Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt phẳng (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính khoảng cách từ điểm đến đường thẳng

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Xét hình chóp S.ABCD trong hệ tọa độ Oxyz như hình vẽ.

    Khi đó ta có:

    H(0;0;0),A\left( - \frac{a}{2};0;0
\right),B\left( \frac{a}{2};0;0 \right)

    S\left( 0;0;\frac{a\sqrt{3}}{2}
\right),C\left( 0;\frac{a\sqrt{3}}{2};0 \right),D\left( -
a;\frac{a\sqrt{3}}{2};0 \right)

    Có MN // AD nên suy ra P là trung điểm của CD.

    Theo công thức trung điểm, ta suy ra

    M\left( \frac{-
a}{4};0;\frac{a\sqrt{3}}{4} \right),N\left( \frac{-
a}{2};\frac{a\sqrt{3}}{4};\frac{a\sqrt{3}}{4} \right)

    P\left( \frac{-
a}{2};\frac{a\sqrt{3}}{2};0 \right),K\left( \frac{-
a}{4};\frac{a\sqrt{3}}{4};\frac{a\sqrt{3}}{4} \right)

    Ta có: \overrightarrow{MN} = \left(
\frac{a}{4};\frac{a\sqrt{3}}{4};0 \right);\overrightarrow{HM} = \left( -
\frac{a}{4};0;\frac{a\sqrt{3}}{4} \right)

    Vectơ pháp tuyến của mặt phẳng (HMN) là \overrightarrow{n} = \left\lbrack
\overrightarrow{MN};\overrightarrow{HM} \right\rbrack = \left(
\frac{3a^{2}}{16};\frac{a^{3}\sqrt{3}}{16};\frac{a^{3}\sqrt{3}}{16}
\right)

    Phương trình mặt phẳng (HMN) là

    \frac{3a^{2}}{16}(x - 0) +
\frac{a^{3}\sqrt{3}}{16}(y - 0) + \frac{a^{3}\sqrt{3}}{16}(z - 0) =
0

    \Leftrightarrow \sqrt{3}x + y + z =
0

    Vậy khoảng cách cần tìm là:

    d\left\lbrack K,(HMN) \right\rbrack =
\dfrac{\left| - \dfrac{a\sqrt{3}}{4} + \dfrac{a\sqrt{3}}{4} +
\dfrac{a\sqrt{3}}{4} \right|}{\sqrt{3 + 1 + 1}} =
\dfrac{a\sqrt{15}}{20}

  • Câu 2: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Vận dụng
    Tính chiều rộng bức tường

    Một công trình đang xây dựng được gắn hệ trục Oxyz (đơn vị trên mỗi trục tọa độ là mét). Ba bức tường (P),(Q),(R),(T) (như hình vẽ) của tòa nhà lần lượt có phương trình: (P):2x - y - z + 1 = 0, (Q):x + 3y - z - 2 = 0,(R):4x - 2y - 2z + 9 = 0,(T):2x + 6y - 2z + 15 = 0.

    Tính chiều rộng bức tường (Q)của tòa nhà.

    Hướng dẫn:

    Ta có:

    (P):2x - y - z + 1 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{P} = (2;
- 1; - 1)

    (Q):x + 3y - z - 2 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{Q} =
(1;3; - 1)

    (R):4x - 2y - 2z + 9 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{R}
= (4; - 2; - 2)

    (T):2x + 6y - 2z + 15 = 0 có vectơ pháp tuyến là {\overrightarrow{n}}_{T}
= (2;6; - 2)

    Ta có:

    {\overrightarrow{n}}_{R} = (4; - 2; - 2)
= 2(2; - 1; - 1) \Rightarrow {\overrightarrow{n}}_{R} =
2{\overrightarrow{n}}_{P} nên hai bức tường (P)(R)song song nhau

    {\overrightarrow{n}}_{T} = (2;6; - 2) =
2(1;3; - 1) \Rightarrow {\overrightarrow{n}}_{T} =
2{\overrightarrow{n}}_{Q} nên hai bức tường (T)(Q) song song nhau

    {\overrightarrow{n}}_{P}.{\overrightarrow{n}}_{Q}
= 2.1 + ( - 1).3 + ( - 1).( - 1) = 0 \Rightarrow
{\overrightarrow{n}}_{P}\bot{\overrightarrow{n}}_{Q} nên bức tường (Q) vuông góc với hai bức tường (P)(R)

    {\overrightarrow{n}}_{R}.{\overrightarrow{n}}_{Q}
= 4.1 + ( - 2).3 + ( - 2).( - 1) = 0 \Rightarrow
{\overrightarrow{n}}_{R}\bot{\overrightarrow{n}}_{Q} nên bức tường (R) vuông góc với hai bức tường (Q)(T)

    Do hai bức tường (P)(R)song song nhau nên chiều rộng bức tường (Q) là khoảng cách giữa hai bức tường (P)(R).

    Chọn điểm N(0;0;1) \in (P)

    Do hai bức tường (P)(R) song song nhau nên:

    d\left( (P),(R) \right) = d\left( N,(R)\right)= \frac{|4.0 - 2.0 - 2.1 + 9|}{\sqrt{4 + 1 + 1}} =\frac{7}{\sqrt{6}} \approx 2,9m

  • Câu 4: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;1;1),B(0;1;2),C( - 2;1;4) và mặt phẳng (P):x - y + z + 2 = 0. Tìm điểm N \in (P) sao cho S = 2NA^{2} + NB^{2} + NC^{2} đạt giá trị nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1;1;1),B(0;1;2),C( - 2;1;4) và mặt phẳng (P):x - y + z + 2 = 0. Tìm điểm N \in (P) sao cho S = 2NA^{2} + NB^{2} + NC^{2} đạt giá trị nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Vận dụng
    Tìm số điểm M thỏa mãn yêu cầu

    Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P):x + y + z - 9 = 0. Hỏi có bao nhiêu điểm M(a;b;c) thuộc mặt phẳng (P) với a,b,c là các số nguyên không âm.

    Hướng dẫn:

    Ta có (P):x + y + z - 9 = 0 \Rightarrow
\frac{x}{9} + \frac{y}{9} + \frac{z}{9} = 1 nên mặt phẳng (P) đi qua các điểm A(9; 0; 0), B(0; 9; 0), C(0; 0; 9).

    Từ đó suy ra tất cả các điểm có toạ độ nguyên của mặt phẳng (P) đều nằm trong miền tam giác ABC.

    Tam giác ABC đều có các cạnh bằng 9\sqrt{2}, chiếu các điểm có toạ độ nguyên của hình tam giác ABC xuống mặt phẳng (Oxy) ta được các điểm có toạ độ nguyên của hình tam giác OAB.

    Mà số điểm có toạ độ nguyên của tam giác OAB bằng 1\  + \ 2\  + \ ...\  + \ 10\  = \ 55

  • Câu 6: Vận dụng
    Xác định phương trình (ABC)

    Trong không gian Oxyz. Cho A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0. Biết mặt phẳng (ABC) qua điểm I(1;3;3) và thể tích tứ diện O.ABC đạt giá trị nhỏ nhất. Khi đó phương trình (ABC):

    Hướng dẫn:

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    I(1;3;3) \in (ABC) \Rightarrow
(ABC):\frac{1}{a} + \frac{3}{b} + \frac{3}{c} = 1

    Áp dụng bất đẳng thức Cauchy ta có:

    1 = \frac{1}{a} + \frac{3}{b} +
\frac{3}{c} \geq \sqrt[3]{\frac{3^{2}}{abc}} \Rightarrow abc \geq
9

    Thể tích tứ diện O.ABCV = \frac{1}{6}abc \geq \frac{3}{2}

    Đẳng thức xảy ra khi \frac{1}{a} =
\frac{3}{b} = \frac{3}{c} = \frac{1}{3} \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = c = 9 \\
\end{matrix} ight.

    Phương trình mặt phẳng (ABC)\frac{x}{3} + \frac{y}{9} + \frac{z}{9} = 1
\Rightarrow 3x + y + z - 9 = 0

  • Câu 7: Vận dụng cao
    Chọn đáp án đúng

    Trong không gian với hệ trục toạ độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
9, điểm A(0;0;2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C)có diện tích nhỏ nhất ?

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1,2,3),R = 3.

    Ta có IA < R nên điểm Anằm trong mặt cầu.

    Ta có : d\left( I,(P) \right) =
\sqrt{R^{2} - r^{2}}

    Diện tích hình tròn (C) nhỏ nhất \Leftrightarrow rnhỏ nhất \Leftrightarrow d\left( I,(P) \right) lớn nhất.

    Do d\left( I,(P) \right) \leq IA
\Rightarrow \max d\left( I,(P) \right) = IA Khi đó mặt phẳng(P) đi qua A và nhận \overrightarrow{IA} làm vtpt

    \Rightarrow (P):x + 2y + z - 2 =
0

  • Câu 8: Vận dụng cao
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho bốn điểm A( - 1;2;0),B(0;0; - 2),C(1;0;1),D(2;1;- 1). Hai điểm M;N lần lượt nằm trên đoạn BC và BD sao cho 2\frac{BC}{BM} + 3\frac{BD}{BN} = 10\frac{V_{ABMN}}{V_{ABCD}} =\frac{6}{25}. Phương trình mặt phẳng (AMN) có dạng ax + by + cz + 32 = 0. Tính S = a - b + c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho bốn điểm A( - 1;2;0),B(0;0; - 2),C(1;0;1),D(2;1;- 1). Hai điểm M;N lần lượt nằm trên đoạn BC và BD sao cho 2\frac{BC}{BM} + 3\frac{BD}{BN} = 10\frac{V_{ABMN}}{V_{ABCD}} =\frac{6}{25}. Phương trình mặt phẳng (AMN) có dạng ax + by + cz + 32 = 0. Tính S = a - b + c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Vận dụng
    Lập phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho bốn điểm S( - 1;6;2),A(0;0;6),B(0;3;0),C( -2;0;0). Gọi H là chân đường cao vẽ từ S của tứ diện S.ABC. Lập phương trình mặt phẳng đi qua ba điểm S;H;B.

    Hướng dẫn:

    Phương trình mặt phẳng đi qua ba điểm S;H;Bx +
5y - 7z - 15 = 0

    Phương trình mặt phẳng \frac{x}{- 2} +\frac{y}{3} + \frac{z}{6} = 1\Leftrightarrow - 3x + 2y + z - 6 =0

    H là chân đường cao vẽ từ A của tứ diện S.ABC nên H là hình chiếu vuông góc của S lên mặt phẳng (ABC)
\Rightarrow H\left( \frac{19}{14};\frac{31}{7};\frac{17}{14}
\right)

    Mặt phẳng (SBH) qua B(0;3;0) với VTPT \left\lbrack\overrightarrow{BH};\overrightarrow{SB} \right\rbrack = \left(
\frac{11}{14};\frac{55}{14};\frac{- 11}{2} \right) = \frac{11}{4}(1;5; -
7).

    Phương trình mặt phẳng (SBH) x + 5(y - 3) - 7z = 0

    \Leftrightarrow x + 5y - 7z - 15 =
0.

  • Câu 10: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng trung trực (\alpha) của đoạn thẳng AB với A(0; -
4;1),B( - 2;2;3)

    Hướng dẫn:

    Gọi M là trung điểm của AB suy ra M(
- 1; - 1;2)

    Phương trình mặt phẳng (\alpha) đi qua M và nhận \overrightarrow{AM} = ( - 1;3;1) làm vectơ pháp tuyến:

    \Rightarrow (\alpha): - x + 3y + z =
0

    \Rightarrow (\alpha):x - 3y - z =
0

  • Câu 11: Vận dụng
    PT mp có hệ số là CSN

    Cho mặt phẳng (P) qua điểm M\left( {2, - 4,1} ight) và chắn trên ba trục tọa độ Ox, Oy, Oz theo ba đoạn có số đo đại số a, b, c. Viết phương trình tổng quát của (P) khi a, b, c tạo thành một cấp số nhân có công bội bằng 2.

    Hướng dẫn:

    Theo đề bài, ta có a, b, c là cấp số nhân với công bội q=2

    \Rightarrow a,\,b = 2a;c = 4a;\,a e 0

    Phương trình của \left( P ight):\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1

    \Leftrightarrow \frac{x}{a} + \frac{y}{{2a}} + \frac{z}{{4a}} = 1 \Leftrightarrow 4x + 2y + z - 4a = 0

    (P) qua M\left( {2, - 4,1} ight) \Rightarrow 8 - 8 + 1 - 4a = 0 \Leftrightarrow a = \frac{1}{4}

    \Rightarrow \left( P ight):4x + 2y + z - 1 = 0

     

  • Câu 12: Thông hiểu
    Tìm phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz; cho điểm A(1;1;3),B(1;3;2),C( - 1;2;3). Viết phương trình mặt phẳng (ABC)?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (0;2; - 1) \\
\overrightarrow{AC} = ( - 2;1;0) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
(1;2;4)

    Vậy (ABC):x - 1 + 2(y - 1) + 4(z - 3) =
0

    \Leftrightarrow x + 2y + 4z - 15 =
0

  • Câu 13: Vận dụng
    Tìm phương trình mặt phẳng (P)

    Trong không gian Oxyz, cho hai điểm A(1;2; - 1),B(3;0;3). Biết mặt phẳng (P) đi qua điểm A và cách B một khoảng lớn nhất. Phương trình mặt phẳng (P)

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của B lên (P), suy ra d(B, (P)) = AH.

    Ta có BH ≤ AB.

    Dấu “=” xảy ra ⇔ H ≡ A

    ⇒ BHmax = AB khi AB ⊥ (P).

    Ta có:

    \left\{ \begin{matrix}
AB\bot(P) \\
A \in (P) \\
\end{matrix} ight.\  \Rightarrow (P):2x - 2y + 4z + 6 = 0

    \Leftrightarrow x - y + 2z + 3 =
0

  • Câu 14: Vận dụng cao
    Giá trị nhỏ nhất của thể tích khối chóp

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;1;1). Mặt phẳng (P) qua M cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại A;B;C thỏa mãn OA = 2OB. Tính giá trị nhỏ nhất của thể tích khối chóp OABC?

    Hướng dẫn:

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c > 0.

    Khi đó mặt phẳng (P) có dạng: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{a} +
\frac{1}{b} + \frac{1}{c} = 1

    OA = 2OB \Rightarrow a = 2b
\Rightarrow \frac{3}{2b} + \frac{1}{c} = 1

    Thể tích khối chóp OABC là: V = \frac{1}{6}abc =
\frac{1}{3}b^{2}c

    Ta có: 1 = \frac{3}{2b} + \frac{1}{c} =
\frac{3}{4b} + \frac{3}{4b} + \frac{1}{c} \geq
3\sqrt[3]{\frac{9}{16b^{2}c}}

    \Leftrightarrow
3\sqrt[3]{\frac{9}{16b^{2}c}} \leq \frac{1}{3} \Leftrightarrow
\frac{16b^{2}c}{9} \geq 27 \Leftrightarrow \frac{b^{2}c}{3} \geq
\frac{81}{16}

    \Rightarrow V_{OABC}\min =
\frac{81}{16} khi \dfrac{3}{4b} =\dfrac{1}{c} = \dfrac{1}{3} \Rightarrow \left\{ \begin{matrix}a = \dfrac{9}{2} \\b = \dfrac{9}{4} \\c = 3 \\\end{matrix} ight..

  • Câu 15: Thông hiểu
    Tìm M để biểu thức có giá trị nhỏ nhất

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;1),B( - 1;2;1),C(36; - 5). Điểm M thuộc mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất là:

    Hướng dẫn:

    Gọi G là trọng tâm của tam giác ABC.

    Ta có: MA^{2} + MB^{2} + MC^{2} = 3MG^{2}
+ GA^{2} + GB^{2} + GC^{2}

    Dễ thấy MA^{2} + MB^{2} + MC^{2} nhỏ nhất khi MG nhỏ nhất, suy ra M là hình chiếu vuông góc của G trên mặt phẳng (Oxy).

    Dễ thấy G(1;3; - 1) \Rightarrow
M(1;3;0).

  • Câu 16: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(2;3;0) và mặt phẳng (P):x + y + z - 7 = 0. Tìm hoành độ x_{M} của điểm M thuộc mặt phẳng (P) sao cho \left| \overrightarrow{MA} + 2\overrightarrow{MB}ight| đạt giá trị nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(2;0;0),B(2;3;0) và mặt phẳng (P):x + y + z - 7 = 0. Tìm hoành độ x_{M} của điểm M thuộc mặt phẳng (P) sao cho \left| \overrightarrow{MA} + 2\overrightarrow{MB}ight| đạt giá trị nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Vận dụng
    Tìm các giá trị b và c theo yêu cầu

    Trong không gian với hệ toạ độ Oxyz, cho A(1;0;0), B(0;b;0), C(0;0;c), (b
> 0,c > 0) và mặt phẳng (P):y
- z + 1 = 0. Xác định b và c biết mặt phẳng (ABC) vuông góc với mặt phẳng (P) và khoảng cách từ O đến (ABC) bằng \frac{1}{3}.

    Hướng dẫn:

    Phương trình mặt phẳng (ABC) có dạng \frac{x}{1} + \frac{y}{b} + \frac{z}{c}
= 1 \Leftrightarrow bcx + cy + bz - bc = 0

    Theo giả thiết: \left\{ \begin{matrix}
(ABC)\bot(P) \\
d\left( O,(ABC) \right) = \frac{1}{3} \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
c - b = 0 \\
\frac{| - bc|}{\sqrt{(bc)^{2} + c^{2} + b^{2}}} = \frac{1}{3} \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
b = c \\
\frac{b^{2}}{\sqrt{b^{4} + 2b^{2}}} = \frac{1}{3} \\
\end{matrix} \right.

    \Leftrightarrow 3b^{2} = \sqrt{b^{4} +
2b^{2}} \Leftrightarrow 8b^{4} = 2b^{2}

    \Leftrightarrow b = \frac{1}{2}
\Rightarrow c = \frac{1}{2}

  • Câu 18: Thông hiểu
    Viết phương trình mặt phẳng (R)

    Trong không gian với hệ tọa độ Oxyz cho điểm A(1;1;1) và hai mặt phẳng (Q):y = 0,(P):2x - y + 3z - 1 = 0. Viết phương trình mặt phẳng (R) chứa A, vuông góc với cả hai mặt phẳng (Q),(P)?

    Hướng dẫn:

    Gọi \left\{ \begin{matrix}
\overrightarrow{p} = (2; - 1;3) \\
\overrightarrow{q} = (0;1;0) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của mặt phẳng (P)(Q).

    Khi đó mặt phẳng (R) nhận vectơ \overrightarrow{\omega} = - \left\lbrack
\overrightarrow{p};\overrightarrow{q} ightbrack = (3;0; -
2) làm một vectơ pháp tuyến.

    Do đó (R) có phương trình 3x - 2z - 1 = 0.

  • Câu 19: Vận dụng
    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian Oxyz, cho mặt phẳng (\alpha) đi qua điểm M(1;2;1) và cắt các tia Ox,Oy,Oz lần lượt tại A,B,C sao cho độ dài OA,OB,OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2. Tính khoảng cách từ gốc tọa độ O đến mặt phẳng (\alpha).

    Hướng dẫn:

    Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0.

    Phương trình mặt phẳng (α) có dạng \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1

    Ta có (α) đi qua điểm M(1; 2; 1) nên ta có \frac{1}{a} + \frac{2}{b} + \frac{1}{c} =
1 (∗)

    OA, OB, OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2 nên c = 2b = 4a.

    Thay vào (∗), ta được \frac{1}{a} +
\frac{2}{2a} + \frac{1}{4a} = 1 \Leftrightarrow a =
\frac{9}{4}

    Suy ra phương trình mặt phẳng (α) là \frac{x}{1} + \frac{y}{2} + \frac{z}{4} =
\frac{9}{4} hay 4x + 2y + z - 9 =
0

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{| - 9|}{\sqrt{4^{2} + 2^{2} + 1^{2}}} =
\frac{3\sqrt{21}}{7}.

  • Câu 20: Vận dụng
    Tính tổng P

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(4;2;5),B(0;4; - 3),C(2; - 3;7). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tính tổng P = x + y + z.

    Hướng dẫn:

    Vì M ∈ (Oxy) nên M(x;y;0).

    Gọi G là trọng tâm của tam giác ABC.

    Ta có G(2; 1; 3).

    Khi đó:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| = \left|
\overrightarrow{MG} + \overrightarrow{GA} + \overrightarrow{MG} +
\overrightarrow{GB} + \overrightarrow{MG} + \overrightarrow{GC}
ight|

    = \left| 3\overrightarrow{MG} ight| =
3MG = 3\sqrt{(x - 2)^{2} + (y - 1)^{2} + 3^{2}} \geq 9

    Dấu “=” xảy ra khi x= 2 và y= 1 hay M(2; 1; 0).

    Vậy P = 3

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo