Trong không gian , góc giữa hai vectơ
và
là
Ta có .
Khi đó:
=.
Trong không gian , góc giữa hai vectơ
và
là
Ta có .
Khi đó:
=.
Trong không gian , cho
. Tọa độ vectơ
là:
Ta có:
Trong không gian , cho hình chóp
có đáy
là hình thoi cạnh bằng 5, giao điểm của hai đường chéo
và
trùng với gốc tọa độ
. Các véc tơ
,
,
lần lượt cùng hướng với các véc tơ
,
,
và
,
. Gọi
là trung điểm cạnh
. Tọa độ của véc tơ
là
Hình vẽ minh họa
Ta có .
Khi đó .
Vì là trung điểm của
nên ta có
.
Trong không gian với hệ trục tọa độ , cho ba vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
Vậy
Cho hai véc tơ ,
. Khi đó, tích vô hướng
bằng
Ta có:
.
Biết khác
và vuông góc với cả hai vectơ
. Khẳng định nào sau đây đúng?
Theo đề bài ta có: khác
và vuông góc với cả hai vectơ
nên
Vậy khẳng định đúng là
Trong không gian với hệ trục tọa độ , cho các điểm
. Xác định tọa độ điểm
sao cho
?
Ta có:
Mà
Vậy đáp án cần tìm là: hoặc
Trong không gian , cho tọa độ ba điểm
. Tọa độ trọng tâm
của tam giác
là:
Tọa độ trọng tâm G của tam giác ABC bằng:
Vậy trọng tâm G tìm được là .
Trong không gian , cho tọa độ các vectơ
;
và
. Mệnh đề nào sau đây sai?
Ta có: suy ra “
” là mệnh đề sai.
Trong không gian với hệ trục tọa độ cho hai điểm
. Hình chiếu vuông góc của trung điểm I của đoạn AB trên mặt phẳng
là điểm nào dưới đây?
Vì I là trung điểm của đoạn AB nên .
Khi đó hình chiếu của I lên là
.
Trong không gian với hệ trục tọa độ , cho ba vectơ
. Khi đó giá trị của
bằng bao nhiêu?
Ta có: .
Khi đó
Vậy đáp án cần tìm là:
Trong không gian với hệ trục tọa độ , cho hai vectơ
và
. Tính
.
Ta có: .
Trong không gian với hệ tọa độ , biết
;
và góc giữa hai vectơ
và
bằng
. Tìm
để vectơ
vuông góc với vectơ
.
Ta có: .
Vectơ vuông góc với vectơ
khi và chỉ khi:
.
Trong không gian cho
véc tơ
;
. Tìm
để
.
Ta có:
.
Trong không gian , cho hai vectơ
và
. Tính
?
Ta có:
Trên hệ trục tọa độ , cho
,
, tích
bằng
Ta có
Trong không gian , cho tam giác
với
,
,
. Gọi
là trọng tâm tam giác
và
là điểm thay đổi trên
. Độ dài
ngắn nhất bằng
Do là trọng tâm tam giác
.
Gọi là hình chiếu vuông góc của
trên mặt phẳng
, khi đó
là khoảng cách từ
đến mặt phẳng
, ta có:
Với là điểm thay đổi trên mặt phẳng
, ta có
, do đó
ngắn nhất
. Vậy độ dài
ngắn nhất bằng
.
Trong không gian , cho hai vectơ
và
. Tính tích vô hướng
?
Ta có:
Cho và
. Hãy xác định tọa độ của
?
Ta có:
Biết rằng vectơ và
. Tìm tọa độ vectơ
?
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: