Trong không gian với hệ trục toạ độ , cho điểm
và hai mặt phẳng
và
. Tìm khẳng định đúng?
Có ,
Và
Trong không gian với hệ trục toạ độ , cho điểm
và hai mặt phẳng
và
. Tìm khẳng định đúng?
Có ,
Và
Trong không gian với hệ trục toạ độ , cho mặt phẳng
. Hỏi có bao nhiêu điểm
thuộc mặt phẳng
với
là các số nguyên không âm.
Ta có nên mặt phẳng
đi qua các điểm
Từ đó suy ra tất cả các điểm có toạ độ nguyên của mặt phẳng (P) đều nằm trong miền tam giác ABC.
Tam giác ABC đều có các cạnh bằng , chiếu các điểm có toạ độ nguyên của hình tam giác ABC xuống mặt phẳng (Oxy) ta được các điểm có toạ độ nguyên của hình tam giác OAB.
Mà số điểm có toạ độ nguyên của tam giác OAB bằng
Cho hình chóp có đáy là hình thoi cạnh
,
, mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi
lần lượt là trung điểm các cạnh
và
là giao điểm của
với
. Khoảng cách từ trung điểm
của đoạn thẳng
đến mặt phẳng
bằng:
Hình vẽ minh họa

Xét hình chóp trong hệ tọa độ
như hình vẽ.
Khi đó ta có:
Có MN // AD nên suy ra P là trung điểm của CD.
Theo công thức trung điểm, ta suy ra
Ta có:
Vectơ pháp tuyến của mặt phẳng (HMN) là
Phương trình mặt phẳng (HMN) là
Vậy khoảng cách cần tìm là:
Cho hình chóp có đáy
là hình vuông cạnh
,
, hình chiếu vuông góc
của S trên mặt phẳng
là trung điểm của đoạn
. Gọi
là trung điểm đoạn
(tham khảo hình vẽ)
Cho hình chóp có đáy
là hình vuông cạnh
,
, hình chiếu vuông góc
của S trên mặt phẳng
là trung điểm của đoạn
. Gọi
là trung điểm đoạn
(tham khảo hình vẽ)
Cho và
. Điểm
sao cho
và đoạn
bằng 3 lần khoảng cách từ
đến
. Khẳng định nào sau đây đúng?
Ta có:
.
Cho tam giác ABC với . Viết phương trình tổng quát của mặt phẳng
vuông góc với mặt phẳng
song song phân giác ngoài AF của góc A?
Một vecto chỉ phương của là
Ta có :
Vecto chỉ phương thứ hai
Suy ra vecto pháp tuyến của là
Mp đi qua
và nhận vecto
làm 1 VTPT có phương trình là:
Trong không gian tọa độ , mặt phẳng
đi qua
và chắn trên tia
một đoạn thẳng dài gấp đôi các đoạn thẳng mà nó chắn trên các tia
và
. Giả sử
, với
. Tính
.
Từ giả thiết, ta suy ra các giao điểm của (α) với các tia lần lượt là
.
Suy ra phương trình (đoạn chắn) của (α) là .
Do (α) đi qua M nên .
Suy ra .
Từ đó, ta tính được: .
Trong không gian với hệ trục tọa độ , cho các điểm
. Có bao nhiêu điểm
cách đều các mặt phẳng
?
Ta có
Ta có:
Ta có:
Gọi điểm cách đều các mặt phẳng
Từ
Từ
Từ
Từ (1), (3), (5) suy ra , b khác 0 tùy ý.
Như vậy có vô số điểm cách đều bốn mặt phẳng
Trong không gian với hệ trục tọa độ , cho điểm
Mặt phẳng
qua
cắt các tia
lần lượt tại
sao cho thể tích khối tứ diện
nhỏ nhất có phương trình là:
+) Mặt phẳng cắt các tia
lần lượt tại
nên
(
).
Phương trình mặt phẳng .
+) Mặt phẳng qua
nên
.
Ta có
+) Thể tích khối tứ diện bằng
.
Thể tích khối tứ diện nhỏ nhất khi
suy ra
.
Phương trình mặt phẳng hay
.
Trong không gian , cho điểm
. Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục
lần lượt tại các điểm
sao cho
?
Đặt với
.
Phương trình mặt phẳng (P) đi qua ba điểm có dạng
.
Do nên ta có
.
Suy ra .
Nếu và
thì mặt phẳng (P) có dạng
.
Vì (P) đi qua M nên .
Ta có .
Nếu và
thì mặt phẳng (P) có dạng
.
Vì (P) đi qua M nên
Ta có .
Nếu và
thì mặt phẳng (P) có dạng
.
Vì (P) đi qua M nên
Ta có .
Nếu và
thì mặt phẳng (P) có dạng
.
Vì (P) đi qua M nên
Ta có .
Vậy có bốn mặt phẳng thỏa yêu cầu bài toán.
Trong không gian với hệ tọa độ , cho hai điểm
. Giả sử
là tâm đường tròn ngoại tiếp tam giác
. Tính
.
Ta có:
Mặt phẳng (OAB) đi qua O và có vec-tơ pháp tuyến nên có phương trình
.
Ta xác định được
Theo giả thiết
Mặt khác
Giải hệ gồm (1), (2) và (3) ta được .
Vậy .
Trong không gian với hệ tọa độ , cho tam giác
có
. Độ dài đường cao của tam giác
kẻ từ
là:
Ta có:
Mà
Trong không gian , cho mặt phẳng
. Viết phương trình mặt phẳng
sao cho phép đối xứng qua mặt phẳng
biến mặt phẳng
thành mặt phẳng
.
Tọa độ giao điểm của mặt phẳng (α) với các trục tọa độ là .
Ta có và
.
Kí hiệu Đ(Oxy) là phép đối xứng qua mặt phẳng Oxy.
Ta có , (ảnh của A, B trùng với chính nó vì
).
Do C’ đối xứng với qua mặt phẳng Oxy, suy ra
Từ đó suy ra mặt phẳng (β) có phương trình theo đoạn chắn là:
Trong không gian cho ba điểm
và mặt phẳng
. Gọi
là điểm thuộc mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Gọi G là trọng tâm tam giác ABC ta có:
Lại có
Vì là một hằng số nên S nhỏ nhất khi MG nhỏ nhất, hay M là hình chiếu của G lên (P).
Từ đó ta tìm được và
Trong không gian . Cho
với
. Biết mặt phẳng
qua điểm
và thể tích tứ diện
đạt giá trị nhỏ nhất. Khi đó phương trình
:
Phương trình mặt phẳng
Vì
Áp dụng bất đẳng thức Cauchy ta có:
Thể tích tứ diện là
Đẳng thức xảy ra khi
Phương trình mặt phẳng là
Một công trình đang xây dựng được gắn hệ trục (đơn vị trên mỗi trục tọa độ là mét). Ba bức tường
(như hình vẽ) của tòa nhà lần lượt có phương trình:
,
,
,
.

Tính chiều rộng bức tường của tòa nhà.
Ta có:
có vectơ pháp tuyến là
có vectơ pháp tuyến là
có vectơ pháp tuyến là
có vectơ pháp tuyến là
Ta có:
nên hai bức tường
và
song song nhau
nên hai bức tường
và
song song nhau
nên bức tường
vuông góc với hai bức tường
và
nên bức tường
vuông góc với hai bức tường
và
Do hai bức tường và
song song nhau nên chiều rộng bức tường
là khoảng cách giữa hai bức tường
và
.
Chọn điểm
Do hai bức tường và
song song nhau nên:
Trong không gian với hệ trục toạ độ , cho hai mặt phẳng
,
. Lập phương trình mặt phẳng
đi qua
và chứa giao tuyến của hai mặt phẳng
?
Gọi là các điểm thuộc giao tuyến của hai mặt phẳng
.
thỏa hệ phương trình :
Cho .
Cho .
Lúc đó mặt phẳng chứa 3 điểm
.
Trong không gian với hệ tọa độ , cho ba điểm
. Gọi
là mặt phẳng đi qua
sao cho tổng khoảng cách từ
và
đến mặt phẳng
lớn nhất, biết rằng
không cắt đoạn
. Khi đó pháp tuyến của mặt phẳng
:
Hình vẽ minh họa
Lấy M là trung điểm của đoạn BC, suy ra .
Gọi lần lượt là khoảng cách từ
đến mặt phẳng (P), từ đó suy ra
.
Xét tam giác vuông , ta có
, từ đó suy ra để tổng khoảng cách từ B và C đến mặt phẳng (P) thì MM’ phải lớn nhất, điều này có nghĩa là M’ trùng với A hay MA ⊥ (P).
Từ đó suy ra vectơ pháp tuyến của mặt phẳng (P) là:
Trong không gian , cho điểm
. Phương trình mặt phẳng
cắt trục
lần lượt tại
(không trùng với gốc tọa độ
) sao cho
là tâm đường tròn ngoại tiếp tam giác
?
Trong không gian , cho điểm
. Phương trình mặt phẳng
cắt trục
lần lượt tại
(không trùng với gốc tọa độ
) sao cho
là tâm đường tròn ngoại tiếp tam giác
?
Trong không gian với hệ trục tọa độ , cho mặt phẳng
. Gọi mặt phẳng
là mặt phẳng đối xứng của mặt phẳng
qua trục tung. Khi đó phương trình mặt phẳng
là?
Gọi là điểm bất kỳ thuộc mặt phẳng
.
Điểm là điểm đối xứng của
qua trục tung
là mặt phẳng đi qua
và là mặt phẳng đối xứng của
Vậy .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: