Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CD Biểu thức tọa độ của các phép toán vectơ (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm hoành độ điểm A

    Trong hệ trục tọa độ Oxyz, cho điểm H(2;1;1). Gọi các điểm A,\ B,\ C lần lượt ở trên các trục tọa độ Ox,\ Oy,\ Oz sao cho H là trực tâm của tam giác ABC. Khi đó hoành độ điểm A là:

    Hướng dẫn:

    Giả sử A(a;0;0);B(0;b;0);C(0;0;c).

    Khi đó mặt phẳng (ABC):\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AH} = (2 - a;1;1);\ \ \overrightarrow{BH} = (2;1 - b;1)
\\
\overrightarrow{BC} = (0; - b;c)\ ;\ \ \ \overrightarrow{AC} = ( -
a;0;c) \\
\end{matrix} ight.

    H là trực tâm của tam giác ABCnên \left\{ \begin{matrix}
H \in (ABC) \\
\overrightarrow{AH}.\overrightarrow{BC} = 0 \\
\overrightarrow{BH}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\dfrac{2}{a} + \dfrac{1}{b} + \dfrac{1}{c} = 1 \\
- b + c = 0 \\
- 2a + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 6 \\
c = 6 \\
\end{matrix} ight.

    Vậy A(3;\ 0;\ 0)

  • Câu 2: Nhận biết
    Xác định tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1; -
2;3);\overrightarrow{v} = ( - 1;2;0). Vectơ \overrightarrow{u} + \overrightarrow{v} có tọa độ là:

    Hướng dẫn:

    Ta có: \overrightarrow{u} +
\overrightarrow{v} = \left( 1 + ( - 1); - 2 + 2;3 + 0 ight) =
(0;0;3)

    Vậy đáp án cần tìm là (0;0;3)

  • Câu 3: Thông hiểu
    Tìm tọa độ điểm cách đều A và B

    Trong không gian Oxyz, tìm tọa độ điểm M trên trục Ox cách đều hai điểm A(1;2; - 1)B(2;1;2)?

    Hướng dẫn:

    Ta có: M \in Ox \Rightarrow
M(m;0;0)

    Theo bài ra ta có:

    MA = MB \Leftrightarrow MA^{2} =
MB^{2}

    \Leftrightarrow (m - 1)^{2} + 2^{2} +
1^{2} = (m - 2)^{2} + 1^{2} + 2^{2}

    \Leftrightarrow (m - 1)^{2} = (m -
2)^{2} \Leftrightarrow \left\lbrack \begin{matrix}
m - 1 = m - 2 \\
m - 1 = 2 - m \\
\end{matrix} ight.

    \Leftrightarrow m = \frac{3}{2}
\Rightarrow M\left( \frac{3}{2};0;0 ight).

  • Câu 4: Nhận biết
    Chọn phát biểu sai

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1; - 3)\overrightarrow{b} = ( - 4; - 2;6). Phát biểu nào sau đây sai?

    Hướng dẫn:

    Dễ thấy \overrightarrow{b} =
2\overrightarrow{a} từ đo suy ra hai vectơ \overrightarrow{a}\overrightarrow{b} ngược hướng và \left| \overrightarrow{b} ight| = 2\left|
\overrightarrow{a} ight|.

    Lại có \overrightarrow{a}.\overrightarrow{b} = 2.( - 4) +
1.( - 2) + ( - 3).6 = - 28 eq 0

    Vậy phát biểu sai là: \overrightarrow{a}.\overrightarrow{b} =
0.

  • Câu 5: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} =
(1;2;1);\overrightarrow{b} = ( - 1;3;0). Vectơ \overrightarrow{c} = 2\overrightarrow{a} +
\overrightarrow{b} có tọa độ là:

    Hướng dẫn:

    Ta có: 2\overrightarrow{a} =
(2;4;2). Khi đó \overrightarrow{c}
= 2\overrightarrow{a} + \overrightarrow{b} = \left( 2 + ( - 1);4 + 3;2 +
0 ight) = (1;7;2)

    Vậy \overrightarrow{c} =
(1;7;2)

  • Câu 6: Thông hiểu
    Tìm tọa độ trọng tâm tam giác

    Cho tam giác ABCA(2;4;5),B( - 1;2;3),C(5;1;2). Tọa độ của trọng tâm G của tam giác ABC là:

    Hướng dẫn:

    Với G là trọng tâm tam giác ABC:

    \left\{ \begin{matrix}
x_{G} = \dfrac{x_{A} + x_{B} + x_{c}}{3} = 2 \\
y_{G} = \dfrac{y_{A} + y_{B} + y_{c}}{3} = \dfrac{7}{3} \\
z_{G} = \dfrac{z_{A} + z_{B} + z_{c}}{3} = \dfrac{10}{3} \\
\end{matrix} ight.\  \Rightarrow G\left( 2;\dfrac{7}{3};\dfrac{10}{3}
ight)

    Vậy tọa độ trọng tâm tam giác có tọa độ là \left( 2;\frac{7}{3};\frac{10}{3}
ight).

  • Câu 7: Nhận biết
    Tìm tọa độ trung điểm

    Trong không gian Oxyz, cho hai điểm A(1;1;3)B( - 1;2;3). Trung điểm của đoạn thẳng AB có tọa độ là:

    Hướng dẫn:

    Gọi M\left( x_{M};y_{M};z_{M}
ight) là trung điểm của đoạn thẳng AB, ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 0 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = \dfrac{3}{2} \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 3 \\\end{matrix} ight.\  \Rightarrow M\left( 0;\dfrac{3}{2};3ight)

    Vậy tọa độ trung điểm của AB là: \left(
0;\frac{3}{2};3 ight).

  • Câu 8: Thông hiểu
    Tính độ dài vectơ

    Cho tứ diện đều ABCD cạnh a. Tính \left| \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight| theo a?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi G là trọng tâm của \Delta BCD.

    Do đó \left| \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD} ight| = \left|
3\overrightarrow{AG} ight| = 3AG.

    Ta có BG = \frac{2}{3}BI =
\frac{2}{3}.\frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{3}.

    ABCD là tứ diện đều nên AG\bot(BCD) \Rightarrow AG\bot BG.

    Suy ra AG = \sqrt{AB^{2} - BG^{2}} =
\frac{a\sqrt{6}}{3}.

    Vậy \left| \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD} ight| =
3.\frac{a\sqrt{6}}{3} = a\sqrt{6}.

  • Câu 9: Nhận biết
    Tìm tọa độ trung điểm I

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(2; - 4;3)B(2;2;7). Xác định tọa độ trung điểm I của AB?

    Hướng dẫn:

    Ta có: I là trung điểm của AB nên tọa độ điểm I là:

    \left\{ \begin{matrix}x_{I} = \dfrac{x_{A} + x_{B}}{2} = 1 \\y_{I} = \dfrac{y_{A} + y_{B}}{2} = 0 \\z_{I} = \dfrac{z_{A} + z_{B}}{2} = 4 \\\end{matrix} ight.\  \Rightarrow I(1;0;4)

    Vậy đáp án đúng là: I(1;0;4).

  • Câu 10: Nhận biết
    Chọn khẳng định đúng

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1;2;3)\overrightarrow{v} = ( - 5;1;1). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1.( - 5) +2.1 + 3.1 = 0 \Rightarrow\overrightarrow{u}\bot\overrightarrow{v}

    Vậy khẳng định đúng là \overrightarrow{u}\bot\overrightarrow{v}

  • Câu 11: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{x} = (2;1; - 3);\overrightarrow{y}
= (1;0; - 1). Tìm tọa độ vectơ \overrightarrow{a} = \overrightarrow{x} +
2\overrightarrow{y}?

    Hướng dẫn:

    Ta có: 2\overrightarrow{y} = (2;0; -
2). Khi đó \overrightarrow{a} =
\overrightarrow{x} + 2\overrightarrow{y} = (2 + 2;1 + 0; - 3 - 2) =
(4;1; - 5).

    Vậy \overrightarrow{a} = (4;1; -
5)

  • Câu 12: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, cho hai điểm A(2; - 4;3)B(2;2;7). Trung điểm của đoạn thẳng AB có tọa độ là:

    Hướng dẫn:

    Gọi M\left( x_{M};y_{M};z_{M}
ight) là trung điểm của đoạn thẳng AB, ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = \dfrac{2 + 2}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = \dfrac{- 4 + 2}{2} = - 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = \dfrac{3 + 7}{2} = 5 \\\end{matrix} ight.\  \Rightarrow M(2; - 1;5)

    Vậy tọa độ trung điểm của AB là: (2; -
1;5).

  • Câu 13: Nhận biết
    Tính góc giữa hai vectơ

    Trong không gian Oxyz, góc giữa hai vectơ \overrightarrow{i}\overrightarrow{u} = \left( - \sqrt{3};\ \
0;\ \ 1 \right)

    Hướng dẫn:

    Ta có \overrightarrow{i} = (1;\ \ 0;\ \
0).

    Khi đó:

    \cos\left( \overrightarrow{i},\ \
\overrightarrow{u} ight) =
\frac{\overrightarrow{i}.\overrightarrow{u}}{\left| \overrightarrow{i}
ight|.\left| \overrightarrow{u} ight|} = \frac{1.\left( - \sqrt{3}
ight) + 0.0 + 0.1}{1.\sqrt{\left( - \sqrt{3} ight)^{2} + 0^{2} +
1^{2}}}

    =\frac{- \sqrt{3}}{2}
\Rightarrow \left( \overrightarrow{i},\ \ \overrightarrow{u} ight) =
150{^\circ}.

  • Câu 14: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = ( - 1;\ 2;\
0)\overrightarrow{v} = (1;\  -
2;\ 3). Toạ độ của vectơ \overrightarrow{u} + \overrightarrow{v} là:

    Hướng dẫn:

    Ta có \overrightarrow{u} +
\overrightarrow{v} = ( - 1 + 1;\ 2 - 2;\ 0 + 3) = (0;\ 0;\
3).

  • Câu 15: Nhận biết
    Xét tính đúng sai của mỗi ý hỏi

    Các thiên thạch có đường kính lớn hơn 140m và có thể lại gần Trái Đất ở khoảng cách nhỏ hơn 7500000 km được coi là những vật thể có khả năng va chạm gáy nguy hiểm cho Trái Đất. Để theo đõi những thiên thạch này, người ta đã thiết lập các trạm quan sát các vật thể bay gần Trái Đất. Giả sử có một hệ thống quan sát có khả năng theo dõi các vật thể ở độ cao khồng vượt quả 6600 km so với mực nước biển. Coi Trái Đất là khối cầu có bán kính 6400 km. Chọn hệ trục tọa độ Oxyz trong không gian có gốc O tại tâm Trái Đất và đơn vị độ dài trên mỗi trục tọa độ là 1000 km. Một thiên thạch (coi như một hạt) chuyển động với tốc độ không đổi theo một đường thẳng từ điểm M(6;20;0) đến điểm N( - 6; - 12;16).

    a) Đường thẳng MN có phương trình tham số là \left\{ \begin{matrix}
x = 6 + 3t \\
y = 20 + 8t,\left( t \in \mathbb{R} \right) \\
z = - 4t \\
\end{matrix} \right.. Đúng||Sai

    b) Vị trí đầu tiên thiên thạch di chuyển vào phạm vi theo dỡi của hệ thống quan sát lả điểm A( - 3; -
4;12). Sai||Đúng

    c) Khoảng cách giữa vị trí đầu tiên và vị trỉ cuối cùng mả thiên thạch di chuyển trong phạm vi theo dõi của hệ thống quan sát là 18900 km (kết quả làm tròn đến hàng trăm theo đơn vị ki-lô-mét). Đúng||Sai

    d) Nếu thời gian di chuyển của thiên thạch trong phạm vi theo dõi của hệ thống quan sát là 3 phút thì thời gian nó di chuyển từ M đến N là 6 phút. Đúng||Sai

    Đáp án là:

    Các thiên thạch có đường kính lớn hơn 140m và có thể lại gần Trái Đất ở khoảng cách nhỏ hơn 7500000 km được coi là những vật thể có khả năng va chạm gáy nguy hiểm cho Trái Đất. Để theo đõi những thiên thạch này, người ta đã thiết lập các trạm quan sát các vật thể bay gần Trái Đất. Giả sử có một hệ thống quan sát có khả năng theo dõi các vật thể ở độ cao khồng vượt quả 6600 km so với mực nước biển. Coi Trái Đất là khối cầu có bán kính 6400 km. Chọn hệ trục tọa độ Oxyz trong không gian có gốc O tại tâm Trái Đất và đơn vị độ dài trên mỗi trục tọa độ là 1000 km. Một thiên thạch (coi như một hạt) chuyển động với tốc độ không đổi theo một đường thẳng từ điểm M(6;20;0) đến điểm N( - 6; - 12;16).

    a) Đường thẳng MN có phương trình tham số là \left\{ \begin{matrix}
x = 6 + 3t \\
y = 20 + 8t,\left( t \in \mathbb{R} \right) \\
z = - 4t \\
\end{matrix} \right.. Đúng||Sai

    b) Vị trí đầu tiên thiên thạch di chuyển vào phạm vi theo dỡi của hệ thống quan sát lả điểm A( - 3; -
4;12). Sai||Đúng

    c) Khoảng cách giữa vị trí đầu tiên và vị trỉ cuối cùng mả thiên thạch di chuyển trong phạm vi theo dõi của hệ thống quan sát là 18900 km (kết quả làm tròn đến hàng trăm theo đơn vị ki-lô-mét). Đúng||Sai

    d) Nếu thời gian di chuyển của thiên thạch trong phạm vi theo dõi của hệ thống quan sát là 3 phút thì thời gian nó di chuyển từ M đến N là 6 phút. Đúng||Sai

    a) Ta có: M(6;20;0),N( - 6; -
12;16)

    \Rightarrow \overrightarrow{MN}( - 12; -
32;16) = - 4.(3;8; - 4)

    Chọn \overrightarrow{u_{MN}} = (3;8; -
4).

    Khi đó, phương trình MN:\left\{
\begin{matrix}
x = 6 + 3t \\
y = 20 + 8t(t \in R) \\
z = - 4t \\
\end{matrix} ight.

    Do đó, a đúng

    b) Phạm vi theo dõi của hệ thống ra đa là mặt cầu (O):x^{2} + y^{2} + z^{2} = 13^{2}.

    Tọa độ giao điểm của MN và (O) là nghiệm của phương trình

    (6 + 3t)^{2} + (20 + 8t)^{2} + ( -
4t)^{2} = 13^{2}

    \Leftrightarrow 89t^{2} + 356t - 267 =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t = - 1 \Rightarrow A(3;12;4) \\
t = - 3 \Rightarrow B( - 3; - 4;12) \\
\end{matrix} ight.

    Ta có \overrightarrow{MA}( - 3; -
8;4),\overrightarrow{MB}( - 9; - 24;12)

    \Rightarrow \overrightarrow{MB} =
3\overrightarrow{MA}

    Điểm gặp đầu tiên là A(3;12;4)

    Do đó, b sai

    c) AB = \sqrt{( - 3 - 3)^{2} + ( - 4 -
12)^{2} + (12 - 4)^{2}} = \sqrt{356}

    Đơn vị độ dài trên mỗi trục là 1000 km nên khoảng cách AB \approx 18900(km)

    Do đó, c đúng

    d) AB = 2\sqrt{89},MN =
4\sqrt{89}

    \Rightarrow t_{MN} = 2t_{AB} = 2.3 =
6 (phút)

    Do đó, d đúng

  • Câu 16: Nhận biết
    Chọn mệnh đề sai

    Trong không gian Oxyz, cho tọa độ các vectơ \overrightarrow{a} = ( -
1;1;0); \overrightarrow{b} =
(1;1;0)\overrightarrow{c} =
(1;1;1). Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Ta có: \overrightarrow{c}.\overrightarrow{b} = 1.1 + 1.1
+ 1.0 = 2 eq 0 suy ra “\overrightarrow{c}\bot\overrightarrow{b}” là mệnh đề sai.

  • Câu 17: Nhận biết
    Tính tích vô hướng hai vectơ

    Trong không gian hệ trục tọa độ Oxyz, cho tọa độ ba điểm A(1;2;3),B( - 1;2;1),C(3; - 1; - 2). Tính tích vô hướng của \overrightarrow{AB}.\overrightarrow{AC}?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 2;0; - 2) \\
\overrightarrow{AC} = (2; - 3; - 5) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{AC} = 6

  • Câu 18: Nhận biết
    Tính cosin góc giữa hai vecto

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (2;1;0)\overrightarrow{b} = ( - 1;0; - 2). Tính \cos\left(
\overrightarrow{a},\overrightarrow{b} \right).

    Hướng dẫn:

    Ta có: \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{-
2}{\sqrt{5}.\sqrt{5}} = - \frac{2}{5}.

  • Câu 19: Nhận biết
    Xác định tích vô hướng hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (3;0;1)\overrightarrow{v} = (2;1;0). Tính tích vô hướng \overrightarrow{u}.\overrightarrow{v}?

    Hướng dẫn:

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 3.2 + 0.1
+ 1.0 = 6

  • Câu 20: Thông hiểu
    Xác định chu vi tam giác

    Trong không gian với hệ trục tọa độ Oxyz, cho tọa độ hai điểm A(3;0;0),B(0;0;4). Tính chu vi tam giác OAB?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{OA} = (3;0;0) \Rightarrow OA = 3 \\
\overrightarrow{OB} = (0;0;4) \Rightarrow OB = 4 \\
\overrightarrow{AB} = ( - 3;0;4) \Rightarrow AB = 5 \\
\end{matrix} ight.

    Chu vi tam giác OAB là:

    C = OA + OB + AB = 3 + 4 + 5 =
12

    Vậy đáp án đúng là: 12.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo