Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường thẳng trong không gian CTST (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Phương trình đường trung tuyến

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tham số của trung tuyến AM ?

    Hướng dẫn:

     Vì AM là trung tuyến nên M là trung điểm của BC. Gọi M\left( {{x_M},{y_M},{z_M}} ight)

    Từ tọa độ của B và C, ta tính được tọa độ của M là nghiệm của hệ:

    \begin{array}{l}\left\{ \begin{array}{l}{x_M} = \frac{{2 + 3}}{2}\\{y_M} = \frac{{ - 1 - 2}}{2}\\{z_M} = \frac{{4 + 5}}{2}\end{array} ight.\\ \Rightarrow M\left( {\frac{5}{2}, - \frac{3}{2},\frac{9}{2}} ight)\end{array}

    Ta có 1 vecto chỉ phương của (AM) là \overrightarrow {AM}  = \left( {\frac{3}{2}, - \frac{7}{2},\frac{{15}}{2}} ight) = \frac{1}{2}\left( {3, - 7,15} ight)

    (AM) là đường thẳng đi qua A (1,2,-3) và nhận vecto (3,-7,15) làm 1 VTCP có phương trình là:

    \begin{array}{l}\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 - 7t\\z = 15t - 3\end{array} ight.\\(t \in R)\end{array}  

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, trục Oxcó phương trình tham số

    Hướng dẫn:

    Trục Oxđi qua O(0;0;0) và có véctơ chỉ phương \overrightarrow{i}(1;0;0)nên có phương trình tham số là: \left\{ \begin{matrix}
x = 0 + 1.t \\
y = 0 + 0.t \\
z = 0 + 0.t \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = t \\
y = 0 \\
z = 0 \\
\end{matrix} \right.\ .

  • Câu 3: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, phương trình mặt phẳng đi qua 3 điểm A,B,C biết tọa độ A(0; - 1;0), B(2;0;0),\ C\left( 0;0;\frac{1}{2}
\right)

    Hướng dẫn:

    Ta có:

    \dfrac{x}{2} + \dfrac{y}{- 1} +
\dfrac{z}{\dfrac{1}{2}} = 1

    \Leftrightarrow \frac{x}{2} - y + 2z =
1

    \Leftrightarrow x - 2y + 4z - 2 =
0.

  • Câu 4: Nhận biết
    Xác định tọa độ hình chiếu của A lên mặt phẳng

    Trong không gian Oxyz, cho điểm A(3; - 1;1). Hình chiếu vuông góc của điểm a trên mặt phẳng (Oyz) là điểm

    Hướng dẫn:

    Khi chiếu vuông góc một điểm trong không gian lên mặt phẳng (Oyz), ta giữ lại các thành phần tung độ và cao độ nên hình chiếu của A(3; -
1;1) lên (Oyz) là điểm N(0; - 1;1).

  • Câu 5: Nhận biết
    Tìm vecto chỉ phương của đường thẳng

    Trong không gian Oxyz, cho đường thẳng (d)\ :\ \left\{ \begin{matrix}
x = 1 - 2t \\
y = - 3 \\
z = 4 + 5t \\
\end{matrix} \right.\ \ ;\ \ \ \ \ \left( t\mathbb{\in R}
\right). Vectơ nào dưới đây là một vectơ chỉ phương của (d) ?

    Hướng dẫn:

    Ta có: \overrightarrow{u} = ( -
2;0;5).

  • Câu 6: Nhận biết
    Viết PT tham số

    Viết phương trình tham số của đường thẳng d qua hai điểm: A\left( { - 1,3, - 2} ight);B\left( {2, - 3,4} ight)

    Gợi ý:

    Để viết PT Tham số của một đường thẳng, ta cần 1 vecto chỉ phương và 1 điểm bất kỳ nằm trên đường thẳng đó.

    Hướng dẫn:

     Đường thẳng d đi qua hai điểm A và B nên VTCP của đường thẳng d chính là \overrightarrow {AB} hay ta có: \overrightarrow {AB}  = \left( {3, - 6,6} ight) = 3\left( {1, - 2,2} ight) =  - 3\left( { - 1,2, - 2} ight)

    \begin{array}{l} \Rightarrow \left( d ight)\left\{ \begin{array}{l}x = 3t - 1\\y = 3 - 6t\\z = 6t - 2\end{array} ight.\,\,;t \in \mathbb{R},\,\\hay\,\,\left( d ight)\left\{ \begin{array}{l}x = 2 + m\\y =  - 3 - 2m\\z = 4 + 2m\end{array} ight.\,\,;m \in \mathbb{R}\\\hay\,\,\left( d ight)\,\left\{ \begin{array}{l}x =  - 1 - \tan t\\y = 3 + 2\tan t\\z =  - 2 - 2\tan t\end{array} ight.\,\,;t \in\mathbb{R}\end{array}

     

  • Câu 7: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ \left\{
\begin{matrix}
x = 2 \\
y = 3 - t \\
z = 3 - t \\
\end{matrix} \right.cho đường thẳng Oxyz,. Đường thẳng d_{1}:\frac{x}{2} = \frac{y - 1}{- 1} = \frac{z +
2}{1} đi qua điểm d_{2}:\left\{
\begin{matrix}
x = - 1 + 2t \\
y = 1 + t \\
z = 3 \\
\end{matrix} \right. và có vectơ chỉ phương (P):7x + y - 4z = 0 có tọa độ là:

    Hướng dẫn:

    d đi qua A = d \cap d_{1},B = d \cap d_{2} và có vectơ chỉ phương \overrightarrow {{a_d}}  = \left( {1;3;1} ight).

  • Câu 8: Nhận biết
    Hai đường thẳng chéo nhau

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} , \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) chéo nhau khi và chỉ khi:

    Hướng dẫn:

     Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ;\,\overrightarrow b } ight].\,\overrightarrow {AB} \, e \,\,0

    Suy ra (D) và (d) chéo nhau.

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, hình chiếu vuông góc của điểm M(3;1; -
1) trên trục Oy có tọa độ là

    Hướng dẫn:

    Hình chiếu vuông góc của điểm M(3;1; -
1) trên trục Oy có tọa độ là (0;1;0).

  • Câu 10: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian Oxyz, hãy viết phương trình của đường thẳng d đi qua điểm M( - 1;0;0) và vuông góc với mặt phẳng (P):x + 2y - z + 1 =
0?

    Hướng dẫn:

    Đường thẳng d đi qua điểm M( - 1;0;0) và có một véc-tơ chỉ phương là \overrightarrow{u} = (1;2; - 1) nên d có phương trình chính tắc là d:\frac{x + 1}{1} = \frac{y}{2} = \frac{z}{-
1}.

  • Câu 11: Nhận biết
    Viết phương trình đường trung tuyến AM

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A\left( { - 1;3;2} \right),B\left( {2;0;5} \right),C\left( {0; - 2;1} \right). Phương trình đường trung tuyến AM của tam giác ABC là.

    Hướng dẫn:

    M là trung điểm BC => M(1;-1;3)

    AM đi qua điểm A và có vectơ chỉ phương \overrightarrow {AM}  = \left( {2; - 4;1} ight)

    Vậy phương trình chính tắc của AM\frac{x
+ 1}{2} = \frac{y - 3}{- 4} = \frac{z - 2}{1}

  • Câu 12: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}x =3 - 2t \\y = 1 + 2t \\x = - 5 + t\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và mặt phẳng (P):x + y - 5= 0.

    a) Vectơ \overrightarrow{u} = ( -
2;2;1) là một vectơ chỉ phương của \Delta. Đúng||Sai

    b) Góc giữa hai mặt phẳng (P)(Oyz) bằng 45^{0}. Đúng||Sai

    c) Đường thẳng đi qua N(2;3; -
4) và song song với \Delta có phương trình là \frac{x - 2}{- 2} =
\frac{y - 3}{2} = \frac{z + 4}{1}. Đúng||Sai

    d) Đường thẳng d vuông góc \Delta và tạo với (P) một góc 450 có một vectơ chỉ phương là  \overrightarrow{u_{1}} = (1; -
2;4) . Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}x =3 - 2t \\y = 1 + 2t \\x = - 5 + t\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và mặt phẳng (P):x + y - 5= 0.

    a) Vectơ \overrightarrow{u} = ( -
2;2;1) là một vectơ chỉ phương của \Delta. Đúng||Sai

    b) Góc giữa hai mặt phẳng (P)(Oyz) bằng 45^{0}. Đúng||Sai

    c) Đường thẳng đi qua N(2;3; -
4) và song song với \Delta có phương trình là \frac{x - 2}{- 2} =
\frac{y - 3}{2} = \frac{z + 4}{1}. Đúng||Sai

    d) Đường thẳng d vuông góc \Delta và tạo với (P) một góc 450 có một vectơ chỉ phương là  \overrightarrow{u_{1}} = (1; -
2;4) . Sai||Đúng

    a) Đúng

    b) Đúng

    c) Đúng

    d) Sai

    Phương án a) đúng: Từ phương trình của \Delta:\left\{ \begin{matrix}
x = 3 - 2t \\
y = 1 + 2t \\
x = - 5 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) ta có \overrightarrow{u} = ( - 2;2;1) là một vectơ chỉ phương của \Delta.

    Phương án b) đúng: (P):x + y - 5 =
0; (Oyz):x = 0 nên ta có \cos\left( (P);(Oyz) \right) =
\frac{1}{\sqrt{2}}.

    Suy ra \left( (P);(Oyz) \right) =45^0.

    Phương án c) đúng: Đường thẳng \Delta_{1}// \Delta nên \Delta_{1} nhận \overrightarrow{u} = ( - 2;2;1) làm VTCP. Hơn nữa \Delta_{1} đi qua N(2;3; - 4) nên có phương trình là \frac{x - 2}{- 2} = \frac{y - 3}{2} = \frac{z +
4}{1}.

    Phương án d) sai: Gọi \overrightarrow{u_{1}} = (a;b;c) (với a^{2} + b^{2} + c^2 > 0) là một VTCP của d. Do d\bot\Delta nên \overrightarrow{u_{1}}\bot\overrightarrow{u}
\Rightarrow \overrightarrow{u_{1}}.\overrightarrow{u} = 0

    \Rightarrow - 2a + 2b + c = 0
\Rightarrow c = 2a - 2b(*)

    Hơn nữa \left( d;(P) \right) =45^0 nên \sin\left( d;(P) \right)= \frac{1}{\sqrt{2}}  = \frac{|a + b|}{\sqrt{2}.\sqrt{a^{2} + b^{2} +c^{2}}}

    \Leftrightarrow |a + b| = \sqrt{a^{2} +
b^{2} + c^{2}}

    \Leftrightarrow (a + b)^{2} = a^{2} +
b^{2} + c^{2} \Leftrightarrow 2ab = c^{2}

    . Thay (*) vào ta được: (2a - 2b)^{2} =
2ab \Leftrightarrow 2a^{2} - 5ab + 2b^{2} = 0(**)

    Nếu b = 0 \Rightarrow a = 0;c =
0 (không thỏa mãn).

    Nếu b \neq 0, ta có (**) \Leftrightarrow 2.\left( \frac{a}{b}
\right)^{2} - 5\left( \frac{a}{b} \right) + 2 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
\frac{a}{b} = 2 \\
\frac{a}{b} = \frac{1}{2}
\end{matrix} \right..

    Với \frac{a}{b} = 2 \Rightarrow a =
2b, thay vào (*) ta được c =
2b. Do đó \overrightarrow{u_{1}} =
(2b;b;2b);(b \neq 0)

    Với \frac{a}{b} = \frac{1}{2} \Rightarrow
b = 2a, thay vào (*) ta được c = -
2a. Do đó \overrightarrow{u_{1}} =
(a;2a; - 2a);(a \neq 0)

    Vậy \overrightarrow{u_{1}} = (1; -
2;4) không là một VTCP của d.

    Cách khác: Giả sử \overrightarrow{u_{1}}
= (1; - 2;4) là một VTCP của d. Khi đó \sin\left( d;(P) \right) = \frac{\left| 1.1 + ( -
2).1 + 4.0 \right|}{\sqrt{1^{2} + ( - 2)^{2} + 4^{2}}.\sqrt{1^{2} +
1^{2}}} = \frac{1}{\sqrt{42}} \Rightarrow \left( d;(P) \right) \neq
45^{0} (mâu thuẫn).

    Vậy \overrightarrow{u_{1}} = (1;2;-4) không là một VTCP của d.

  • Câu 13: Nhận biết
    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, trục Ox có phương trình tham số là

    Hướng dẫn:

    Trục Ox đi qua O(0; 0; 0) và có véctơ chỉ phương \overrightarrow{i} = (1;0;0) nên có phương trình tham số là \left\{
\begin{matrix}
x = 0 + 1t \\
y = 0 + 0t \\
z = 0 + 0t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) \Leftrightarrow
\left\{ \begin{matrix}
x = t \\
y = 0 \\
z = 0 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 14: Thông hiểu
    Chọn phương án thích hợp

    Cho d:\left\{ \begin{matrix}
x = 1 + t \\
y = - 3 - t \\
z = 2 + 2t \\
\end{matrix} \right.\ ,\ \ d':\frac{x}{3} = \frac{y - 3}{- 1} =
\frac{z - 1}{1}. Khi đó khoảng cách giữa dd'

    Hướng dẫn:

    Ta có A(1; - 3;2) \in d,\ \ B(0;3;1) \in
d'\overrightarrow{u}(1; -
1;2),\ \overrightarrow{u'}(3; - 1;1) lần lượt là vectơ chỉ phương của d,\ d'

    Ta có:

    d(d,d') = \frac{\left| \left\lbrack
\overrightarrow{u},\overrightarrow{u'}
\right\rbrack.\overrightarrow{AB} \right|}{\left| \left\lbrack
\overrightarrow{u},\overrightarrow{u'} \right\rbrack \right|} =
\frac{27}{\sqrt{30}} = \frac{9\sqrt{30}}{10}

  • Câu 15: Nhận biết
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình đường thẳng \Delta đi qua điểm A(1;2;0) và vuông góc với mặt phẳng (P):2x + y - 3z + 5 = 0?

    Hướng dẫn:

    Đường thẳng \Delta vuông góc với mặt phẳng (P):2x + y - 3z + 5 = 0 nên \Delta có một vectơ chỉ phương là \overrightarrow{u} =
\overrightarrow{n_{P}} = (2;1; - 3).

    Phương trình \Delta\left\{ \begin{matrix}
x = 1 + 2t \\
y = 2 + t \\
z = - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)\ \ \
(*)

    Kiểm tra được điểm M(3;3; - 3) thỏa mãn hệ (*).

    Vậy phương trình: \left\{ \begin{matrix}
x = 3 + 2t \\
y = 3 + t \\
z = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) cũng là phương trình của \Delta.

  • Câu 16: Nhận biết
    Viết phương trình tham số của đường thẳng

    Trong không gian Oxyz, cho hai điểm M(\ 1;\ 0;\ 1)N(\ 3;\ 2;\  - 1). Đường thẳng MN có phương trình tham số là

    Hướng dẫn:

    Đường thẳng MN nhận \overrightarrow{MN} = (\ 2;\ 2;\  - 2) hoặc \overrightarrow{u}(\ 1;\ 1;\  -
1) là véc tơ chỉ phương nên ta loại ngay phương án \left\{ \begin{matrix}
x = 1 + 2t \\
y = 2t \\
z = 1 + t \\
\end{matrix} \right.\ ., \left\{
\begin{matrix}
x = 1 + t \\
y = t \\
z = 1 + t \\
\end{matrix} \right.\ .\left\{
\begin{matrix}
x = 1 - t \\
y = t \\
z = 1 + t \\
\end{matrix} \right.\ .

    Thay tọa độ điểm M(\ 1;\ 0;\ 1) vào phương trình ở phương án \left\{
\begin{matrix}
x = 1 + t \\
y = t \\
z = 1 - t \\
\end{matrix} \right.\ . ta thấy thỏa mãn.

  • Câu 17: Thông hiểu
    Định m để đường thẳng và mặt phẳng song song

    Trong không gian với hệ trục toạ độ Oxyz, tìm tất cả giá trị tham số m để đường thẳng d:\frac{x - 1}{1} = \frac{y}{2} = \frac{z -
1}{1} song song với mặt phẳng (P):2x + y - m^{2}z + m = 0.

    Hướng dẫn:

    Ta có:

    d qua điểm M(1; 0; 1) và có VTCP là \overrightarrow{u} = (1;2;1)

    (P) có VTPT là \overrightarrow{n} =
\left( 2;1; - m^{2} ight)

    Vì d // (P) nên \overrightarrow{u}\bot\overrightarrow{n}
\Rightarrow \overrightarrow{u}.\overrightarrow{n} = 0 \Leftrightarrow m
= \pm 2

    Với m = 2, (P): 2x + y − 4z + 2 = 0 ⇒ M ∈ (P) (loại).

    Với m = −2, (P): 2x + y − 4z − 2 = 0\Rightarrow M otin (P) (thỏa mãn).

  • Câu 18: Nhận biết
    Hai đường thẳng song song

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} , \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) song song khi và chỉ khi:

    Hướng dẫn:

     Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB}  = 0 \Rightarrow \left( D ight)và (d) cùng nằm trong một mặt phẳng

    Để (D) và d song song, ta sẽ xét tỉ số chứng minh chúng cùng phương rồi kiểm tra rằng d không nằm trong (D):

      {a_1}:{a_2}:{a_3} = {b_1}:{b_2}:{b_3} \Leftrightarrow \frac{{{a_1}}}{{{b_1}}} = \frac{{{a_2}}}{{{b_2}}} = \frac{{{a_3}}}{{{b_3}}} \Rightarrow \left( D ight)và (d)  cùng phương A\left( {{x_1},{y_1},{z_1}} ight) \in \left( D ight)A otin \left( d ight) \Rightarrow \left( D ight) và (d) song song.

  • Câu 19: Nhận biết
    Chọn phương trình đường thẳng thích hợp

    Trong không gian với hệ tọa độ  Oxyz,  cho đường thẳng \Delta là giao tuyến của hai mặt phẳng (\alpha):x - 2y - z + 1 = 0(\beta):2x + 2y - 3z - 4 = 0. Phương trình đường thẳng d đi qua điểm M(1; - 1;0) và song song với đường thẳng \Delta

    Hướng dẫn:

    \left( \alpha  ight) có vectơ pháp tuyến \overrightarrow {{n_\alpha }}  = \left( {1; - 2; - 1} ight)

    \left( \beta  ight) có vectơ pháp tuyến \overrightarrow {{n_\beta }}  = \left( {2;2; - 3} ight)

    d đi qua điểm M và có vectơ chỉ phương là \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } ight] = \left( {8;1;6} ight)

    Vậy phương của d là \frac{x - 1}{8} = \frac{y + 1}{1} =
\frac{z}{6}.

  • Câu 20: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho điểm M( - 4;0;0)và đường thẳng\Delta:\left\{ \begin{matrix}
x = 1 - t \\
y = - 2 + 3t \\
z = - 2t \\
\end{matrix} \right.. Gọi H(a;b;c) là hình chiếu của M lên \Delta. Tính a+b+c.

    Hướng dẫn:

    Gọi H là hình chiếu của M lên \Deltanên tọa độ của H có dạng H(1 - t; - 2 + 3t; - 2t)\overrightarrow{MH}\bot\overrightarrow{u_{\Delta}}

    \overrightarrow{MH}.\overrightarrow{u_{\Delta}} =
0 \Leftrightarrow 14t - 11 = 0 \Leftrightarrow t =
\frac{11}{14}

    \Rightarrow
H(\frac{3}{14};\frac{5}{14};\frac{- 22}{14}) \Rightarrow a + b + c = -
1

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo