1 + t; - 2 +
t)

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (2; - 1; -
1)

    \sin\left\lbrack d,(P) ightbrack =
\frac{\left| \overrightarrow{MN}.\overrightarrow{n_{P}} ight|}{\left|
\overrightarrow{MN} ight|.\left| \overrightarrow{n_{P}} ight|}
\Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \Rightarrow \overrightarrow{MN} = (1;1 - 2) \\
t = \frac{9}{5} \Rightarrow \overrightarrow{MN} = \left(
\frac{23}{5};\frac{14}{5}; - \frac{1}{5} ight) \\
\end{matrix} ight.

    \Delta đi qua điểm M(1; - 1;0) và có vectơ chỉ phương \overrightarrow{a_{d}} =
\overrightarrow{MN}

    Vậy phương trình của \Delta\frac{x - 1}{1} = \frac{y + 1}{1} =
\frac{z}{- 2}\frac{x - 1}{23} =
\frac{y + 1}{14} = \frac{z}{- 1}

  • Câu 8: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyz, cho đường thẳng d:\frac{x + 1}{2} = \frac{y}{1} =
\frac{z - 2}{- 1} và hai điểm A( -
1;3;1),B(0;2; - 1). Gọi C(m;n;p) là điểm thuộc đường thẳng d sao cho diện tích tam giác ABC bằng 2\sqrt{2}. Giá trị của tổng m + n + p bằng:

    Hướng dẫn:

    Phương trình tham số của đường thẳng \left\{ \begin{matrix}
x = - 1 + 2t \\
y = t \\
x = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Vì C thuộc d nên tọa độ của C có dạng C(
- 1 + 2t;t;2 - t)

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1; - 2) \\
\overrightarrow{AC} = (2t;t - 3;1 - t) \\
\end{matrix} ight.

    Suy ra \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3t - 7; - 3t -
1;3t - 3)

    Diện tích tam giác ABC là

    S_{\Delta ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\frac{1}{2}\sqrt{(3t - 7)^{2} + ( - 3t - 1)^{2} + (3t -
3)^{2}}

    Theo bài ra ta có

    S_{\Delta ABC} = 2\sqrt{2}
\Leftrightarrow \frac{1}{2}\sqrt{27t^{2} - 54t + 59} =
2\sqrt{2}

    \Leftrightarrow 27t^{2} - 54t + 59 = 32
\Leftrightarrow (t - 1)^{2} = 0 \Leftrightarrow t = 1

    Với t = 1 thì C (1; 1; 1) nên m = 1;n =
1;p = 1

    Vậy giá trị của tổng m + n + p =
3

  • Câu 9: Thông hiểu
    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian với hệ tọa độ Oxyz, khoảng cách từ điểm M(2; - 4; - 1) tới đường thẳng \Delta:\left\{ \begin{matrix}
x = t \\
y = 2 - t \\
z = 3 + t \\
\end{matrix} ight. bằng:

    Hướng dẫn:

    Đường thẳng \Delta đi qua N(0;2;3), có véc-tơ chỉ phương \overrightarrow{u} = (1; - 1;2).

    Ta có \overrightarrow{MN} = ( -
2;6;4)\left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack = (16;8; -
4).

    Vậy khoảng cách từ M đến đường thẳng \Delta là:

    d(M;\Delta) = \frac{\left| \left\lbrack
\overrightarrow{MN},\overrightarrow{u} ightbrack ight|}{\left|
\overrightarrow{u} ight|} = \frac{\sqrt{336}}{\sqrt{6}} =
2\sqrt{14}

  • Câu 10: Vận dụng
    Xác định tọa độ điểm H

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(−1; 0; 1), B(1; 1; −1); C(5; 0; −2). Tìm tọa độ điểm H sao cho tứ giác ABCH lập thành hình thang cân với hai đáy AB, CH.

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (2;1; -
2);M\left( 0;\frac{1}{2};0 ight) là trung điểm AB.

    Gọi (α) là mặt phẳng trung trực của AB \Rightarrow (\alpha):2x + y - 2z - \frac{1}{2} =
0

    Gọi d là đường thẳng qua C và song song AB \Rightarrow d:\left\{ \begin{matrix}
x = 5 + 2t \\
y = t \\
z = - 2 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Gọi I là hình chiếu của C lên (α).

    Tọa độ I là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}x = 5 + 2t \\y = t \\z = - 2 - 2t \\2x + y - 2z - \dfrac{1}{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = - \dfrac{3}{2} \\z = 1 \\t = - \dfrac{3}{2} \\\end{matrix} ight.\  \Rightarrow I\left( 2; - \dfrac{3}{2};1ight)

    Do ABCH là hình thang cân nên H và C đối xứng nhau qua mp(α).

    ⇒ I là trung điểm CH

    ⇒ H(−1; −3; 4).

  • Câu 11: Vận dụng
    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ  Oxyz,  cho ba đường thẳng d_{1}:\left\{ \begin{matrix}
x = t \\
y = 4 - t \\
z = - 1 + 2t \\
\end{matrix} \right. d_{2}:\frac{x}{1} = \frac{y - 2}{- 3} = \frac{z}{-
3}d_{2}:\frac{x + 1}{5} =
\frac{y - 1}{2} = \frac{z + 1}{1}. Gọi \Delta là đường thẳng cắt d_{1},d_{2},d_{3} lần lượt tại các điểm A,B,C sao cho AB = BC. Phương trình đường thẳng \Delta

    Hướng dẫn:

    Gọi A \in d_{1},B \in d_{2},C \in
d_{3}

    Ta có: A(a;4 - a; - 1 + 2a),B(b;2 - 3b; -
3b),C( - 1 + 5c;1 + 2c; - 1 + c)

    Yêu cầu bài toán \Leftrightarrow
A,B,C thẳng hàng và AB =
BC

    \Leftrightarrow B là trung điểm AC \Leftrightarrow \left\{ \begin{matrix}
a - 1 + 5c = 2b \\
4 - a + 1 + 2c = 2(2 - 3b) \\
- 1 + 2a - a + c = 2( - 3b) \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 0 \\
\end{matrix} ight.\  ight.

    Suy ra A(1;3;1),B(0;2;0),,C( - 1;1; -
1)

    \Delta đi qua điểm B(0;2;0và có vecto chỉ phương là \overrightarrow{CB} = (1;1;1)

    Vậy phương trình đường thẳng \Delta\frac{x}{1} = \frac{y - 2}{1} =
\frac{z}{1}

  • Câu 12: Thông hiểu
    Viết PT tổng quát

    Cho hai đường thẳng \left( {d'} ight)\left\{ \begin{array}{l}x = 3 - 2t\\y = 1 + t\\z =  - 2 - t\end{array} ight.\,\,;\,\,\,\,\,\left( {d''} ight)\left\{ \begin{array}{l}x = m - 3\\y = 2 + 2m\\z = 1 - 4m\end{array} ight.\,\,;t,\,\,m \in \mathbb{R}

    Viết phương trình tổng quát của mặt phẳng (P) qua (d’)và song song với (d’’).

    Hướng dẫn:

     Vì (P) đi qua (d’) nên (P) nhận VTCP của (d’) làm 1 VTCP

    VTCP\left( P ight):\overrightarrow a  = \left( { - 2,1, - 1} ight)

    Vì (P) song song với (d’’) nên (P) có VTCP thứ hai là :

    VTCP\left( P ight):\overrightarrow b  = \left( {1,2, - 4} ight)

    Từ đây, ta suy ra VTPT của (P) chính là tích có hướng của 2 VTCP và :

    VTPT\left( P ight):\left[ {\overrightarrow a ,\overrightarrow b } ight] = \left( {2,9,5} ight)

    Lấy điểm A(3,1,-2) trên đường thẳng (d’) mà (d’) nằm trong (P) nên ta có được A cũng phải thuộc (P):

    \begin{array}{l}A\left( {3,1, - 2} ight) \in \left( P ight) \Rightarrow \left( {x - 3} ight)2 + \left( {y - 1} ight)9 + \left( {z + 2} ight)5 = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \left( P ight):2x + 9y + 5z - 5 = 0\end{array}

  • Câu 13: Vận dụng cao
    Tính giá trị của biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;2;0),B(2;0; - 2) và mặt phẳng (P):x + 2y - z - 1 = 0 . Gọi M(a;b;c) là điểm thuộc mặt phẳng (P) sao cho MA = MB và góc \widehat{AMB} có số đo lớn nhất. Khi đó giá trị a + 4b + c bằng

    Hướng dẫn:

    +) Vì MA = MB nên M thuộc mặt phẳng mặt phẳng trung trực của đoạn thẳng AB. Ta có phương trình trung trực của AB là (Q):y + z = 0

    +) M thuộc giao tuyến của hai mặt phẳng (P);(Q) nên M thuộc đường thẳng (d):\left\{ \begin{matrix}
x = 1 + 3t \\
- t \\
z = t \\
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

    Gọi M(1 + 3t; - t;t), ta có \cos\widehat{AMB} = \frac{\left|
\overrightarrow{MA}.\overrightarrow{MB} \right|}{MA.MB} = \frac{11t^{2}
- 2t + 1}{11t^{2} - 2t + 5}.

    Khảo sát hàm số f(t) = \frac{11t^{2} - 2t
+ 1}{11t^{2} - 2t + 5}, ta được \min f(t) = \frac{5}{27} khi t = \frac{1}{11}.

    Suy ra \widehat{AMB} có số đo lớn nhất khi t = \frac{1}{11}, ta có M\left( \frac{14}{11}; -
\frac{1}{11};\frac{1}{11} \right) .

    Khi đó giá trị a + 4b + c =
1.

  • Câu 14: Vận dụng
    Tính giá trị biểu thức

    Trong hệ trục tọa độ Oxy, cho điểm M = (1; - 1;2) và hai đường thẳng d_{1} : \left\{ \begin{matrix}
x = t \\
y = 1 - t \\
z = - 1 \\
\end{matrix} ight. d_{2}:\frac{x + 1}{2} = \frac{y - 1}{1} = \frac{z
+ 2}{1}. Đường thẳng \Delta đi qua diểm M và cắt cả hai đường thẳng d_{1},d_{2} có véc tơ chỉ phương là \overrightarrow{u_{\Delta}} = (1;a;b). Tính a + b?

    Hướng dẫn:

    Gọi A,B lần lượt là giao điểm của đường thẳng \Delta với d_{1},d_{2}

    A \in d_{1} \Rightarrow A\left( t_{1};1
- t_{1}; - 1 ight);B \in d_{2} \Rightarrow B\left( - 1 + 2t_{2};1 +
t_{2}; - 2 + t_{2} ight)

    M \in \Delta \Leftrightarrow M,A,B\
\text{thẳng\ hàng~} \Leftrightarrow \overrightarrow{MA} =
k\overrightarrow{MB}(1)

    \overrightarrow{MA} = \left( t_{1} - 1;2
- t_{1}; - 3 ight);\overrightarrow{MB} = \left( 2t_{2} - 2;t_{2} +
2;t_{2} - 4 ight)

    (1) \Leftrightarrow \left\{
\begin{matrix}
t_{1} - 1 = k(2t_{2} - 2) \\
2 - t_{1} = k(t_{2} + 2) \\
- 3 = k(t_{2} - 4) \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
t_{1} - 2kt_{2} + 2k = 1 \\
- t_{1} - kt_{2} - 2k = - 2 \\
kt_{2} - 4k = - 3 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
t_{1} = 0 \\
kt_{2} = \frac{1}{3} \\
k = \frac{5}{6} \\
\end{matrix} ight.\  ight.\  ight.

    Từ t_{1} = 0 \Rightarrow A(0;1; -
1).

    Do đường thẳng \Delta đi qua điểm AM nên một vectơ chỉ phương của đường thẳng \Delta\overrightarrow{u_{\Delta}} = \overrightarrow{AM}
= (1; - 2;3).

    Vậy a = - 2,b = 3 \Rightarrow a + b =
1

  • Câu 15: Vận dụng cao
    Tìm phương trình đường thẳng d

    Trong không gian với hệ tọa độ Oxyz, cho tam giác nhọn ABCH(2;2;1);K\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} \right); O(0;0;0) lần lượt là hình chiếu vuông góc của A;B;C trên các cạnh BC;CA;AB. Đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC) có phương trình là:

    Hướng dẫn:

    Cách 1: I:OH = 3;OK = 4;HK = 5. Gọi I là trực tâm tam giác ABC

    Ta có: \left\{ \begin{matrix}x_{I} = \dfrac{4.2 + 5.0 + 3.\left( - \dfrac{8}{3} \right)}{12} = 0 \\y_{I} = \dfrac{3.\dfrac{4}{3} + 4.2 + 5.0}{12} = 1 \\z_{I} = \dfrac{3.\dfrac{8}{3} + 4.1 + 5.0}{12} = 1 \\\end{matrix} \right.\  \Rightarrow I(0;1;1)

    \overrightarrow{IH} = (2;1;0)
\Rightarrow (\Delta):\left\{ \begin{matrix}
x = 2t \\
y = 1 + t \\
z = 1 \\
\end{matrix} \right.

    A \in IH \Rightarrow A(2t;1 +
t;1)

    \overrightarrow{OA}.\overrightarrow{OI}
= 0 \Leftrightarrow t = - 2

    Suy ra \left\{ \begin{matrix}
A( - 4; - 1;1) \in d \\
\overrightarrow{u_{d}} = \left\lbrack
\overrightarrow{OI};\overrightarrow{OH} \right\rbrack = ( - 1;2; - 2) \\
\end{matrix} \right.\  \Rightarrow (d):\frac{x + 4}{1} = \frac{y + 1}{-
2} = \frac{z - 1}{2}

    Cách 2: VTPT của (ABC)\overrightarrow{n} = \left\lbrack
\overrightarrow{OH};\overrightarrow{OK} \right\rbrack = 4(1; -
2;2).

    \overrightarrow{OH}.\overrightarrow{OK} = 0
\Rightarrow \widehat{HOK} = 90^{0}.

    Gọi (\alpha) là mặt phẳng đi qua O;\overrightarrow{n_{\alpha}} =
\overrightarrow{OK} = \frac{4}{3}( - 2;1;2) \Rightarrow (\alpha): - 2x +
y + 2z = 0.

    Gọi (\beta) là mặt phẳng đi qua O;\overrightarrow{n_{\beta}} =
\overrightarrow{OH} = (2;2;1) \Rightarrow (\beta):2x + 2y + z =
0.

    Ta có d\left( A;(\alpha) \right) =
d\left( A;(\beta) \right), đối chiếu phương án A;B;C;D thấy A( - 4; - 1;1) thỏa mãn.

  • Câu 16: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2; - 2),B(2;2; - 4). Giả sử I(a;b;c) là tâm đường tròn ngoại tiếp tam giác OAB. Tính T = a^{2} + b^{2} + c^{2}.

    Hướng dẫn:

    Ta có OA = AB = 2\sqrt{2} nên tam giác OAB cân tại OAB, vì vậy I thuộc đường trung tuyến qua A(d):\left\{ \begin{matrix}
x = 1 + t \\
y = 1 - t \\
z = - 2 \\
\end{matrix} \right.\  \Rightarrow I(1 + t;1 - t; - 2)

    IA = IO \Leftrightarrow t = 0
\Rightarrow I(2;0; - 2)

    Do đó T = 8

  • Câu 17: Thông hiểu
    Tìm tọa độ giao điểm

    Tìm tọa độ giao điểm của đường thẳng d:\frac{x - 12}{4} = \frac{y - 9}{3} = \frac{z -
1}{1} và mặt phẳng (P):3x + 5y - z
- 2 = 0?

    Hướng dẫn:

    Gọi I là giao điểm của d và (P).

    Ta có I \in d \Leftrightarrow I(4t +
12;3t + 9;t + 1)

    I \in (P) \Leftrightarrow 3(4t + 12) +
5(3t + 9) - (t + 1) - 2 = 0

    \Leftrightarrow 26t = - 78
\Leftrightarrow t = - 3

    Suy ra I(0;0; - 2)

  • Câu 18: Thông hiểu
    Viết phương trình tham số

    Viết phương trình tham số của đường thẳng \left( d ight):\,\left\{ \begin{array}{l}2x - 3y + z - 4 = 0\\2x + 5y - 3z + 4 = 0\end{array} ight.

    Hướng dẫn:

     Theo đề bài, đường thẳng d là giao của 2 mặt phẳng, ta gọi 2 mặt phẳng (P) và (Q) tương ứng lần lượt là:\left( P ight):2x - 3y + z - 4 = 0;\,\left( Q ight):2x + 5y - 3z + 4 = 0

    Mp (P) và (Q) có 2 vecto pháp tuyến tương ứng là: \overrightarrow {{n_1}}  = \left( {2, - 3,1} ight);\overrightarrow {{n_2}}  = \left( {2,5, - 3} ight)

    Từ đây ta suy ra vecto chỉ phương của đường thẳng (d) là tích có hướng của 2 VTPT:

    \overrightarrow a  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( {4,8,16} ight) \Leftrightarrow \overrightarrow a  = 4\left( {1,2,4} ight)

    Cho y = 0, ta có:

    y = 0 \Rightarrow \left\{ \begin{array}{l}2x + z = 4\\2x - 3z =  - 4\end{array} ight.\, \Leftrightarrow x = 1;z = 2

    Đường thẳng (d) đi qua A( 1, 0, 2) và nhận vecto (1,2,4) làm 1 VTCP có PTTS là:

    A\left( {1,0,2} ight) \in \left( d ight) \Rightarrow \left( d ight)\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = 2 + 4t\end{array} ight.\,\,;t \in R

  • Câu 19: Vận dụng cao
    Chọn vectơ chỉ phương thích hợp

    Trong không gian với hệ tọa độ Oxyz cho tam giác ABC có phương trình đường phân giác trong góc A là \frac{x}{1} = \frac{y - 6}{- 4} =
\frac{z - 6}{- 3} Biết rằng điểm M(0;5;3) thuộc đường thẳng AB và điểm N(1;1;0) thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?

    Hướng dẫn:

    Giả sử A(t;6 - 4t;6 - 3t), ta có: \left\{ \begin{matrix}
\overrightarrow{u_{d}} = (1; - 4; - 3) \\
\overrightarrow{AM} = ( - t;4t - 1; - 3 + 3t) \\
\overrightarrow{AN} = (1 - t; - 5 + 4t;3t - 6) \\
\end{matrix} \right.

    Theo bài ra: Vì d là đường phân giác của góc A nên:

    \left| \cos\left(
\overrightarrow{u_{d}};\overrightarrow{AM} \right) \right| = \left|
\cos\left( \overrightarrow{u_{d}};\overrightarrow{AN} \right)
\right|

    \Leftrightarrow \frac{|26t -
13|}{\sqrt{26t^{2} - 26t + 10}} = \frac{|26t - 39|}{\sqrt{26t^{2} - 78t
+ 62}}

    \Leftrightarrow \frac{|2t -
1|}{\sqrt{13t^{2} - 13t + 5}} = \frac{|2t - 3|}{\sqrt{13t^{2} - 39t +
31}}

    \begin{matrix}
\Leftrightarrow \left( 4t^{2} - 4t + 1 \right)\left( 13t^{2} - 39t + 31
\right) = \left( 4t^{2} - 12t + 9 \right)\left( 13t^{2} - 13t + 5
\right) \\
\Leftrightarrow 14t = 14 \Leftrightarrow t = 1 \Rightarrow A(1;2;3)
\Rightarrow \overrightarrow{AN} = (0; - 1; - 3) \\
\end{matrix}

    Vậy một véc tơ chỉ phương của AC là \overrightarrow{u}(0;1;3)

  • Câu 20: Vận dụng cao
    PT hình chiếu của đường thẳng

    Cho hai đường thẳng: ({d_1}):\frac{{x - 3}}{{ - 7}} = \frac{{y - 1}}{2} = \frac{{z - 1}}{3},({d_2}):\frac{{x - 7}}{1} = \frac{{y - 3}}{2} = \frac{{z - 9}}{{ - 1}}

    và mặt phẳng (\alpha ):x + y + z + 3 = 0 .

    Hình chiếu của ({d_2}) theo phương của ({d_1})  lên mặt phẳng (\alpha ) có phương trình tổng quát:

    Hướng dẫn:

    Vectơ chỉ phương của ({d_1}):\overrightarrow a  = ( - 7,2,3). Vectơ chỉ phương của ({d_2}):\overrightarrow b  = (1,2, - 1).

    Phương trình của mặt phẳng chứa ({d_2}) và có phương của ({d_1})có dạng: 

    2x + y + 4z + D = 0

    Điểm A (7, 3, 9) thuộc mặt phẳng này 

    => D = -53

    Giao tuyến của mặt phẳng này với mặt phẳng (\alpha ) là hình chiếu của ({d_2}) theo phương của ({d_1}) lên (\alpha ): \left\{ \begin{array}{l}2x + y + 4z - 53 = 0\\x + y + z + 3 = 0\end{array} ight.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo