Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CTST Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 5 tại địa điểm nào đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê số giờ nắng trong tháng 5 từ năm 2022 đến năm 2021 tại hai địa điểm A và B:

    Số giờ

    [130; 160)

    [160; 190)

    [190; 220)

    [220; 250)

    [250; 280)

    [280; 310)

    Số năm tại A

    1

    1

    1

    8

    7

    2

    Số năm tại B

    0

    1

    2

    4

    10

    3

    Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 5 tại địa điểm nào đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu
    Xác định phương sai của mẫu số liệu

    Cho mẫu số liệu ghép nhóm về chiều cao của 25 cây dừa giống như sau:

    Phương sai của mẫu số liệu trên:

    Hướng dẫn:

    Chiều cao trung bình của 25 cây dừa là:

    \overline{x} = \frac{4.5 + 6.15 + 7.25 +5.35 + 3.45}{25}= 23,8.

    Phương sai

    s^{2} = \frac{4.5^{2} + 6.15^{2} +
7.25^{2} + 5.35^{2} + 3.45^{2}}{25} - 23,8^{2} = 154,56.

  • Câu 3: Vận dụng
    Tính giá trị của biểu thức

    Một giống cây xoan đào được trồng tại hai địa điểm A và B. Người ta thống kê đường kính thân của một số cây xoan đào 5 năm tuổi ở bảng sau. Gọi phương sai đường kính thân của một số cây xoan đào 5 năm tuổi ở địa điểm A và địa điểm B lần lượt là S_{A}^{2} và S_{B}^{2}. Tính T = \left| S_{A}^{2} - S_{B}^{2} \right| bằng bao nhiêu?

    Đường kính (cm)

    \lbrack
30;32) \lbrack
32;34) \lbrack
34;36) \lbrack
36;38) \lbrack
38;40)

    Số cây trồng ở địa điểm A

    25

    38

    20

    10

    9

    Số cây trồng ở địa điểm B

    22

    27

    19

    14

    14

    Hướng dẫn:

    Ta lập bảng theo giá trị đại diện như sau:

    Đường kính (cm)

    \lbrack
30;32) \lbrack
32;34) \lbrack
34;36) \lbrack
36;38) \lbrack
38;40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    Số cây trồng ở địa điểm A

    25

    38

    20

    10

    9

    Số cây trồng ở địa điểm B

    22

    27

    19

    14

    14

    Cỡ mẫu: n_{A} = 25 + 38 + 20 + 10 + 7 =
100; n_{B} = 22 + 27 + 19 + 18 + 14
= 100

    Đường kính trung bình của thân cây xoan đào trồng tại địa điểm A là:

    {\overline{x}}_{A} = \frac{25 \cdot 31 +
38 \cdot 33 + 20 \cdot 35 + 10 \cdot 37 + 7 \cdot 39}{100} =
33,72

    Phương sai của mẫu số liệu ghép nhóm vè̀ đường kính của thân cây xoan đào trồng tại địa điểm A là:

    S_{A}^{2} = \frac{1}{100}\left( 25 \cdot
31^{2} + 38 \cdot 33^{2} + 20 \cdot 35^{2} + 10 \cdot 37^{2} + 7 \cdot
39^{2} \right) - (33,72)^{2} \approx 5,40

    Đường kính trung bình của thân cây xoan đào trồng tại địa điểm B là:

    {\overline{x}}_{B} = \frac{22 \cdot 31 +
27 \cdot 33 + 19 \cdot 35 + 18 \cdot 37 + 14 \cdot 39}{100} =
34,5

    Phương sai của mẫu số liệu ghép nhóm về đường kính của thân cây xoan đào trồng tại địa điểm B là:

    S_{B}^{2} = \frac{1}{100}\left( 22 \cdot
31^{2} + 27 \cdot 33^{2} + 19 \cdot 35^{2} + 18 \cdot 37^{2} + 14 \cdot
39^{2} \right) - (34,5)^{2} = 7,31

    Vậy \left| S_{A}^{2} - S_{B}^{2} \right|
= |5,40 - 7,31| = 1,91

  • Câu 4: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong Bảng 18.

    A table with numbers and symbolsDescription automatically generated

    Phương sai của mẫu số liệu ghép nhóm trên là:

    Hướng dẫn:

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 +
8.52,5 + 10.57,5 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{1}{44}\lbrack 4\left( 42,5
- \frac{585}{11} \right)^{2} + 14\left( 47,5 - \frac{585}{11}
\right)^{2} + 8\left( 52,5 -
\frac{585}{11} \right)^{2} + 10\left( 57,5 - \frac{585}{11}
\right)^{2}

    +6\left( 62,5 - \frac{585}{11}\right)^{2} + 2.\left( 67,5 - \frac{585}{11} \right)^{2}\rbrack \approx46,12

  • Câu 5: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu

    Kết quả đo chiều cao của học sinh lớp 12A được ghi lại trong bảng như sau:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho là:

    Hướng dẫn:

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +
8.170 + 4.174 + 1.178}{21} \approx 169

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{21}\left( 3.162^{2} +
5.166^{2} + 8.170^{2} + 4.174^{2} + 1.178^{2} ight) - 169^{2} \approx
18,14

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là: S \approx 4,26.

  • Câu 6: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho mẫu số liệu dưới dạng bảng sau

    Xét tính đúng/sai các mệnh đề sau:

    a. Giá trị đại diện của lớp \lbrack
36;41) là 38,5. Đúng||Sai

    b. Công thức tính số trung bình là \overline{x} = \frac{18,5.4 + 23,5.6 + 28,5.8 +
33,5.18 + 38,5.4}{40}. Đúng||Sai

    c. Số trung bình là 30. Đúng||Sai

    d. Phương sai của mẫu số liệu là S^2 = 32,75. Đúng||Sai

    Đáp án là:

    Cho mẫu số liệu dưới dạng bảng sau

    Xét tính đúng/sai các mệnh đề sau:

    a. Giá trị đại diện của lớp \lbrack
36;41) là 38,5. Đúng||Sai

    b. Công thức tính số trung bình là \overline{x} = \frac{18,5.4 + 23,5.6 + 28,5.8 +
33,5.18 + 38,5.4}{40}. Đúng||Sai

    c. Số trung bình là 30. Đúng||Sai

    d. Phương sai của mẫu số liệu là S^2 = 32,75. Đúng||Sai

    (a) giá trị đại diện của lớp \lbrack 36;41) là 38,5.

    » Chọn ĐÚNG.

    (b) Công thức tính số trung bình là

    \overline{x} = \frac{18,5.4 + 23,5.6 + 28,5.8 +
33,5.18 + 38,5.4}{40}.

    » Chọn ĐÚNG.

    (c) số trung bình là 30.

    số trung bình là \overline{x} =
\frac{18,5.4 + 23,5.6 + 28,5.8 + 33,5.18 + 38,5.4}{40} =
30.

    » Chọn ĐÚNG.

    (d) phương sai của mẫu số liệu là S^{2} = 32,75.

    Phương sai của mẫu số liệu là:

    S^{2} =\frac{1}{40}[4(18,5 - 30)^{2} + 6(23,5 - 30)^{2} + 8(28,5 -30)^{2}+ 18(33,5 - 30)^{2} + 4(38,5 - 30)^{2} ] =32,75

    » Chọn ĐÚNG.

  • Câu 7: Vận dụng
    Tìm phương sai của mẫu số liệu ghép nhóm

    Tốc độ của 20 xe hơi khi đi qua một trạm kiểm tra tốc độ (đơn vị: km/h) được thống kê lại như sau. Hãy tính phương sai của mẫu số liệu ghép nhóm với nhóm đầu tiên là \lbrack
42;46) và độ dài mỗi nhóm bằng 4. (làm tròn đến hàng phần mười)

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    52,1

    52,7

    53,9

    54,8

    55,6

    57,5

    59,6

    60,3

    61,1

    Hướng dẫn:

    Ta lập được bảng số liệu ghép nhóm theo giá trị đại diện như sau:

    Tốc độ (km/h)

    \lbrack
42;46) \lbrack
46;50) \lbrack
50;54) \lbrack
54;58) \lbrack
58;62)

    Giá trị đại diện

    44

    48

    52

    56

    60

    Số xe

    3

    7

    4

    3

    3

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{3 \cdot 44 + 7
\cdot 48 + 4 \cdot 52 + 3 \cdot 56 + 3 \cdot 60}{20} = 51,2

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{20}\left( 3 \cdot
44^{2} + 7 \cdot 48^{2} + 4 \cdot 52^{2} + 3 \cdot 56^{2} + 3 \cdot
60^{2} \right) - (51,2)^{2} \approx 26,6

  • Câu 8: Thông hiểu
    Tìm phương sai của mẫu số liệu ghép nhóm

    Cho bảng số liệu thống kê như sau:

    Đối tượng

    Tần số

    [0; 30)

    2

    [30; 60)

    3

    [60; 90)

    5

    [90; 120)

    10

    [120; 150)

    3

    [150; 180)

    5

    [180; 210)

    2

    Xác định phương sai của mẫu số liệu ghép nhóm đã cho?

    Hướng dẫn:

    Ta có:

    Đối tượng

    Tần số

    Giá trị đại diện (xi)

    \left( x_{i} - \overline{x}
ight)^{2} f_{i}.\left( x_{i} - \overline{x}
ight)^{2}

    [0; 30)

    2

    5

    8462

    2187

    [30; 60)

    3

    45

    2844

    2023

    [60; 90)

    5

    75

    1024

    588

    [90; 120)

    10

    105

    4

    135

    [120; 150)

    3

    135

    784

    1352

    [150; 180)

    5

    165

    3364

    1589

    [180; 210)

    2

    195

    7744

    2187

     

    \sum_{}^{}f_{i} = 30

     

     

    Tổng: 68280

    Phương sai của mẫu số liệu là:

    S^{2} =
\frac{1}{N}.\sum_{}^{}{f_{i}.\left( x_{i} - \overline{x} ight)^{2}} =
\frac{1}{30}.68280 = 2276

  • Câu 9: Thông hiểu
    Ghi đáp án vào ô trống

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tìm phương sai của mẫu số liệu ghép nhóm đó? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tìm phương sai của mẫu số liệu ghép nhóm đó? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Vận dụng
    Chọn đáp án đúng

    Anh An đầu tư số tiền bằng nhau vào hai lĩnh vực kinh doanh A,B. Anh An thống kê số tiền thu được mỗi tháng trong vòng 60 tháng theo mỗi lĩnh vực cho kết quả như sau:

    A white grid with black numbersDescription automatically generated

    Đáp án nào sau đây đúng?

    Hướng dẫn:

    Ta có

    A table with numbers and lettersDescription automatically generated

    Số tiền trung bình thu được khi đầu tư vào các lĩnh vực A,B tương ứng là:

    {\overline{x}}_{A} = \frac{1}{60}(5 \cdot
7,5 + \ldots + 5 \cdot 27,5) = 17,5;

    {\overline{x}}_{B} = \frac{1}{60}(20
\cdot 7,5 + \ldots + 20 \cdot 27,5) = 17,5

    Độ lệch chuẩn của số tiền thu được hàng tháng khi đầu tư vào các lĩnh vực A,B tương ứng là

    s_{A} = \sqrt{\frac{1}{60}\left( 5 \cdot
7,5^{2} + \ldots + 5 \cdot 27,5^{2} \right) - (17,5)^{2}} \approx
5;

    s_{B} = \sqrt{\frac{1}{60}\left( 20
\cdot 7,5^{2} + \ldots + 20 \cdot 27,5^{2} \right) - (17,5)^{2}} \approx
8

    Như vậy, về trung bình đầu tư vào các lĩnh vực A,Bsố tiền thu được hàng tháng như nhau tuy nhiên độ lệch chuẩn của mẫu số liệu về số tiền thu được hàng tháng khi đầu tư vào lĩnh vực B cao hơn khi đầu tư vào lĩnh vực A. Người ta nói rằng, đầu tư vào lĩnh vực B là "rủi ro" hơn.

  • Câu 11: Vận dụng
    Xét tính đúng sai của các nhận định

    Trưởng Câu lạc bộ Thể thao đã tiến hành điều tra tuổi thọ (đơn vị: năm) của máy chạy bộ do hai hãng X,Y sản xuất và thu được hai mẫu số liệu sau đây:

    a) [NB] Tuổi thọ của máy chạy bộ do hãng Y có độ phân tán lớn hơn tuổi thọ của máy chạy bộ do hãng X sản xuất. Sai||Đúng

    b) [TH] Tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất lớn hơn tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất. Đúng||Sai

    c) [TH] Khoảng tứ phân vị của mẫu số liệu về tuổi thọ của máy chạy bộ do hãng X sản xuất là 2,5. Sai||Đúng

    d) [VD] Tuổi thọ máy chạy bộ do hãng X sản xuất đồng đều hơn tuổi thọ máy chạy bộ do hãng Y sản xuất. Sai||Đúng

    Đáp án là:

    Trưởng Câu lạc bộ Thể thao đã tiến hành điều tra tuổi thọ (đơn vị: năm) của máy chạy bộ do hai hãng X,Y sản xuất và thu được hai mẫu số liệu sau đây:

    a) [NB] Tuổi thọ của máy chạy bộ do hãng Y có độ phân tán lớn hơn tuổi thọ của máy chạy bộ do hãng X sản xuất. Sai||Đúng

    b) [TH] Tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất lớn hơn tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất. Đúng||Sai

    c) [TH] Khoảng tứ phân vị của mẫu số liệu về tuổi thọ của máy chạy bộ do hãng X sản xuất là 2,5. Sai||Đúng

    d) [VD] Tuổi thọ máy chạy bộ do hãng X sản xuất đồng đều hơn tuổi thọ máy chạy bộ do hãng Y sản xuất. Sai||Đúng

    a) Khoảng biến thiên của tuổi thọ máy chạy bộ do hãng X sản xuất là R_{X} = 12 - 2 = 10

    Khoảng biến thiên của tuổi thọ máy chạy bộ do hãng Y sản xuất là R_{Y} = 12 - 4 = 8

    R_{X} > R_{Y} nên tuổi thọ của máy chạy bộ do hãng X có độ phân tán lớn hơn tuổi thọ của máy chạy bộ do hãng Y sản xuất suy ra mệnh đề sai.

    b) Chọn giá trị đại diện cho các nhóm số liệu, ta có bảng thống kê sau:

    Tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất là

    {\overline{x}}_{X} = \frac{3.7 + 5.20 +
7.36 + 9.20 + 11.17}{100} = 7,4

    Tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất là

    {\overline{x}}_{Y} = \frac{3.0 + 5.20 +
7.35 + 9.35 + 11.10}{100} = 7,7

    Như vậy, tuổi thọ trung bình của máy chạy bộ do hãng Y sản xuất lớn hơn tuổi thọ trung bình của máy chạy bộ do hãng X sản xuất suy ra mệnh đề đúng.

    c) Tính các tần số tích lũy của mẫu số liệu về tuổi thọ của máy chạy bộ do hãng X sản xuất, ta có bảng thống kê sau:

    Ta có \frac{n_{X}}{4} = 257 < 25 < 27 nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 25.

    Xét nhóm 2 là nhóm \lbrack 4;6)s = 4;h = 2;n_{2} = 20 và nhóm 1 là nhóm [2;4) có cf_{1} = 7.

    Ta có tứ phân vị thứ nhất là Q_{1} = 4 +
\left( \frac{25 - 7}{20} ight).2 = 5,8

    Ta có \frac{3n_{X}}{4} = 7563 < 75 < 83 nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 75.

    Xét nhóm 4 là nhóm \lbrack 8;10)s = 8;l = 2;n_{4} = 20 và nhóm 3 là nhóm \lbrack 6;8)cf_{3} = 63.

    Ta có tứ phân vị thứ ba là Q_{3} = 8 +
\left( \frac{75 - 63}{20} ight).2 = 9,2

    Vậy khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 3,4 suy ra mệnh đề sai.

    d) Độ lệch chuẩn của tuổi thọ máy chạy bộ do hãng X sản xuất là

    s_{X} = \sqrt{\frac{7.(3 - 7,4)^{2} +
20.(5 - 7,4)^{2} + 36.(7 - 7,4)^{2} + 20.(9 - 7,4)^{2} + 17(11 -
7,4)^{2}}{100}} \approx 2,3

    Độ lệch chuẩn của tuổi thọ máy chạy bộ do hãng Y sản xuất là

    s_{Y} = \sqrt{\frac{20.(5 - 7,7)^{2} +
35.(7 - 7,7)^{2} + 35(9 - 7,7)^{2} + 10(11 - 7,7)^{2}}{100}} \approx
1,82

    Vậy tuổi thọ máy chạy bộ do hãng Y sản xuất đồng đều hơn tuổi thọ máy chạy bộ do hãng X sản xuất suy ra mệnh đề sai.

  • Câu 12: Thông hiểu
    Chọn phát biểu đúng

    Hai mẫu số lię̂u ghép nhóm M_{1},M_{2} có bảng tần số ghép nhóm như sau:

    M_{1}

    Nhóm

    \lbrack 8;10)

    [10;12)

    \lbrack 12;14)

    \lbrack 14;16)

    \lbrack 16;18)

    Tần số

    3

    4

    8

    6

    4

    M_{2}

    Nhóm

    \lbrack 8;10)

    [10;12)

    \lbrack 12;14)

    \lbrack 14;16)

    \lbrack 16;18)

    Tằn số

    6

    8

    16

    12

    8

    Gọi s_{1},s_{2} lần lượt là độ lệch chuẩn của mẫu số liệu ghép nhóm M_{1},M_{2}. Phát biểu nào sau đây là đúng?

    Hướng dẫn:

    Dùng máy tính casio tính được độ lệch chuẩn: \left\{ \begin{matrix}
s_{1} \approx 2,444913086 \\
s_{2} \approx 2,444913086 \\
\end{matrix} ight.

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Một công ty sản xuất bóng đèn LED đã kiểm tra chất lượng sản phẩm của một lô hàng và ghi nhận thời gian sử dụng của 250 bóng đèn như sau:

    Khoảng thời gian (giờ)

    Giá trị đại diện

    Số lượng bóng đèn

    [0, 1000)

    500

    5

    [1000, 2000)

    1500

    46

    [2000, 3000)

    2500

    162

    [3000, 4000)

    3500

    25

    [4000, 5000)

    4500

    12

      N = 250

    Nếu độ lệch chuẩn của của bảng số liệu trên vượt quá 500 thì lô hàng không đạt tiêu chuẩn. Qua tính toán người ta thấy lô hàng đã không đạt tiêu chuẩn để đưa ra thị trường. Hỏi độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là bao nhiêu? (kết quả lấy phần nguyên).

    Đáp án: 245

    Đáp án là:

    Một công ty sản xuất bóng đèn LED đã kiểm tra chất lượng sản phẩm của một lô hàng và ghi nhận thời gian sử dụng của 250 bóng đèn như sau:

    Khoảng thời gian (giờ)

    Giá trị đại diện

    Số lượng bóng đèn

    [0, 1000)

    500

    5

    [1000, 2000)

    1500

    46

    [2000, 3000)

    2500

    162

    [3000, 4000)

    3500

    25

    [4000, 5000)

    4500

    12

      N = 250

    Nếu độ lệch chuẩn của của bảng số liệu trên vượt quá 500 thì lô hàng không đạt tiêu chuẩn. Qua tính toán người ta thấy lô hàng đã không đạt tiêu chuẩn để đưa ra thị trường. Hỏi độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là bao nhiêu? (kết quả lấy phần nguyên).

    Đáp án: 245

    Tính giá trị trung bình

    \overline{x} =
\frac{5.500 + 46.1500 + 162.2500 + 25.3500 + 12.4500}{250} =
\frac{618000}{250} = 2472

    Tính phương sai:

    s^{2} = \frac{5.500^{2} + 46.1500^{2} +
162.2500^{2} + 25.3500^{2} + 12.4500^{2}}{250} - 2472^{2} =
555216

    Tính độ lệch chuẩn: s = \sqrt{s^{2}} =
\sqrt{555216} \approx 745,13

    Độ lệch chuẩn của của lô hàng trên đã vượt qua tiêu chuẩn là: 745,13 - 500 = 245,13

  • Câu 14: Thông hiểu
    Tìm độ lệch chuẩn của mẫu số liệu ghép nhóm

    Thống kê quãng đường một xe taxi công nghệ đi mỗi ngày (đơn vị: km) như sau:

    Quãng đường (km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Độ lệch chuẩn của mẫu số liệu ghép nhóm gần bằng:

    Hướng dẫn:

    Ta có:

    Quãng đường ((km)

    [50; 100)

    [100; 150)

    [150; 200)

    [200; 250)

    [250; 300)

    Số ngày

    5

    10

    9

    4

    2

    Tần số tích lũy

    5

    15

    24

    28

    30

    Số trung bình của mẫu số liệu ghép nhóm:

    \overline{x} = \frac{5.75 + 10.125 +
9.175 + 4.225 + 2.275}{30} = 155

    Vậy khẳng định (iii) sai.

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{30}\left( 5.75^{2} +
10.125^{2} + 9.175^{2} + 4.225^{2} + 2.275^{2} ight) - 155^{2} =
3100

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    S = \sqrt{S^{2}} \approx
55,68

  • Câu 15: Vận dụng
    Ghi đáp án vào ô trống

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng
    Tính tổng độ lệch chuẩn

    Biểu đồ dưới đây mô tả kết quả điều tra về mức lương khởi điểm (đơn vị: triệu đồng) của một số công nhân ở hai khu vực AB.

    A graph with blue and yellow barsDescription automatically generated

    Tổng độ lệch chuẩn của mẫu số liệu ghép nhóm ở 2 khu vực gần bằng với số nào sau đây nhất.

    Hướng dẫn:

    Ta có

    A grid of numbers and lettersDescription automatically generated

    » Xét mẫu số liệu của khu vực A

    Cỡ mẫu là n_{A} = 4 + 5 + 5 + 4 + 2 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{A} = \frac{4 \cdot 5,5 +
5 \cdot 6,5 + 5 \cdot 7,5 + 4 \cdot 8,5 + 2 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{A}^{2} = \frac{1}{20}\left( 4 \cdot
5,5^{2} + 5 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 4 \cdot 8,5^{2} + 2 \cdot
9,5^{2} \right) - 7,25^{2} = 1,5875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{A} = \sqrt{1,5875} \approx 1,2300.

    » Xét mẫu số liệu của khu vực B

    Cỡ mẫu là n_{B} = 3 + 6 + 5 + 5 + 1 =
20.

    Số trung bình của mẫu số liệu ghép nhóm là

    {\overline{x}}_{B} = \frac{3 \cdot 5,5 +
6 \cdot 6,5 + 5 \cdot 7,5 + 5 \cdot 8,5 + 1 \cdot 9,5}{20} =
7,25.

    Phương sai của mẫu số liệu ghép nhóm là

    S_{B}^{2} = \frac{1}{20}\left( 3 \cdot
5,5^{2} + 6 \cdot 6,5^{2} + 5 \cdot 7,5^{2} + 5 \cdot 8,5^{2} + 1 \cdot
9,5^{2} \right) - 7,25^{2} = 1,2875.

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S_{B} = \sqrt{1,2875} \approx 1,1347.

    Tổng: khoảng 2,3647.

  • Câu 17: Thông hiểu
    Tìm phương sai của mẫu số liệu ghép nhóm

    Phương sai của một mẫu số liệu ghép nhóm cho bởi bảng thống kê dưới đây là:

    A white rectangular grid with black numbersDescription automatically generated

    Hướng dẫn:

    Ta có chiều cao trung bình:

    \overline{x} = \frac{1}{500}(152.25 +
156.50 + 160.200 + 164.175 + 168.50) = 161,4

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{500}\lbrack 25(152 -161,4)^2 + 50(156 - 161,4)^{2}

    + 200(160 - 161,4)^{2} + 175(164 -
161,4)^{2} + 50(168 - 161,4)^{2}\rbrack

    = 14,84.

  • Câu 18: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm

    Kết quả khảo sát thời gian sử dụng liên tục (đơn vị: giờ) từ lúc sạc đầy cho đến khi hết của pin một số máy vi tính cùng loại được thống kê ở bảng sau:

    Thời gian sử dụng

    \lbrack 7,2;7,4) \lbrack 7,4;7,6) \lbrack 7,6;7,8) \lbrack 7,8;8,0)

    Số máy

    2

    4

    7

    6

    Độ lệch chuẩn của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Từ bảng thống kê ta có:

    Thời gian sử dụng

    \lbrack 7,2;7,4) \lbrack 7,4;7,6) \lbrack 7,6;7,8) \lbrack 7,8;8,0)

    Giá trị đại diện

    7,3

    7,5

    7,7

    7,9

    Số máy

    2

    4

    7

    6

    Tổng số máy: n = 2 + 4 + 7 + 6 =
19.

    Thời gian sử dụng trung bình của pin là:

    \overline{x} = \frac{2.7,3 + 4.7,5 + 7.7,7 +
6.7,9}{19} = \frac{1459}{190}

    Phương sai của mẫu số liệu là:

    S^{2} = \frac{1}{19}\left( 2.7,3^{2} +
4.7,5^{2} + 7.7,7^{2} + 6.7,9^{2} \right) - \left( \frac{1459}{190}
\right)^{2} \approx 0,037.

    Độ lệch chuẩn của mẫu số liệu là: S =
\sqrt{S^{2}} \approx \sqrt{0,037} \approx 0,192.

  • Câu 19: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm

    Thống kê tổng số giờ nắng trong tháng 9 tại một trạm quan trắc đặt ở Cà Mau trong các năm từ 2002 đến 2021 được thống kê như sau:

    Số giờ nắng

    \lbrack 80;98) \lbrack 98;116) \lbrack 116;134) \lbrack 134;152) \lbrack 152;170)

    Số năm

    3

    6

    3

    5

    3

    Độ lệch chuẩn của mẫu số liệu là (kết quả làm tròn đến hàng phần nghìn)

    Hướng dẫn:

    Ta có bảng sau:

    Số giờ nắng

    \lbrack 80;98) \lbrack 98;116) \lbrack 116;134) \lbrack 134;152) \lbrack 152;170)

    Giá trị đại diện

     89 107  125 143  161 

    Số năm

    3

    6

    3

    5

    3

    Số trung bình của mẫu số liệu là

    \overline{x} = \frac{1}{20}.(3.89 +
6.107 + 3.125 + 5.143 + 3.161) = 124,1

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{20}.\left( 3.89^{2} +
6.107^{2} + 3.125^{2} + 5.143^{2} + 3.161^{2} \right) - 124,1^{2} =
566,19

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là S = \sqrt{566,19} \approx 23,795

  • Câu 20: Thông hiểu
    Tìm độ lệch chuẩn của mẫu số liệu

    Thời gian tự học tại nhà mỗi ngày (đơn vị: phút) của một học sinh lớp 12A được ghi lại như bảng sau:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số ngày

    6

    6

    4

    1

    1

    Độ lệch chuẩn của mẫu số liệu ghép nhóm đã cho gần nhất với giá trị nào sau đây?

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Giá trị đại diện

    22,5

    27,5

    32,5

    37,5

    42,5

    Số ngày

    6

    6

    4

    1

    1

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{6.22,5 + 6.27,5 +
4.32,5 + 1.37,5 + 1.42,5}{18} = \frac{85}{3}

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{18}\left( 6.22,5^{2} +
6.27,5^{2} + 4.32,5^{2} + 1.37,5^{2} + 1.42,5^{2} ight) - \left(
\frac{85}{3} ight)^{2} = 31,25

    Vậy độ lệch chuẩn của mẫu số liệu cần tìm là: S = \sqrt{S^{2}} \approx \sqrt{31,25} =
5,6

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (60%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo