Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường thẳng trong không gian CTST (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn phương trình đường thẳng thích hợp

    Trong không gian với hệ tọa độ  Oxyz,  cho đường thẳng \Delta là giao tuyến của hai mặt phẳng (\alpha):x - 2y - z + 1 = 0(\beta):2x + 2y - 3z - 4 = 0. Phương trình đường thẳng d đi qua điểm M(1; - 1;0) và song song với đường thẳng \Delta

    Hướng dẫn:

    \left( \alpha  ight) có vectơ pháp tuyến \overrightarrow {{n_\alpha }}  = \left( {1; - 2; - 1} ight)

    \left( \beta  ight) có vectơ pháp tuyến \overrightarrow {{n_\beta }}  = \left( {2;2; - 3} ight)

    d đi qua điểm M và có vectơ chỉ phương là \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } ight] = \left( {8;1;6} ight)

    Vậy phương của d là \frac{x - 1}{8} = \frac{y + 1}{1} =
\frac{z}{6}.

  • Câu 2: Nhận biết
    Tìm phương trình chính tắc của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{gathered}
  x = 1 - 2t \hfill \\
  y = t \hfill \\
  z =  - 3 + 2t \hfill \\ 
\end{gathered}  \right. . Phương trình chính tắc của đường thẳng \Delta đi qua điểm A(3; 1; -1)  và song song với d là

    Hướng dẫn:

    d có vectơ chỉ phương \overrightarrow {{a_d}}  = \left( { - 2;1;2} ight)

    \Delta song song với d nên \Delta có vectơ chỉ phương \overrightarrow{a_{\Delta}} =
\overrightarrow{a_{d}} = ( - 2;1;2)

     \Delta  đi qua điểm A và có vectơ chỉ phương  \overrightarrow{a_{\Delta}} 

    Vậy phương trình chính tắc của \Delta là \frac{x - 3}{- 2} = \frac{y - 1}{1} =
\frac{z + 1}{2}.

  • Câu 3: Nhận biết
    Tìm điểm thuộc đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho phương trình đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng \Delta?

    Hướng dẫn:

    Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:

    \left\{ \begin{matrix}
- 1 = 1 + 2t \\
- 4 = - 1 + 3t \\
3 = 2 - t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 \Rightarrow M( - 1; -
4;3) \in \Delta.

  • Câu 4: Thông hiểu
    Tìm đáp án chưa đúng

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(0;1;2), B(-2;-1;-2),C(2;-3;-3). Đường thẳng d đi qua điểm B và vuông góc với mặt phẳng (ABC). Phương trình nào sau đây không phải là phương trình của đường thẳng d.

    Hướng dẫn:

    \overrightarrow{AB} = ( - 2; - 2; -
4)

    \overrightarrow{AC} = (2; - 4; -
5)

    Đường thẳng d đi qua điểm B( - 2; - 1; - 2) và có vectơ chỉ phương là \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 6; - 18;12)
= - 6(1;3; - 2)

  • Câu 5: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 1;3),B( - 3;0; - 4). Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm AB?

    Hướng dẫn:

    Ta có \overrightarrow{BA} = (4; -
1;7) là vectơ chỉ phương của đường thẳng AB. Phương trình chính tắc của đường thẳng AB là: \frac{x + 3}{4} = \frac{y}{- 1} = \frac{z +
4}{7}.

  • Câu 6: Nhận biết
    Tìm phương trình chính tắc của đườngthẳng

    Trong không gian với hệ tọa độ  Oxyz, cho mặt phẳng \left( P \right):2x - y + z - 3 = 0. Phương trình chính tắc của của đường thẳng \Delta đi qua điểm M\left( { - 2;1;1} \right) và vuông góc với (P) là

    Hướng dẫn:

    (P) có vectơ pháp tuyến \overrightarrow {{n_{\left( P ight)}}}  = \left( {2; - 1;1} ight)

    Vì  \Delta  vuông góc với (P) nên d có vectơ chỉ phương \overrightarrow{a_{\Delta}} =
\overrightarrow{n_{P}} = (2; - 1;1)

     \Delta  đi qua điểm M( - 2;1;1) và có vectơ chỉ phương \overrightarrow {{a_\Delta }}

    Vậy phương trình chính tắc của \Delta là \frac{x + 2}{2} = \frac{y - 1}{- 1} =
\frac{z - 1}{1}.

  • Câu 7: Nhận biết
    Chọn phương trình đường thẳng thích hợp

    Trong không gian Oxyz, đường thẳng đi qua A(2; - 1;3) và nhận \overrightarrow{a} = (1;1; - 1) làm vectơ chỉ phương có phương trình là:

    Hướng dẫn:

    Đường thẳng đi qua A(2; - 1;3) và nhận \overrightarrow{a} = (1;1; -
1) làm vectơ chỉ phương có phương trình là \left\{ \begin{matrix}
x = 2 + t \\
y = - 1 + t \\
z = 3 - t \\
\end{matrix} ight..

  • Câu 8: Nhận biết
    Tìm phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta có phương trình chính tắc \frac{x - 3}{2} = \frac{y + 1}{- 3} =
\frac{z}{1}. Phương trình tham số của đường thẳng \Delta là?

    Hướng dẫn:

    Ta có:

    \frac{x}{2} = \frac{y - 6}{4} =
\frac{z}{- 1} đi qua điểm A(3; -
1;0) và có vectơ chỉ phương Oxyz

    Vậy phương trình tham số của \DeltaB(1;1;2)

  • Câu 9: Nhận biết
    Vecto chỉ phương của đường thẳng

    Trong không gian Oxyz, một đường thẳng (d) có:

    Hướng dẫn:

     Trong không gian Oxyz, một đường thẳng (d) có vô số vecto chỉ phương.

  • Câu 10: Nhận biết
    Tìm vectơ chỉ phương của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, vectơ \overrightarrow{u} = (1;2; - 5) là vectơ chỉ phương của đường thẳng nào sau đây?

    Hướng dẫn:

    Đường thẳng d:\left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{v} = ( -
1; - 2;5) cùng phương với vectơ \overrightarrow{u} = (1;2; - 5). Vậy \overrightarrow{u} = (1;2; - 5) là một vectơ chỉ phương của đường thẳng \left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 11: Thông hiểu
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = - 3 + 2t \\
z = 1 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Gọi d' là hình chiếu vuông góc của d trên mặt phẳng tọa độ (Oxz). Viết phương trình đường thẳng d'.

    Hướng dẫn:

    Ta có: d đi qua M(2; −3; 1) và có vectơ chỉ phương \overrightarrow{u} = (1;2;3)

    Mặt phẳng (Oxz) có vectơ pháp tuyến \overrightarrow{n} = (0;1;0) và có phương trình y = 0.

    Suy ra \left\lbrack
\overrightarrow{n};\overrightarrow{u} ightbrack = ( -
3;0;1)

    Gọi H là hình chiếu vuông góc của M trên Oxz ⇒ H(2; 0; 1).

    Suy ra d' là đường thẳng qua H(2; 0; 1) và nhận vectơ \overrightarrow{u'} = \left\lbrack
\overrightarrow{n}.\left\lbrack \overrightarrow{n};\overrightarrow{u}
ightbrack ightbrack = (1;0;3) làm vectơ chỉ phương.

    Vậy phương trình đường thẳng cần tìm là d':\left\{ \begin{matrix}
x = 2 + t \\
y = 3 - 2t \\
z = 1 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 12: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x - x_{0}}{a} = \frac{y - y_{0}}{b} =
\frac{z - z_{0}}{c}. Điểm M nằm trên đường thẳng \Delta thì điểm M có dạng nào sau đây?

    Hướng dẫn:

    Đường thẳng \Delta đi qua điểm M\left( x_{0};y_{0};z_{0} ight) và có vectơ chỉ phương \overrightarrow{u} =
(a;b;c) nên đường thẳng \Delta có phương trình tham số là \Delta:\left\{ \begin{matrix}
x = x_{0} + at \\
y = y_{0} + bt \\
z = z_{0} + ct \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Điểm M nằm trên đường thẳng \Delta nên điểm M có dạng M\left( x_{0} + at;y_{0} + bt;z_{0} + ct
ight)

  • Câu 13: Thông hiểu
    Tính độ dài đoạn thẳng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha):x + y - 2z + 1 = 0 đi qua điểm M(1; - 2;0) và cắt đường thẳng d:\left\{ \begin{matrix}
x = 11 + 2t \\
y = 2t \\
z = - 4t \\
\end{matrix}\ (t \in \mathbb{R}) ight. tại N. Tính độ dài đoạn MN.

    Hướng dẫn:

    Điểm N \in (d) \Rightarrow N(11 + 2t;2t;
- 4t). Mặt khác N \in
(\alpha) nên

    11 + 2t + 2t - 2( - 4t) + 1 = 0
\Leftrightarrow t = - 1

    Điểm N(9; - 2;4) \Rightarrow
\overrightarrow{MN} = (8;0;4) \Rightarrow MN = 4\sqrt{5}.

  • Câu 14: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;2),B(2; - 1;3). Viết phương trình đường thẳng AB?

    Hướng dẫn:

    Vectơ chỉ phương của đường thẳng AB\overrightarrow{AB} = (1; - 2;1). Suy ra phương trình đường thẳng AB là:

    AB:\frac{x - 1}{1} = \frac{y - 1}{- 2} =
\frac{z - 2}{1}

  • Câu 15: Nhận biết
    Chọn phương án thích hợp

    Trong không gian Oxyz, đường thẳng Oy có phương trình tham số là

    Hướng dẫn:

    Đường thẳng Oy đi qua điểm A(0\ ;\ 2\ ;\ 0) và nhận vectơ đơn vị \overrightarrow{j} = (0;\ 1;\ 0) làm vectơ chỉ phương nên có phương trình tham số là:\left\{ \begin{matrix}
x = 0 + 0.t \\
y = 2 + 1.t \\
z = 0 + 0.t \\
\end{matrix} \right.\ \left( t\mathbb{\in R} \right) \Leftrightarrow
\left\{ \begin{matrix}
x = 0 \\
y = 2 + t \\
z = 0 \\
\end{matrix} \right.\ \left( t\mathbb{\in R} \right).

  • Câu 16: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, cho mặt phẳng (P):x - 2y - 3z - 2 = 0. Đường thẳng d vuông góc với mặt phẳng (P) có một vectơ chỉ phương có tọa độ là:

    Hướng dẫn:

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n} = (1; - 2; -
3).

    Do d\bot(P) nên vectơ \overrightarrow{n} = (1; - 2; - 3) cũng là một vectơ chỉ phương của d.

  • Câu 17: Nhận biết
    Xác định phương trình tham số của Oz

    Trong không gian với hệ trục tọa độ Oxyz, phương trình tham số trục Oz

    Hướng dẫn:

    Trục Oz đi qua gốc tọa độ O(0;0;0) và nhận vectơ đơn vị \overrightarrow{k} = (0;0;1) làm vectơ chỉ phương nên có phương trình tham số \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = t \\
\end{matrix} \right..

  • Câu 18: Nhận biết
    Hai đường thẳng song song

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} , \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) song song khi và chỉ khi:

    Hướng dẫn:

     Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB}  = 0 \Rightarrow \left( D ight)và (d) cùng nằm trong một mặt phẳng

    Để (D) và d song song, ta sẽ xét tỉ số chứng minh chúng cùng phương rồi kiểm tra rằng d không nằm trong (D):

      {a_1}:{a_2}:{a_3} = {b_1}:{b_2}:{b_3} \Leftrightarrow \frac{{{a_1}}}{{{b_1}}} = \frac{{{a_2}}}{{{b_2}}} = \frac{{{a_3}}}{{{b_3}}} \Rightarrow \left( D ight)và (d)  cùng phương A\left( {{x_1},{y_1},{z_1}} ight) \in \left( D ight)A otin \left( d ight) \Rightarrow \left( D ight) và (d) song song.

  • Câu 19: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng \Delta:\frac{x - 2}{- 1} = \frac{y -
1}{- 2} = \frac{z + 3}{1} và mặt phẳng (P) có phương trình 3x + 6y - 3z + 2024 = 0.

    a) Một véc tơ chỉ phương của \Delta\overrightarrow{u} = ( - 1; - 2;1). Đúng||Sai

    b) Một véc tơ pháp tuyến của (P)\overrightarrow{n} = (1;2; - 1). Đúng||Sai

    c) Góc giữa \Delta(P) là: 90^{0}. Đúng||Sai

    d) Lấy tuỳ ý hai điểm phân biệt A;B \in
\Delta. Gọi A’; B’ lần lượt là hình chiếu của A; B lên (P). Khi đó A'B' = 2024. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng \Delta:\frac{x - 2}{- 1} = \frac{y -
1}{- 2} = \frac{z + 3}{1} và mặt phẳng (P) có phương trình 3x + 6y - 3z + 2024 = 0.

    a) Một véc tơ chỉ phương của \Delta\overrightarrow{u} = ( - 1; - 2;1). Đúng||Sai

    b) Một véc tơ pháp tuyến của (P)\overrightarrow{n} = (1;2; - 1). Đúng||Sai

    c) Góc giữa \Delta(P) là: 90^{0}. Đúng||Sai

    d) Lấy tuỳ ý hai điểm phân biệt A;B \in
\Delta. Gọi A’; B’ lần lượt là hình chiếu của A; B lên (P). Khi đó A'B' = 2024. Sai||Đúng

    a) Đúng

    b) Đúng

    c) Đúng

    d) Sai

    Phương án a) đúng:

    Một véc tơ chỉ phương của \Delta\overrightarrow{u} = ( -1; -2;1).

    Phương án b) đúng:

    Một véc tơ chỉ phương của (P)\overrightarrow{n} = (1;2; -
1).

    Phương án c) đúng:

    Một véc tơ chỉ phương của \Delta\overrightarrow{u} = ( - 1; -
2;1), một véc tơ pháp tuyến của (P)\overrightarrow{n} = (1;2; - 1).

    Khi đó \sin\left( \Delta;(P) \right) = \frac{\left|
( - 1).1 + ( - 2).2 + 1.( - 1) \right|}{\sqrt{( - 1)^{2} + ( - 2)^{2} +
1^{2}}.\sqrt{1^{2} + 2^{2} + ( - 1)^{2}}} = 1.

    Vậy \left( \Delta;(P) \right) =90^0.

    Phương án d) sai:

    \Delta\bot(P) nên A’ trùng B’. Do đó A'B' = 0.

  • Câu 20: Thông hiểu
    Viết phương trình đường thẳng

    Phương trình đường thẳng đi qua điểm A(2;
- 1; - 1) và song song với hai mặt phẳng(\alpha):x - 2y - z + 2 = 0(\beta):2x - z = 0

    Hướng dẫn:

    Mặt phẳng có vec tơ pháp tuyến lần lượt {\overrightarrow{n}}_{(\alpha)} = (1; - 2; -
1);{\overrightarrow{n}}_{(\beta)} = (2;0; - 1)

    Đường thẳng có vectơ chỉ phương \overrightarrow{u} = \left\lbrack
{\overrightarrow{n}}_{(\alpha)}.{\overrightarrow{n}}_{(\beta)}
ightbrack = (2; - 1;4)

    Vậy đường thẳng có phương trình tham số: \left\{ \begin{matrix}
x = 2 + 2t \\
y = - 1 - t \\
z = - 1 + 4t \\
\end{matrix} ight..

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo