Trong không gian , cho hai vectơ
. Vectơ
có tọa độ là:
Ta có: . Khi đó
Vậy
Trong không gian , cho hai vectơ
. Vectơ
có tọa độ là:
Ta có: . Khi đó
Vậy
Trong không gian , góc giữa hai vectơ
và
là
Ta có .
Khi đó:
=.
Trong không gian , cho hai vectơ
và
. Khẳng định nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là
Trong không gian , cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Trong không gian , cho hai vectơ
và
. Phát biểu nào sau đây sai?
Dễ thấy từ đo suy ra hai vectơ
và
ngược hướng và
.
Lại có
Vậy phát biểu sai là: .
Cho hai điểm và
. Tọa độ điểm
đối xứng với
qua
là:
Vì điểm đối xứng với
qua
nên
là trung điểm của
Trong không gian , cho hai vectơ
và
. Toạ độ của vectơ
là:
Ta có .
Trong không gian với hệ tọa độ , cho vectơ
và
. Tính tích vô hướng
.
Ta có .
Trong không gian cho
véc tơ
;
. Tìm
để
.
Ta có:
.
Trong không gian , cho hai vectơ
và
. Tính tích vô hướng
?
Ta có:
Cho hai véc tơ ,
. Khi đó, tích vô hướng
bằng
Ta có:
.
Cho hình chóp có
là hình chữ nhật có
,
; giá trị của
là
Vì
Trong không gian hệ trục tọa độ , cho tam giác
có tọa các điểm
. Tính số đo góc
?
Ta có:
Trong không gian , cho điểm
. Tính độ dài đoạn thẳng
?
Ta có:
Trong không gian , cho hai vectơ
và
. Khẳng định nào sau đây sai?
Ta có: suy ra “
” là khẳng định sai.
Trong không gian , cho
có
, gọi
là trung điểm
. Độ dài đoạn
là:
Ta có
Suy ra:
Trong không gian , cho hai vecto
,
cùng có độ dài bằng
. Biết rằng góc giữa hai vecto đó bằng
, giá trị của biểu thức
là
Ta có:
Do đó:
.
Trong không gian , cho hình thang cân
có các đáy lần lượt là
. Biết
,
,
và
với
. Tính
.
Cách 1: Ta có
Do là hình thang cân nên
hay
. Vậy
.
Lại có
.
Với . Kiểm tra thấy:
.
Với .
Kiểm tra thấy: . Do đó,
.
Cách 2
Ta có
Do là hình thang cân nên
ngược hướng hay
. Vậy
với
.
Lại có
.
Với .
Do đó, .
Cách 3
+ Viết phương trình mặt phẳng trung trực của đoạn thẳng
+ Gọi mp là mặt phẳng trung trực của đoạn thẳng
, suy ra mp
đi qua trung điểm
của đoạn thẳng
và có một vectơ pháp tuyến là
, suy ra phương trình của mp
là:
.
+ Vì đối xứng nhau qua mp
nên
Trên hệ trục tọa độ , cho
,
, tích
bằng
Ta có
Trong không gian , cho
,
. Côsin của góc giữa
và
bằng
Ta có:
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: