Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường thẳng trong không gian CTST (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm phương trình chính tắc

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 - t \\
y = 1 + t \\
z = t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Phương trình nào sau đây là phương trình chính tắc của d?

    Hướng dẫn:

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u} = ( - 1;1;1) và đi qua điểm M(2;1;0). Do đó phương trình chính tắc của d là: \frac{x - 2}{- 1} = \frac{y - 1}{1} =
\frac{z}{1}

  • Câu 2: Nhận biết
    Chọn mệnh đề đúng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (d):\frac{x - 1}{2} = \frac{y + 1}{- 3} = \frac{z
- 5}{4} và mặt phẳng (P):x - 3y +
2z - 5 = 0. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: d có vectơ chỉ phương là \overrightarrow{u} = (2; - 3;4), (P) có véc-tơ pháp tuyến là \overrightarrow{n} = (1; - 3;2).

    Do \overrightarrow{u} không cùng phương \overrightarrow{n} nên d cắt (P).

    Mặt khác \overrightarrow{u}.\overrightarrow{n} = 19 eq
0 nên d không vuông góc (P).

    Vậy d cắt nhưng không vuông góc với (P).

  • Câu 3: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{gathered}
  x = 1 + 2t \hfill \\
  y =  - 1 + t \hfill \\
  z = 2 + t \hfill \\ 
\end{gathered}  \right.. Hình chiếu vuông góc của d lên mặt phẳng (Oxy) có phương trình là.

    Hướng dẫn:

    Cho z = 0, phương trình của d' là \left\{ \begin{matrix}
x = 1 + 2t \\
y = - 1 + t \\
z = 0 \\
\end{matrix} ight.\ .

  • Câu 4: Nhận biết
    Viết phương trình đường thẳng d

    Trong không gian Oxyz, cho đường thẳng d đi qua điểm A(4; - 1;3) và có một vecto chỉ phương \overrightarrow{u} = (2;5; - 6). Phương trình của d là:

    Hướng dẫn:

    Đường thẳng d đi qua điểm A(4; - 1;3) và có một vectơ chỉ phương \overrightarrow{u} = (2;5; - 6), phương trình của d\left\{ \begin{matrix}
x = 4 + 2t \\
y = - 1 + 5t \\
z = 3 - 6t \\
\end{matrix} \right.

  • Câu 5: Thông hiểu
    Tìm vị trí tương đối của hai đường thẳng

    Hai đường thẳng (D):x = 8t - 1;\ \ y = -
1 - 14t;\ \ z = - 12t(d):x - 2y
+ 3z - 1 = 0;\ \ \ 2x + 2y - z + 4 = 0\ \ \ \left( t\mathbb{\in R}
\right)

    Hướng dẫn:

    (D) qua E( - 1, - 1,0) có vecto chỉ phương \overrightarrow{a} = (8, - 14, - 12)

    Hai pháp vecto của hai mặt phẳng x - 2y +
3z - 1 = 02x + 2y - z + 1 =
0\overrightarrow{n_{1}} = (1, -
2,3);\overrightarrow{n_{2}} = (2,2, - 1)

    Vecto chỉ phương của (d):\overrightarrow{b} = \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} \right\rbrack = ( -
4,7,6)

    Ta có: \frac{8}{- 4} = \frac{- 14}{7} =
\frac{- 12}{6} = - 2 và tọa độ E( -1, - 1,0) thỏa man phương trình của (d) \Rightarrow (D) \equiv (d)

  • Câu 6: Nhận biết
    Viết phương trình chính tắc của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, phương trình chính tắc của đường thẳng d đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) là:

    Hướng dẫn:

    Phương trình đường thẳng đi qua điểm M(2;0; - 1) có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2) nên có phương trình: \frac{x - 2}{2} = \frac{y}{-
3} = \frac{z + 1}{1}.

  • Câu 7: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho 2 đường thẳng \Delta_{1} :\left\{ \begin{matrix}x = 3 + t \\y = 1 + t \\z = 1 + 2t \\\end{matrix}(t \in \mathbb{R}); ight. \Delta_{2}:\frac{x + 2}{2} =\frac{y - 2}{5} = \frac{z}{-1} và điểm M(0;3;0). Đường thẳng d đi qua M, cắt \Delta_{1} và vuông góc với \Delta_{2} có một vectơ chỉ phương là \overrightarrow{u} = (4;a;b). Tính T = a + b

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi (P) là mặt phẳng chứa M\Delta_{1}.

    Lấy A(3;1;1) \in \Delta_{1}.

    Mặt phẳng (P) có véc-tơ pháp tuyến vuông góc với các véc-tơ \overrightarrow{MA} = (3; - 2;1){\overrightarrow{u}}_{\Delta_{1}} =
(1;1;2).

    Ta có \left\lbrack
\overrightarrow{MA},{\overrightarrow{u}}_{\Delta_{1}} ightbrack = (
- 5; - 5;5).

    Một trong các véc-tơ pháp tuyến của mặt phẳng (P){\overrightarrow{n}}_{(P)} = (1;1; -
1).

    Đường thẳng d nằm trong mặt phẳng (P) và vuông góc với \Delta_{2}\overrightarrow{u_{d}} = \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{u_{\Delta_{2}}} ightbrack =
(4; - 1;3)

    Vậy a = - 1;b = 3 \Rightarrow T = a + b =
2.

  • Câu 8: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 3 + 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Vectơ nào dưới đây là vectơ chỉ phương của d?

    Hướng dẫn:

    Ta có: d:\left\{ \begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 3 + 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) suy ra vectơ chỉ phương của đường thẳng d là \overrightarrow{u} = (2; - 3;5)

  • Câu 9: Nhận biết
    Xác định phương trình chính tắc

    Trong không gian với hệ tọa độ Oxyz,cho đường thẳng d:\left\{ \begin{matrix}
x = 3 - t \\
y = - 1 + 2t \\
z = - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Phương trình nào dưới đây là phương trình chính tắc của đường thẳng (d)?

    Hướng dẫn:

    Đường thẳng (d) đi qua điểm M(3; - 1;0) và nhận \overrightarrow{u} = ( - 1;2; - 3) làm vectơ chỉ phương.

    Phương trình chính tắc của (d):\frac{x -
3}{- 1} = \frac{y + 1}{2} = \frac{z}{- 3}

  • Câu 10: Nhận biết
    Xác định vectơ chỉ phương

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;0)B(0;1;2). Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng AB?

    Hướng dẫn:

    Ta có:

    \overrightarrow{AB} = ( - 1;0;2) là một vectơ chỉ phương của đường thẳng AB.

    Vậy đáp án cần tìm là: \overrightarrow{b}
= ( - 1;0;2).

  • Câu 11: Nhận biết
    Xác định phương trình tham số của Oz

    Trong không gian với hệ trục tọa độ Oxyz, phương trình tham số trục Oz

    Hướng dẫn:

    Trục Oz đi qua gốc tọa độ O(0;0;0) và nhận vectơ đơn vị \overrightarrow{k} = (0;0;1) làm vectơ chỉ phương nên có phương trình tham số \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = t \\
\end{matrix} \right..

  • Câu 12: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, hình chiếu vuông góc của điểm M(2;\ 1;\  -
1) trên trục Oz có tọa độ là

    Hướng dẫn:

    Hình chiếu vuông góc của điểm M(2;\
1;\  - 1) trên trục Oz có tọa độ là: (0;\ 0;\  - 1).

  • Câu 13: Nhận biết
    Chọn phương trình đường thẳng thích hợp

    Trong không gian với hệ tọa độ  Oxyz,  cho đường thẳng \Delta là giao tuyến của hai mặt phẳng (\alpha):x - 2y - z + 1 = 0(\beta):2x + 2y - 3z - 4 = 0. Phương trình đường thẳng d đi qua điểm M(1; - 1;0) và song song với đường thẳng \Delta

    Hướng dẫn:

    \left( \alpha  ight) có vectơ pháp tuyến \overrightarrow {{n_\alpha }}  = \left( {1; - 2; - 1} ight)

    \left( \beta  ight) có vectơ pháp tuyến \overrightarrow {{n_\beta }}  = \left( {2;2; - 3} ight)

    d đi qua điểm M và có vectơ chỉ phương là \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } ight] = \left( {8;1;6} ight)

    Vậy phương của d là \frac{x - 1}{8} = \frac{y + 1}{1} =
\frac{z}{6}.

  • Câu 14: Thông hiểu
    Định khoảng cách giữa hai đường thẳng chéo nhau

    Trong không gian với hệ tọa độ Oxyz khoảng cách giữa hai đường thẳng chéo nhau \Delta:\frac{x - 2}{2} = \frac{y -
3}{- 4} = \frac{z - 1}{- 5}d:\frac{x - 1}{1} = \frac{y}{- 2} = \frac{z +
1}{2} bằng

    Hướng dẫn:

    Chọn \left\{ \begin{matrix}
M(2;3;1) \in \Delta \\
N(1;0; - 1) \in d \\
\end{matrix} \right.

    Áp dụng công thức d(\Delta;d) =
\frac{\left| \left\lbrack
\overrightarrow{u_{\Delta}};\overrightarrow{u_{d}}
\right\rbrack.\overrightarrow{MN} \right|}{\left| \left\lbrack
\overrightarrow{u_{\Delta}};\overrightarrow{u_{d}} \right\rbrack
\right|} = \sqrt{5}

  • Câu 15: Nhận biết
    Tìm vectơ chỉ phương của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, đường thẳng d:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - t \\
z = 1 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) đi qua điểm nào dưới đây?

    Hướng dẫn:

    Nếu một điểm nằm trên một đường thẳng thì khi thay tọa độ điểm đó vào phương trình đường thẳng thì sẽ thỏa mãn phương trình đường thẳng.

    Lần lượt thay tọa độ M từ các phương án vào phương trình đường thẳng d ta được M(−3; 5; 3) thỏa mãn yêu cầu bài toán.

  • Câu 16: Thông hiểu
    Tính giao tuyến của đường thẳng và mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, gọi (\alpha) là mặt phẳng chứa đường thẳng (\beta):\frac{x - 2}{1} = \frac{y - 3}{1} =
\frac{z}{2} và vuông góc với mặt phẳng (\beta):x + y - 2z + 1 = 0. Hỏi giao tuyến của (\alpha)(\beta) đi qua điểm nào dưới đây?

    Hướng dẫn:

    Ta có: (\alpha):\left\{ \begin{matrix}
d \subset (\alpha)\  \\
(\beta)\bot(\alpha) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
A(2;3;0) \in d \Rightarrow A \in (\alpha)\  \\
\overrightarrow{n_{\alpha}}\bot\overrightarrow{u_{d}} = (1;1;2)\  \\
\overrightarrow{n_{\alpha}}\bot\overrightarrow{n_{\beta}} = (1;1; - 2)
\\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
A(2;3;0) \in (\alpha)\  \\
\overrightarrow{n_{\alpha}} = \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{n_{\beta}} ightbrack = ( -
4;4;0) \\
\end{matrix} ight.

    Suy ra (\alpha):x - y + 1 =
0

    Khi đó giao tuyến thỏa hệ \left\{
\begin{matrix}
x - y + 1 = 0 \\
x + y - 2z + 1 = 0 \\
\end{matrix} ight.

    Thay các phương án vào hệ, ta nhận phương án (2;3;3).

  • Câu 17: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz. Điểm nào sau đây là hình chiếu vuông góc của điểm A(1;4;2) trên mặt phẳng Oxy?

    Hướng dẫn:

    Ta có hình chiếu của A(1;4;2) trên mặt phẳng Oxy(1;4;0).

  • Câu 18: Nhận biết
    Giao điểm của 2 đường thẳng

    Hai đường thẳng ({d_1}):\left\{ \begin{array}{l}x - y - z - 7 = 0\\3x - 4y - 11 = 0\end{array} ight.({d_2}):\left\{ \begin{array}{l}x + 2y - z + 1 = 0\\x + y + 1 = 0\end{array} ight. cắt nhau tại điểm A. Tọa độ của A là:

    Hướng dẫn:

     Để tìm được A là giao điểm của 2 đường thẳng, ta sẽ xét và giải hệ PT giữa chúng.

    Từ phương trình của  ({d_1}):\left\{ \begin{array}{l}x - y - z - 7 = 0\\3x - 4y - 11 = 0\end{array} ight.  ,tính x,y theo z được 

    \left\{ \begin{array}{l}x = 4z + 17\\y = 3z + 10\end{array} ight.

    Thế vào phương trình của ({d_2}):\left\{ \begin{array}{l}x + 2y - z + 1 = 0\\x + y + 1 = 0\end{array} ight. , được z = - 4 .

    Từ đó suy ra x = 1, y = - 2

    \Rightarrow A(1, - 2, - 4)

  • Câu 19: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho điểm A( - 1;0;4) và đường thẳng d có phương trình \frac{x + 1}{1} = \frac{y}{1} =
\frac{z - 1}{2}. Gọi \Delta là đường thẳng đi qua A, vuông góc và cắt d.

    a) Một vectơ chỉ phương của \Delta(1;1; - 1). Đúng||Sai

    b) Đường thẳng \Delta đi qua điểm A(2;3;1). Đúng||Sai

    c) Đường thẳng \Delta có phương trình \frac{x + 1}{x} = \frac{y}{1} =
\frac{z - 4}{- 1}. Đúng||Sai

    d) Đường thẳng \Delta có phương trình \left\{ \begin{matrix}
x = 1 + t \\
y = 1 \\
z = - 4 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right). Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho điểm A( - 1;0;4) và đường thẳng d có phương trình \frac{x + 1}{1} = \frac{y}{1} =
\frac{z - 1}{2}. Gọi \Delta là đường thẳng đi qua A, vuông góc và cắt d.

    a) Một vectơ chỉ phương của \Delta(1;1; - 1). Đúng||Sai

    b) Đường thẳng \Delta đi qua điểm A(2;3;1). Đúng||Sai

    c) Đường thẳng \Delta có phương trình \frac{x + 1}{x} = \frac{y}{1} =
\frac{z - 4}{- 1}. Đúng||Sai

    d) Đường thẳng \Delta có phương trình \left\{ \begin{matrix}
x = 1 + t \\
y = 1 \\
z = - 4 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right). Sai||Đúng

    a) Đúngb) Đúngc) Đúngd) Sai

    Phương trình tham số của đường thẳng d:\left\{ \begin{matrix}
x = - 1 + t \\
y = t \\
z = 1 + 2t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Gọi M = d \cap \Delta \Rightarrow M( - 1
+ t;t;1 + 2t).

    Khi đó \overrightarrow{AM} = (t;t;2t -
3) là một VTCP của đường thẳng \Delta.

    Theo đề bài \Delta\bot d \Leftrightarrow
\overrightarrow{AM}.\overrightarrow{u_{d}} = 0

    \Leftrightarrow 1.t + 1.t + 2(2t - 3) =
0 \Leftrightarrow t = 1

    \Leftrightarrow \overrightarrow{AM} =
(1;1; - 1)

    Phương trình đường thẳng \Delta qua A( - 1;0;4) và có một VTCP \overrightarrow{AM} = (1;1; - 1) là:

    \frac{x + 1}{x} = \frac{y}{1} = \frac{z -
4}{- 1} hoặc \Delta:\left\{
\begin{matrix}
x = - 1 + t \\
y = t \\
z = 4 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Khi đó ta có

    Phương án a): Đúng vì một vectơ chỉ phương của \Delta(1;1; - 1).

    Phương án b): Đúng vì thay toạ độ điểm A(2;3;1) vào phương trình đường thẳng \Delta thoả mãn.

    Phương án c): Đúng vì đường thẳng \Delta có phương trình \frac{x + 1}{x} = \frac{y}{1} = \frac{z - 4}{-
1}.

    Phương án d): Sai vì đường thẳng \Delta có phương trình: \left\{ \begin{matrix}
x = - 1 + t \\
y = t \\
z = 4 - t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

  • Câu 20: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình chính tắc của đường thẳng?

    Hướng dẫn:

    Phương trình chính tắc của đường thẳng có dạng:

    \frac{x - x_{0}}{a} = \frac{y - y_{0}}{b}
= \frac{z - z_{0}}{c} với a.b.c
eq 0.

    Vậy đáp án đúng là : \frac{x - 6}{3} =
\frac{y - 3}{4} = \frac{z - 5}{3}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo