Trong không gian , hình chiếu vuông góc của điểm
trên mặt phẳng
là
Tọa độ hình chiếu của điểm A trên mặt phẳng là:
.
Trong không gian , hình chiếu vuông góc của điểm
trên mặt phẳng
là
Tọa độ hình chiếu của điểm A trên mặt phẳng là:
.
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Trong không gian , cho
,
. Điểm
thay đổi thuộc mặt phẳng
. Tính giá trị của biểu thức
khi
nhỏ nhất.
Gọi là điểm thỏa:
.
Ta có:
.
Do đó nhỏ nhất khi và chỉ khi
nhỏ nhất.
Điều này xảy ra khi và chỉ khi là hình chiếu của
lên mặt phẳng
.
Suy ra .
Vậy .
Trong không gian với hệ trục tọa độ , cho
,
,
. Tìm tọa độ của vectơ
.
Ta có:
.
Trong không gian , cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.
Trong không gian với hệ trục tọa độ , cho ba điểm
,
và
. Điểm
sao cho tứ giác
là hình bình hành. Tính
?
Đáp án: 3
Trong không gian với hệ trục tọa độ , cho ba điểm
,
và
. Điểm
sao cho tứ giác
là hình bình hành. Tính
?
Đáp án: 3
Gọi
Ta có:
là hình bình hành nên
.
Vậy .
Trong không gian , cho hình lập phương
có cạnh bằng 4, đỉnh
trùng với gốc
, các điểm
lần lượt nằm trên các tia
.
a. Tọa độ của điểm là:
Sai||Đúng
b. Tọa độ của vec tơ là:
Sai||Đúng
c. Tọa độ của vec tơ là:
Đúng||Sai
d. Tọa độ của vec tơ là:
Đúng||Sai
Trong không gian , cho hình lập phương
có cạnh bằng 4, đỉnh
trùng với gốc
, các điểm
lần lượt nằm trên các tia
.
a. Tọa độ của điểm là:
Sai||Đúng
b. Tọa độ của vec tơ là:
Sai||Đúng
c. Tọa độ của vec tơ là:
Đúng||Sai
d. Tọa độ của vec tơ là:
Đúng||Sai
Hình vẽ minh họa

(a) Tọa độ của điểm là:
Do cùng hướng với
và
nên
hay
.
Suy ra: .
» Chọn SAI.
(b) Tọa độ của vec tơ là:
Do cùng hướng với
và
nên
hay
.
Theo quy tắc hình bình hành, ta có: .
Suy ra: .
» Chọn SAI.
(c) Tọa độ của vec tơ là:
Do cùng hướng với
và
nên
hay
.
Suy ra: .
» Chọn ĐÚNG.
(d) Tọa độ của vec tơ là:
.
Theo quy tắc hình hộp, ta có: .
Suy ra:
» Chọn ĐÚNG.
Trong không gian hệ trục tọa độ cho điểm
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu đối xứng với
qua mặt phẳng
thì
.
Nếu đối xứng với
qua trục
thì
.
Nếu đối xứng với
qua gốc tọa độ thì
.
Vậy mệnh đề đúng là: “Nếu đối xứng với
qua mặt phẳng
thì
”.
Trong không gian hệ trục tọa độ , cho lăng trụ tam giác
có tọa độ các điểm
. Xác định tọa độ điểm
?
Hình vẽ minh họa
Gọi tọa độ điểm
Vì là hình lăng trụ nên
Vậy tọa độ
Trong không gian với hệ tọa độ , cho hình hộp
với
. Tìm tọa độ điểm
.
Gọi là điểm cần tìm.
Gọi và
lần lượt là trung điểm
và
và
.
Ta có: .
Vậy .
Trong không gian , cho
, tọa độ điểm
đối xứng với điểm
qua trục
là
Gọi là điểm đối xứng với điểm A qua trục
.
Điểm đối xứng với điểm
qua trục
nên
.
Do đó .
Tứ giác là hình bình hành biết tọa độ các điểm
. Tìm tọa độ điểm
?
Giả sử điểm khi đó
ta có là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian với hệ trục tọa độ , cho ba điểm
. Tìm tọa độ điểm
sao cho tứ giác
là hình bình hành.
Hình vẽ minh họa
Ta có ;
nên
không cùng phương hay
không thẳng hàng.
Gọi
.
Lúc đó, là hình bình hành khi và chỉ khi
Vậy tọa độ điểm cần tìm là:
Tìm để góc giữa hai vectơ
là góc nhọn.
Để
.
Kết hợp điều kiện
Trong không gian với
lần lượt là các vecto đơn vị trên các trục
Tính tọa độ của vecto
Ta có:
Tìm tọa độ véctơ biết rằng
và
.
Ta có .
ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm
là tâm của nguồn phát âm với bán kính
. Để kiểm tra một điểm ở vị trí
có nhận được cường độ âm phát ra tại
hay không người ta sẽ tính khoảng cách giữa hai vị trí
và
. Hỏi khoảng cách giữa hai vị trí
và
là bao nhiêu mét?
Đáp án: 14 (m)
ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm
là tâm của nguồn phát âm với bán kính
. Để kiểm tra một điểm ở vị trí
có nhận được cường độ âm phát ra tại
hay không người ta sẽ tính khoảng cách giữa hai vị trí
và
. Hỏi khoảng cách giữa hai vị trí
và
là bao nhiêu mét?
Đáp án: 14 (m)
Ta có
(m).
Đáp số 14(m).
Trong không gian , cho hình bình hành hình bình hành. Biết các điểm
. Xác định tọa độ điểm
?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian , cho điểm
thỏa mãn
. Tọa độ điểm
bằng
Ta có:
Trong không gian , cho hai điểm
,
, tọa độ điểm
thuộc trục
sao cho
thẳng hàng là
Vì điểm thuộc trục
nên
có tọa độ
.
Ta có ;
thẳng hàng
cùng phương
Vậy điểm .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: