Cho hai biến cố và
có
. Tính
.
Theo công thức tính xác suất có điều kiện ta có:
.
Vì và
là hai biến cố xung khắc và
nên theo tính chất của xác suất, ta có:
.
Cho hai biến cố và
có
. Tính
.
Theo công thức tính xác suất có điều kiện ta có:
.
Vì và
là hai biến cố xung khắc và
nên theo tính chất của xác suất, ta có:
.
Một cửa hàng sách ước lượng rằng: trong tổng số các khách hàng đến cửa hàng có khách cần hỏi nhân viên bán hàng,
khách mua sách và
khách thực hiện cả hai điều trên. Gặp ngẫu nhiên một khách trong nhà sách. Tính xác suất để người này không mua sách, biết rằng người này đã hỏi nhân viên bán hàng?
Gọi A là "khách hỏi nhân viên bán hàng" và B là "khách mua sách".
Ta có:
.
Ba vận động viên bóng rổ thi ném bóng trúng rổ, xác suất để vận động viên thứ nhất, thứ hai và thứ ba ném bóng trúng rổ lần lượt là với
. Các mệnh đề sau đúng hay sai?
a) [NB] Gọi là biến cố “vận động viên thứ i ném bóng trúng rổ”
. Đúng||Sai
b) [TH] Xác xuất để vận động viên thứ hai ném trúng rổ khi vận động viên thứ nhất ném trúng rổ là . Đúng||Sai
c) [TH] Xác xuất để vận động viên thứ hai không ném trúng rổ khi vận động viên thứ ba ném trúng rổ là . Đúng||Sai
d) [VD, VDC] Biết xác suất để ít nhất một trong ba vận động viên ném bóng trúng rổ là và xác suất để cả ba vận động viên ném bóng trúng rổ là
. Xác suất để có đúng một vận động viên không ném bóng trúng rổ là
. Sai|||Đúng
Ba vận động viên bóng rổ thi ném bóng trúng rổ, xác suất để vận động viên thứ nhất, thứ hai và thứ ba ném bóng trúng rổ lần lượt là với
. Các mệnh đề sau đúng hay sai?
a) [NB] Gọi là biến cố “vận động viên thứ i ném bóng trúng rổ”
. Đúng||Sai
b) [TH] Xác xuất để vận động viên thứ hai ném trúng rổ khi vận động viên thứ nhất ném trúng rổ là . Đúng||Sai
c) [TH] Xác xuất để vận động viên thứ hai không ném trúng rổ khi vận động viên thứ ba ném trúng rổ là . Đúng||Sai
d) [VD, VDC] Biết xác suất để ít nhất một trong ba vận động viên ném bóng trúng rổ là và xác suất để cả ba vận động viên ném bóng trúng rổ là
. Xác suất để có đúng một vận động viên không ném bóng trúng rổ là
. Sai|||Đúng
a) Đúng. Gọi là biến cố “vận động viên thứ i ném bóng trúng rổ”
. Suy ra mệnh đề Đúng.
b) Đúng. và
là hai biến cố độc lập nên:
. Suy ra mệnh đề Đúng.
c) Đúng. Ta có: và
là hai biến cố độc lập nên:
.
Suy ra mệnh đề Đúng.
d) Sai. Xác suất để cả ba vận động viên ném không trúng rổ là:
Vậy xác suất để ít nhất 1 vận động viên ném trúng rổ là:
Xác suất để cả ba vận động viên ném trúng rổ là
Ta có hệ pt , vì
.
Xác suất để có đúng một vận động viên ném trúng rổ là:
Suy ra mệnh đề Sai.
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”.
Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.
Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì .
Một hộp chứa 8 bi xanh, 2 bi đỏ. Lần lượt bốc từng bi. Giả sử lần đầu tiên bốc được bi xanh. Xác định xác suất lần thứ 2 bốc được bi đỏ.
Gọi là biến cố lần
bốc được bi xanh.
Gọi là biến cố lần
bốc được bi đỏ.
Xác suất lần bốc được bi đỏ khi lần
đã bốc được bi trắng là
Ta có
Suy ra
Một bình đựng 9 viên bi xanh và 7 viên bi đỏ. Lần lượt lấy ngẫu nhiên ra 2 bi, mỗi lần lấy 1 bi không hoàn lại. Tính xác suất để bi thứ 2 màu xanh nếu biết bi thứ nhất màu đỏ?
Gọi A là biến cố “lần thứ nhất lấy được bi màu đỏ”.
Gọi B là biến cố “lần thứ hai lấy được bi màu xanh”.
Ta cần tìm
Không gian mẫu cách chọn
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi rong 15 bi còn lại có 15 cách chọn, do đó:
Lần thứ nhất lấy 1 viên bi màu đỏ có 7 cách chọn, lần thứ hai lấy 1 viên bi màu xanh có 9 cách chọn, do đó:
Vậy xác suất để viên bi lấy lần thứ hai là màu xanh nếu biết rằng viên bi lấy lần thứ nhất là màu đỏ là: .
Cho hai biến cố và
, với
;
;
.
Tính .
Ta có
Một nhóm học sinh có 20 học sinh, trong đó có 12 em thích học môn Toán, 10 em thích học môn Văn, 2 em không thích học cả hai môn Toán và Văn. Chọn ngẫu nhiên 1 học sinh, xác xuất để học sinh đó thích học môn Toán biết rằng học sinh đó thích học môn Văn là
Gọi là biến cố “học sinh đó thích học môn Toán”,
là biến cố “học sinh đó thích học môn Văn”
Xác suất để học sinh được chọn thích học môn Toán, biết học sinh đó thích học môn Văn chính là .
Ta có ,
,
Ta có
Một hệ thống được cấu tạo bởi 3 bộ phận độc lập nhau. Hệ thống sẽ hoạt động nếu ít nhất 2 trong 3 bộ phận còn hoạt động. Nếu độ tin cậy của mỗi bộ phận là 0.95 thì độ tin cậy của hệ thống là bao nhiêu?
Gọi Bi: "Bộ phận thứ i hoạt động tốt" (i = 1, 2, 3)
H: "Hệ thống hoạt động tốt"
Theo giả thiết, ta thấy rằng P(Bi) = 0.95 với i = 1, 2, 3 và
Do tính độc lập, xung khắc và đối xứng nên:
.
Một sinh viên làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là . Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ 2 là
, nhưng nếu làm sai bài thứ 1 thì khả năng làm đúng bài thứ 2 là
. Tính xác suất để sinh viên làm đúng ít nhất một bài?
Gọi A1 là biến cố làm đúng bài 1
Gọi A2 là biến cố làm đúng bài 2
Làm đúng ít nhất 1 bài
Tung một con xúc sắc hai lần độc lập nhau. Biết rằng lần tung thứ nhất được số chấm chẵn. Tính xác suất tổng số chấm hai lần tung bằng ?
Gọi Ti: "Tổng số nốt hai lần tung bằng i"
Nj,k: "Số nốt trên lần tung thứ j bằng k"
Ta tìm
Cho hai biến cố và
độc lập, biết
Khi đó
bằng
Vì và
là hai biến cố độc lập nên ta có:
Ta có: .
Cho hai biến cố có xác suất
. Tính xác suất
.
Theo định nghĩa xác suất có điều kiện, ta có .
Giả sử trong một nhóm người có người là không nhiễm bệnh. Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm đó. Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là
, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là
. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.
Cách 1: Sơ đồ hình cây
Gọi : “Người được chọn ra không nhiễm bệnh”.
Và : “Người được chọn ra có phản ứng dương tính”
Theo bài ta có:
Do đó:
Ta có sơ đồ hình cây như sau:

Vậy: .
Cách 2: Sử dụng công thức
Cho hai biến cố sao cho
và
. Tính
.
Ta có .
Cho và
là hai biến cố độc lập thoả mãn
và
. Khi đó,
bằng:
A và B là hai biến cố độc lập nên
Hộp thứ nhất có 4 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 5 viên bi xanh và 4 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai. Tính xác suất của biến cố C: “Hai viên bi lấy ra khác màu”
Gọi A là biến cố “Viên bi lấy ra từ hộp thứ nhất có màu xanh”
Gọi B là biến cố “Viên bi lấy ra từ hộp thứ hai có màu đỏ”.
Ta có:
Ta có sơ đồ cây:
Dựa vào sơ đồ cây, ta có:
Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng.
a) Xác suất để lần thứ nhất lấy được bóng đèn loại II là . Sai||Đúng
b) Xác suất để lần thứ hai lấy được bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là . Đúng||Sai
c) Xác suất để cả hai lần đều lấy được bóng đèn loại II là . Sai||Đúng
d) Xác suất để ít nhất 1 lần lấy được bóng đèn loại I là . Đúng||Sai
Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng.
a) Xác suất để lần thứ nhất lấy được bóng đèn loại II là . Sai||Đúng
b) Xác suất để lần thứ hai lấy được bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là . Đúng||Sai
c) Xác suất để cả hai lần đều lấy được bóng đèn loại II là . Sai||Đúng
d) Xác suất để ít nhất 1 lần lấy được bóng đèn loại I là . Đúng||Sai
Xét các biến cố: A: "Lần thứ nhất lấy được bóng đèn loại II"; B: "Lần thứ hai lấy được bóng đèn loại II".
a) Xác suất đề lần thứ nhất lấy được bóng đèn loại II là: .
b) Sau khi lấy 1 bóng đèn loại II thì chỉ còn 1 bóng đèn loại II trong hộp. Suy ra xác suất để lần thứ hai lấy được quá bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là: .
c) Khi đó, xác suất để cả hai lần đều lấy được bóng đèn loại II là:
.
d) Để ít nhất 1 lần lấy được bóng đèn loại I là:
.
Gieo hai con xúc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng . Biết rằng con xúc xắc thứ nhất xuất hiện mặt
chấm.
Gọi là biến cố “con xúc xắc thứ nhất xuất hiện mặt
chấm”
Gọi là biến cố “Tổng số chấm xuất hiện trên
con xác xắc bằng
”.
Khi con xúc xắc thứ nhất đã xuất hiện mặt chấm thì lần thứ hai xuất hiện
chấm thì tổng hai lần xuất hiện là
chấm thì
Một nhóm 50 học sinh có 23 bạn biết chơi cầu lông mà không biết chơi bóng đá và 21 bạn biết chơi bóng đá mà không biết chơi cầu lông. Biết rằng mỗi học sinh trong nhóm này biết chơi bóng đá hoặc cầu lông. Chọn ngẫu nhiên một học sinh trong nhóm. Tính xác suất học sinh này biết chơi bóng đá, biết rằng bạn ấy biết chơi cầu lông.
Gọi là biến cố “học sinh được chọn biết chơi bóng đá”,
là biến cố “học sinh được chọn biết chơi cầu lông”.
Ta có và
.
Do đó .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: