Trong không gian , cho đường thẳng
. Vectơ nào trong các vectơ dưới đây không phải là vectơ chỉ phương của đường thẳng
?
Đường thẳng có 1 vectơ chỉ phương là
. Do đó vectơ
không là vectơ chỉ phương của
.
Trong không gian , cho đường thẳng
. Vectơ nào trong các vectơ dưới đây không phải là vectơ chỉ phương của đường thẳng
?
Đường thẳng có 1 vectơ chỉ phương là
. Do đó vectơ
không là vectơ chỉ phương của
.
Trong không gian Oxyz, cho hai đường thẳng d : và d’:
. Xét các mệnh đề sau:
(I) d đi qua A(2 ;3 ;1) và có véctơ chỉ phương
(II) d’ đi qua A’ (0;-3;-11) và có véctơ chỉ phương
(III) và
không cùng phương nên d không song song với d’
(IV) Vì nên d và d’ đồng phẳng và chúng cắt nhau
Dựa vào các phát biểu trên, ta kết luận:
Các phát biểu (I), (III) đúng, các phát biểu (II), (IV) sai
Cho hai đường thẳng: và
.
Chọn câu trả lời đúng?
Phương trình cho
và vectơ chỉ phương của
:
.
Phương trình cho
và vectơ chỉ phương của
:
.
;
.
và
chéo nhau .
Trong không gian với hệ tọa độ ,cho đường thẳng
. Phương trình nào dưới đây là phương trình chính tắc của đường thẳng
?
Đường thẳng đi qua điểm
và nhận
làm vectơ chỉ phương.
Phương trình chính tắc của
Viết phương trình tham số của đường thẳng d qua hai điểm:
Để viết PT Tham số của một đường thẳng, ta cần 1 vecto chỉ phương và 1 điểm bất kỳ nằm trên đường thẳng đó.
Đường thẳng d đi qua hai điểm A và B nên VTCP của đường thẳng d chính là hay ta có:
Trong không gian Oxyz, tìm tọa độ hình chiếu vuông góc của điểm A(1; 2; 5) trên trục Ox?
Hình chiếu vuông góc của điểm A(1;2;5) trên trục Ox có tọa độ là (1;0;0).
Trong không gian với hệ tọa độ , đường thẳng
đi qua điểm nào dưới đây?
Nếu một điểm nằm trên một đường thẳng thì khi thay tọa độ điểm đó vào phương trình đường thẳng thì sẽ thỏa mãn phương trình đường thẳng.
Lần lượt thay tọa độ M từ các phương án vào phương trình đường thẳng d ta được M(−3; 5; 3) thỏa mãn yêu cầu bài toán.
Trong không gian với hệ tọa độ cho mặt phẳng
. Phương trình đường thẳng d đi qua điểm A(2;-3;-1), song song với hai mặt phẳng
là.
có vectơ pháp tuyến
có vectơ pháp tuyến
đi qua điểm A và có vectơ chỉ phương là
Vậy phương của d là
Trong không gian , hình chiếu vuông góc của điểm
trên trục
có tọa độ là:
Trong không gian , hình chiếu vuông góc của điểm
trên trục
có tọa độ là:
Trong không gian với hệ toạ độ , cho
. Viết phương trình đường thẳng
qua
, song song với
sao cho khoảng cách từ
đến
là lớn nhất.
Hình vẽ minh họa
Vì nên hai điểm A, B khác phía so với (P).
Gọi H là hình chiếu của B lên d.
Ta có: BH ≤ BA nên khoảng cách BH từ B đến d lớn nhất khi và chỉ khi H trùng A.
Khi đó AB ⊥ d.
VTPT của (P) là
VTCP của d là
Mà d qua A(−3; 0; 1) nên phương trình đường thẳng d là:
Trong không gian , hãy viết phương trình của đường thẳng
đi qua điểm
và vuông góc với mặt phẳng
?
Đường thẳng đi qua điểm
và có một véc-tơ chỉ phương là
nên
có phương trình chính tắc là
.
Trong không gian với hệ tọa độ . Viết phương trình đường thẳng
đi qua điểm
cắt trục tung tại
sao cho
đi qua điểm
và có vectơ chỉ phương
Vậy phương trình của là
và
Trong không gian , cho ba điểm
,
và
. Đường thẳng đi qua
và vuông góc với mặt phẳng
có phương trình là:
Ta có ,
.
Mặt phẳng có một véctơ pháp tuyến là
.
Đường thẳng vuông góc với mặt phẳng có một véctơ chỉ phương là
.
Đường thẳng đi qua và vuông góc với mặt phẳng
có phương trình là
.
Trong không gian với hệ tọa độ cho đường thẳng
có phương trình chính tắc
. Phương trình tham số của đường thẳng
là?
Ta có:
đi qua điểm
và có vectơ chỉ phương
Vậy phương trình tham số của là
Trong không gian với hệ trục tọa độ , cho mặt phẳng
có phương trình
. Vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng
?
Ta có:
nên (P) có một vectơ pháp tuyến là
Trong không gian với hệ tọa độ , cho đường thẳng
có phương trình
. Điểm nào sau đây không thuộc đường thẳng
?
Ta thay lần lượt tọa độ các điểm vào phương trình đường thẳng , điểm
có tọa độ không thỏa mãn phương trình đường thẳng
.
Trong không gian với hệ tọa độ cho mặt phẳng
. Phương trình chính tắc của của đường thẳng
đi qua điểm
và vuông góc với (P) là
(P) có vectơ pháp tuyến
Vì vuông góc với (P) nên
có vectơ chỉ phương
đi qua điểm
và có vectơ chỉ phương
Vậy phương trình chính tắc của là
Trong không gian Oxyz, đường thẳng (d) qua và có một vectơ chỉ phương
với
có phương trình chính tắc là:
Trong không gian Oxyz, đường thẳng (d) qua và có một vectơ chỉ phương
với
có phương trình chính tắc là:
Viết phương trình tham số của đường thẳng (d) qua điểm E(2, -4, 3) và song song với đường thẳng MN với tọa độ M(3, 2, 5) và N(1, -2, 2)
Để viết PT Tham số của một đường thẳng, ta cần 1 vecto chỉ phương và 1 điểm bất kỳ nằm trên đường thẳng đó.
Đường thẳng d song song với MN nên VTCP của đường thẳng d chính là hay ta có
Như vậy, (d) là đường thẳng đi qua điểm E (2, -4, 3) và nhận làm 1 VTCP có phương trình là:
Trong không gian , trục
có phương trình tham số
Trục đi qua
và có véctơ chỉ phương
nên có phương trình tham số là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: