Trong không gian với hệ toạ độ , cho
,
,
,
và mặt phẳng
. Xác định b và c biết mặt phẳng
vuông góc với mặt phẳng
và khoảng cách từ
đến
bằng
.
Phương trình mặt phẳng có dạng
Theo giả thiết:
Trong không gian với hệ toạ độ , cho
,
,
,
và mặt phẳng
. Xác định b và c biết mặt phẳng
vuông góc với mặt phẳng
và khoảng cách từ
đến
bằng
.
Phương trình mặt phẳng có dạng
Theo giả thiết:
Trong không gian tọa độ , mặt phẳng
đi qua
và chắn trên tia
một đoạn thẳng dài gấp đôi các đoạn thẳng mà nó chắn trên các tia
và
. Giả sử
, với
. Tính
.
Từ giả thiết, ta suy ra các giao điểm của (α) với các tia lần lượt là
.
Suy ra phương trình (đoạn chắn) của (α) là .
Do (α) đi qua M nên .
Suy ra .
Từ đó, ta tính được: .
Cho tứ diện ABCD có . Mặt phẳng chứa BC và song song với AD có phương trình :
Theo đề bài, từ các điểm , ta tính được các vecto tương ứng là:
cùng phương với
Chọn làm vectơ pháp tuyến cho mặt phẳng chứa BC và song song với AD.
Phương trình (P) có dạng:
Mặt khác, điểm
Vậy phương trình .
Trong không gian , cho điểm
. Viết phương trình mặt phẳng đi qua
và cắt các trục
lần lượt tại các điểm
sao cho
là trực tâm của tam giác
?
Xét tứ diện OABC có các cạnh đôi một vuông góc với nhau.
Ta có:
Chứng minh tương tự, ta được AC ⊥ OM.
Từ đó .
Suy ra phương trình mặt phẳng (ABC) đi qua M(3; 2; 1) và nhận làm vectơ pháp tuyến là:
Cho hai điểm và mặt phẳng
Mặt phẳng
chứa hai điểm A,B và vuông góc với mặt phẳng
có phương trình:
Theo đề bài, ta có: ;
Suy ra ;
có vectơ pháp tuyến
Ta có cùng phương với vectơ
Chọn làm 1 vectơ pháp tuyến cho mặt phẳng
.
Phương trình mặt phẳng có dạng:
Mặt phẳng :
Cho hình chóp có đáy
là hình vuông cạnh
,
, hình chiếu vuông góc
của S trên mặt phẳng
là trung điểm của đoạn
. Gọi
là trung điểm đoạn
(tham khảo hình vẽ)
Cho hình chóp có đáy
là hình vuông cạnh
,
, hình chiếu vuông góc
của S trên mặt phẳng
là trung điểm của đoạn
. Gọi
là trung điểm đoạn
(tham khảo hình vẽ)
Một công trình đang xây dựng được gắn hệ trục (đơn vị trên mỗi trục tọa độ là mét). Ba bức tường
(như hình vẽ) của tòa nhà lần lượt có phương trình:
,
,
,
.

Tính chiều rộng bức tường của tòa nhà.
Ta có:
có vectơ pháp tuyến là
có vectơ pháp tuyến là
có vectơ pháp tuyến là
có vectơ pháp tuyến là
Ta có:
nên hai bức tường
và
song song nhau
nên hai bức tường
và
song song nhau
nên bức tường
vuông góc với hai bức tường
và
nên bức tường
vuông góc với hai bức tường
và
Do hai bức tường và
song song nhau nên chiều rộng bức tường
là khoảng cách giữa hai bức tường
và
.
Chọn điểm
Do hai bức tường và
song song nhau nên:
Trong không gian với hệ tọa độ , cho các điểm
. Biết điểm
nằm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Trong không gian với hệ tọa độ , cho các điểm
. Biết điểm
nằm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Trong không gian với hệ tọa độ , điểm
thuộc mặt phẳng
và cách đều các điểm
. Tích
bằng
Do và
, nên ta được hệ:
Trong không gian với hệ tọa độ , cho mặt phẳng
cắt ba trục tọa độ
lần lượt tại ba điểm
. Lúc đó thể tích
của khối tứ diện
là:
Gọi lần lượt là giao của mặt phẳng
với ba trục tọa độ
.
Khi đó và tứ diện
có
đôi một vuông góc tại O.
Do đó
Trong không gian, với hệ tọa độ , cho các điểm
. Mặt phẳng
đi qua
, trực tâm
của tam giác
và vuông góc với mặt phẳng
có phương trình là
Ta có:
Gọi tọa độ trực tâm khi đó
Theo đề bài ta có
Gọi là VTPT của mặt phẳng
ta có:
Phương trình mặt phẳng (P) đi qua A(0; 1; 2) có một VTPT là là
Vậy .
Trong không gian , cho điểm
. Hỏi có bao nhiêu mặt phẳng
đi qua điểm
và cắt các trục
lần lượt tại
sao cho
?
Từ giả thiết, ta có thể coi (với
).
Khi đó, phương trình mặt phẳng (P) là .
Do (P) đi qua M(−1; 0; 3) nên .
Theo trên có c = ±a, kết hợp với phương trình vừa thu được, ta suy ra a = −1, c = 1.
Cũng theo trên, b = ±a, nên có 2 giá trị của b.
Suy ra có 2 bộ (a, b, c) thỏa mãn, hay có 2 mặt phẳng thỏa yêu cầu đề bài.
Trong không gian , cho mặt phẳng
, mặt phẳng
chứa trục
và đi qua điểm
. Tìm tham số m để hai mặt phẳng
và
vuông góc với nhau?
Ta có
Mặt phẳng chứa trục
và đi qua điểm
⇒ (Q) có vectơ pháp tuyến
Mặt phẳng (P) có véc-tơ pháp tuyến
Để hai mặt phẳng và
vuông góc với nhau thì
Trong không gian với hệ tọa độ , cho hai mặt phẳng
lần lượt có phương trình là
và cho điểm
. Tìm phương trình mặt phẳng
đi qua điểm
và đồng thời vuông góc với hai mặt phẳng
?
Ta có:
Do vuông góc với
nên
Chọn
Hơn nữa đi qua
nên có phương trình là:
Trong không gian với hệ tọa độ cho các điểm . Có tất cả bao nhiêu mặt phẳng phân biệt đi qua 3 trong 5 điểm
?
Mặt phẳng có phương trình là:
, do đó
.
Lại có A là trung điểm BD.
Ta có chứa các điểm O, A, B, D;
chứa các điểm O, B, C;
chứa các điểm O, A, C;
chứa các điểm A, B, C, D;
chứa các điểm O, C ,D.
Vậy có mặt phẳng phân biệt thỏa mãn bài toán.
Trong không gian với hệ trục tọa độ , mặt phẳng
đi qua
, song song với đường thẳng
và vuông góc với mặt phẳng
có phương trình:
Phương pháp tự luận
Ta có ,
Mặt phẳng đi qua
và có vectơ pháp tuyến
.
Phương pháp trắc nghiệm
Do kiểm tra mp
nào thỏa hệ
Trong không gian hệ tọa độ Oxyz, cho điểm và mặt phẳng
. Gọi
thuộc
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Giả sử là điểm thỏa mãn
.
Khi đó ,
,
;
;
;
(vì
)
Vì I cố định nên đạt giá trị nhỏ nhất khi MI nhỏ nhất, khi đó M là hình chiếu vuông góc của I lên
.
Gọi là đường thẳng qua I và vuông góc với
Phương trình đường thẳng .
Tọa độ của M là nghiệm hệ phương trình:
.
Trong không gian , mặt phẳng chứa trục
và đi qua điểm
có phương trình là:
Mặt phẳng chứa trục có dạng
Mặt phẳng đi qua điểm nên
Do đó chọn suy ra phương trình mặt phẳng cần tìm là
.
Trong không gian với hệ trục toạ độ , cho điểm
thoả mãn
. Biết rằng khoảng cách từ
tới mặt phẳng
lần lượt là 2 và 3. Tính khoảng cách từ
đến mặt phẳng
.
Ta có:
Giả sử khi đó ta có:
Mà
Trong không gian với hệ tọa độ , cho ba điểm
. Gọi
là mặt phẳng đi qua
sao cho tổng khoảng cách từ
và
đến mặt phẳng
lớn nhất, biết rằng
không cắt đoạn
. Khi đó pháp tuyến của mặt phẳng
:
Hình vẽ minh họa
Lấy M là trung điểm của đoạn BC, suy ra .
Gọi lần lượt là khoảng cách từ
đến mặt phẳng (P), từ đó suy ra
.
Xét tam giác vuông , ta có
, từ đó suy ra để tổng khoảng cách từ B và C đến mặt phẳng (P) thì MM’ phải lớn nhất, điều này có nghĩa là M’ trùng với A hay MA ⊥ (P).
Từ đó suy ra vectơ pháp tuyến của mặt phẳng (P) là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: