Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt phẳng CTST (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian Oxyz, cho mặt phẳng (\alpha) đi qua điểm M(1;2;1) và cắt các tia Ox,Oy,Oz lần lượt tại A,B,C sao cho độ dài OA,OB,OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2. Tính khoảng cách từ gốc tọa độ O đến mặt phẳng (\alpha).

    Hướng dẫn:

    Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0.

    Phương trình mặt phẳng (α) có dạng \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1

    Ta có (α) đi qua điểm M(1; 2; 1) nên ta có \frac{1}{a} + \frac{2}{b} + \frac{1}{c} =
1 (∗)

    OA, OB, OC theo thứ tự lập thành một cấp số nhân có công bội bằng 2 nên c = 2b = 4a.

    Thay vào (∗), ta được \frac{1}{a} +
\frac{2}{2a} + \frac{1}{4a} = 1 \Leftrightarrow a =
\frac{9}{4}

    Suy ra phương trình mặt phẳng (α) là \frac{x}{1} + \frac{y}{2} + \frac{z}{4} =
\frac{9}{4} hay 4x + 2y + z - 9 =
0

    \Rightarrow d\left( O;(\alpha) ight) =
\frac{| - 9|}{\sqrt{4^{2} + 2^{2} + 1^{2}}} =
\frac{3\sqrt{21}}{7}.

  • Câu 2: Vận dụng
    Tìm tọa độ đỉnh D

    Trong không gian Oxyz, cho ba điểm A(1;2;3),B(1;0; - 1),C(2; -
1;2). Điểm D thuộc tia Oz sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện ABCD bằng \frac{3\sqrt{30}}{10} có tọa độ là

    Hướng dẫn:

    Ta có D thuộc tia Oz nên D(0; 0; d) với d > 0.

    Tính \left\{ \begin{matrix}
\overrightarrow{AB} = (0; - 2; - 4) \\
\overrightarrow{AC} = (1; - 3; - 1) \\
\end{matrix} ight.

    Mặt phẳng (ABC): có vectơ pháp tuyến \overrightarrow{n_{(ABC)}} = \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 10; -
4;2) và đi qua điểm A(1; 2; 3).

    \Rightarrow (ABC): - 10(x - 1) - 4(y -
2) + 2(z - 3) = 0

    \Leftrightarrow 5x + 2y - y - 6 =
0

    Ta có d\left( D;(ABC) ight) =
\frac{3\sqrt{30}}{10} \Leftrightarrow \frac{|d + 6|}{\sqrt{30}} =
\frac{3\sqrt{30}}{10}

    \Leftrightarrow |d + 6| = 9
\Leftrightarrow \left\lbrack \begin{matrix}
d = 3(tm) \\
d = - 15(ktm) \\
\end{matrix} ight.

    Vậy D(0;0;3).

  • Câu 3: Vận dụng
    Tìm phương trình mặt phẳng (P)

    Trong không gian Oxyz, cho hai điểm A(1;2; - 1),B(3;0;3). Biết mặt phẳng (P) đi qua điểm A và cách B một khoảng lớn nhất. Phương trình mặt phẳng (P)

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của B lên (P), suy ra d(B, (P)) = AH.

    Ta có BH ≤ AB.

    Dấu “=” xảy ra ⇔ H ≡ A

    ⇒ BHmax = AB khi AB ⊥ (P).

    Ta có:

    \left\{ \begin{matrix}
AB\bot(P) \\
A \in (P) \\
\end{matrix} ight.\  \Rightarrow (P):2x - 2y + 4z + 6 = 0

    \Leftrightarrow x - y + 2z + 3 =
0

  • Câu 4: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD =\frac{a\sqrt{17}}{2}, hình chiếu vuông góc Hcủa S trên mặt phẳng (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm đoạn AD (tham khảo hình vẽ)

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD =\frac{a\sqrt{17}}{2}, hình chiếu vuông góc Hcủa S trên mặt phẳng (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm đoạn AD (tham khảo hình vẽ)

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa điểm M(1;3; - 2), cắt các tia Ox,Oy,Oz lần lượt tại A;B;C (khác O) sao cho \frac{OA}{1} = \frac{OB}{2} =
\frac{OZ}{4}?

    Hướng dẫn:

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c > 0.

    Phương trình mặt phẳng (P) là \frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1. Theo giả thiết ta có:

    \left\{ \begin{matrix}\dfrac{a}{1} = \dfrac{b}{2} = \dfrac{c}{3} \\\frac{1}{a} + \dfrac{3}{b} - \dfrac{2}{c} = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 4 \\c = 8 \\\end{matrix} ight.

    Vậy phương trình mặt phẳng (P)4x + 2y + z - 8 = 0.

  • Câu 6: Thông hiểu
    Định phương trình mặt phẳng ABC

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(3; - 2; - 2), B(3;2;0), C(0;2;1). Phương trình mặt phẳng (ABC) là:

    Hướng dẫn:

    Phương pháp tự luận

    \overrightarrow{AB} = (0;4;2), \overrightarrow{AC} = ( -
3;4;3)

    (ABC) qua A(3; - 2; - 2) và có vectơ pháp tuyến \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} \right\rbrack = (4; - 6;12) =
2(2; - 3;6)

    \Rightarrow (ABC):2x - 3y + 6z =
0

    Phương pháp trắc nghiệm

    Sử dụng MTBT tính tích có hướng.

    Hoặc thay tọa độ cả 3 điểm A, B, C vào mặt phẳng xem có thỏa hay không?

  • Câu 7: Thông hiểu
    Tính giá trị biểu thức T

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Điểm M(a;b;c) nằm trên mặt phẳng (P) thỏa mãn MA = MB = MC. Tính T = a + 2b + 3c?

    Hướng dẫn:

    Ta có M(a; b; c) ∈ (P) ⇔ a + b + c − 2 = 0 (1)

    MA^2 = (a − 2)^2 + (b − 0)^2 + (c − 1)^2 = a ^2 + b^ 2 + c^ 2 − 4a − 2c + 5

    MB^2 = (a − 1)^2 + b^ 2 + c ^2 = a^ 2 + b^ 2 + c^ 2 − 2a + 1

    MC^2 = (a − 1)^2 + (b − 1)^2 + (c − 1)^2 = a ^2 + b ^2 + c ^2 − 2a − 2b − 2c + 3

    Với MA = MB, ta có a + c − 2 = 0 (2)

    Với MA = MC, ta có a − b − 1 = 0 (3)

    Từ (1); (2); (3) ta có hệ phương trình:

    \left\{ \begin{matrix}
a + b + c = 2 \\
a + c = 2 \\
a - b = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 8: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, mặt phẳng (\alpha) đi qua điểm M(5;4;3) và cắt các tia Ox,Oy,Oz các đoạn bằng nhau có phương trình là:

    Hướng dẫn:

    Gọi A(a;0;0),\ B(0;a;0),\ C(0;0;a)(a \neq
0)là giao điểm của mặt phẳng (\alpha) và các tia Ox,Oy,Oz.

    Phương trình mặt phẳng (\alpha)qua A, B, C là: \frac{x}{a} + \frac{y}{a} + \frac{z}{a} =
1.

    Mặt phẳng (\alpha) qua điểm M(5;4;3) \Rightarrow a = 12

    Ta có \frac{x}{12} + \frac{y}{12} +
\frac{z}{12} = 1 \Leftrightarrow x + y + z - 12 = 0

  • Câu 9: Vận dụng
    Tính khoảng cách từ điểm đến đường thẳng

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm M thoả mãn OM
= 7. Biết rằng khoảng cách từ M tới mặt phẳng (Oxz),(Oyz) lần lượt là 2 và 3. Tính khoảng cách từ M đến mặt phẳng (Oxy).

    Hướng dẫn:

    Ta có: (Oxz):y = 0,(Oyz):x =
0

    Giả sử M(a;b;c) khi đó ta có:

    \left\{ \begin{matrix}
OM = 7 \\
d\left( M;(Oxz) \right) = 2 \\
d\left( M;(Oyz) \right) = 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} + c^{2} = 49 \\
b^{2} = 4 \\
a^{2} = 9 \\
\end{matrix} \right.\  \Rightarrow c^{2} = 36

    d\left( M;(Oxy) \right) = \sqrt{c^{2}}
= 6

  • Câu 10: Vận dụng cao
    Tính giá trị lớn nhất của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1; - 1;1),B(0;1; - 2) và điểm M thay đổi trên mặt phẳng tọa độ Oxy. Tìm giá trị lớn nhất của |MA - MB|?

    Hướng dẫn:

    Thay tọa độ của A, B vào phương trình mặt phẳng (Oxy): z = 0, ta có 1.( - 2) = - 2 < 0

    ⇒ A, B nằm về hai phía của (Oxy).

    Gọi A’ là điểm đối xứng của A qua (Oxy).

    Khi đó ta có: |MA - MB| = |MA' - MB|
\leq A'B

    Suy ra |MA - MB| lớn nhất bằng A’B khi và chỉ khi M là giao điểm của A’B và (Oxy).

    Ta có A'(1; - 1; - 1) \Rightarrow
A'B = \sqrt{( - 1)^{2} + 2^{2} + ( - 1)^{2}} =
\sqrt{6}.

  • Câu 11: Vận dụng cao
    Ghi đáp án vào ô trống

    Trong không gian Oxyz, cho điểm A(1; - 6;1) và mặt phẳng (P):x + y + 7 = 0. Điểm B thay đổi thuộc Oz; điểm C thay đổi thuộc mặt phẳng (P). Biết rằng tam giác ABC có chu vi nhỏ nhất. Tìm tọa độ điểm B.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm A(1; - 6;1) và mặt phẳng (P):x + y + 7 = 0. Điểm B thay đổi thuộc Oz; điểm C thay đổi thuộc mặt phẳng (P). Biết rằng tam giác ABC có chu vi nhỏ nhất. Tìm tọa độ điểm B.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Vận dụng
    Xác định số mặt phẳng thỏa mãn yêu cầu

    Trong không gian Oxyz, cho điểm M( - 1;0;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại A,B,C sao cho 3OA = 2OB = OC eq 0?

    Hướng dẫn:

    Từ giả thiết, ta có thể coi A(2a;0;0),B(0;3b;0),C(0;0;6c) (với |a| = |b| = |c| eq 0).

    Khi đó, phương trình mặt phẳng (P) là \frac{x}{2a} + \frac{y}{3b} + \frac{z}{6c} =1.

    Do (P) đi qua M(−1; 0; 3) nên -\frac{1}{2a} + \frac{1}{2c} = 1.

    Theo trên có c = ±a, kết hợp với phương trình vừa thu được, ta suy ra a = −1, c = 1.

    Cũng theo trên, b = ±a, nên có 2 giá trị của b.

    Suy ra có 2 bộ (a, b, c) thỏa mãn, hay có 2 mặt phẳng thỏa yêu cầu đề bài.

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, \widehat{ABC} = 60^{0}, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi H,M,N lần lượt là trung điểm các cạnh AB,SA,SDP là giao điểm của (HMN) với CD. Khoảng cách từ trung điểm K của đoạn thẳng SP đến mặt phẳng (HMN) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Vận dụng cao
    Tìm tọa độ điểm M

    Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các tia Ox,Oy,Oz lần lượt tại các điểm A;B;C sao cho T = \frac{1}{OA^{2}} + \frac{1}{OB^{2}} +
\frac{1}{OC^{2}} đạt giá trị nhỏ nhất là:

    Hướng dẫn:

    Giả sử A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c là các số thực dương do OA, OB, OC khác 0.

    Khi đó phương trình mặt phẳng (P) qua A, B, C có phương trình là \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1

    Mà M ∈ (P) nên \frac{1}{a} + \frac{2}{b}
+ \frac{3}{c} = 1, do đó theo bất đẳng thức Bunhiacopski ta có:

    T = \frac{1}{a^{2}} + \frac{1}{b^{2}} +
\frac{1}{c^{2}}= \frac{1}{14}\left( 1^{2} + 2^{2} + 3^{2} \right)\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} \right)

    \geq \frac{1}{14}\left( \frac{1}{a} +
\frac{2}{b} + \frac{3}{c} \right)^{2} = \frac{1}{14}

    T đạt giá trị nhỏ nhất nên ta có dấu bằng xảy ra, tức là: \left\{ \begin{matrix}
a = 2b = 3c \\
\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} = 1 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 14 \\
b = \dfrac{14}{2} \\
c = \dfrac{14}{3} \\
\end{matrix} \right.

    Vậy phương trình mặt phẳng (P) là x + 2y
+ 3z - 14 = 0.

  • Câu 15: Vận dụng cao
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCDA(1;1;1),B(2;0;2), C( - 1; - 1;0),D(0;3;4). Trên các cạnh AB,AC,AD lần lượt lấy các điểm B';C';D' sao cho \frac{AB}{AB'} + \frac{AC}{AC'} +\frac{AD}{AD'} = 4. Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCDA(1;1;1),B(2;0;2), C( - 1; - 1;0),D(0;3;4). Trên các cạnh AB,AC,AD lần lượt lấy các điểm B';C';D' sao cho \frac{AB}{AB'} + \frac{AC}{AC'} +\frac{AD}{AD'} = 4. Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng
    Tìm mặt phẳng (P) thỏa mãn điều kiện cho trước

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3). Mặt phẳng(P) qua Mcắt các tia Ox,Oy,Oz lần lượt tại A,B,C sao cho thể tích khối tứ diện OABC nhỏ nhất có phương trình là:

    Hướng dẫn:

    +) Mặt phẳng(P) cắt các tia Ox,Oy,Oz lần lượt tại A,B,C nên 

    A(a;0;0),B(0;b;0),C(0;0;c)(a,b,c > 0).

    Phương trình mặt phẳng (P)\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1.

    +) Mặt phẳng(P) qua M nên \frac{1}{a} + \frac{2}{b} + \frac{3}{c} =
1.

    Ta có 1 = \frac{1}{a} + \frac{2}{b} +
\frac{3}{c} \geq 3\sqrt[3]{\frac{6}{abc}} \Leftrightarrow abc \geq
162

    +) Thể tích khối tứ diện OABC bằng V = \frac{1}{6}abc \geq
27.

    Thể tích khối tứ diện OABC nhỏ nhất khi \frac{1}{a} = \frac{2}{b} =
\frac{3}{c} = \frac{1}{3} suy ra a =
3,b = 6,c = 9.

    Phương trình mặt phẳng(P)\frac{x}{3} +
\frac{y}{6} + \frac{z}{9} = 1 hay 6x
+ 3y + 2z - 18 = 0.

  • Câu 17: Thông hiểu
    Xác định phương trình mặt phẳng (P)

    Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AM\bot BC \\
OA\bot BC \\
\end{matrix} ight.\  \Rightarrow BC\bot OM

    Ta có: \left\{ \begin{matrix}
BM\bot AC \\
OB\bot AC \\
\end{matrix} ight.\  \Rightarrow AC\bot OM

    Vậy OM\bot(ABC) nên (P) nhận \overrightarrow{OM} = (1;2;3) làm vectơ pháp tuyến.

    Do (P) đi qua M(1;2;3) nên (P):x - 1 + 2(y - 2) + 3(z - 3) = 0

    \Leftrightarrow x + 2y + 3z - 14 =
0

  • Câu 18: Vận dụng
    Chọn kết luận đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;1),B(1;0;1),C(1;1;0). Có bao nhiêu điểm M cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)?

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (0;1;1);\overrightarrow{OB} = (1;0;1) \\
\overrightarrow{OC} = (1;1;0);\overrightarrow{AB} = (1; - 1;0) \\
\overrightarrow{AC} = (1;\ 0; - 1) \\
\end{matrix} ight.

    Ta có: \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = (1;\ 1; - 1)
\Rightarrow (OAB):x + y - z = 0

    Ta có: \left\lbrack
\overrightarrow{AB};\overrightarrow{OC} ightbrack = ( - 1;1;1)
\Rightarrow (OBC): - x + y + z = 0

    Gọi điểm M(a;b;c) cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)

    Từ d\left( M,(OAB) ight) = d\left(
M,(OBC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = c(1) \\
b = c(2) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(OAC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b - c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = 0(3) \\
b = c(4) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(ABC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{|a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 0(5) \\
a = - b(6) \\
\end{matrix} ight.

    Từ (1), (3), (5) suy ra a = c = 0, b khác 0 tùy ý.

    Như vậy có vô số điểm cách đều bốn mặt phẳng

  • Câu 19: Thông hiểu
    Tính thể tích tứ diện

    Trong không gian với hệ tọa độ Oxyz; cho bốn điểm A(2;0;2),B(1; - 1; - 2),C( - 1;1;0),D( -2;1;2). Tính thể tích tứ diện ABCD.

    Hướng dẫn:

    Theo giả thiết ta có: \left\{
\begin{matrix}
\overrightarrow{AB} = ( - 1; - 1; - 4) \\
\overrightarrow{AC} = ( - 1; - 1; - 4) \\
\overrightarrow{AD} = ( - 4;1;0) \\
\end{matrix} ight. suy ra

    \Rightarrow \left\lbrack
\overrightarrow{AB}.\overrightarrow{AC} ightbrack = (6;10; -
4)

    \Rightarrow \left\lbrack
\overrightarrow{AB}.\overrightarrow{AC}
ightbrack.\overrightarrow{AD} = - 14

    Vậy thể tích tứ diện ABCD là:

    V_{ABCD} = \frac{1}{6}\left|
\left\lbrack \overrightarrow{AB}.\overrightarrow{AC}
ightbrack.\overrightarrow{AD} ight| = \frac{7}{3}

  • Câu 20: Vận dụng
    Tìm giá trị biểu thức S

    Trong không gian tọa độ Oxyz, mặt phẳng (\alpha) đi qua M(1; - 3;8) và chắn trên tia Oz một đoạn thẳng dài gấp đôi các đoạn thẳng mà nó chắn trên các tia OxOy. Giả sử (P):ax + by + cz + d = 0, với a,b,c,d\mathbb{\in Z},d eq 0. Tính S = \frac{a + b + c}{d}.

    Hướng dẫn:

    Từ giả thiết, ta suy ra các giao điểm của (α) với các tia Ox, Oy, Oy lần lượt là A(a; 0; 0), B(0; a; 0) ,C(0; 0; 2a),  a > 0.

    Suy ra phương trình (đoạn chắn) của (α) là \frac{x}{a} + \frac{y}{a} + \frac{z}{2a} =
1.

    Do (α) đi qua M nên a = 2.

    Suy ra (α): 2x + 2y + z − 4 = 0.

    Từ đó, ta tính được: S = \frac{a + b +
c}{d} = \frac{2 + 2 + 1}{- 4} = - \frac{5}{4}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo