Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt phẳng (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2; - 3;7),B(0;4;1), C(3;0;5),D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức \left| \overrightarrow{MA} + \overrightarrow{MB} +\overrightarrow{MC} + \overrightarrow{MD} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2; - 3;7),B(0;4;1), C(3;0;5),D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức \left| \overrightarrow{MA} + \overrightarrow{MB} +\overrightarrow{MC} + \overrightarrow{MD} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu
    Tìm phương trình mặt phẳng thích hợp

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng có phương trình (P)x + 2y + 2z - 1 = 0(Q):x + 2y - z - 3 =
0 và mặt cầu (S):(x - 1)^{2} + (y +
2)^{2} + z^{2} = 5. Mặt phẳng (\alpha) vuông với mặt phẳng (P),(Q) đồng thời tiếp xúc với mặt cầu (S).

    Hướng dẫn:

    Mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} +
z^{2} = 5 có tâm I(1; -
2;0) và bán kính R =
\sqrt{5}

    Gọi \overrightarrow{n_{\alpha}} là một vectơ pháp tuyến của mặt phẳng (\alpha)

    Ta có : {\overrightarrow{n}}_{\alpha} =
\overrightarrow{n_{P}} \land {\overrightarrow{n}}_{Q} \Rightarrow
\overrightarrow{n_{\alpha}} = ( - 6;3;0) = - 3(2; - 1;0) = -
3\overrightarrow{n_{1}}

    Lúc đó mặt phẳng (\alpha) có dạng :2x - y + m = 0.

    Do mặt phẳng (\alpha) tiếp xúc với mặt cầu (S)

    \Rightarrow d\left( I,(\alpha) \right) =
\sqrt{5} \Leftrightarrow \frac{|m + 4|}{\sqrt{5}} = \sqrt{5}
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = - 9 \\
\end{matrix} \right.

    Vậy phương trình mặt phẳng (\alpha):2x -
y + 1 = 0 hoặc 2x - y - 9 =
0.

  • Câu 3: Vận dụng
    PT mp cắt khối tứ diện

    Cho tứ giác ABCD có A\left( {0,1, - 1} ight);\,\,\,\,B\left( {1,1,2} ight);\,\,C\left( {1, - 1,0} ight);\,\,\,\left( {0,0,1} ight). Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng \frac{1}{27} .

    Hướng dẫn:

    Tỷ số thể tích hai khối AMNE và ABCD: {\left( {\frac{{AM}}{{AB}}} ight)^3} = \frac{1}{{27}}

    \Rightarrow \frac{{AM}}{{AB}} = \frac{1}{3} \Rightarrow M chia cạnh BA theo tỷ số -2

    \Rightarrow E\left\{ \begin{array}{l}x=\dfrac{{1 + 2.0}}{3} = \dfrac{1}{3}\\y = \dfrac{{1 + 2.1}}{3} = 1\\z = \dfrac{{2 + 2\left( { - 1} ight)}}{3} = 0\end{array} ight.;\,\,

    \overrightarrow {BC}  =  - 2\left( {0,1,1} ight);\,\,\overrightarrow {BD}  =  - \left( {1,1,1} ight)

    Vecto pháp tuyến của \left( Q ight):\overrightarrow n  = \left( {0,1, - 1} ight)

    \begin{array}{l} \Rightarrow M \in \left( Q ight) \Rightarrow \left( Q ight):\left( {x - \frac{1}{3}} ight)0 + \left( {y - 1} ight)1 + \left( {z - 0} ight)\left( { - 1} ight) = 0\\ \Rightarrow \left( P ight):y - z - 1 = 0\end{array}

  • Câu 4: Vận dụng
    Chọn khẳng định đúng

    Cho A(1; - 1;0)(P):2x - 2y + z - 1 = 0. Điểm M(a;b;c) \in (P) sao cho MA\bot OA và đoạn AM bằng 3 lần khoảng cách từ A đến (P). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \left\{ \begin{matrix}
M \in (P) \\
MA\bot OA \\
AM = 3d\left( A;(P) ight) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
1(a - 1) - 1(b + 1) + 0(c - 0) = 0 \\
\sqrt{(a - 1)^{2} + (b + 1)^{2} + (c - 0)^{2}} = 3 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
a - b - 2 = 0 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = a - 2 \\
c = - 3 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
c = - 3 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b + c = - 3.

  • Câu 5: Vận dụng
    Chọn đáp án chính xác nhất

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;5; - 1),B(1;1;3). Tìm tọa độ điểm M thuộc (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB}
ight| ngắn nhất.

    Hướng dẫn:

    Gọi J(x; y; z) là điểm sao cho \overrightarrow{JA} + \overrightarrow{JB} =
\overrightarrow{0} Suy ra J(2; 3; 1).

    Khi đó \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| = \left| \overrightarrow{MJ} +
\overrightarrow{JA} + \overrightarrow{MJ} + \overrightarrow{JB} ight|
= 2\left| \overrightarrow{MJ} ight|

    Vậy \left| \overrightarrow{MA} +
\overrightarrow{MB} ight| đạt GTNN khi và chỉ khi \left| \overrightarrow{MJ} ight| đạt GTNN hay M là hình chiếu của J lên mặt phẳng (Oxy).

    Vậy M(2; 3; 0).

  • Câu 6: Vận dụng
    Viết phương trình mặt phẳng (P)

    Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng song song với mặt phẳng Oxz và cắt mặt cầu (x - 1)^{2} + (y + 2)^{2} + z^{2} = 12 theo đường tròn có chu vi lớn nhất. Phương trình của (P) là:

    Hướng dẫn:

    Mặt phẳng (P) cắt mặt cầu (x - 1)^{2} + (y + 2)^{2} + z^{2} = 12 theo đường tròn có chu vi lớn nhất nên mặt phẳng (P) đi qua tâm I(1; - 2;0).

    Phương trình mặt phẳng (P) song song với mặt phẳng Oxz có dạng :Ay + B = 0

    Do (P) đi qua tâm I(1; - 2;0)có phương trình dạng: y + 2 = 0.

  • Câu 7: Vận dụng
    Xác định tập hợp các điểm cách đều mặt phẳng

    Trong không gian Oxyz, tìm tập hợp các điểm cách đều cặp mặt phẳng sau đây: 4x - y - 2z - 3 = 0;4x - y - 2z - 5 =
0.

    Hướng dẫn:

    Gọi điểm

    A (0; −3; 0) ∈ 4x − y − 2z − 3 = 0 (α)

    B (0; −5; 0) ∈ 4x − y − 2z − 5 = 0 (β)

    Mặt phẳng cách đều hai mặt phẳng trên có dạng: 4x − y − 2z + m = 0 (γ).

    Để mp (γ) cách đều hai mp trên thì d (A; (β)) = 2d (A; (γ)) ⇔ |m + 3| = 1

    ⇔ m = −2 hoặc m = −4

    Mặt khác điểm hai điểm A; B phải nằm về hai phía của mp (γ).

    Với m = −2 ta có (4 .0 + 3 – 2.0 − 2) (4.0 + 5 – 2.0 − 2) > 0 nên A; B cùng phía.

    Với m = −4 ta có (4 .0 + 3 – 2.0 − 4) (4.0 + 5 – 2.0 − 4) < 0 nên A; B khác phía.

    Vậy phương trình mặt phẳng cần tìm là 4x − y − 2z − 4 = 0 (γ).

  • Câu 8: Vận dụng
    Tính chiều rộng bức tường

    Một công trình đang xây dựng được gắn hệ trục Oxyz (đơn vị trên mỗi trục tọa độ là mét). Ba bức tường (P),(Q),(R),(T) (như hình vẽ) của tòa nhà lần lượt có phương trình: (P):2x - y - z + 1 = 0, (Q):x + 3y - z - 2 = 0,(R):4x - 2y - 2z + 9 = 0,(T):2x + 6y - 2z + 15 = 0.

    Tính chiều rộng bức tường (Q)của tòa nhà.

    Hướng dẫn:

    Ta có:

    (P):2x - y - z + 1 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{P} = (2;
- 1; - 1)

    (Q):x + 3y - z - 2 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{Q} =
(1;3; - 1)

    (R):4x - 2y - 2z + 9 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{R}
= (4; - 2; - 2)

    (T):2x + 6y - 2z + 15 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{T}
= (2;6; - 2)

    Ta có:

    {\overrightarrow{n}}_{R} = (4; - 2; - 2)
= 2(2; - 1; - 1) \Rightarrow {\overrightarrow{n}}_{R} =
2{\overrightarrow{n}}_{P} nên hai bức tường (P)(R)song song nhau

    {\overrightarrow{n}}_{T} = (2;6; - 2) =
2(1;3; - 1) \Rightarrow {\overrightarrow{n}}_{T} =
2{\overrightarrow{n}}_{Q} nên hai bức tường (T)(Q) song song nhau

    {\overrightarrow{n}}_{P}.{\overrightarrow{n}}_{Q}
= 2.1 + ( - 1).3 + ( - 1).( - 1) = 0 \Rightarrow
{\overrightarrow{n}}_{P}\bot{\overrightarrow{n}}_{Q} nên bức tường (Q) vuông góc với hai bức tường (P)(R)

    {\overrightarrow{n}}_{R}.{\overrightarrow{n}}_{Q}
= 4.1 + ( - 2).3 + ( - 2).( - 1) = 0 \Rightarrow
{\overrightarrow{n}}_{R}\bot{\overrightarrow{n}}_{Q} nên bức tường (R) vuông góc với hai bức tường (Q)(T)

    Do hai bức tường (P)(R)song song nhau nên chiều rộng bức tường (Q) là khoảng cách giữa hai bức tường (P)(R).

    Chọn điểm N(0;0;1) \in (P)

    Do hai bức tường (P)(R) song song nhau nên:

    d\left( (P),(R) \right) = d\left( N,(R)\right)= \frac{|4.0 - 2.0 - 2.1 + 9|}{\sqrt{4 + 1 + 1}} =\frac{7}{\sqrt{6}} \approx 2,9m

  • Câu 9: Vận dụng
    Viết PT mp

    Cho tam giác ABC với A\left( {\,1,\,\, - 2,\,\,6\,} ight);\,\,B\left( {\,2,\,\,5,\,\,1} ight);\,\,C\left( {\, - 1,\,\,8,\,\,4} ight) . Viết phương trình tổng quát của mặt phẳng (R) vuông góc với mặt phẳng (ABC) song song phân giác ngoài AF của góc A?

    Hướng dẫn:

     Một vecto chỉ phương của (R)\overrightarrow n  = 12\left( {3,1,2} ight)

    Ta có :

    \begin{array}{l}A{B^2} = 75 \Rightarrow AB = 5\sqrt 3 ;A{C^2} = 108 \Rightarrow AC = 6\sqrt 3 \\6\overrightarrow {FB}  = 5\overrightarrow {FC}  \Leftrightarrow \left\{ \begin{array}{l}6\left( {2 - x} ight) = 5\left( { - 1 - x} ight)\\6\left( {5 - y} ight) = 5\left( {8 - y} ight)\\6\left( {1 - z} ight) = 5\left( {4 - z} ight)\end{array} ight. \Rightarrow F\left\{ \begin{array}{l}x = 17\\y =  - 10\\z =  - 14\end{array} ight.\end{array}

    Vecto chỉ phương thứ hai \overrightarrow {AF}  = 4\left( {4, - 2, - 5} ight)

    Suy ra vecto pháp tuyến của (R)\overrightarrow N  = \left[ {\overrightarrow n ,\overrightarrow {AF} } ight] = \left( { - 1,23, - 10} ight)

    Mp (R) đi qua A (1, -2, 6) và nhận vecto (-1, 23, -10) làm 1 VTPT có phương trình là:

    \Rightarrow \left( R ight):\left( {x - 1} ight)\left( { - 1} ight) + \left( {y + 2} ight)23 + \left( {z - 6} ight)\left( { - 10} ight) = 0

    \Leftrightarrow x - 23y + 10z - 108 = 0

  • Câu 10: Vận dụng
    Tìm tọa độ đỉnh D

    Trong không gian Oxyz, cho ba điểm A(1;2;3),B(1;0; - 1),C(2; -
1;2). Điểm D thuộc tia Oz sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện ABCD bằng \frac{3\sqrt{30}}{10} có tọa độ là

    Hướng dẫn:

    Ta có D thuộc tia Oz nên D(0; 0; d) với d > 0.

    Tính \left\{ \begin{matrix}
\overrightarrow{AB} = (0; - 2; - 4) \\
\overrightarrow{AC} = (1; - 3; - 1) \\
\end{matrix} ight.

    Mặt phẳng (ABC): có vectơ pháp tuyến \overrightarrow{n_{(ABC)}} = \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 10; -
4;2) và đi qua điểm A(1; 2; 3).

    \Rightarrow (ABC): - 10(x - 1) - 4(y -
2) + 2(z - 3) = 0

    \Leftrightarrow 5x + 2y - y - 6 =
0

    Ta có d\left( D;(ABC) ight) =
\frac{3\sqrt{30}}{10} \Leftrightarrow \frac{|d + 6|}{\sqrt{30}} =
\frac{3\sqrt{30}}{10}

    \Leftrightarrow |d + 6| = 9
\Leftrightarrow \left\lbrack \begin{matrix}
d = 3(tm) \\
d = - 15(ktm) \\
\end{matrix} ight.

    Vậy D(0;0;3).

  • Câu 11: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho hai điểm A(2; - 2;4),B( - 3;3; - 1) và mặt phẳng (P):2x - y + 2z - 8 = 0. Xét M là điểm thay đổi thuộc (P), tính giá trị nhỏ nhất của 2MA^{2} + 3MB^{2} ?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho hai điểm A(2; - 2;4),B( - 3;3; - 1) và mặt phẳng (P):2x - y + 2z - 8 = 0. Xét M là điểm thay đổi thuộc (P), tính giá trị nhỏ nhất của 2MA^{2} + 3MB^{2} ?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Thông hiểu
    Tính tổng các tham số m thỏa mãn yêu cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 3y + 2z + 1 = 0(Q):(2m - 1)x + m(1 - 2m)y + (2m - 4)z + 14 =
0 với m là tham số thực. Tổng các giá trị của m để (P)(Q) vuông góc nhau bằng bao nhiêu?

    Hướng dẫn:

    Ta có:

    (P) có vectơ pháp tuyến \overrightarrow{n_{(P)}} = (1; - 3;2)

    (Q) có véc-tơ pháp tuyến \overrightarrow{n_{(Q)}} = \left( 2m - 1;,m(1 -
2m);2m - 4 ight)

    (P) và (Q) vuông góc với nhau khi và chỉ khi \overrightarrow{n_{(P)}}\bot\overrightarrow{n_{(Q)}}

    Điều này tương đương với

    \overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}}
= 0 \Leftrightarrow 6m^{2} + 3m - 9 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}m = 1 \\m = - \dfrac{3}{2} \\\end{matrix} ight.\  \Rightarrow T = 1 + \left( - \frac{3}{2} ight)= - \dfrac{1}{2}.

  • Câu 13: Vận dụng cao
    Tính P ?

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) qua hai điểm M(1;8;0), C(0;0;3) cắt các nửa trục dương Ox, Oy lần lượt tại A, B sao cho OG nhỏ nhất (G là trọng tâm tam giác ABC). Biết G( a, b ,c). Tính P=a+b+c.

    Hướng dẫn:

    Gọi A(m;0;0), B(0;n;0) mà  C(0;0;3) nên G(\frac{m}{3};\frac{n}{3};1)OG^2=\frac{1}{9} (m^2+n^2)+1.

    (P):\frac{x}{m}+\frac{y}{n}+\frac{z}{3}=1.(P) qua hai điểm M(1; 8; 0) nên  \frac{1}{m}+\frac{8}{n}=1.

    Ta có:  1=\frac{1}{m}+\frac{8}{n}=\frac{1}{m}+\frac{16}{2n} \geq\frac{(1+4)^2}{m+2n}

    \Rightarrow m+2n \geq25

    Suy ra

    25 \leq m+2n \leq \sqrt{5(m^2+n^2)} \Leftrightarrow m^2+n^2 \geq 125

    \Rightarrow OG^2 \geq \frac{134}{9}

    Dấu bằng xảy ra khi và chỉ khi: 

    \left\{\begin{matrix} \dfrac{1}{m}+ \dfrac{8}{n}=1 \\ \dfrac{m}{1}= \dfrac{n}{2} \end{matrix}ight. \Leftrightarrow \left\{\begin{matrix} m=5 \\  n=10 \end{matrix}ight. \Rightarrow G(\frac{5}{3}; \frac{10}{3}; 1)

  • Câu 14: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz cho điểm H(2;1;1). Gọi (P) là mặt phẳng đi qua H và cắt các trục tọa độ tại A;B;C sao cho H là trực tâm tam giác ABC. Hãy viết trình mặt phẳng (P).

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left| \begin{matrix}
AB\bot OC \\
AB\bot CH \\
\end{matrix} ight.\  \Rightarrow AB\bot OH

    Chứng minh tương tự BC ⊥ OH.

    Do đó OH\bot(ABC) \Rightarrow
\overrightarrow{n_{ABC}} = \overrightarrow{OH} = (2;;1)

    Suy ra (P):2x + y + z - 6 =
0.

  • Câu 15: Vận dụng cao
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho bốn điểm A( - 1;2;0),B(0;0; - 2),C(1;0;1),D(2;1;- 1). Hai điểm M;N lần lượt nằm trên đoạn BC và BD sao cho 2\frac{BC}{BM} + 3\frac{BD}{BN} = 10\frac{V_{ABMN}}{V_{ABCD}} =\frac{6}{25}. Phương trình mặt phẳng (AMN) có dạng ax + by + cz + 32 = 0. Tính S = a - b + c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho bốn điểm A( - 1;2;0),B(0;0; - 2),C(1;0;1),D(2;1;- 1). Hai điểm M;N lần lượt nằm trên đoạn BC và BD sao cho 2\frac{BC}{BM} + 3\frac{BD}{BN} = 10\frac{V_{ABMN}}{V_{ABCD}} =\frac{6}{25}. Phương trình mặt phẳng (AMN) có dạng ax + by + cz + 32 = 0. Tính S = a - b + c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm M(3;2;1). Viết phương trình mặt phẳng đi qua M và cắt các trục x'Ox,\ y'Oy,\ z'Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC?

    Hướng dẫn:

    Xét tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc với nhau.

    Ta có: \left\{
\begin{matrix}
AB\bot CM \\
AB\bot OC \\
\end{matrix} ight.\  \Rightarrow AB\bot(COM) \Rightarrow AB\bot
OM

    Chứng minh tương tự, ta được AC ⊥ OM.

    Từ đó OM ⊥ (ABC).

    Suy ra phương trình mặt phẳng (ABC) đi qua M(3; 2; 1) và nhận \overrightarrow{OM} = (3;2;1) làm vectơ pháp tuyến là:

    3(x - 3) + 2(y - 2) + z - 1 =
0

    \Leftrightarrow 3x + 2y + z - 14 = \
0

  • Câu 17: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, gọi (P)là mặt phẳng chứa trục Oy và tạo với mặt phẳng y + z + 1 = 0 góc 60^{0}. Phương trình mặt phẳng (P) là:

    Hướng dẫn:

    +) Mặt phẳng (P)chứa trục Oy nên có dạng: Ax + Cz = 0\ \ \ \ (A^{2} + C^{2} \neq
0).

    +) Mặt phẳng (P) tạo với mặt phẳng y + z + 1 = 0 góc 60^{0} nên cos60^{0} = \frac{\left|
\overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}} \right|}{\left|
\overrightarrow{n_{(P)}} \right|.\left| \overrightarrow{n_{(Q)}}
\right|}.

    \Leftrightarrow \frac{1}{2} =
\frac{|C|}{\sqrt{A^{2} + C^{2}}.\sqrt{2}} \Leftrightarrow \sqrt{A^{2} +
C^{2}} = \sqrt{2}|C|

    \Leftrightarrow A^{2} - C^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
A = C \\
A = - C \\
\end{matrix} \right.

    Phương trình mặt phẳng (P) là: \left\lbrack \begin{matrix}
x - z = 0 \\
x + z = 0 \\
\end{matrix} \right.

  • Câu 18: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz, gọi (\alpha) là mặt phẳng qua G(1;2;3) và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C (khác gốc O) sao cho G là trọng tâm của tam giác ABC. Khi đó mặt phẳng (\alpha) có phương trình:

    Hướng dẫn:

    Phương pháp tự luận

    Gọi A(a; 0; 0), B(0; b; 0), C(0;0;c) là giao điểm của mặt phẳng (\alpha) các trục Ox, Oy, Oz

    Phương trình mặt phẳng (\alpha) :\frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1 (a,b,c \neq 0) .

    Ta có G là trọng tâm tam giác ABC

    \Rightarrow \left\{ \begin{matrix}
\frac{a}{3} = 1 \\
\frac{b}{3} = 2 \\
\frac{c}{3} = 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 6 \\
c = 9 \\
\end{matrix} \right.

    \Rightarrow (\alpha):\frac{x}{3} +
\frac{y}{6} + \frac{z}{9} = 1 \Leftrightarrow 6x + 3y + 2z - 18 =
0

  • Câu 19: Vận dụng
    Chọn kết luận đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;1),B(1;0;1),C(1;1;0). Có bao nhiêu điểm M cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)?

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (0;1;1);\overrightarrow{OB} = (1;0;1) \\
\overrightarrow{OC} = (1;1;0);\overrightarrow{AB} = (1; - 1;0) \\
\overrightarrow{AC} = (1;\ 0; - 1) \\
\end{matrix} ight.

    Ta có: \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = (1;\ 1; - 1)
\Rightarrow (OAB):x + y - z = 0

    Ta có: \left\lbrack
\overrightarrow{AB};\overrightarrow{OC} ightbrack = ( - 1;1;1)
\Rightarrow (OBC): - x + y + z = 0

    Gọi điểm M(a;b;c) cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)

    Từ d\left( M,(OAB) ight) = d\left(
M,(OBC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = c(1) \\
b = c(2) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(OAC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b - c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = 0(3) \\
b = c(4) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(ABC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{|a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 0(5) \\
a = - b(6) \\
\end{matrix} ight.

    Từ (1), (3), (5) suy ra a = c = 0, b khác 0 tùy ý.

    Như vậy có vô số điểm cách đều bốn mặt phẳng

  • Câu 20: Vận dụng cao
    Viết PT mp cắt trục tọa độ

    Viết phương trình tổng quát của mặt phẳng (P) cắt hai trục y’Oyz’Oz tại và tạo với mặt phẳng (yOz) một góc 45^{\circ} .

    Hướng dẫn:

     Gọi C\left( {a,0,0} ight) là giao điểm của (P) và trục x’Ox

    \Rightarrow \overrightarrow {BA}  = \left( {0, - 1, - 1} ight);\overrightarrow {BC}  = \left( {a,0, - 1} ight)

    Vecto pháp tuyến của (P) là: \overrightarrow n  = \left[ {\overrightarrow {BA} ,\overrightarrow {BC} } ight] = \left( {1, - a,a} ight)

    Vecto pháp tuyến của (yOz) là: \overrightarrow {{e_1}}  = \left( {1,0,0} ight)

    Gọi là góc tạo bởi (P)\left( {yOz} ight) \Rightarrow \cos {45^o} = \frac{1}{{\sqrt {1 + 2{a^2}} }} = \frac{{\sqrt 2 }}{2}

    \Rightarrow 4{a^2} + 2 \Leftrightarrow a =  \pm \frac{1}{{\sqrt 2 }}

    Vậy có hai mặt phẳng:

    \begin{array}{l}\left( P ight): \pm \sqrt 2 x - y + z = 1\\ \Leftrightarrow \sqrt 2 x - y + z - 1 = 0;\,\,\sqrt 2 x + y - z + 1 = 0\end{array}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo