Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt phẳng (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz cho các điểm A(0;1;2),B(2; - 2;1),C( - 2;0;1). Phương trình mặt phẳng đi qua A và vuông góc với BC là:

    Hướng dẫn:

    Ta có: \overrightarrow{n} =
\frac{1}{2}\overrightarrow{BC} = ( - 2;1;0)

    Vậy phương trình mặt phẳng đi qua A và vuông góc với BC là:

    - 2(x - 0) + 1(y - 1) = 0

    \Leftrightarrow - 2x + y - 1 =
0

    \Leftrightarrow 2x - y + 1 =
0

  • Câu 2: Vận dụng cao
    Xác định phương trình mặt phẳng

    Trong không gian, với hệ tọa độ Oxyz, cho các điểm A(0;1;2),B(2; - 2;0),C( - 2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình là

    Hướng dẫn:

    Ta có: \overrightarrow{\ AB} = (2; -
3;2),\overrightarrow{AC} = ( - 2; - 1; - 1),\overrightarrow{BC} = ( -
4;2;1)

    \Rightarrow \left\lbrack
\overrightarrow{\ AB};\overrightarrow{AC} ightbrack = (1;6; -
8)

    Gọi tọa độ trực tâm H(a;b;c) khi đó \overrightarrow{\ AH} = (a;b - 1;c -
2),\overrightarrow{BH} = (a - 2;b + 2,c)

    Theo đề bài ta có

    \left\{ \begin{matrix}
\overrightarrow{\ AH}\bot\overrightarrow{BC} \\
\overrightarrow{BH}\bot\overrightarrow{AC} \\
\overrightarrow{\ AB};\overrightarrow{AC};\overrightarrow{\ AH} \in
(ABC) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{\ AH}.\overrightarrow{BC} = 0 \\
\overrightarrow{BH}.\overrightarrow{AC} = 0 \\
\left\lbrack \overrightarrow{\ AB};\overrightarrow{AC}
ightbrack.\overrightarrow{\ AH} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}- 4a + 2(b - 1) + c - 2 = 0 \\- 2(a - 2) - 1(b + 2) - c = 0 \\a + 6(b - 1) - 8(c - 2) = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{- 22}{101} \\b = \dfrac{70}{101} \\c = \dfrac{176}{101} \\\end{matrix} ight.

    \Rightarrow H\left( \frac{-
22}{101};\frac{70}{101};\frac{176}{101} ight) \Rightarrow
\overrightarrow{AH} = \left( \frac{- 22}{101};\frac{- 31}{101};\frac{-
26}{101} ight)

    Gọi \overrightarrow{n} là VTPT của mặt phẳng (P) ta có:

    \left\{ \begin{matrix}
\overrightarrow{\ AH}\bot\overrightarrow{n} \\
\overrightarrow{n}\bot\overrightarrow{n_{(ABC)}} \\
\end{matrix} ight.\  \Leftrightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{\ AH};\overrightarrow{n_{(ABC)}} ightbrack = (4; -
2; - 1)

    Phương trình mặt phẳng (P) đi qua A(0; 1; 2) có một VTPT là \overrightarrow{n} = (4; - 2; - 1)

    4(x - 0) - 2(y - 1) - 1(z - 2) =
0

    \Leftrightarrow 4x - 2y - z + 4 =
0

    Vậy (P):4x - 2y - z + 4\  =
0.

  • Câu 3: Vận dụng
    Tính khoảng cách từ điểm đến mặt phẳng

    Cho tứ diện OABC, có OA,OB,OC đôi một vuông góc và OA = 5,OB = 2,OC = 4. Gọi M,N lần lượt là trung điểm của OBOC. Gọi G là trọng tâm của tam giác ABC. Khoảng cách từ G đến mặt phẳng (AMN) là:

    Hướng dẫn:

    Chọn hệ trục tọa độ Oxyznhư hình vẽ.

    Ta có O(0;0;0), A \in Oz,\ \ B \in Ox,\ \ C \in Oy sao cho AO = 5,\ \ OB = 2,\ \ OC = 4

    \Rightarrow A(0;0;5),\ \ B(2;0;0),\ \
C(0;4;0).

    Khi đó: G là trọng tâm tam giácABC nên G\left( \frac{2}{3};\frac{4}{3};\frac{5}{3}
\right)

    Mlà trung điểm OBnên M(1;0;0)

    Nlà trung điểm OCnên N(0;2;0).

    Phương trình mặt phẳng (AMN) là: \frac{x}{1} + \frac{y}{2} + \frac{z}{5} =
1 hay 10x + 5y + 2z - 10 =
0

    Vậy khoảng cách từ G đến mặt phẳng (AMN) là:

    d\left( G,(AMN) \right) = \dfrac{\left|
\dfrac{20}{3} + \dfrac{20}{3} + \dfrac{10}{3} - 10 \right|}{\sqrt{100 + 25
+ 4}} = \dfrac{20}{3\sqrt{129}}.

  • Câu 4: Vận dụng
    Xác định số mặt phẳng thỏa mãn yêu cầu

    Trong không gian với hệ tọa độ Oxyz có bao nhiêu mặt phẳng song song với mặt phẳng (Q):x + y + z + 3 = 0, cách điểm M(3;2;1) một khoảng bằng 3\sqrt{3} biết rằng tồn tại một điểm X(a;b;c) trên mặt phẳng đó thỏa mãn a + b + c < - 2?

    Hướng dẫn:

    Mặt phẳng song song với (Q) có dạng (P):x
+ y + z + m = 0,(m eq 3)

    d\left( M,(P) ight) = \frac{|3 + 2 + 1
+ m|}{\sqrt{3}} = 3\sqrt{3} \Leftrightarrow \left\lbrack \begin{matrix}
m = 3(ktm) \\
m = - 15 \\
\end{matrix} ight.

    Với m = −15 thì với mọi X(a;b;c) \in
(P) ta có a + b + c - 15 = 0
\Leftrightarrow a + b + c = 15 > - 2

    Do đó không có mặt phẳng nào thỏa mãn đề bài

  • Câu 5: Vận dụng cao
    Viết PT mp vuông góc chung

    Cho điểm M\left( { - 3,2, - 1} ight) và hai mặt phẳng \left( \alpha  ight):x + 3y - 5z + 3 = 0,\left( \beta  ight):2x - y - 2z - 5 = 0.

    Gọi (P) là mặt phẳng chứa điểm M , vuông góc với cả hai mặt phẳng (\alpha)(\beta) . Phương trình mặt phẳng (P):

    Hướng dẫn:

     Theo đề bài, ta có:

    \left( \alpha  ight):x + 3y - 5z + 3 = 0 có vectơ pháp tuyến \overrightarrow a  = \left( {1,3, - 5} ight)

    \left( \beta  ight):2x - y - 2z - 5 = 0 có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1, - 2} ight)

    Suy ra tích có hướng giữa 2 vecto là \left[ {\overrightarrow a ,\overrightarrow b } ight] = \overrightarrow n  = \left( {1, - 8, - 7} ight)

    Ta chọn \vec{n} làm vectơ pháp tuyến cho mặt phẳng (P)

    Phương trình (P) có dạng x - 8y - 7z + D = 0

    Mặt khác, ta có M \in \left( \alpha  ight) \Leftrightarrow  - 3 - 16 + 7 + D = 0 \Leftrightarrow D = 12

    Vậy phương trình cần tìm là: (P): x - 8y - 7z + 12 = 0

  • Câu 6: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(2;3;0) và mặt phẳng (P):x + y + z - 7 = 0. Tìm hoành độ x_{M} của điểm M thuộc mặt phẳng (P) sao cho \left| \overrightarrow{MA} + 2\overrightarrow{MB}ight| đạt giá trị nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(2;3;0) và mặt phẳng (P):x + y + z - 7 = 0. Tìm hoành độ x_{M} của điểm M thuộc mặt phẳng (P) sao cho \left| \overrightarrow{MA} + 2\overrightarrow{MB}ight| đạt giá trị nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Vận dụng
    Viết PT mp biết thể tích chóp

    Cho hai điểm A\left( {2, - 3,4} ight);\,\,\,\,B\left( { - 1,4,3} ight). Viết phương trình tổng quát của mặt phẳng (P) vuông góc với AB, cắt ba trục tọa độ Ox, Oy, Oz tại M, N, E sao cho thể tích hình chóp O.MNE  bằng \frac{3}{14} đvtt.

    Hướng dẫn:

     Vecto pháp tuyến của \left( P ight):\overrightarrow {AB}  = \left( { - 3,7, - 1} ight)

    Phương trình \left( P ight):3x - 7y + z + D = 0

    (P) cắt 3 trục tọa độ tại M\left( { - \frac{D}{3},0,0} ight);\,\,N\left( {0,\frac{D}{7},0} ight);\,\,E\left( {0,0, - D} ight)

    Thể tích hình chóp O.MNE là:

    V_{O.MNE} = \frac{1}{6}OM.ON.OE = \frac{1}{6}\left| {\frac{D}{3}.\frac{D}{7}.D} ight|

    \begin{array}{l} \Leftrightarrow \dfrac{{{{\left| D ight|}^3}}}{{126}} = \dfrac{3}{{14}} \Leftrightarrow {\left| D ight|^3} = 27 \Leftrightarrow D =  \pm 3\\ \Rightarrow \left( P ight):3x - 7y + z \pm 3 = 0\end{array}

  • Câu 8: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Vận dụng
    Lập phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm S( - 1;6;2),A(0;0;6),B(0;3;0),C( -2;0;0). Gọi H là chân đường cao vẽ từ S của tứ diện S.ABC. Lập phương trình mặt phẳng đi qua ba điểm S;H;B.

    Hướng dẫn:

    Phương trình mặt phẳng đi qua ba điểm S;H;Bx +
5y - 7z - 15 = 0

    Phương trình mặt phẳng \frac{x}{- 2} +\frac{y}{3} + \frac{z}{6} = 1\Leftrightarrow - 3x + 2y + z - 6 =0

    H là chân đường cao vẽ từ A của tứ diện S.ABC nên H là hình chiếu vuông góc của S lên mặt phẳng (ABC)
\Rightarrow H\left( \frac{19}{14};\frac{31}{7};\frac{17}{14}
\right)

    Mặt phẳng (SBH) qua B(0;3;0) với VTPT \left\lbrack\overrightarrow{BH};\overrightarrow{SB} \right\rbrack = \left(
\frac{11}{14};\frac{55}{14};\frac{- 11}{2} \right) = \frac{11}{4}(1;5; -
7).

    Phương trình mặt phẳng (SBH) x + 5(y - 3) - 7z = 0

    \Leftrightarrow x + 5y - 7z - 15 =
0.

  • Câu 10: Vận dụng
    Viết phương trình mặt phẳng (P)

    Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng song song với mặt phẳng Oxz và cắt mặt cầu (x - 1)^{2} + (y + 2)^{2} + z^{2} = 12 theo đường tròn có chu vi lớn nhất. Phương trình của (P) là:

    Hướng dẫn:

    Mặt phẳng (P) cắt mặt cầu (x - 1)^{2} + (y + 2)^{2} + z^{2} = 12 theo đường tròn có chu vi lớn nhất nên mặt phẳng (P) đi qua tâm I(1; - 2;0).

    Phương trình mặt phẳng (P) song song với mặt phẳng Oxz có dạng :Ay + B = 0

    Do (P) đi qua tâm I(1; - 2;0)có phương trình dạng: y + 2 = 0.

  • Câu 11: Vận dụng cao
    Tính giá trị của T

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = 1,BC = 2,AA' = 3. Mặt phẳng (P) thay đổi và luôn đi qua C', mặt phẳng (P) cắt các tia AB,AD,AA' lần lượt tại E,F,G (khác A). Tính tổng T = AE + AF + AG sao cho thể tích khối tứ diện AEFG nhỏ nhất.

    Hướng dẫn:

    Hình vẽ minh họa

    Chọn hệ trục tọa độ Oxyz sao cho A ≡ O(0; 0; 0),B(1; 0; 0), D(0; 2; 0), A0 (0; 0; 3)

    Khi đó E(AE; 0; 0), F(0; AF, 0),G(0; 0; AG), C0 (1; 2; 3).

    Phương trình mặ phẳng (P):\frac{x}{AE} +
\frac{y}{AF} + \frac{z}{AG} = 1

    C'(1;2;3) \in (P) \Rightarrow
\frac{1}{AE} + \frac{2}{AF} + \frac{3}{AG} = 1

    Thể tích khối đa diện AEFG là:

    V_{AEFG} = \dfrac{1}{6}AE.AF.AG =\dfrac{1}{\dfrac{1}{AE}.\dfrac{2}{AF}.\dfrac{3}{AG}} \geq \dfrac{1}{\dfrac{\left( \dfrac{1}{AE} +\dfrac{2}{AF} + \dfrac{3}{AG} ight)^{3}}{27}} = 27

    Do dó thể tích khối tứ diện AEFG nhỏ nhất bằng 27 khi và chỉ khi:

    \frac{1}{AE} = \frac{2}{AF} =
\frac{3}{AG} = \frac{1}{3} \Leftrightarrow \left\{ \begin{matrix}
AE = 3 \\
AF = 6 \\
AG = 9 \\
\end{matrix} ight.

    Khi đó T = AE + AF + AG = 3 + 6 + 9 =
18

  • Câu 12: Vận dụng
    Xác định tập hợp các điểm cách đều mặt phẳng

    Trong không gian Oxyz, tìm tập hợp các điểm cách đều cặp mặt phẳng sau đây: 4x - y - 2z - 3 = 0;4x - y - 2z - 5 =
0.

    Hướng dẫn:

    Gọi điểm

    A (0; −3; 0) ∈ 4x − y − 2z − 3 = 0 (α)

    B (0; −5; 0) ∈ 4x − y − 2z − 5 = 0 (β)

    Mặt phẳng cách đều hai mặt phẳng trên có dạng: 4x − y − 2z + m = 0 (γ).

    Để mp (γ) cách đều hai mp trên thì d (A; (β)) = 2d (A; (γ)) ⇔ |m + 3| = 1

    ⇔ m = −2 hoặc m = −4

    Mặt khác điểm hai điểm A; B phải nằm về hai phía của mp (γ).

    Với m = −2 ta có (4 .0 + 3 – 2.0 − 2) (4.0 + 5 – 2.0 − 2) > 0 nên A; B cùng phía.

    Với m = −4 ta có (4 .0 + 3 – 2.0 − 4) (4.0 + 5 – 2.0 − 4) < 0 nên A; B khác phía.

    Vậy phương trình mặt phẳng cần tìm là 4x − y − 2z − 4 = 0 (γ).

  • Câu 13: Vận dụng
    Tìm mặt phẳng (P) thỏa mãn điều kiện cho trước

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3). Mặt phẳng(P) qua Mcắt các tia Ox,Oy,Oz lần lượt tại A,B,C sao cho thể tích khối tứ diện OABC nhỏ nhất có phương trình là:

    Hướng dẫn:

    +) Mặt phẳng(P) cắt các tia Ox,Oy,Oz lần lượt tại A,B,C nên 

    A(a;0;0),B(0;b;0),C(0;0;c)(a,b,c > 0).

    Phương trình mặt phẳng (P)\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1.

    +) Mặt phẳng(P) qua M nên \frac{1}{a} + \frac{2}{b} + \frac{3}{c} =
1.

    Ta có 1 = \frac{1}{a} + \frac{2}{b} +
\frac{3}{c} \geq 3\sqrt[3]{\frac{6}{abc}} \Leftrightarrow abc \geq
162

    +) Thể tích khối tứ diện OABC bằng V = \frac{1}{6}abc \geq
27.

    Thể tích khối tứ diện OABC nhỏ nhất khi \frac{1}{a} = \frac{2}{b} =
\frac{3}{c} = \frac{1}{3} suy ra a =
3,b = 6,c = 9.

    Phương trình mặt phẳng(P)\frac{x}{3} +
\frac{y}{6} + \frac{z}{9} = 1 hay 6x
+ 3y + 2z - 18 = 0.

  • Câu 14: Thông hiểu
    Tìm m để hai mặt phẳng vuông góc

    Trong không gian Oxyz, cho mặt phẳng (P):x - my + z - 1 = 0;(m \in
R), mặt phẳng (Q) chứa trục Ox và đi qua điểm A(1; - 3;1). Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau?

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (1; - 3;1) \\
\overrightarrow{i} = (1;0;0) \\
\end{matrix} ight.

    Mặt phẳng (Q) chứa trục Ox và đi qua điểm A(1; - 3;1)⇒ (Q) có vectơ pháp tuyến \overrightarrow{n_{(Q)}} = \left\lbrack
\overrightarrow{OA};\overrightarrow{i} ightbrack =
(0;1;3)

    Mặt phẳng (P) có véc-tơ pháp tuyến \overrightarrow{n_{(P)}} = (1; - m;1)

    Để hai mặt phẳng (P)(Q) vuông góc với nhau thì

    \overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}}
= 0 \Leftrightarrow 0.1 + 1.( - m) + 1.3 = 0 \Leftrightarrow m =
3

  • Câu 15: Vận dụng
    PT mp trong hệ trục tọa độ Oxyz

    Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi \alpha ,\,\,\beta ,\,\,\gamma lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là ( OH = p):

    Hướng dẫn:

    Theo đề bài, ta có: H\left( {p\cos \alpha ,p\cos \beta ,c\cos \gamma } ight) \Rightarrow \overrightarrow {OH}  = \left( {p\cos \alpha ,p\cos \beta ,c\cos \gamma } ight)

    Gọi M\left( {x,y,z} ight) \in \left( P ight)

    \Rightarrow \overrightarrow {HM}  = \left( {x - p\cos \alpha ,y - p\cos \beta ,z - c\cos \gamma } ight)

    Ta có:

    \overrightarrow {OH}  \bot \overrightarrow {HM}

    \Leftrightarrow \left( {x - p\cos \alpha } ight)p\cos \alpha  + \left( {y - p\cos \beta } ight)p\cos \beta  + \left( {z - p\cos \gamma } ight)p\cos \gamma \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,

    \Leftrightarrow \left( P ight):x\cos \alpha  + y\cos \beta  + z\cos \gamma  - p = 0

  • Câu 16: Vận dụng
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz cho điểm H(1;2;3). Viết phương trình mặt phẳng (P) đi qua điểm H và cắt các trục tọa độ tại ba điểm phân biệt A;B;C sao cho H là trực tâm của tam giác ABC?

    Hướng dẫn:

    Giả sử (P) cắt các trục tọa độ tại A(a;0;0),B(0;b;0),C(0;0;c);(abc eq
0)

    Khi đó (P):\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1

    Ta có: \left\{ \begin{matrix}
\overrightarrow{HA} = (a - 1; - 2; - 3) \\
\overrightarrow{HB} = ( - 1;b - 2; - 3) \\
\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight. mà H là trực tâm của tam giác ABC nên

    \left\{ \begin{matrix}
\overrightarrow{HA}.\overrightarrow{BC} = \overrightarrow{0} \\
\overrightarrow{HB}.\overrightarrow{AC} = \overrightarrow{0} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2b - 3c = 0 \\
a - 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow a = 2b = 3c

    Mặt khác H \in (P) \Rightarrow
\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 1 \Rightarrow \frac{1}{3c} +
\frac{4}{3c} + \frac{3}{c} = 1

    \Rightarrow 14 = 3c \Leftrightarrow c =
\frac{14}{3} \Leftrightarrow \left\{ \begin{matrix}
a = 14 \\
b = 7 \\
\end{matrix} ight.

    \Rightarrow (P):\dfrac{x}{14} +\dfrac{y}{7} + \dfrac{z}{\dfrac{14}{3}} = 1 \Rightarrow (P):x + 2y + 3z -14 = 0

  • Câu 17: Thông hiểu
    Tìm mặt phẳng cách đều hai mặt phẳng cho trước

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (P):x + y - 2z + 5 = 0(Q): - x - y + 2z + 9 = 0. Mặt phẳng nào sau đây cách đều hai mặt phẳng (P) và (Q)?

    Hướng dẫn:

    Gọi (R) là mặt phẳng cách đều hai mặt phẳng (P) và (Q) thì (P)//(Q)//(R)

    Do đó (R) có dạng x + y − 2z + m = 0.

    Gọi A(1; 0; 3) ∈ (P) , B(1; 0; −4) ∈ (Q).

    Khi đó trung điểm M của đoạn AB nằm trên (R), tức M\left( 1;0; - \frac{1}{2} ight) \in
(R).

    Suy ra 1 + 0 - 2.\left( - \frac{1}{2}
ight) + m = 0 \Leftrightarrow m = - 2.

    Vậy (R): x + y − 2z − 2 = 0 hay (R): −x − y + 2z + 2 = 0.

  • Câu 18: Thông hiểu
    Viết PT mặt phẳng song song với 1 vecto

    Cho hai điểmA\left( {1, - 4,5} ight),B\left( { - 2,3, - 4} ight) và vectơ \overrightarrow a  = \left( {2, - 3, - 1} ight). Mặt phẳng chứa hai điểm A, B và song song với vectơ \vec{a} có phương trình:

    Hướng dẫn:

    Theo đề bài, ta có: A\left( {1, - 4,5} ight);B\left( { - 2,3, - 4} ight)

    \Rightarrow \overrightarrow {AB}  = \left( { - 3,7, - 9} ight);\overrightarrow a  = \left( {2, - 3, - 1} ight)

    Như vậy, \vec{AB}\vec{a} sẽ là cặp vectơ chỉ phương của (\beta)

    \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow a } ight] = \left( { - 34, - 21, - 5} ight) =\vec{n}

    Chọn \overrightarrow n  = \left( {34,21,5} ight) làm vectơ pháp tuyến của  (\beta)

    Phương trình mặt phẳng (\beta) có dạng 34x + 21y + 5z + D = 0

    Mặt khác, vì điểm A \in (\beta) nên thay tọa độ điểm A vào phương trình mặt phẳng (\beta)  được: 34 - 84 + 25 + D = 0 \Leftrightarrow D = 25

    Vậy (\beta) có phương trình là: 34x + 21y + 5z + 25 = 0

  • Câu 19: Vận dụng
    Viết PT mp

    Cho tam giác ABC với A\left( {\,1,\,\, - 2,\,\,6\,} ight);\,\,B\left( {\,2,\,\,5,\,\,1} ight);\,\,C\left( {\, - 1,\,\,8,\,\,4} ight) . Viết phương trình tổng quát của mặt phẳng (R) vuông góc với mặt phẳng (ABC) song song phân giác ngoài AF của góc A?

    Hướng dẫn:

     Một vecto chỉ phương của (R)\overrightarrow n  = 12\left( {3,1,2} ight)

    Ta có :

    \begin{array}{l}A{B^2} = 75 \Rightarrow AB = 5\sqrt 3 ;A{C^2} = 108 \Rightarrow AC = 6\sqrt 3 \\6\overrightarrow {FB}  = 5\overrightarrow {FC}  \Leftrightarrow \left\{ \begin{array}{l}6\left( {2 - x} ight) = 5\left( { - 1 - x} ight)\\6\left( {5 - y} ight) = 5\left( {8 - y} ight)\\6\left( {1 - z} ight) = 5\left( {4 - z} ight)\end{array} ight. \Rightarrow F\left\{ \begin{array}{l}x = 17\\y =  - 10\\z =  - 14\end{array} ight.\end{array}

    Vecto chỉ phương thứ hai \overrightarrow {AF}  = 4\left( {4, - 2, - 5} ight)

    Suy ra vecto pháp tuyến của (R)\overrightarrow N  = \left[ {\overrightarrow n ,\overrightarrow {AF} } ight] = \left( { - 1,23, - 10} ight)

    Mp (R) đi qua A (1, -2, 6) và nhận vecto (-1, 23, -10) làm 1 VTPT có phương trình là:

    \Rightarrow \left( R ight):\left( {x - 1} ight)\left( { - 1} ight) + \left( {y + 2} ight)23 + \left( {z - 6} ight)\left( { - 10} ight) = 0

    \Leftrightarrow x - 23y + 10z - 108 = 0

  • Câu 20: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2; - 3;7),B(0;4;1), C(3;0;5),D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức \left| \overrightarrow{MA} + \overrightarrow{MB} +\overrightarrow{MC} + \overrightarrow{MD} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm A(2; - 3;7),B(0;4;1), C(3;0;5),D(3;3;3). Gọi M là điểm nằm trên mặt phẳng (Oyz) sao cho biểu thức \left| \overrightarrow{MA} + \overrightarrow{MB} +\overrightarrow{MC} + \overrightarrow{MD} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo