Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt phẳng CTST (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tìm số điểm cách đều 4 mặt phẳng

    Trong không gian Oxyz, cho các điểm A(1;0;0),B(0;1;0),C(0;0;1). Số điểm cách đều bốn mặt phẳng (ABC),(BCO),(COA),(OAB)

    Hướng dẫn:

    Gọi I(m; n; p) là điểm cách đều bốn mặt phẳng đã cho.

    Dễ thấy các mặt phẳng (OAB), (OBC), (OCA) lần lượt là các mặt phẳng (Oxy), (Oyz), (Ozx).

    Mặt phẳng (ABC) có phương trình tổng quát là x + y + z = 1.

    Do I cách đều các mặt phẳng này nên ta có:

    |m| = |n| = |p| = \frac{|m + n + p -
1|}{\sqrt{3}}\ \ \ (1)

    Ta có các trường hợp

    Trường hợp 1. m = n = p. Khi đó (1) tương đương:

    |m| = \frac{|3m - 1|}{\sqrt{3}}
\Leftrightarrow m = \frac{3 \pm \sqrt{3}}{6}

    Ta được hai điểm thỏa mãn bài toán.

    Trường hợp 2. Trong ba số m, n, p có hai số bằng nhau và bằng số đối của số còn lại.

    Khi đó, không mất tính tổng quát ta có thể giả sử m = n = − p (các trường hợp còn lại tương tự) và (1) tương đương:

    |m| = \frac{|m - 1|}{\sqrt{3}}
\Leftrightarrow m = \frac{- 1 \pm \sqrt{3}}{2}

    Ta được hai điểm thỏa mãn bài toán.

    Vậy số điểm cách đều bốn mặt phẳng đã cho là 2 + 2.3 = 8.

  • Câu 2: Thông hiểu
    Xác định phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P):x + 2y - z + 1 = 0. Gọi mặt phẳng (Q) là mặt phẳng đối xứng của mặt phẳng (P) qua trục tung. Khi đó phương trình mặt phẳng (Q) là?

    Hướng dẫn:

    Gọi M(x,y,z) là điểm bất kỳ thuộc mặt phẳng (P).

    Điểm M'( - x,y, - z) là điểm đối xứng của Mqua trục tung \Rightarrow (Q): - x + 2y + z + 1 = 0 là mặt phẳng đi qua M' và là mặt phẳng đối xứng của(P)

    Vậy x - 2y - z - 1 = 0.

  • Câu 3: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz, gọi (\alpha) là mặt phẳng qua G(1;2;3) và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C (khác gốc O) sao cho G là trọng tâm của tam giác ABC. Khi đó mặt phẳng (\alpha) có phương trình:

    Hướng dẫn:

    Phương pháp tự luận

    Gọi A(a; 0; 0), B(0; b; 0), C(0;0;c) là giao điểm của mặt phẳng (\alpha) các trục Ox, Oy, Oz

    Phương trình mặt phẳng (\alpha) :\frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1 (a,b,c \neq 0) .

    Ta có G là trọng tâm tam giác ABC

    \Rightarrow \left\{ \begin{matrix}
\frac{a}{3} = 1 \\
\frac{b}{3} = 2 \\
\frac{c}{3} = 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 6 \\
c = 9 \\
\end{matrix} \right.

    \Rightarrow (\alpha):\frac{x}{3} +
\frac{y}{6} + \frac{z}{9} = 1 \Leftrightarrow 6x + 3y + 2z - 18 =
0

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - y + 3z - 7 = 0 và điểm A( - 1;2;5). Viết phương trình mặt phẳng (Q) đi qua A và song song với (P)?

    Hướng dẫn:

    Mặt phẳng (Q) và song song với (P) nên (Q) có dạng 2x − y + 3z + D = 0, với D eq - 7

    A ∈ (Q) nên 2 .(−1) − 2 + 3 . 5 + D = 0 ⇔ D = −11.

    Vậy (Q): 2x − y + 3z − 11 = 0.

  • Câu 5: Vận dụng
    Tính góc giữa hai mặt phẳng

    Cho hình vuông ABCD có cạnh a. Trên hai tia Bt,Ds vuông góc và nằm cùng phía với mặt phẳng (ABCD) lần lượt lấy hai điểm E;F sao cho BE = \frac{a}{2};DF = a. Tính góc \varphi giữa hai mặt phẳng (AEF);(CEF).

    Hướng dẫn:

    Hình vẽ minh họa

    Đặt hình vẽ vào hệ trục tọa độ Oxyz sao cho A trùng với O(0; 0; 0), B thuộc Ox và có tọa độ B(a; 0; 0), D thuộc Oy và có thọa độ D(0; a; 0).

    Khi đó ta được E\left( a;0;\frac{a}{2}
\right),C(a;a;0),F(0;a;a).

    (AEF) có một vectơ pháp tuyến là \overrightarrow{n_{1}'} = \left\lbrack
\overrightarrow{AE};\overrightarrow{AF} \right\rbrack = \left( \frac{-
a^{2}}{2}; - a^{2};a^{2} \right)

    => \overrightarrow{n_{1}} = (1;2; -
2) cũng là vectơ pháp tuyến của (CEF)

    (CEF) có một vtơ pháp tuyến là:

    \overrightarrow{n_{2}'} =
\left\lbrack \overrightarrow{CE};\overrightarrow{CF} \right\rbrack =
\left( - a^{2};\frac{- a^{2}}{2}; - a^{2} \right)

    \Rightarrow \overrightarrow{n_{2}} =
(2;1;2)cũng là vectơ pháp tuyến của (CEF).

    \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = 0
\Rightarrow \varphi = 90^{0}.

  • Câu 6: Vận dụng
    Xác định điểm thuộc mặt phẳng

    Trong không gian với hệ tọa đô Oxyz, cho điểm M(1;2;4). Gọi (P) là mặt phẳng đi qua M và cắt các tia Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho thể tích tứ diện O.ABC nhỏ nhất. (P) đi qua điểm nào dưới đây?

    Hướng dẫn:

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c > 0

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    M \in (P) \Rightarrow (P):\frac{1}{a}
+ \frac{2}{b} + \frac{4}{c} = 1

    Áp dụng bất đẳng thức Cauchy ta có:

    1 = \frac{1}{a} + \frac{2}{b} +
\frac{4}{c} \geq 3\sqrt[3]{\frac{1.2.4}{abc}} \Rightarrow abc \geq
8.27

    Thể tích tứ diện O.ABCV = \frac{1}{6}abc \geq 36

    Đẳng thức xảy ra khi \frac{1}{a} =
\frac{2}{b} = \frac{4}{c} = \frac{1}{3} \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = 6 \\
c = 12 \\
\end{matrix} ight.

    Phương trình mặt phẳng (P)\frac{x}{3} + \frac{y}{6} + \frac{z}{12} = 1
\Rightarrow 4x + 2y + z - 12 = 0

    Mặt phẳng (P) đi qua điểm (2;2;0).

  • Câu 7: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz,cho (P):x + 4y - 2z - 6 = 0 ,(Q):x - 2y + 4z - 6 = 0. Lập phương trình mặt phẳng (\alpha) chứa giao tuyến của(P),(Q) và cắt các trục tọa độ tại các điểm A,B,C sao cho hình chóp O.ABC là hình chóp đều.

    Hướng dẫn:

    Chọn M(6;0;0),N(2;2;2) thuộc giao tuyến của(P),(Q)

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) lần lượt là giao điểm của (\alpha) với các trục Ox,Oy,Oz

    \Rightarrow (\alpha):\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1(a,b,c \neq 0)

    (\alpha) chứa M,N \Rightarrow \left\{ \begin{matrix}
\frac{6}{a} = 1 \\
\frac{2}{a} + \frac{2}{b} + \frac{2}{c} = 1 \\
\end{matrix} \right.

    Hình chóp O.ABC là hình chóp đều\Rightarrow OA = OB = OC

    \Rightarrow |a| = |b| = |c|

    Vây phương trình x + y + z - 6 =
0.

  • Câu 8: Thông hiểu
    Mặt phẳng giao tuyến

    Cho 3 mặt phẳng \left( \alpha  ight):x - 2z = 0,\left( \beta  ight):3x - 2y + z - 3 = 0,\left( \gamma  ight):x - 2y + z + 5 = 0 . Mặt phẳng (P) chứa giao tuyến của (\alpha), (\beta) ,vuông góc với (\gamma) có phương trình tổng quát:

    Hướng dẫn:

    Mặt phẳng (P) thuộc chùm mặt phẳng (\alpha), (\beta) nên phương trình có dạng:

    \left( {m + 3} ight)x - 2y + \left( {1 - 2m} ight)z - 3 = 0

    (P) vuông góc với (\gamma) nên ta được:

    \left( {m + 3} ight).1 - 2.\left( { - 2} ight) + 1 - 2m = 0 \Leftrightarrow m = 8

    Vậy ta có phương trình (P) là : 11x - 2y - 15z - 3 = 0

  • Câu 9: Vận dụng cao
    Chọn đáp án đúng

    Một phần sân trường được định vị bởi các điểm A,B,C,D, như hình vẽ.

    Bước đầu chúng được lấy “ thăng bằng” để có cùng độ cao, biết ABCD là hình thang vuông ở AB với độ dài AB = 25\ m, AD = 15\ m, BC = 18\ m. Do yêu cầu kĩ thuật, khi lát phẳng phần sân trường phải thoát nước về góc sân ở C nên người ta lấy độ cao ở các điểm B, C, D xuống thấp hơn so với độ cao ở A10\ cm, a\ cm, 6\
cmtương ứng. Giá trị của a là số nào sau đây?

    Hướng dẫn:

    Hình vẽ minh họa

    Chọn hệ trục tọa độ Oxyz sao cho: O \equiv A, tia Ox \equiv AD; tia Oy \equiv AB.

    Khi đó, A(0;\ 0;\ 0); B(0;\ 2500;\ 0); C(1800;\ 2500;\ 0);D(1500;\ 0;\ 0).

    Khi hạ độ cao các điểm ở các điểm B, C, D xuống thấp hơn so với độ cao ở A10\ cm, a\ cm, 6\
cm tương ứng ta có các điểm mới B'(0\ ;\ 2500\ ;\  - 10); C'(1800\ ;\ 2500\ ;\  - a);D'(1500\ ;\ 0\ ;\  - 6).

    Theo bài ra có bốn điểm A; B'; C'; D' đồng phẳng.

    Phương trình mặt phẳng (AB'D'):x
+ y + 250z = 0.

    Do C'(1800\ ;\ \ 2500\ ;\  - a) \in
(AB'D') nên có:

    1800 + 2500
- 250a = 0 \Leftrightarrow a = 17,2.

    Vậy a = 17,2\ cm.

  • Câu 10: Vận dụng
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm M(3;2;1). Viết phương trình mặt phẳng đi qua M và cắt các trục x'Ox,\ y'Oy,\ z'Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC?

    Hướng dẫn:

    Xét tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc với nhau.

    Ta có: \left\{
\begin{matrix}
AB\bot CM \\
AB\bot OC \\
\end{matrix} ight.\  \Rightarrow AB\bot(COM) \Rightarrow AB\bot
OM

    Chứng minh tương tự, ta được AC ⊥ OM.

    Từ đó OM ⊥ (ABC).

    Suy ra phương trình mặt phẳng (ABC) đi qua M(3; 2; 1) và nhận \overrightarrow{OM} = (3;2;1) làm vectơ pháp tuyến là:

    3(x - 3) + 2(y - 2) + z - 1 =
0

    \Leftrightarrow 3x + 2y + z - 14 = \
0

  • Câu 11: Vận dụng cao
    Chọn câu đúng

    Cho ba mặt phẳng \left( P ight):2x + 2y - 6z + 5 = 0;\,\,\,\,\left( Q ight):3x + 4y + 2z - 6 = 0(R) qua hai điểm A\left( {1,3, - 1} ight);\,\,\,\,B\left( { - 2,4, - 1} ight) và vuông góc với (R)  . Câu nào sau đây đúng? (Có thể chọn nhiều hơn 1 đáp án)

    Hướng dẫn:

    Theo đề bài ta có \left( R ight) \bot \left( P ight) \Rightarrow Một vecto chỉ phương của (R) là: \overrightarrow {{n_P}}  = \left( {2,2, - 6} ight) \Rightarrow \overrightarrow a  = \left( { - 1, - 1,3} ight)

    => A đúng

    Vecto chỉ phương thứ hai của (R) là: \overrightarrow b  = \overrightarrow {AB}  = \left( { - 3,1,1} ight)

    Một vecto pháp tuyến của (R) là: \overrightarrow {{n_R}}  = \left[ {\overrightarrow a ,\overrightarrow b } ight] =  - 4\left( {1,2,1} ight)

    \Rightarrow \overrightarrow n  = 4\left( {1,2,1} ight)

    => B đúng.

    Vecto chỉ phương của (D) là: \overrightarrow d  = 2\left( {14, - 11,1} ight)

    Ta có: \frac{1}{{14}} e  - \frac{2}{{11}} e \frac{1}{1},nên (R) không vuông góc với (D).

  • Câu 12: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0; - 2; - 1),B( - 2; - 4;3),C(1;3; -1). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +3\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0; - 2; - 1),B( - 2; - 4;3),C(1;3; -1). Biết điểm M(x;y;z) nằm trên mặt phẳng (Oxy) sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +3\overrightarrow{MC} ight| đạt giá trị nhỏ nhất. Tìm tọa độ điểm M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Vận dụng
    Viết PT mp

    Cho tam giác ABC với A\left( {\,1,\,\, - 2,\,\,6\,} ight);\,\,B\left( {\,2,\,\,5,\,\,1} ight);\,\,C\left( {\, - 1,\,\,8,\,\,4} ight) . Viết phương trình tổng quát của mặt phẳng (R) vuông góc với mặt phẳng (ABC) song song phân giác ngoài AF của góc A?

    Hướng dẫn:

     Một vecto chỉ phương của (R)\overrightarrow n  = 12\left( {3,1,2} ight)

    Ta có :

    \begin{array}{l}A{B^2} = 75 \Rightarrow AB = 5\sqrt 3 ;A{C^2} = 108 \Rightarrow AC = 6\sqrt 3 \\6\overrightarrow {FB}  = 5\overrightarrow {FC}  \Leftrightarrow \left\{ \begin{array}{l}6\left( {2 - x} ight) = 5\left( { - 1 - x} ight)\\6\left( {5 - y} ight) = 5\left( {8 - y} ight)\\6\left( {1 - z} ight) = 5\left( {4 - z} ight)\end{array} ight. \Rightarrow F\left\{ \begin{array}{l}x = 17\\y =  - 10\\z =  - 14\end{array} ight.\end{array}

    Vecto chỉ phương thứ hai \overrightarrow {AF}  = 4\left( {4, - 2, - 5} ight)

    Suy ra vecto pháp tuyến của (R)\overrightarrow N  = \left[ {\overrightarrow n ,\overrightarrow {AF} } ight] = \left( { - 1,23, - 10} ight)

    Mp (R) đi qua A (1, -2, 6) và nhận vecto (-1, 23, -10) làm 1 VTPT có phương trình là:

    \Rightarrow \left( R ight):\left( {x - 1} ight)\left( { - 1} ight) + \left( {y + 2} ight)23 + \left( {z - 6} ight)\left( { - 10} ight) = 0

    \Leftrightarrow x - 23y + 10z - 108 = 0

  • Câu 14: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz cho điểm M(2;1;5). Mặt phẳng (P) đi qua điểm M và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC. Tính khoảng cách từ điểm I(1;2;3) đến mặt phẳng (P).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Vận dụng cao
    Tính giá trị biểu thức T

    Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) đi qua hai điểm M(1;8;0),C(0;0;3) cắt các tia Ox,Oy lần lượt tại A;B sao cho OG nhỏ nhất, với G là trọng tâm tam giác ABC. Biết G(a;b;c), hãy tính T = a + b + c.

    Hướng dẫn:

    Gọi A(m;0;0),B(0;n;0) với m,n > 0.

    Khi đó phương trình của (ABC):\frac{x}{m}
+ \frac{y}{n} + \frac{z}{3} = 1.

    M \in (ABC) nên \frac{1}{m} + \frac{8}{n} = 1. Kết hợp với điều kiện m > 0,n > 0 suy ra m > 1n > 8.

    Cũng từ trên ta có m = \frac{n}{n -
8}.

    Trọng tâm G của tam giác ABC có tọa độ \left( \frac{m}{3};\frac{n}{3};1
ight).

    OG^{2} = |\overrightarrow{OG}|^{2} =
\left( \frac{m}{3} ight)^{2} + \left( \frac{n}{3} ight)^{2} + 1^{2}
= \frac{1}{9}\left\lbrack \left( \frac{n}{n - 8} ight)^{2} + n^{2}
ightbrack + 1

    Xét hàm số f(n) = \left( \frac{n}{n - 8}
ight)^{2} + n^{2} với n >
8.

    Ta có f^{'}(n) = 2 \cdot \frac{n}{n -
8} \cdot \frac{- 8}{(n - 8)^{2}} + 2n = 2n\left\lbrack \frac{- 8}{(n -
8)^{3}} + 1 ightbrack.

    f^{'}(n) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = 0 \\
n = 10 \\
\end{matrix} \Leftrightarrow n = 10 ight.

    Bảng biến thiên

    OG đạt giá trị nhỏ nhất khi và chỉ khi f(n) đạt giá trị nhỏ nhất. Điều này xảy ra khi n = 10; lúc đó m = 5G\left( \frac{5}{3};\frac{10}{3};1
ight).

    Vậy T = a + b + c = 6

  • Câu 16: Vận dụng
    Tính khoảng cách từ điểm đến mặt phẳng

    Cho tứ diện OABC, có OA,OB,OC đôi một vuông góc và OA = 5,OB = 2,OC = 4. Gọi M,N lần lượt là trung điểm của OBOC. Gọi G là trọng tâm của tam giác ABC. Khoảng cách từ G đến mặt phẳng (AMN) là:

    Hướng dẫn:

    Chọn hệ trục tọa độ Oxyznhư hình vẽ.

    Ta có O(0;0;0), A \in Oz,\ \ B \in Ox,\ \ C \in Oy sao cho AO = 5,\ \ OB = 2,\ \ OC = 4

    \Rightarrow A(0;0;5),\ \ B(2;0;0),\ \
C(0;4;0).

    Khi đó: G là trọng tâm tam giácABC nên G\left( \frac{2}{3};\frac{4}{3};\frac{5}{3}
\right)

    Mlà trung điểm OBnên M(1;0;0)

    Nlà trung điểm OCnên N(0;2;0).

    Phương trình mặt phẳng (AMN) là: \frac{x}{1} + \frac{y}{2} + \frac{z}{5} =
1 hay 10x + 5y + 2z - 10 =
0

    Vậy khoảng cách từ G đến mặt phẳng (AMN) là:

    d\left( G,(AMN) \right) = \dfrac{\left|
\dfrac{20}{3} + \dfrac{20}{3} + \dfrac{10}{3} - 10 \right|}{\sqrt{100 + 25
+ 4}} = \dfrac{20}{3\sqrt{129}}.

  • Câu 17: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1; - 3), đồng thời vuông góc với hai mặt phẳng (Q):x + y + 3z = 0,(R):2x
- y + z = 0 là:

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (1;1;3) \\
\overrightarrow{n_{2}} = (2; - 1;1) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của các mặt phẳng (Q),(R).

    Do mặt phẳng (P) vuông góc với hai mặt phẳng (Q),(R) nên \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ightbrack = (4;5; -
3) là một vectơ pháp tuyến của (P).

    Từ đó suy ra mặt phẳng (P) có phương trình 4x + 5y - 3z - 22 =
0.

  • Câu 18: Vận dụng
    Tìm mặt phẳng (P) thỏa mãn điều kiện cho trước

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3). Mặt phẳng(P) qua Mcắt các tia Ox,Oy,Oz lần lượt tại A,B,C sao cho thể tích khối tứ diện OABC nhỏ nhất có phương trình là:

    Hướng dẫn:

    +) Mặt phẳng(P) cắt các tia Ox,Oy,Oz lần lượt tại A,B,C nên 

    A(a;0;0),B(0;b;0),C(0;0;c)(a,b,c > 0).

    Phương trình mặt phẳng (P)\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1.

    +) Mặt phẳng(P) qua M nên \frac{1}{a} + \frac{2}{b} + \frac{3}{c} =
1.

    Ta có 1 = \frac{1}{a} + \frac{2}{b} +
\frac{3}{c} \geq 3\sqrt[3]{\frac{6}{abc}} \Leftrightarrow abc \geq
162

    +) Thể tích khối tứ diện OABC bằng V = \frac{1}{6}abc \geq
27.

    Thể tích khối tứ diện OABC nhỏ nhất khi \frac{1}{a} = \frac{2}{b} =
\frac{3}{c} = \frac{1}{3} suy ra a =
3,b = 6,c = 9.

    Phương trình mặt phẳng(P)\frac{x}{3} +
\frac{y}{6} + \frac{z}{9} = 1 hay 6x
+ 3y + 2z - 18 = 0.

  • Câu 19: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \overrightarrow{m} = (4;3;1),\overrightarrow{n} =
(0;0;1). Gọi \overrightarrow{p} là vectơ cùng hướng với vectơ \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack (tích có hướng của hai vectơ \overrightarrow{m}\overrightarrow{n}. Biết \left| \overrightarrow{p} ight| = 15, tìm tọa độ vectơ \overrightarrow{p}.

    Hướng dẫn:

    Ta thấy \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack = (3; -
4;0)

    \overrightarrow{p} là vectơ cùng hướng với vectơ \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack = (3; -
4;0) nên \overrightarrow{p} = (3k;
- 4k;0),k\mathbb{\in R};k > 0.

    Mặt khác \left| \overrightarrow{p}
ight| = 15 \Leftrightarrow \sqrt{9k^{2} + 16k^{2} + 0} = 15
\Rightarrow k = 3

    Vậy \overrightarrow{p} = (9; -
12;0).

  • Câu 20: Thông hiểu
    Chọn phương án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm G(1;4;3). Viết phương trình mặt phẳng cắt các trục Ox,Oy,Oz lần lượt tại A,B,C sao cho G là trọng tâm tứ diện OABC?

    Hướng dẫn:

    +) Do A,B,C lần lượt thuộc các trục Ox,Oy,Oznên A(a;0;0),B(0;b;0),C(0;0;c).

    +) Do G là trọng tâm tứ diện OABC nên \left\{ \begin{matrix}
x_{G} = \frac{x_{O} + x_{A} + x_{B} + x_{C}}{4} \\
y_{G} = \frac{y_{O} + y_{A} + y_{B} + y_{C}}{4} \\
z_{G} = \frac{y_{O} + y_{A} + y_{B} + y_{C}}{4} \\
\end{matrix} \right.

    suy ra a = 4,b = 16,c = 12.

    +) Vậy phương trình đoạn chắn của mặt phẳng (ABC) là: \frac{x}{4} + \frac{y}{16} + \frac{z}{12} =
1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo