Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CTST Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính giá trị của biểu thức P

    Một giống xoan đào được trồng tại hai địa điểm AB. Người ta thống kê đường kính thân cây của một số cây xoan đào 5 tuổi ở bảng sau:

    Đường kính (cm)

    \lbrack 30;\
32) \lbrack 32;\
34) \lbrack 34;\
36) \lbrack 36;\
38) \lbrack 38;\
40)

    Số cây trồng ở điểm A

    25

    38

    20

    10

    7

    Số cây trồng ở điểm B

    22

    27

    19

    18

    14

    Gọi ab là phương sai về đường kính cây trồng ở hai địa điểm AB. Tính giá trị biểu thức P = \frac{a}{b} (làm tròn đến hàng phần trăm).

    Hướng dẫn:

    Cỡ mẫu n = 25 + 38 + 20 + 10 + 7= 22 +27 + 19 + 18 + 14 = 100

    Đường kính thân cây trung bình của một số cây xoan đào trồng ở hai địa điểm A B tương ứng là

    \overline{x_{A}} = \frac{1}{100}(25.31 +
38.33 + 20.35 + 10.37 + 7.39) = 33,72

    \overline{x_{B}} = \frac{1}{100}(22.31 +
27.33 + 19.35 + 18.37 + 14.39) = 34,5

    Phương sai đường kính của cây ở hai địa điểm A, B lần lượt là

    S_{x_{A}}^{2} = \dfrac{1}{100}[ 25.(31 - 33,72)^{2} + 38.(33 -33,72)^{2}+ 20.(35 - 33,72)^{2} + 10.(37 - 33,72)^{2} + 7.(39 -33,72)^{2} ]  = 5,4016

    S_{x_{B}}^{2} = \dfrac{1}{100}ơ 22.(31 - 34,5)^{2} + 27.(33 -34,5)^{2}+ 19.(35 - 34,5)^{2} + 18.(37 - 34,5)^{2} + 14.(39 - 34,5)^{2}] = 7,31.

    Khi đó P = \frac{a}{b} \approx
0,74.

  • Câu 2: Vận dụng
    Xét tính đúng sai của các nhận định

    Bác sĩ A điều trị 18 bệnh nhân mỡ máu bằng cách xét nghiệm Cholesterol toàn phần trong buổi sáng điều trị như sau:

    Xét tính đúng/sai các mệnh đề sau:

    a. Khoảng tứ phân vị của mẫu số liệu trên bằng 1, độ lệch chuẩn của mẫu số liệu trên bằng 0,61 do bác sĩ A điều trị. Đúng||Sai

    b. Bảng tần số ghép nhóm với nhóm đầu tiên là \lbrack 3, 7 ; 4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị được thống kê dưới đây

    Sai||Đúng

    c. Giá trị độ lệch chuẩn của mẫu số liệu ghép nhóm đầu tiên là \lbrack 3, 7; 4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị là 0,58. Sai||Đúng

    d. Biết rằng bác sĩ B cũng điều trị 18 bệnh nhân trên với với nhóm đầu tiên là \lbrack 3,7; 4,14) và độ dài mỗi nhóm bằng 0,44 được thống kê dưới đây:

    Đúng||Sai

    Đáp án là:

    Bác sĩ A điều trị 18 bệnh nhân mỡ máu bằng cách xét nghiệm Cholesterol toàn phần trong buổi sáng điều trị như sau:

    Xét tính đúng/sai các mệnh đề sau:

    a. Khoảng tứ phân vị của mẫu số liệu trên bằng 1, độ lệch chuẩn của mẫu số liệu trên bằng 0,61 do bác sĩ A điều trị. Đúng||Sai

    b. Bảng tần số ghép nhóm với nhóm đầu tiên là \lbrack 3, 7 ; 4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị được thống kê dưới đây

    Sai||Đúng

    c. Giá trị độ lệch chuẩn của mẫu số liệu ghép nhóm đầu tiên là \lbrack 3, 7; 4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị là 0,58. Sai||Đúng

    d. Biết rằng bác sĩ B cũng điều trị 18 bệnh nhân trên với với nhóm đầu tiên là \lbrack 3,7; 4,14) và độ dài mỗi nhóm bằng 0,44 được thống kê dưới đây:

    Đúng||Sai

    (a) Khoảng tứ phân vị của mẫu số liệu trên bằng 1, độ lệch chuẩn của mẫu số liệu trên bằng 0,61 do bác sĩ A điều trị.

    Sắp xếp lại bảng số liệu theo thứ tự không giảm như sau:

    3,8;3,8;4,0;4,1; 4,2; 4,3;4,4;4,5;4,6; 4,7

    ;4,8;5,0;5,1; 5,2; 5,3; 5,6; 5,6;5,8

    Gọi x_{1};x_{2};....;x_{18} là mẫu số liệu gốc của 18 bệnh nhân mỡ máu bằng cách xét nghiệm Cholesterol toàn phần trong một ngày theo thứ tự không giảm.

    Trung vị Q_{2} = \frac{1}{2}\left( x_{9}
+ x_{10} \right) = \frac{1}{2}(4,6 + 4,7) = 4,65.

    Tứ phân vị thứ nhất của trung vị của nửa số liệu bên trái Q_{2}Q_{1} = 4,2.

    Tứ phân vị thứ nhất của trung vị của nửa số liệu bên phải Q_{2}Q_{3} = 5,2.

    Khoảng tứ phân vị của mẫu số liệu trên \Delta Q = Q_{3} - Q_{1} = 5,2 - 4,2 =
1.

    Số trung bình của mẫu số liệu trên do bác sĩ A điều trị bằng \overline{x} = \frac{1}{18}[2.3,8 + 4,0 + 4,1 + 4,2 + 4,3+ 4,4 + 4,5+ 4,6 + 4,7 + 4,8 + 5,0 + 5,1 + 5,2 + 5,3+ 2.5,6 + 5,8]= \frac{212}{45}

    Phương sai của mẫu số liệu trên do bác sĩ A điều trị bằng

    S^{2} = \frac{{x_{1}}^{2} + {x_{2}}^{2} +
{x_{3}}^{2} + .... + {x_{18}}^{2}}{18} - {\overline{x}}^{2} =
\frac{3023}{8100}.

    Độ lệch chuẩn của mẫu số liệu trên do bác sĩ A điều trị bằng \sigma = \sqrt{S^{2}} = 0,61.

    Chọn ĐÚNG.

    (b) Bảng tần số ghép nhóm với nhóm đầu tiên là \lbrack 3,7;4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị được thống kê dưới đây:

    Chọn SAI.

    (c) Giá trị độ lệch chuẩn của mẫu số liệu ghép nhóm đầu tiên là \lbrack 3,7;4,14) và độ dài mỗi nhóm bằng 0,44 do bác sĩ A điều trị là 0,58.

    Số trung bình của mẫu số liệu trên do bác sĩ A điều trị bằng \overline{x_{A}} = \frac{4.3,92 + 4.4,36 +
4.4,8 + 3.5,24 + 3.5,68}{18} = \frac{709}{150}

    Phương sai của mẫu số liệu trên do bác sĩ A điều trị bằng

    {S_{A}}^{2} = \frac{4.3,92^{2} +
4.4,36^{2} + 4.4,8^{2} + 3.5,24^{2} + 3.5,68^{2}}{18} - \left(
\frac{709}{150} \right)^{2} = \frac{2783}{7500}.

    Độ lệch chuẩn của mẫu số liệu trên do bác sĩ A điều trị bằng \sigma_{A} = \sqrt{{S_{A}}^{2}} =
0,609.

    Chọn SAI.

    (d) Biết rằng bác sĩ B cũng điều trị 18 bệnh nhân trên với với nhóm đầu tiên là \lbrack 3,7;4,14) và độ dài mỗi nhóm bằng 0,44 được thống kê dưới đây:

    Số trung bình của mẫu số liệu trên do bác sĩ B điều trị bằng;

    \overline{x_{B}} = \frac{3.3,92 + 4.4,36 + 3.4,8 +
4.5,24 + 4.5,68}{18} = \frac{1091}{225}

    Phương sai của mẫu số liệu trên do bác sĩ B điều trị bằng

    {S_{B}}^{2} = \frac{3.3,92^{2} +
4.4,36^{2} + 3.4,8^{2} + 4.5,24^{2} + 4.5,68^{2}}{18} - \left(
\frac{1091}{225} \right)^{2} \approx 0,3848.

    Độ lệch chuẩn của mẫu số liệu trên do bác sĩ B điều trị bằng \sigma_{B} = \sqrt{{S_{B}}^{2}} = 0,62.

    \sigma_{A} < \sigma_{B} nên so sánh về độ lệch chuẩn thì chỉ số Cholesterol toàn phần bác sĩ A điều trị ít phân tán hơn bác sĩ B điều trị.

    Chọn ĐÚNG.

  • Câu 3: Thông hiểu
    Tính phương sai

    Một siêu thị thống kê số tiền (đơn vị: chục nghìn đồng) mà 44 khách hàng mua hàng ở siêu thị đó trong một ngày. Số liệu được ghi lại trong bảng sau:

    Nhóm

    Tần số

    [40; 45)

    4

    [45; 50)

    14

    [50; 55)

    8

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    2

    Phương sai của mẫu số liệu ghép nhóm trên là:

    Hướng dẫn:

    Ta có:

    Nhóm

    Giá trị đại diện

    Tần số

    [40; 45)

    42,5

    4

    [45; 50)

    47,5

    14

    [50; 55)

    52,5

    8

    [55; 60)

    57,5

    10

    [60; 65)

    62,5

    6

    [65; 70)

    67,5

    2

    Số trung bình cộng của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{4.42,5 + 14.47,5 +
8.52,5 + 10.57,6 + 6.62,5 + 2.67,5}{44} = \frac{585}{11}

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \lbrack 4.\left( 42,5 -
\frac{585}{11} ight)^{2} + 14.\left( 47,5 - \frac{585}{11} ight)^{2}
+ 8.\left( 52,5 - \frac{585}{11} ight)^{2}

    + 10.\left( 57,6 - \frac{585}{11}
ight)^{2} + 6.\left( 62,5 - \frac{585}{11} ight)^{2} + 2.\left( 67,5
- \frac{585}{11} ight)^{2}brack:44 \approx 46,12

  • Câu 4: Vận dụng
    Ghi đáp án vào ô trống

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tính sai số tương đối của độ lệch chuẩn của mẫu số liệu ghép nhóm so với độ lệch chuẩn của mẫu số liệu gốc?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Thông hiểu
    Tìm phương sai của mẫu số liệu

    Thời gian truy cập Internet mỗi buổi tối (đơn vị: phút) của một số học sinh được thống kê ở bảng sau:

    Thời gian

    [10,5; 12,5)

    [12,5; 14,5)

    [14,5; 16,5)

    [16,5; 18,5)

    [18,5; 20,5)

    Số học sinh

    3

    12

    15

    24

    2

    Phương sai của mẫu số liệu trên là:

    Hướng dẫn:

    Ta viết lại bảng ở đề bài như sau:

    Thời gian

    [10,5; 12,5)

    [12,5; 14,5)

    [14,5; 16,5)

    [16,5; 18,5)

    [18,5; 20,5)

     

    Giá trị đại diện

    11,5

    13,5

    15,5

    17,5

    19,5

     

    Số học sinh

    3

    12

    15

    24

    2

    n = 56

    Số trung bình cộng của mẫu số liệu ghép nhóm biểu thị số phút truy cập internet mỗi buổi tối của một số học sinh là:

    \overline{x} = \frac{3.11,5 + 12.13,5 +
15.15,5 + 24.17,5 + 2.19,5}{56} \approx 15,86(phút)

    Vậy phương sai của mẫu số liệu ghép nhóm biểu thị số phút truy cập internet mỗi buổi tối của một số học sinh là:

    s^{2} = \frac{1}{56}\lbrack 3.(11,5 -
15,86)^{2} + 12.(13,5 - 15,86)^{2} + 15.(15,5 - 15,86)^{2}

    + 24.(17,5 - 15,86)^{2} + 2.(19,5 -
15,86)^{2}\rbrack \approx 3,87

  • Câu 6: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu

    Mỗi ngày bác T đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác T trong 20 ngày được thống kê lại ở bảng sau:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Số ngày

    3

    6

    5

    4

    2

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    Hướng dẫn:

    Ta có:

    Quãng đường

    [2,7; 3,0)

    [3,0; 3,3)

    [3,3; 3,6)

    [3,6; 3,9)

    [3,9; 4,2)

    Giá trị đại diện

    2,85

    3,15

    3,45

    3,75

    4,05

    Số ngày

    3

    6

    5

    4

    2

    Số trung bình:

    \overline{x} = \frac{3.2,85 + 6.3,15 +
5.3,45 + 4.3,75 + 2.4,05}{20} = 3,39

    Phương sai của mẫu số liệu ghép nhóm là:

    s^{2} = \frac{3.2,85^{2} + 6.3,15^{2} +
5.3,45^{2} + 4.3,75^{2} + 2.4,05^{2}}{20} - 3,39^{2} =
0,1314

    Độ lệch chuẩn của mẫu số liệu ghép nhóm là:

    s = \sqrt{s^{2}} = \sqrt{0,1314} \approx
0,36

  • Câu 7: Vận dụng
    Ghi đáp án vào ô trống

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu
    Tìm độ lệch chuẩn của mẫu số liệu ghép nhóm

    Thống kê doanh thu (đơn vị: triệu đô la) của 20 công ty sản xuất ô tô trong năm 2023, người ta có bảng sau:

    A close up of numbersDescription automatically generated

    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm trên.

    Hướng dẫn:

    Chọn giá trị đại diện cho mẫu số liệu, ta có:

    A close-up of a tableDescription automatically generated

    Điểm trung bình là:

    \overline{x} = \frac{5 \cdot 10 + 5 \cdot
30 + 6 \cdot 50 + 2 \cdot 70 + 2 \cdot 90}{20} = 41.

    Phương sai là:

    S^{2} = \frac{1}{20}\left\lbrack 5 \cdot
(10)^{2} + 5 \cdot (30)^{2} + 6 \cdot (50)^{2} + 2 \cdot (70)^{2} + 2
\cdot (90)^{2} \right\rbrack - (41)^{2} = 619.

    Độ lệch chuẩn: S = \sqrt{619} \approx
24,88.

  • Câu 9: Vận dụng
    Xét tính đúng sai của các nhận định

    Biểu đồ dưới đây biểu thị kết quả thu thập được về mức tiền (đơn vị: tỷ đồng) của một số khách hàng nợ ở hai ngân hàng AB.

    A graph with lines and numbersDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên

    Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}. Sai||Đúng

    c. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}. Sai||Đúng

    d. Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B.  Sai||Đúng 

    Đáp án là:

    Biểu đồ dưới đây biểu thị kết quả thu thập được về mức tiền (đơn vị: tỷ đồng) của một số khách hàng nợ ở hai ngân hàng AB.

    A graph with lines and numbersDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên

    Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}. Sai||Đúng

    c. Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}. Sai||Đúng

    d. Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B.  Sai||Đúng 

    (a) Bảng giá trị đại diện cho mỗi nhóm và bảng tần số ghép nhóm cho mẫu số liệu tương ứng với biểu đồ trên:

    Chọn ĐÚNG.

    (b) Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng A bằng \frac{661}{361}.

    Số trung bình của mẫu số liệu ngân hàngA bằng {\overline{x}}_{A} = \frac{1}{38}.\lbrack 6.1,5 +
7.2,5 + 9.3,5 + 10.4,5 + 5.5,5 + 1.6,5\rbrack =
\frac{137}{38}

    Phương sai của mẫu số liệu ngân hàngA bằng

    S_{A}^{2} = \frac{1}{38}.\lbrack
6.1,5^{2} + 7.2,5^{2} + 9.3,5^{2} + 10.4,5^{2} + 5.5,5^{2} +
1.6,5^{2}\rbrack - \left( \frac{137}{38} \right)^{2} =
\frac{661}{361}.

    Độ lệch chuẩn của mẫu số liệu ngân hàngA bằng \sigma_{A} = \sqrt{{S_{A}}^{2}} =
\frac{\sqrt{661}}{19}.

    Chọn SAI.

    (c) Độ lệch chuẩn của mẫu số liệu ghép nhóm của ngân hàng B bằng \frac{3221}{1444}.

    Số trung bình của mẫu số liệu ngân hàng B bằng{\overline{x}}_{B} = \frac{1}{38}.\lbrack 8.1,5 +
6.2,5 + 8.3,5 + 9.4,5 + 5.5,5 + 2.6,5\rbrack =
\frac{68}{19}

    Phương sai của mẫu số liệu ngân hàng B bằng

    S_{B}^{2} = \frac{1}{38}[8.1,5^{2} + 6.2,5^{2} + 8.3,5^{2} + 9.4,5^{2} + 5.5,5^{2}+2.6,5^{2}]- \left( \frac{68}{19} \right)^{2} =\frac{3221}{1444}.

    Độ lệch chuẩn của mẫu số liệu ngân hàng B bằng \sigma_{B} = \sqrt{{S_{B}}^{2}} =
\sqrt{\frac{3221}{1444}}.

    Chọn SAI.

    (d) Người ta dùng độ lệch chuẩn để so sánh mức độ rủi ro của số tiền khách hàng nợ ngân hàng. Ngân hàng nào có độ lệch chuẩn cao hơn thì có độ rủi ro lớn hơn. Theo quan điểm trên, độ rủi ro của ngân hàng A cao hơn ngân hàng B

    \sigma_{A} < \sigma_{B} nên rủi ro của ngân hàng A thấp hơn rủi ro của ngân hàng B khi cho khách hàng vay nợ.

    Chọn SAI.

  • Câu 10: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Dũng là học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik 3 \times 3, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần giải liên tiếp ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Ta có:

    Giá trị đại diện

    9

    11

    13

    15

    17

    Số lần

    4

    _6

    8

    4

    3

    Số trung bình: \overline{x} = \frac{4.9 +
6.11 + 8.13 + 4.15 + 3.17}{25} = 12,68

    Phương sai:

    s^{2} = \lbrack 4.(9 - 12,68)^{2} +6.(11 - 12,68)^{2} + 8.(13 - 12,68)^{2}+ 4.(15 - 12,68)^{2} + 3.(17 -12,68)^{2}\rbrack.\frac{1}{25} \approx 5,98

  • Câu 11: Thông hiểu
    Xác định độ lệch chuẩn của mẫu số liệu đã cho

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Độ lệch chuẩn của mẫu số liệu ghép nhóm có giá trị gần nhất với giá trị nào dưới đây?

    Hướng dẫn:

    Ta có bảng giá trị như sau:

    Giá trị đại diện

    2,85

    3,15

    3,45

    3,75

    4,05

    Số ngày

    3

    6

    5

    4

    2

    Số trung bình:

    \overline{x} = \frac{3.2,85 + 6.3,15 +
5.3,45 + 4.3,75 + 2.4,05}{20} = 3,39

    Phương sai:

    S^{2} = \frac{3.2,85^{2} + 6.3,15^{2} +
5.3,45^{2} + 4.3,75^{2} + 2.4,05^{2}}{20} - 3,39^{2} =
0,1314

    Độ lệch chuẩn:

    \sigma = \sqrt{0,1314} \approx
0,36

  • Câu 12: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho bảng thống kê cân nặng của học sinh (đơn vị: kg) lớp 12D như sau:

    Nhóm cân nặng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    Số học sinh

    2

    10

    16

    8

    2

    2

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Số học sinh nặng dưới 50 kilogam là 1. Đúng||Sai

    b) Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(kg). Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là 19,5. Sai||Đúng

    d) Phương sai của mẫu số liệu ghép nhóm là 128. Sai||Đúng

    Đáp án là:

    Cho bảng thống kê cân nặng của học sinh (đơn vị: kg) lớp 12D như sau:

    Nhóm cân nặng

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    Số học sinh

    2

    10

    16

    8

    2

    2

    Hãy cho biết tính đúng sai của mỗi mệnh đề dưới đây.

    a) Số học sinh nặng dưới 50 kilogam là 1. Đúng||Sai

    b) Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(kg). Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là 19,5. Sai||Đúng

    d) Phương sai của mẫu số liệu ghép nhóm là 128. Sai||Đúng

    a) Đúng: Số học sinh nặng dưới 50 kg là 2
+ 10 = 12.

    b) Đúng: Nhóm chứa mốt của mẫu số liệu là \lbrack 50;60).

    Do đó u_{m} = 50;n_{m} = 16;n_{m - 1} =
10,n_{m + 1} = 8,u_{m + 1} - u_{m} = 60 - 50 = 10.

    Mốt của mẫu số liệu ghép nhóm xấp xỉ bằng:

    M_{0} = 50 + \frac{16 - 10}{(16 - 10) +
(16 - 8)} \cdot 10 = \frac{380}{7} \approx 54,29(\text{\
}kg)

    Mốt của mẫu số liệu ghép nhóm trên xấp xỉ bằng 54,29(\text{\ }kg).

    c) Sai: Cỡ mẫu n = 40.

    Gọi x_{1},x_{2} \in \lbrack
30;40);x_{3},\ldots,x_{12} \in \lbrack 40;50);

    x_{13},\ldots,x_{28} \in \lbrack
50;60);x_{29},\ldots,x_{36} \in \lbrack 60;70);

    x_{37},x_{38} \in \lbrack
70;80);x_{39},x_{40} \in \lbrack 80;90).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{10} + x_{11} ight) \in
\lbrack 40;50).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 40 + \frac{\frac{40}{4} - 2}{10}
\cdot (50 - 40) = 48.

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{30} + x_{31} ight) \in
\lbrack 60;70).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 60 + \dfrac{\dfrac{3 \cdot 40}{4} -(2 + 10 + 16)}{8}.(70 - 60) = \frac{125}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    \Delta_{Q} = \frac{125}{2} - 48 =
\frac{29}{2}

    d) Sai: Ta có bảng cân nặng của các em học sinh theo giá trị đại diện:

    Nhóm

    Giá trị đại diện

    Tần số

    [30; 40)

    35

    2

    [40; 50)

    45

    10

    [50; 60)

    55

    16

    [60; 70)

    65

    8

    [70; 80)

    75

    2

    [80; 90)

    85

    2

    Cỡ mẫu n = 2 + 10 + 16 + 8 + 2 + 2 =
40.

    Số trung bình của mẫu số liệu ghép nhóm là

     \frac{35.2 + 45.10 + 55.16 + 65.8 + 75.2
+ 85.2}{40} = \frac{2240}{40} = 56(kg)

    Phương sai của mẫu số liệu ghép nhóm là

    S^{2} = \frac{1}{40}\left( {2.35}^{2} +
{10.45}^{2} + {16.55}^{2} + {8.65}^{2} + {2.75}^{2} + {2.85}^{2} ight)
- 56^{2}

    = 3265 - 3136 = 129.

  • Câu 13: Thông hiểu
    Tìm phương sai của mẫu số liệu ghép nhóm

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Phương sai của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Ta có bảng số liệu như sau:

    Giá trị đại diện

    2,85

    3,15

    3,45

    3,75

    4,05

    Số ngày

    3

    6

    5

    4

    2

    Số trung bình:

    \overline{x} = \frac{3.2,85 + 6.3,15 +
5.3,45 + 4.3,75 + 2.4,05}{20} = 3,39

    Phương sai:

    S^{2} = \frac{3.2,85^{2} + 6.3,15^{2} +
5.3,45^{2} + 4.3,75^{2} + 2.4,05^{2}}{20} - 3,39^{2} =
0,1314

  • Câu 14: Vận dụng
    Chọn kết luận đúng

    Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư vào hai lĩnh vực A,B cho kết quả như sau

    A white square with numbersDescription automatically generated

    Người ta có thể dùng phương sai và độ lệch chuẩn để so sánh mức độ rủi ro đầu tư các lĩnh vực có giá trị trung bình tiền lãi gần bằng nhau. Lĩnh vực nào có phương sai, độ lệch chuẩn tiền lãi cao hơn thì được coi là có độ rủi ro lớn hơn.

    Theo quan điểm trên, độ rủi ro của cổ phiếu nào cao hơn?

    Hướng dẫn:

    Lĩnh vực A

    A white rectangular grid with numbersDescription automatically generated with medium confidence

    Lĩnh vực B

    A white rectangular box with black numbersDescription automatically generated

    Giá trị trung bình của hai lĩnh vực AB

    {\overline{x}}_{A} = \frac{1}{25}.(2.7,5
+ 5.12,5 + 8.17,5 + 6.22,5 + 4.27,5) = 18,5

    {\overline{x}}_{B} = \frac{1}{25}.(8.7,5
+ 4.12,5 + 2.17,5 + 5.22,5 + 6.27,5) = 16,9

    Về độ trung bình đầu tư vào lĩnh vực A lãi hơn lĩnh vực B.

    Độ lệch chuẩn của hai lĩnh vực AB

    s_{A} = \sqrt{\frac{1}{25}.\left(
2.7,5^{2} + 5.12,5^{2} + 8.17,5^{2} + 6.22,5^{2} + 4.27,5^{2} \right) -
18,5^{2}} = 5,8

    s_{B} = \sqrt{\frac{1}{25}.\left(
8.7,5^{2} + 4.12,5^{2} + 2.17,5^{2} + 5.22,5^{2} + 6.27,5^{2} \right) -
16,9^{2}} = 8,04.

    Như vậy độ lệch chuẩn của mẫu số liệu thu tiền được hàng tháng khi đầu tư vào lĩnh vực B cao hơn lĩnh vực A nên đầu tư vào lĩnh vực B rủi ro hơn.

  • Câu 15: Vận dụng
    Chọn câu trả lời đúng nhất

    Trong 30 ngày, một nhà đầu tư đã theo dõi giá cổ phiếu của hai công ty G và H vào phiên mở cửa mỗi ngày. Thông tin được ghi lại ở hai bảng dưới đây:

    A white paper with black textDescription automatically generated

    Chọn câu trả lời đúng nhất biết độ lệch chuẩn càng cao thì tỷ lệ rủi ro càng lớn:

    Hướng dẫn:

    Công ty G:

    Bổ sung thêm các giá trị đại diện, ta có bảng sau

    A white rectangular box with black numbersDescription automatically generated

    Giá trị trung bình của mẫu số liệu là

    \overline{x} = \frac{51 \cdot 3 + 53
\cdot 7 + 55 \cdot 9 + 57 \cdot 8 + 59 \cdot 3}{30} \approx
55,1.

    Trung bình cộng của các bình phương số liệu thống kê là

    \overline{x^{2}} = \frac{51^{2} \cdot 3
+ 53^{2} \cdot 7 + 55^{2} \cdot 9 + 57^{2} \cdot 8 + 59^{2} \cdot 3}{30}
\approx 3037,5.

    Từ đó ta có độ lệch chuẩn của mẫu số liệu là s = \sqrt{\overline{x^{2}} - \left( \overline{x}
\right)^{2}} \approx \sqrt{5,2} \approx 2,3.

    Công ty H

    A white rectangular box with black numbersDescription automatically generated

    Bổ sung thêm các giá trị đại diện, ta có bảng sau

    Giá trị trung bình của mẫu số liệu là

    \overline{x} = \frac{41 \cdot 6 + 43
\cdot 7 + 45 \cdot 5 + 47 \cdot 7 + 49 \cdot 5}{30} \approx
44,9.

    Trung bình cộng của các bình phương số liệu thống kê là

    \overline{x^{2}} = \frac{41^{2} \cdot 6 +
43^{2} \cdot 7 + 45^{2} \cdot 5 + 47^{2} \cdot 7 + 49^{2} \cdot 5}{30}
\approx 2020,7.

    Từ đó ta có độ lệch chuẩn của mấu số liệu là s = \sqrt{\overline{x^{2}} - \left( \overline{x}
\right)^{2}} \approx \sqrt{7,7} \approx 2,8.

    Từ kết quả trên, ta thấy công ty Hrủi ro hơn

  • Câu 16: Vận dụng
    Chọn đáp án chính xác

    Thời gian hoàn thành một bài viết chính tả của một số học sinh lớp 4 hai trường X và Y được ghi lại ở bảng sau. Gọi độ lệch chuẩn thời gian gian hoàn thành một bài viết chính tả của một số học sinh lớp 4 ở trường X và Y lần lượt là S_{X} và S_{Y}. Tính S_{X} - S_{Y} bằng bao nhiêu?

    Thời gian (Phút)

    \lbrack
6;7) \lbrack
7;8) \lbrack
8;9) \lbrack
9;10) \lbrack
10;11)

    Số học sinh trường X

    8

    10

    13

    10

    9

    Số học sinh trường Y

    4

    12

    17

    14

    3

    Hướng dẫn:

    Ta lập bảng theo giá trị đại diện như sau:

    Thời gian (Phút)

    \lbrack
6;7) \lbrack
7;8) \lbrack
8;9) \lbrack
9;10) \lbrack
10;11)

    Giá trị đại diện

    6,5

    7,5

    8,5

    9,5

    10,5

    Số học sinh trường X

    8

    10

    13

    10

    9

    Số học sinh trường Y

    4

    12

    17

    14

    3

    Cỡ mẫu n_{X} = 8 + 10 + 13 + 10 + 9 =
50,\ \ n_{Y} = 4 + 12 + 17 + 14 + 3 = 50.

    Thời gian trung bình hoàn thành một bài viết chính tả của học sinh trường X là:

    {\overline{x}}_{X} = \frac{8 \cdot 6,5 +
10 \cdot 7,5 + 13 \cdot 8,5 + 10 \cdot 9,5 + 9 \cdot 10,5}{50} =
8,54

    Phương sai của mẫu số liệu ghép nhóm của trường X là:

    S_{X}^{2} = \frac{1}{50}[ 8\cdot (6,5)^{2} + 10 \cdot (7,5)^{2}+ 13 \cdot (8,5)^{2} + 10 \cdot(9,5)^{2} + 9 \cdot (10,5)^{2}] - (8,54)^{2} =1,76

    Độ lệch chuẩn của mẫu số liệu ghép nhóm của trường X là:

    S_{X} = \sqrt{S_{X}^{2}} = \sqrt{1,76}
\approx 1,33

    Thời gian trung bình hoàn thành một bài viết chính tả của học sinh trường Y là:

    {\overline{x}}_{Y} = \frac{4 \cdot 6,5 +
12 \cdot 7,5 + 17 \cdot 8,5 + 14 \cdot 9,5 + 3 \cdot 10,5}{50} =
8,5

    Phương sai của mẫu số liệu ghép nhóm của trường Y là:

    S_{Y}^{2} = \frac{1}{50}[ 4\cdot (6,5)^{2} + 12 \cdot (7,5)^{2} + 17 \cdot (8,5)^{2}+ 14 \cdot(9,5)^{2} + 3 \cdot (10,5)^{2} ] - (8,5)^{2} =1,08

    Độ lệch chuẩn của mẫu số liệu ghép nhóm của trường Y là:

    S_{Y} = \sqrt{S_{Y}^{2}} = \sqrt{1,08}
\approx 1,04

    Vậy S_{X} - S_{Y} = 1,33 - 1,04 =
0,29

  • Câu 17: Thông hiểu
    Tính phương sai của mẫu số liệu ghép nhóm

    Cân nặng (kg) của một số quả mít trong một khu vườn được thống kê ở bảng sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Số cây giống

    6

    12

    19

    9

    4

    Hãy tính phương sai của mẫu số liệu ghép nhóm trên (làm tròn đến hàng phần mười).

    Hướng dẫn:

    Ta có giá trị đại diện được thể hiện trong bảng sau:

    Cân nặng (kg)

    [4; 6)

    [6; 8)

    [8; 10)

    [10; 12)

    [12; 14)

    Giá trị đại diện

    5

    7

    9

    11

    13

    Số cây giống

    6

    12

    19

    9

    4

    Cỡ mẫu: n = 50.

    Số trung bình

    \overline{x} = \frac{m_{1}.x_{1} +
m_{2}.x_{2} + ... + m_{k}.x_{k}}{n}

    = \frac{6.5 + 12.7 + 19.9 + 9.11 +
4.13}{50} = 8,72.

    Phương sai:

    s^{2} = \frac{1}{n}\left(m_{1}.{x_{1}}^{2} + m_{2}.{x_{2}}^{2} + ... + m_{k}.{x_{k}}^{2} ight)- \left( \overline{x} ight)^{2}

    = \frac{1}{50}\left( 6.5^{2} +12.7^{2} + 19.9^{2} + 9.11^{2} + 4.13^{2} ight) - (8,72)^{2} =4,8016.

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Nhiệt độ trong 55 ngày của một địa phương được cho trong bảng ghép lớp sau:

    Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất nằm trong khoảng

    Hướng dẫn:

    Nhiệt độ trung bình trong một ngày là:

    \overline{x} = \frac{20,5.5 + 23,5.7 +
26,5.8 + 29,5.16 + 32,5.12 + 35,5.7}{55} = 28,9

    Phương sai của mẫu số liệu là:

    S^{2} = \frac{1}{55}[20,5^{2}.5 + 23,5^{2}.7 +26,5^{2}.8+ 29,5^{2}.16 + 32,5^{2}.12 + 35,5^{2}.7] - 28,9^{2} =19,44

    Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất là S^{2} = 19,4

  • Câu 19: Thông hiểu
    Chọn đáp án thích hợp

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12CD

    2

    5

    4

    3

    1

    Nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Hướng dẫn:

    Ta có:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Giá trị đại diện

    5,5

    6,5

    7,5

    8,5

    9,5

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Điểm trung bình của lớp 12C:

    \overline{x_{C}} = \frac{4.5,5 + 5.6,5 +3.7,5 + 4.8,5 + 2.9,5}{18} = \frac{65}{9}.

    Phương sai của mẫu số liệu ghép nhóm của lớp 12C:

    {S_{C}}^{2} = \frac{1}{18}\left(4.5,5^{2} + 5.6,5^{2} + 3.7,5^{2} + 4.8,5^{2} + 2.9,5^{2} ight) -\left( \frac{65}{9} ight)^{2} = \frac{569}{324}

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm lớp 12C là: S_{C} = \sqrt{{S_{C}}^{2}} =\sqrt{\frac{569}{324}} \approx 1,33

    Điểm trung bình của lớp 12D:

    \overline{x_{D}} = \frac{2.5,5 + 5.6,5 +4.7,5 + 3.8,5 + 1.9,5}{15} = \frac{217}{30}

    Phương sai của mẫu số liệu ghép nhóm của lớp 12D:

    {S_{D}}^{2} = \frac{1}{15}\left(2.5,5^{2} + 5.6,5^{2} + 4.7,5^{2} + 3.8,5^{2} + 1.9,5^{2} ight) -\left( \frac{217}{30} ight)^{2} = \frac{284}{225}

    Suy ra độ lệch chuẩn của mẫu số liệu ghép nhóm lớp 12D là: S_{D} = \sqrt{{S_{D}}^{2}} =\sqrt{\frac{284}{225}} \approx 1,12

    Ta có: S_{C} > S_{D} nên nếu so sánh theo độ lệch chuẩn của mẫu số liệu ghép nhóm thì học sinh lớp 12D có điểm đồng đều hơn lớp 12C.

  • Câu 20: Thông hiểu
    Tìm số trung bình của mẫu số liệu ghép nhóm

    Thống kê tổng số giờ nắng trong tháng 9 tại khu vực A trong các năm từ 2004 đến 2023 được thống kê như sau:

    111,6

    134,9

    130,3

    134,2

    140,9

    109,3

    154,4

    156,3

    116,1

    96,7

    105,2

    80,8

    80,8

    110

    109

    139

    145

    161

    126

    114

    Lập bảng tần số ghép nhóm với nhóm đầu tiên là [80; 98) và độ dài nhóm bằng 18. Tìm số trung bình của mẫu số liệu ghép nhóm?

    Hướng dẫn:

    Ta có bảng như sau:

    Số giờ

    [80; 98)

    [98; 116)

    [116; 134)

    [134; 152)

    [152; 170)

    Giá trị đại diện

    89

    107

    125

    143

    161

    Số năm

    3

    6

    3

    5

    3

    Số trung bình của mẫu số liệu ghép nhóm là:

    \overline{x} = \frac{3.89 + 6.107 +
3.125 + 5.143 + 3.161}{20} = 124,1

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (60%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo