Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường phẳng (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d_{1}:\frac{x - 1}{2} = \frac{y}{1} = \frac{z +
2}{- 1}d_{2}:\frac{x - 1}{1} =
\frac{y + 2}{3} = \frac{z - 2}{- 2}. Gọi \Delta là đường thẳng song song với (P):x + y + z - 7 = 0 và cắt d_{1},\ d_{2} lần lượt tại hai điểm A,B sao cho AB ngắn nhất. Phương trình của đường thẳng \Delta là.

    Hướng dẫn:

    Ta có:

    A \in d_{1} \Rightarrow A(1 + 2a;a; - 2
- a)

    B \in d_{2} \Rightarrow B(1 + b; - 2 +
3b;2 - 2b)

    \Delta có vectơ chỉ phương \overrightarrow{AB} = (b - 2a;3b - a - 2; - 2b + a
+ 4)

    (P)có vectơ pháp tuyến \overrightarrow{n_{P}} = (1;1;1)

    \Delta//(P) nên \overrightarrow{AB}\bot\overrightarrow{n_{P}}
\Leftrightarrow \overrightarrow{AB}.\overrightarrow{n_{P}} = 0
\Leftrightarrow b = a - 1.Khi đó \overrightarrow{AB} = ( - a - 1;2a - 5;6 -
a)

    AB = \sqrt{( - a - 1)^{2} + (2a - 5)^{2}
+ (6 - a)^{2}}

    = \sqrt{6a^{2} - 30a + 62}

    = \sqrt{6\left( a - \frac{5}{2}
ight)^{2} + \frac{49}{2}} \geq \frac{7\sqrt{2}}{2};\forall
a\mathbb{\in R}

    Dấu " = " xảy ra khi a = \frac{5}{2} \Rightarrow A\left(
6;\frac{5}{2}; - \frac{9}{2} ight),\ \ \overrightarrow{AB} = \left( -
\frac{7}{2};0;\frac{7}{2} ight)

    Đường thẳng \Delta đi qua điểm A\left( 6;\frac{5}{2}; - \frac{9}{2}
ight) và vec tơ chỉ phương \overrightarrow{u_{d}} = ( - 1;0;1)

    Vậy phương trình của \Delta\left\{ \begin{matrix}
x = 6 - t \\
y = \frac{5}{2} \\
z = - \frac{9}{2} + t \\
\end{matrix} ight.

  • Câu 2: Vận dụng cao
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho 2 điểm A(−2; 1; 3), B(3; −2; 4), đường thẳng d:\frac{x - 1}{2} = \frac{y
- 6}{11} = \frac{z + 1}{- 4}và mặt phẳng (P): 41x − 6y + 54z + 49 = 0. Đường thẳng (d) đi qua B, cắt đường thẳng ∆ và mặt phẳng (P) lần lượt tại C và D sao cho thể tích của 2 tứ diện ABCOOACD bằng nhau, biết (d) có một vectơ chỉ phương là \overrightarrow{u} = (4;b;c). Tính b + c.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có 1 = \frac{V_{OABC}}{V_{OACD}} =\dfrac{\dfrac{1}{3}d\left( O;(ABC) ight).S_{ABC}}{\dfrac{1}{3}d\left(O;(ACD) ight).S_{ACD}} = \dfrac{S_{ABC}}{S_{ACD}} =\frac{BC}{CD}

    Nên BC = CD. Vì C ∈ ∆ \Rightarrow C(2t +
1;11t + 6; - 4t - 1)

    C là trung điểm của BD nên D(4t - 1;22t +
14; - 8t - 6).

    Điểm D ∈ (P) nên 41(4t − 1) − 6(22t + 14) + 54(−8t − 6) + 49 = 0 ⇔ t = −1

    ⇒ C(−1; −5; 3).

    \overrightarrow{CB} = (4;3;1) =
\overrightarrow{u} là vectơ chỉ phương của đường thẳng d.

    Vậy b = 3, c = 1 ⇒ b + c = 4

  • Câu 3: Vận dụng cao
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho A(1; −1; 2), B(−2; 0; 3), C(0; 1; −2). Điểm M(a; b; c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S = \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó, T = 12a + 12b + c có giá trị là:

    Hướng dẫn:

    Chọn I sao cho 4\overrightarrow{IA} + 3\overrightarrow{IB} +
5\overrightarrow{IC} = \overrightarrow{0}

    Ta tính được I\left( -
\frac{1}{6};\frac{1}{12};\frac{7}{12} ight)

    Ta thấy

    \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight).\left( \overrightarrow{MI} +
\overrightarrow{IB} ight) \\
\overrightarrow{MB}.\overrightarrow{MC} = \left( \overrightarrow{MI} +
\overrightarrow{IB} ight).\left( \overrightarrow{MI} +
\overrightarrow{IC} ight) \\
\overrightarrow{MC}.\overrightarrow{MA} = \left( \overrightarrow{MI} +
\overrightarrow{IC} ight).\left( \overrightarrow{MI} +
\overrightarrow{IA} ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IA} + \overrightarrow{IB}
ight) + \overrightarrow{IA}.\overrightarrow{IB} \\
\overrightarrow{MB}.\overrightarrow{MC} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IB} + \overrightarrow{IC}
ight) + \overrightarrow{IB}.\overrightarrow{IC} \\
\overrightarrow{MC}.\overrightarrow{MA} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IC} + \overrightarrow{IA}
ight) + \overrightarrow{IC}.\overrightarrow{IA} \\
\end{matrix} ight.

    S = 6{\overrightarrow{MI}}^{2} +
\overrightarrow{IA}.\overrightarrow{IB} +
2\overrightarrow{IB}.\overrightarrow{IC} +
3\overrightarrow{IC}.\overrightarrow{IA} + \overrightarrow{MI}\left(
4\overrightarrow{IA} + 3\overrightarrow{IB} + 5\overrightarrow{IC}
ight)

    \Rightarrow S = 6MI^{2} +\underset{CONST}{\overset{4\overrightarrow{IA} + 3\overrightarrow{IB} +5\overrightarrow{IC}}{︸}}

    Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.

    Vậy M là hình chiếu vuông góc của I\left(
\frac{- 1}{6};\frac{1}{12};\frac{7}{12} ight) lên (Oxy) \Rightarrow M\left( \frac{- 1}{6};\frac{1}{12};0
ight)

    Ta xác định được \left\{ \begin{matrix}a = - \dfrac{1}{6} \\b = \dfrac{1}{12} \\c = 0 \\\end{matrix} ight.\  \Rightarrow T = - 1

  • Câu 4: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyz, cho hai điểm A (2; 1; 1), B (0; 3; −1). Điểm M nằm trên mặt phẳng (P) : 2x + y + z − 4 = 0 sao cho MA + MB nhỏ nhất là:

    Hướng dẫn:

    Thay tọa độ của A, B vào vế trái của phương trình mặt phẳng (P) : 2x + y + z − 4 = 0 ta được: (2.2 + 1 + 1 − 4) (2.0 + 3 − 1 − 4) = −4 < 0

    Suy ra A, B nằm về hai phía của mặt phẳng (P).

    Vậy MA + MB ≥ AB dấu “ = ” xảy ra khi M = AB ∩ (P).

    Ta có \overrightarrow{AB} = ( - 2;2; -
2) chọn vtcp của đường thẳng AB: \overrightarrow{u} = (1; - 1;1).

    Vậy phương trình đường thẳng AB: \left\{
\begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Tọa độ (x; y; z) của M là nghiệm hệ:

    \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 1 + t \\
2x + y + z - 4 = 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 1 + t \\
2(2 + t) + (1 - t) + (1 + t) - 4 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = 0 \\
t = - 1 \\
\end{matrix} ight.\  \Rightarrow M(1;2;0)

  • Câu 5: Vận dụng
    Viết phương trình đường vuông góc chung

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{1} = \frac{y + 2}{1} = \frac{z- 3}{- 1},d_{2}:\frac{x}{1} = \frac{y - 1}{2} = \frac{z - 6}{3} chéo nhau. Viết phương trình đường vuông góc chung của d_{1},d_{2}.

    Hướng dẫn:

    Đường thẳng d_{1},d_{2} lần lượt có vectơ chỉ phương là \overrightarrow{u_{1}} = (1;1; -
1),\overrightarrow{u_{2}} = (1;2;3)

    Giả sử ∆ giao với d_{1},d_{2} lần lượt tại \left\{ \begin{matrix}
A(1 + s; - 2 + s;3 - s) \\
B(t;1 + 2t;6 + 3t) \\
\end{matrix} ight., khi đó ta có \overrightarrow{AB} = ( - 1 - s + t;3 - s + 2t;3 +
s + 3t)

    Do ∆ là đường vuông góc chung, suy ra:

    \left\{ \begin{matrix}
\overrightarrow{u_{1}}.\overrightarrow{AB} = 0 \\
\overrightarrow{u_{2}.}\overrightarrow{AB} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
1( - 1 - s + t) + 1(3 - s + 2t) - 1(3 + s + 3t) = 0 \\
1( - 1 - s + t) + 2(3 - s + 2t) + 3(3 + s + 3t) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}- 3s = 1 \\14t = - 14 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}s = - \dfrac{1}{3} \\t = - 1 \\\end{matrix} ight.

    Đường vuông góc chung của d_{1},d_{2} nhận \overrightarrow{AB} = \left( -
\frac{5}{3};\frac{4}{3}; - \frac{1}{3} ight) làm VTCP và đi qua điểm B( - 1; - 1;3)

    Vậy ta có phương trình đường thẳng: \frac{x + 1}{5} = \frac{y + 1}{- 1} = \frac{z -
3}{1}

  • Câu 6: Vận dụng
    Vị trí tương đối của đường thẳng và mặt phẳng

    Mặt phẳng \left( P ight):2x - 2y + 4z + 5 = 0  và đường thẳng (d):\left\{ \begin{array}{l}x - y + 2z + 1 = 0\\y + 2z - 3 = 0\end{array} ight. :   

    Hướng dẫn:

    Theo đề bài, ta có vecto pháp tuyến của \left( P ight):\overrightarrow n  = \left( {2, - 2,4} ight)

    Đường thẳng (d) được cho dưới dạng hệ của hai mặt phẳng: x - y + 2z + 1 = 02x + y - z - 3 = 0 cũng có 2 VTPT lần lượt \overrightarrow {{n_1}}  = \left( {1, - 1,2} ight);\overrightarrow {{n_2}}  = \left( {2,1, - 1} ight)

    Như vậy, VTCP của (d) sẽ là tích có hướng của 2 VTPT: \left( d ight):\overrightarrow a  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( { - 1,5,3} ight)

    \Rightarrow \overrightarrow n .\overrightarrow a  =  - 2 - 10 + 12 = 0

    Cho\,\,\,\,\,z = 0 \Rightarrow \left\{ \begin{array}{l}x - y =  - 1\\2x + y = 3\end{array} ight. \Rightarrow \left\{ \begin{array}{l}x = \dfrac{2}{3}\\y = \dfrac{5}{3}\end{array} ight.

    \Rightarrow A\left( {\frac{2}{3},\frac{5}{3},0} ight) \in \left( d ight) và tọa độ của A không thỏa mãn phương trình của (P).

    Vậy (d) // (P) .

  • Câu 7: Vận dụng cao
    Chọn phương án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \Delta_{1}:\frac{x + 1}{1} = \frac{y + 2}{2} =
\frac{z}{1}\Delta_{2}:\frac{x -
2}{2} = \frac{y - 1}{1} = \frac{z - 1}{1}. Đường thẳng d song song với (P):x + y - 2z + 5 = 0 và cắt hai đường thẳng \Delta_{1};\Delta_{2} lần lượt tại A,B sao cho AB ngắn nhất. Phương trình đường thẳng d

    Hướng dẫn:

    Gọi A = d \cap \Delta_{1},B = d\cap\Delta_{2}

    \begin{matrix}
A \in \Delta_{1} \Rightarrow A( - 1 + a; - 2 + 2a;a) \\
B \in \Delta_{2} \Rightarrow B(2 + 2b;1 + b;1 + b) \\
\overrightarrow{AB} = ( - a + 2b + 3; - 2a + b + 3; - a + b + 1) \\
d//(P) \Rightarrow \overrightarrow{AB}.\overrightarrow{n_{P}} = 0
\Leftrightarrow b = a - 4 \\
\overrightarrow{AB} = (a - 5; - a - 1; - 3) \\
AB = \sqrt{2(a - 2)^{2} + 27} \geq 3\sqrt{3};\forall a\mathbb{\in R} \\
\end{matrix}

    Dấu " = " xảy ra khi a = 2 \Rightarrow A(1;2;2),B( - 2; - 1; -
1)

    \overrightarrow{AB} = (- 3; - 3; -3)

    d đi qua điểm A(1;2;2) và có vectơ chỉ phương \overrightarrow{a_{d}} = (1;1;1)

    Vậy phương trình của dx - 1 = y - 2 = z - 2

  • Câu 8: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho 2 đường thẳng \Delta_{1} :\left\{ \begin{matrix}x = 3 + t \\y = 1 + t \\z = 1 + 2t \\\end{matrix}(t \in \mathbb{R}); ight. \Delta_{2}:\frac{x + 2}{2} =\frac{y - 2}{5} = \frac{z}{-1} và điểm M(0;3;0). Đường thẳng d đi qua M, cắt \Delta_{1} và vuông góc với \Delta_{2} có một vectơ chỉ phương là \overrightarrow{u} = (4;a;b). Tính T = a + b

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi (P) là mặt phẳng chứa M\Delta_{1}.

    Lấy A(3;1;1) \in \Delta_{1}.

    Mặt phẳng (P) có véc-tơ pháp tuyến vuông góc với các véc-tơ \overrightarrow{MA} = (3; - 2;1){\overrightarrow{u}}_{\Delta_{1}} =
(1;1;2).

    Ta có \left\lbrack
\overrightarrow{MA},{\overrightarrow{u}}_{\Delta_{1}} ightbrack = (
- 5; - 5;5).

    Một trong các véc-tơ pháp tuyến của mặt phẳng (P){\overrightarrow{n}}_{(P)} = (1;1; -
1).

    Đường thẳng d nằm trong mặt phẳng (P) và vuông góc với \Delta_{2}\overrightarrow{u_{d}} = \left\lbrack
\overrightarrow{n_{(P)}};\overrightarrow{u_{\Delta_{2}}} ightbrack =
(4; - 1;3)

    Vậy a = - 1;b = 3 \Rightarrow T = a + b =
2.

  • Câu 9: Vận dụng cao
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \left( d_{1} \right):\left\{ \begin{matrix}
x = t \\
y = 4 - t \\
z = - 1 + 2t \\
\end{matrix} \right., \left(
d_{2} \right):\frac{x}{2} = \frac{y - 2}{1} = \frac{z}{1}, \left( d_{3} \right):\frac{x + 1}{5} =
\frac{y - 1}{2} = \frac{z + 1}{1}. Viết phương trình đường thẳng \left( d_{3} \right):\frac{x + 1}{5} =
\frac{y - 1}{2} = \frac{z + 1}{1} cắt ba đường thẳng \left( d_{1} \right);\left( d_{2} \right);\left(
d_{3} \right) lần lượt tại các điểm A;B;C sao choAB = BC.

    Hướng dẫn:

    Ta có: A \in \left( d_{1} \right)
\Rightarrow A(a;4 - a; - 1 + 2a).

    B \in \left( d_{2} \right) \Rightarrow
B(2b;2 + b;b).

    C \in \left( d_{3} \right) \Rightarrow C(
- 1 + 5c;1 + 2c; - 1 + c).

    B là trung điểm của AC nên \left\{ \begin{matrix}2b = \dfrac{a - 1 + 5c}{2} \\2 + b = \dfrac{4 - a + 1 + 2c}{2} \\b = \dfrac{- 1 + 2a - 1 + c}{2} \\\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
a - 4b + 5c = 1 \\
- a - 2b + 2c = - 1 \\
2a - 2b + c = 2 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 0 \\
\end{matrix} \right..

    \Rightarrow
A(1;3;1),B(0;2;0).

    (d) đi qua điểm B(0;2;0) và có VTCP \overrightarrow{BA} = (1;1;1) có phương trình \frac{x}{1} = \frac{y - 2}{1} =
\frac{z}{1}.

  • Câu 10: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyz, cho tam giác ABCA(1; 1; 1), đường trung tuyến kẻ từ B và đường cao kẻ từ C lần lượt có phương trình \frac{x - 8}{10} =
\frac{y + 7}{- 9} = \frac{z - 5}{5};\frac{x - 7}{2} = \frac{y + 1}{5} =
\frac{z - 3}{- 1}. Biết B (a; b; c), khi đó a + b + c bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Giả sử đường cao là CH:\frac{x - 7}{2} =
\frac{y + 1}{5} = \frac{z - 3}{- 1} ta có vectơ chỉ phương của CH là \overrightarrow {u} = (2; 5; −1).

    B thuộc đường trung tuyến BM:\frac{x -
8}{10} = \frac{y + 7}{- 9} = \frac{z - 5}{5} nên B(8 + 10t; −7 − 9t; 5 + 5 t).

    Suy ra \overrightarrow{AB} = (7 + 10t; -
8 - 9t;4 + 5t)

    CH ⊥ AB nên \overrightarrow{AB}.\overrightarrow{u} =
0⇔ −30t−30 = 0 ⇔ t = −1 ⇒ B(−2; 2; 0).

    Vậy a + b + c = 0.

  • Câu 11: Thông hiểu
    Chọn khẳng định đúng

    Cho hai đường thẳng (d_{1}) :\left\{ \begin{matrix}
x - y + z - 5 = 0 \\
x - 3y + 6 = 0 \\
\end{matrix} \right.(d_{2}):\left\{ \begin{matrix}
2y + z - 5 = 0 \\
4x - 2y + 5z - 4 = 0 \\
\end{matrix} \right.

    Tìm câu đúng?

    Hướng dẫn:

    Chuyển đường thẳng (d_{1})(d_{2}) về dạng tham số:

    (d_{1}):\left\{ \begin{matrix}
x = - 6 + 3t \\
y = t \\
z = 11 - 2t \\
\end{matrix} \right.\  \Rightarrow (d_{1}) có vectơ chỉ phương \overrightarrow{a} = (3,1, - 2) và qua A( - 6,0,11) .

    (d_{2}):\left\{ \begin{matrix}
x = \frac{15}{4} - 3t' \\
y = 3 - t' \\
z = - 1 + 2t' \\
\end{matrix} \right.\  \Rightarrow \left( d_{2} \right)có vectơ chỉ phương \overrightarrow{b} =
(\frac{15}{4},3, - 1)

    \overrightarrow{a} \nearrow \swarrow
\overrightarrow{b} và hệ phương trình \left\{ \begin{matrix}
- 6 + 3t = \frac{15}{4} - 3t' \\
t = 3 - t' \\
11 - 2t = - 1 + 2t' \\
\end{matrix} \right. vô nghiệm.

    \Rightarrow (d_{1}) //(d_{2})

  • Câu 12: Vận dụng
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng d:\frac{x}{1} = \frac{y}{1} = \frac{z + 1}{-2},\Delta_{1}:\frac{x - 3}{2} = \frac{y}{1} = \frac{z -1}{1},\Delta_{2}:\frac{x - 1}{1} = \frac{y - 2}{2} =\frac{z}{1}. Đường thẳng \Delta vuông góc với d đồng thời cắt \Delta_{1};\Delta_{2} tương ứng tại H;K sao cho độ dài HK nhỏ nhất. Biết rằng \Delta có một vectơ chỉ phương \overrightarrow{u} = (h;\ k;\ 1). Giá trị h - k bằng?

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
H \in \Delta_{1} \Leftrightarrow H(3 + 2t;t;1 + t) \\
K \in \Delta_{2} \Leftrightarrow K(1 + m;2 + 2m;m) \\
\end{matrix} ight.

    Suy ra \overrightarrow{HK} = (m - 2t -
2;2m - t + 2;m - t - 1)

    Đường thẳng d có một VTCP là \overrightarrow{u_{d}} = (1;1; - 2)

    \Delta\bot d \Rightarrow
\overrightarrow{u_{d}}.\overrightarrow{HK} = 0

    \Leftrightarrow \ m - t + 2 = 0
\Leftrightarrow m = t - 2

    \Rightarrow \overrightarrow{HK} = ( - t
- 4;t - 2; - 3)

    Ta có: HK^{2} = ( - t - 4)^{2} + (t -
2)^{2} + ( - 3)^{2} = 2(t + 1)^{2} + 27 \geq 27;\forall t\mathbb{\in
R}

    \Rightarrow \min HK = \sqrt{27} khi và chỉ khi t = - 1

    \Rightarrow \overrightarrow{HK} = ( - 3;
- 3; - 3) \Rightarrow \overrightarrow{u} = (1;1;1)

    \Rightarrow h = k = 1 \Rightarrow h - k
= 0

  • Câu 13: Vận dụng
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 1;2),B(3; - 4; - 2) và đường thẳng d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm I(a;b;c) thuộc d là điểm thỏa mãn IA + IB đạt giá trị nhỏ nhất. Khi đó T = a + b + c bằng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{u} = (4;
- 6; - 8)

    A = (1; - 1;2),B = (3; - 4; - 2)
\Rightarrow \overrightarrow{AB} = (2; - 3; - 4)

    Ta có \overrightarrow{AB} = (2; - 3; -
4) cùng phương với \overrightarrow{u} = (4; - 6; - 8)

    A(1; - 1;2) otin d \Rightarrow
\overrightarrow{AB}//d \Rightarrow A,B,d đồng phẳng.

    Xét mặt phẳng chứa ABd. Gọi A^{'} là điểm đối xứng của A qua d_{1}

    (\alpha) là mặt phẳng qua A, vuông góc với d.

    Khi đó, giao điểm H của d với (\alpha) là trung điểm của AA^{'}.

    (\alpha) có 1 vectơ pháp tuyến \overrightarrow{n} = (2; - 3; - 4) đi qua A(1; - 1;2) có phương trình:

    2(x - 1) - 3(y + 1) - 4(z - 2) =
0

    \Leftrightarrow 2x - 3y - 4z + 3 =
0

    H \in d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} \Rightarrow ight. Giả sử H(2 + 4t; - 6t; - 1 - 8t).

    H \in (\alpha) \Rightarrow 2(2 + 4t) -
3( - 6t) - 4( - 1 - 8t) + 3 = 0

    \Leftrightarrow 58t + 11 = 0
\Leftrightarrow t = - \frac{11}{58} \Rightarrow H\left(
\frac{36}{29};\frac{33}{29};\frac{15}{29} ight)

    Ta có IA + IB = IA^{'} + IB^{'}
\geq A^{'}B \Rightarrow min(IA + IB) = A^{'}B khi và chỉ khi I trùng với I_{0} là giao điểm của A^{'}Bd.

    \Rightarrow \overrightarrow{HI_{0}} =\frac{1}{2}\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}x_{I_{0}} - \dfrac{36}{29} = \dfrac{1}{2}.2 \\y_{I_{0}} - \dfrac{33}{29} = \dfrac{1}{2}.( - 3) \\z_{I_{0}} - \dfrac{15}{29} = \dfrac{1}{2}.( - 4) \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{I_{0}} = \dfrac{65}{29} \\y_{I_{0}} = - \dfrac{21}{58} \\z_{I_{0}} = - \dfrac{43}{29} \\\end{matrix} ight.\  ight.\\Rightarrow I_{0}\left( \dfrac{65}{29}; - \dfrac{21}{58}; - \frac{43}{29}ight)

    \Rightarrow a + b + c = \frac{65}{29} -
\frac{21}{58} - \frac{43}{29} = - \frac{21}{58}.

  • Câu 14: Thông hiểu
    Viết phương trình tổng quát của đường thẳng

    Viết phương trình tổng quát của đường thẳng (D) qua A(2,
- 2,1) và song song với đường thẳng (d):x = 2 - 4m;y = 3 + 2m;z = m - 5\left(
m\mathbb{\in R} \right).

    Hướng dẫn:

    Ta có:

    (D)//(d) \Rightarrow Một vecto chỉ phương của (D):\overrightarrow{a} = ( -
4,2,1)

    Phương trình chính tắc của (D):\frac{x -
2}{- 4} = \frac{y + 2}{2} = z - 1

    \Rightarrow \left\{ \begin{matrix}
x + 2y + 2 = 0 \\
x + 4z - 6 = 0 \\
\end{matrix} \right.\  \vee \left\{ \begin{matrix}
x + 2y + 2 = 0 \\
y - 2z + 4 = 0 \\
\end{matrix} \right.

  • Câu 15: Vận dụng cao
    Xác định vectơ pháp tuyến của mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{- 2} = \frac{y + 2}{1} =
\frac{z}{2} và điểm A(1;4;2). Gọi (\alpha) là mặt phẳng chứa d sao cho khoảng cách từ A đến (\alpha) lớn nhất. Mặt phẳng (\alpha) có một véctơ pháp tuyến là

    Hướng dẫn:

    Ta có d \subset (\alpha) \Rightarrow
d\left( A;(\alpha) \right) \leq d(A;d) \Rightarrow d\left( A;(\alpha)
\right)_{\max} = d(A;d)

    Khi hình chiếu của A trên d cũng là hình chiếu của A trên (\alpha).

    Gọi H là hình chiếu vuông góc của A trên d.

    Ta có H \in d:\frac{x - 1}{- 2} = \frac{y
+ 2}{1} = \frac{z}{2} \Rightarrow H(1 - 2t; - 2 + t;2t).

    AH\bot d \Rightarrow
\overrightarrow{AH}.\overrightarrow{u_{d}} = 0. (1) (với \overrightarrow{u_{d}} là một véctơ chỉ phương của d)

    Ta có \left\{ \begin{matrix}
\overrightarrow{AH} = ( - 2t;t - 6;2t - 2) \\
\overrightarrow{u_{d}} = ( - 2;1;2) \\
\end{matrix} \right..

    Từ (1) \Rightarrow 4t + t - 6 + 2(2t - 2)
= 0 \Leftrightarrow 9t - 10 = 0
\Leftrightarrow t = \frac{10}{9} \Rightarrow H\left( -
\frac{11}{9};\frac{- 8}{9};\frac{20}{9} \right).

    Vậy mặt phẳng (\alpha) có một véctơ pháp tuyến là \overrightarrow{AH} =
\left( \frac{- 20}{7};\frac{- 44}{7};\frac{2}{7} \right)

    \Rightarrow
\overrightarrow{n_{\alpha}}(10;22; - 1) cũng là một véc tơ pháp tuyến của mặt phẳng (\alpha).

  • Câu 16: Vận dụng
    Phương trình đường trung trực

    Cho tam giác ABC có A\left( {3, - 1, - 1} ight);\,\,\,\,B\left( {1,2, - 7} ight);\,\,\,\,C\left( { - 5,14, - 3} ight). Viết phương trình tổng quát của đường trung trực (d) của cạnh BC của tam giác ABC. 

    Hướng dẫn:

    Theo đề bài, ta tính được \overrightarrow {BA}  = \left( {2, - 3,6} ight),\overrightarrow {BC}  = 2\left( { - 3,6,2} ight)

    Từ đó, suy ra VTPT của mặt phẳng (ABC) là: \overrightarrow n  = \left[ {\overrightarrow {BA} ,\overrightarrow {BC} } ight] =  - \left( {42,22, - 3} ight)

    Phương trình (ABC) là:

    \begin{array}{l}\left( {x - 3} ight)42 + \left( {y + 1} ight)22 + \left( {z + 1} ight)\left( { - 3} ight) = 0\\ \Leftrightarrow \left( {ABC} ight):42x + 22y - 3z - 107 = 0\end{array}

    Mặt khác, ta có M là trung điểm của BC nên M có tọa độ là M (-2, 8, -5)

    Phương trình mặt phẳng trung trực (P) của cạnh BC là:

    \left( P ight):\,\,\left( {x + 2} ight)\left( { - 3} ight) + \left( {y - 8} ight)6 + \left( {z + 5} ight)2 = 0

    \begin{array}{l} \Leftrightarrow \left( P ight):3x - 6y - 2z + 44 = 0\\ \Rightarrow \left( d ight):42x + 22y - 3z - 107 = 0;\,\,3x - 6y - 2z + 44 = 0\end{array}

    Phương trình tổng quát của đường trung trực (d) của cạnh BC:

    (d):\,\,\left\{ \begin{array}{l}42x + 22y - 3z - 107 = 0\\3x - 6y - 2z + 44 = 0\end{array} ight.

  • Câu 17: Vận dụng
    Xác định phương trình đường thẳng

    Trong không gian với hệ tọa độ  Oxyz,  cho ba đường thẳng d_{1}:\left\{ \begin{matrix}
x = t \\
y = 4 - t \\
z = - 1 + 2t \\
\end{matrix} \right. d_{2}:\frac{x}{1} = \frac{y - 2}{- 3} = \frac{z}{-
3}d_{2}:\frac{x + 1}{5} =
\frac{y - 1}{2} = \frac{z + 1}{1}. Gọi \Delta là đường thẳng cắt d_{1},d_{2},d_{3} lần lượt tại các điểm A,B,C sao cho AB = BC. Phương trình đường thẳng \Delta

    Hướng dẫn:

    Gọi A \in d_{1},B \in d_{2},C \in
d_{3}

    Ta có: A(a;4 - a; - 1 + 2a),B(b;2 - 3b; -
3b),C( - 1 + 5c;1 + 2c; - 1 + c)

    Yêu cầu bài toán \Leftrightarrow
A,B,C thẳng hàng và AB =
BC

    \Leftrightarrow B là trung điểm AC \Leftrightarrow \left\{ \begin{matrix}
a - 1 + 5c = 2b \\
4 - a + 1 + 2c = 2(2 - 3b) \\
- 1 + 2a - a + c = 2( - 3b) \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 0 \\
\end{matrix} ight.\  ight.

    Suy ra A(1;3;1),B(0;2;0),,C( - 1;1; -
1)

    \Delta đi qua điểm B(0;2;0và có vecto chỉ phương là \overrightarrow{CB} = (1;1;1)

    Vậy phương trình đường thẳng \Delta\frac{x}{1} = \frac{y - 2}{1} =
\frac{z}{1}

  • Câu 18: Vận dụng
    Khoảng cách giữa 2 đường thẳng

    Khoảng cánh giữa hai đường thẳng : {(d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. và  ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. là:

    Hướng dẫn:

     Chuyển d1 về dạng tham số :({d_1}):\left\{ \begin{array}{l}x + y = 0\\x - y + z + 4 = 0\end{array} ight. \Rightarrow ({d_1}):\left\{ \begin{array}{l}x = t\\y =  - t\\z =  - 4 - 2t\end{array} ight.

    Qua đó, ta có A(0,0, - 4) \in ({d_1}) và 1 vectơ chỉ phương của (d1): \overrightarrow a  = (1, - 1, - 2).

    Chuyển (d2) về dạng tham số : ({d_2}):\left\{ \begin{array}{l}x + 3y - 1 = 0\\y + z - 2 = 0\end{array} ight. \Rightarrow ({d_2}):\left\{ \begin{array}{l}x =  - 5 + 3t\\y = 2 - t\\z = t\end{array} ight.

    Qua đó, ta có B( - 5,2,0) \in ({d_2}) và 1 vectơ chỉ phương của ({d_2}):\overrightarrow b (3, - 1,1).

    Áp dụng công thức tính Khoảng cách d1 và d2 , ta được:

    d = \frac{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB} } ight|}}{{\left| {\left[ {\overrightarrow a ,\overrightarrow b } ight]} ight|}} = \frac{9}{{\sqrt {62} }}

    .

  • Câu 19: Vận dụng
    Vị trí tương đối của 2 đường thẳng

    Hai đường thẳng \left( {d'} ight):x = 8t - 1;\,\,y =  - 1 - 14t;\,\,z =  - 12t và  \left( d ight):x - 2y + 3z - 1 = 0;\,\,\,2x + 2y - z + 4 = 0\,\,\,\left( {t \in R } ight)

    Hướng dẫn:

    Ta có đường thẳng (d’) qua E (-1, -1, 0) có vecto chỉ phương \overrightarrow a  = \left( {8, - 14, - 12} ight)

    Hai pháp vecto của hai đường thẳng \left( d ight):x - 2y + 3z - 1 = 0;\,\,\,2x + 2y - z + 4 = 0\,\,\,\left( {t \in R } ight) lần lượt là \overrightarrow {{n_1}}  = \left( {1, - 2,3} ight);\overrightarrow {{n_2}}  = \left( {2,2, - 1} ight)

    Vecto chỉ phương của \left( d ight):\overrightarrow b  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( { - 4,7,6} ight)

    Ta có: \frac{8}{{ - 4}} = \frac{{ - 14}}{7} = \frac{{ - 12}}{6} =  - 2 và tọa độ E\left( { - 1, - 1,0} ight) thỏa mãn phương trình của \left( d ight) \Rightarrow \left( D ight) \equiv \left( d ight)

  • Câu 20: Vận dụng cao
    Xác định số đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \left( d_{1} \right):\frac{x - 1}{1} = \frac{y +
1}{- 2} = \frac{z + 1}{1}, \left(
d_{2} \right):\frac{x}{1} = \frac{y}{- 2} = \frac{z - 1}{1}, \left( d_{3} \right):\frac{x - 1}{2} =
\frac{y + 1}{1} = \frac{z - 1}{1}, \left( d_{4} \right):\frac{x}{1} = \frac{y - 1}{-
1} = \frac{z}{- 1}. Số đường thẳng trong không gian cắt cả đường thẳng trên là

    Hướng dẫn:

    \left( d_{1} \right) đi qua điểm M_{1}(3; - 1; - 1) và có VTCP \overrightarrow{u_{1}} = (1; - 2;1).

    \left( d_{2} \right) đi qua điểm M_{2}(0;0;1) và có VTCP \overrightarrow{u_{2}} = (1; - 2;1).

    \overrightarrow{M_{1}M_{2}} = ( -
3;1;2).

    \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} \right\rbrack =
\overrightarrow{0}\left\lbrack
\overrightarrow{u_{1}};\overrightarrow{M_{1}M_{2}} \right\rbrack = ( -
5; - 5; - 5) \neq \overrightarrow{0} nên \left( d_{1} \right) song song với \left( d_{2} \right).

    Gọi (P) là mặt phẳng chứa hai đường thẳng \left( d_{1} \right)\left( d_{2} \right).

    (P) đi qua điểm M_{2}(0;0;1) và có \overrightarrow{n_{P}} = \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{M_{1}M_{2}} \right\rbrack = ( -
5; - 5; - 5) hay \overrightarrow{n}
= (1;1;1) có phương trình 1(x - 1)
+ 1(y - 0) + 1(z - 1) = 0 \Leftrightarrow x + y + z - 1 =
0.

    Gọi A = \left( d_{3} \right) \cap
(P). Xét hệ phương trình \left\{
\begin{matrix}
x = 1 + 2t \\
y = - 1 + t \\
z = 1 + t \\
x + y + z - 1 = 0 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 1 \\
z = 1 \\
t = 0 \\
\end{matrix} \right.\  \Rightarrow A(1; - 1;1).

    Gọi B = \left( d_{4} \right) \cap
(P). Xét hệ phương trình \left\{
\begin{matrix}
x = t' \\
y = 1 - t' \\
z = - t' \\
x + y + z - 1 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 1 \\
z = 0 \\
t' = 0 \\
\end{matrix} \right.\  \Rightarrow B(0;1;0).

    \overrightarrow{BA} = (1; -
2;1) cùng phương với \overrightarrow{u_{1}} nên (d) không thỏa mãn.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo