Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường phẳng (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn kết quả chính xác

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 5 = 0 và hai điểm A(−3; 0; 1), B(1; −1; 3). Trong các đường thẳng đi qua A và song song với (P), đường thẳng nào cách B một khoảng cách nhỏ nhất?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi d là đường thẳng cần tìm.

    Gọi (Q) là mặt phẳng qua A(−3; 0; 1) và song song với (P): x − 2y + 2z − 5 = 0.

    ⇒ (Q): x − 2y + 2z + 1 = 0d ⊂ (Q).

    Gọi H, K lần lượt là hình chiếu của B lên d và (Q) thì BH > BK.

    Do đó d(B; d) nhỏ nhất khi và chỉ khi H ≡ K.

    Đường thẳng BK đi qua B(1; −1; 3) và vuông góc với (Q) \Rightarrow BK:\left\{ \begin{matrix}
x = 1 + t \\
y = - 1 - 2t \\
z = 3 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Lại có: K = BK \cap (Q) \Rightarrow K =
\left( \frac{- 1}{9};\frac{11}{9};\frac{7}{9} ight)

    Đường thẳng d qua A và nhận \overrightarrow{AK} = \left(
\frac{26}{9};\frac{11}{9};\frac{- 2}{9} ight) làm vectơ chỉ phương nên đường thẳng cần tìm là: \frac{x +
3}{26} = \frac{y}{11} = \frac{z - 1}{- 2}.

  • Câu 2: Vận dụng
    Viết phương trình đường thẳng theo yêu cầu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 2}{1} = \frac{y - 1}{2} = \frac{z -
1}{- 1}, mặt cầu (S):(x - 1)^{2} +
(y + 3)^{2} + (z + 1)^{2} = 29A(1; - 2;1). Đường thẳng \Delta cắt d(S) lần lượt tại MN sao cho A là trung điểm của đoạn thẳng MN. Phương trình đường thẳng \Delta

    Hướng dẫn:

    M \in d \Rightarrow M(2 + t;1 + 2t;1 -
t)

    A là trung điểm MN \Rightarrow N( - t; - 5 - 2t;1 +
t)

    N \in (S) \Rightarrow 6t^{2} + 14t - 20
= 0

    \Rightarrow \left\lbrack \begin{matrix}
t = 1 \Rightarrow \overrightarrow{MN} = ( - 4; - 10;2) = - 2(2;5; - 1)
\\
t = - \frac{10}{3} \Rightarrow \overrightarrow{MN} = \left(
\frac{14}{3};\frac{22}{3}; - \frac{20}{3} ight) = \frac{2}{3}(7;11; -
10) \\
\end{matrix} ight.

    \Delta đi qua điểm A(1; - 2;1) và có vectơ chỉ phương \overrightarrow{a_{\Delta}} =
\overrightarrow{MN}

    Vậy phương trình của \Delta\frac{x - 1}{2} = \frac{y + 2}{5} = \frac{z
- 1}{- 1}\frac{x - 1}{7} =
\frac{y + 2}{11} = \frac{z - 1}{- 10}

  • Câu 3: Vận dụng
    Viết phương trình đường phân giác

    Trong không gian Oxyz, cho hai đường thẳng cắt nhau \Delta_{1}:\frac{x +1}{1} = \frac{y - 2}{2} = \frac{z + 1}{3},\Delta_{2}:\frac{x + 1}{1} =\frac{y - 2}{2} = \frac{z + 1}{- 3}. Trong mặt phẳng \left( \Delta_{1};\Delta_{2} ight), hãy viết phương trình đường phân giác d của góc nhọn tạo bởi \Delta_{1};\Delta_{2}

    Hướng dẫn:

    Hai đường thẳng đã cho cùng đi qua điểm I(−1; 2; −1) và có các vectơ chỉ phương tương ứng là \overrightarrow{u_{1}} =
(1;2;3),\overrightarrow{u_{2}} = (1;2; - 3)

    Ta có \overrightarrow{u_{1}}.\overrightarrow{u_{2}} = -
4 < 0, suy ra góc giữa hai vectơ \overrightarrow{u_{1}}\overrightarrow{u_{2}} là góc tù.

    Lại có \left| \overrightarrow{u_{1}}
ight| = \left| \overrightarrow{u_{2}} ight|

    Kết hợp hai điều này, ta suy ra d có một vectơ chỉ phương là \overrightarrow{u} = \overrightarrow{u_{1}} -
\overrightarrow{u_{2}} = (0;0;6) = 6(0;0;1)

    Tóm lại, đường thẳng cần tìm đi qua điểm I(−1; 2; −1) và có một vectơ chỉ phương là \overrightarrow{u} =
(0;0;1)

    Vậy phương trình đường thẳng d là: \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 4: Vận dụng cao
    Điểm đối xứng qua đường thẳng

    Cho điểm {m{A(2, - 1,1)}} và đường thẳng (\Delta ):\left\{ \begin{array}{l}y + z - 4 = 0\\2x - y - z + 2 = 0\end{array} ight.. Gọi A'  là điểm đối xứng của A qua (\triangle) . Tọa độ điểm A'  là:

    Hướng dẫn:

    Đưa phương trình (\triangle) về dạng tham số: \left\{ \begin{array}{l}x = 1\\y = 4 - t\\z = t\end{array} ight.

    Gọi (P) là mặt phẳng qua A và vuông góc với (\triangle).

    Phương trình mp (P) có dạng - y + z + D = 0 , qua A nên D =  -2

    Phương trình (P) là: y - z + 2 = 0

    Thế x, y, z từ phương trình (\triangle) vào phương trình (P) được t=1

    \Rightarrow (\triangle ) \cap (\alpha ) = (1,3,1).

    I là trung điểm của AA' nên: {x_{A'}} + 2 = 2;{y_{A'}} - 1 = 6;{z_{A'}} + 1 = 2

    \Rightarrow A'(0,7,1).

  • Câu 5: Vận dụng cao
    Tính giá trị của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 3}{2} = \frac{y + 2}{1} = \frac{z +
1}{- 1} và mặt phẳng (P):x + y + z
+ 2 = 0 Đường thẳng (P):x + y + z +
2 = 0 nằm trong mặt phẳng (P), vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến \Delta bằng \sqrt{42}. Gọi M(5;b;c) là hình chiếu vuông góc của I trên \Delta Giá trị của bc bằng

    Hướng dẫn:

    Đường thẳng d có vecto chỉ phương là \overrightarrow{u_{1}}(2;1; -
1).

    Mặt phẳng (P) có vecto pháp tuyến là \overrightarrow{n}(1;1;1).

    Gọi \overrightarrow{u_{2}} là vecto chỉ phương của đường thẳng \Delta. Khi đó \overrightarrow{u_{2}} = \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{n} \right\rbrack = (2; -
3;1)

    I = d \cap (P) nên ta tìm được I(1; - 3;0)

    Gọi \Delta' là đường thẳng nằm trong (P) và vuông góc với \Delta, \Delta \cap \Delta' = M thỏa mãn IM = \sqrt{42}

    có vecto chỉ phương là: \overrightarrow{u} = \left\lbrack
\overrightarrow{n};\overrightarrow{u_{2}} \right\rbrack = (4;1; -
5).

    Khi đó có phương trình là \left\{ \begin{matrix}
x = 1 + 4t \\
y = - 3 + t \\
z = - 5t \\
\end{matrix} \right..

    Gọi M \in \Delta^{'} \Rightarrow M(1
+ 4t; - 3 + t; - 5t), IM =
\sqrt{42}

    \Rightarrow (4t)^{2} + t^{2} + (5t)^{2} =
42 \Leftrightarrow t = \pm 1.

    Vớit = 1 \Rightarrow M(5; - 2; - 5)
\Rightarrow bc = 10.

    Với t = - 1 \Rightarrow M( - 3; - 4; -
5)(L)

    Vậy bc = 10

  • Câu 6: Vận dụng cao
    Tìm phương trình đường thẳng d

    Trong không gian với hệ tọa độ Oxyz, cho tam giác nhọn ABCH(2;2;1);K\left( -
\frac{8}{3};\frac{4}{3};\frac{8}{3} \right); O(0;0;0) lần lượt là hình chiếu vuông góc của A;B;C trên các cạnh BC;CA;AB. Đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC) có phương trình là:

    Hướng dẫn:

    Cách 1: I:OH = 3;OK = 4;HK = 5. Gọi I là trực tâm tam giác ABC

    Ta có: \left\{ \begin{matrix}x_{I} = \dfrac{4.2 + 5.0 + 3.\left( - \dfrac{8}{3} \right)}{12} = 0 \\y_{I} = \dfrac{3.\dfrac{4}{3} + 4.2 + 5.0}{12} = 1 \\z_{I} = \dfrac{3.\dfrac{8}{3} + 4.1 + 5.0}{12} = 1 \\\end{matrix} \right.\  \Rightarrow I(0;1;1)

    \overrightarrow{IH} = (2;1;0)
\Rightarrow (\Delta):\left\{ \begin{matrix}
x = 2t \\
y = 1 + t \\
z = 1 \\
\end{matrix} \right.

    A \in IH \Rightarrow A(2t;1 +
t;1)

    \overrightarrow{OA}.\overrightarrow{OI}
= 0 \Leftrightarrow t = - 2

    Suy ra \left\{ \begin{matrix}
A( - 4; - 1;1) \in d \\
\overrightarrow{u_{d}} = \left\lbrack
\overrightarrow{OI};\overrightarrow{OH} \right\rbrack = ( - 1;2; - 2) \\
\end{matrix} \right.\  \Rightarrow (d):\frac{x + 4}{1} = \frac{y + 1}{-
2} = \frac{z - 1}{2}

    Cách 2: VTPT của (ABC)\overrightarrow{n} = \left\lbrack
\overrightarrow{OH};\overrightarrow{OK} \right\rbrack = 4(1; -
2;2).

    \overrightarrow{OH}.\overrightarrow{OK} = 0
\Rightarrow \widehat{HOK} = 90^{0}.

    Gọi (\alpha) là mặt phẳng đi qua O;\overrightarrow{n_{\alpha}} =
\overrightarrow{OK} = \frac{4}{3}( - 2;1;2) \Rightarrow (\alpha): - 2x +
y + 2z = 0.

    Gọi (\beta) là mặt phẳng đi qua O;\overrightarrow{n_{\beta}} =
\overrightarrow{OH} = (2;2;1) \Rightarrow (\beta):2x + 2y + z =
0.

    Ta có d\left( A;(\alpha) \right) =
d\left( A;(\beta) \right), đối chiếu phương án A;B;C;D thấy A( - 4; - 1;1) thỏa mãn.

  • Câu 7: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Trong không gian với hệ tọa độ Oxyz, gọi d là giao tuyến của hai mặt phẳng (\alpha):x - 3y + z = 0(\beta):x + y - z + 4 = 0 = 0. Phương trình tham số của đường thẳng d

    Hướng dẫn:

    Cách 1:

    Đặt y = t, ta có \left\{ \begin{matrix}
x + z = 3t \\
x - z = - 4 - t \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = - 2 + t \\
z = 2 + 2t \\
\end{matrix} ight.

    Vậy phương trình tham số của d\left\{ \begin{matrix}
x = - 2 + t \\
y = t \\
z = 2 + 2t \\
\end{matrix} ight.

    Cách 2:

    Tìm một điểm thuộc d, bằng cách cho y = 0

    Ta có hệ \left\{ \begin{matrix}
x + z = 0 \\
x - z = - 4 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
x = - 2 \\
z = 2 \\
\end{matrix} ight.\  \Rightarrow M( - 2;0;2) \in d

    (\alpha) có vectơ pháp tuyến \overrightarrow{n_{\alpha}} = (1; -
3;1)

    (\beta) có vectơ pháp tuyến \overrightarrow{n_{\beta}} = (1;1; -
1)

    d có vectơ chỉ phương \overrightarrow {{a_d}}  = \left[ {\overrightarrow {{n_\alpha }} ;\overrightarrow {{n_\beta }} } ight] = \left( {2;2;4} ight)

    d đi qua điểm M(-2;0;2) và có vectơ chỉ phương là \overrightarrow {{a_d}}

    Vậy phương trình tham số của d là  \left\{ \begin{matrix}
x = - 2 + t \\
y = t \\
z = 2 + 2t \\
\end{matrix} ight. 

  • Câu 8: Vận dụng cao
    Mối quan hệ giữa đường thẳng và mp

    Cho 2 đường thẳng (d)\left\{ \begin{array}{l}x = 2 + 2t\\y =  - 1 + t\\z = 1\end{array} ight. và  (\triangle )\left\{ \begin{array}{l}x = 1\\y = 1 + t\\z = 3 - t\end{array} ight.

    Mặt phẳng (P) chứa (d) và song song với (\triangle ) có phương trình tổng quát :

    Hướng dẫn:

    Phương trình (d) cho A(2, - 1,1) \in (d) và vectơ chỉ phương của (d) là: \overrightarrow a  = (2,1,0)

    Phương trình (\triangle ) cho vectơ chỉ phương của (\triangle ) là : \overrightarrow b  = (0,1, - 1)

    Gọi M(x,y,z) là điểm bất kỳ thuộc mặt phẳng (P) thì :

    \begin{array}{l}\overrightarrow {AM}  = (x - 2,y + 1,z - 1);\,\,\,\,\left[ {\overrightarrow a ,\overrightarrow b } ight] = ( - 1,2,2)\\\left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AM}  = 0 \Leftrightarrow  - (x - 2) + 2(y + 1) + 2(z - 1) = 0\\ \Leftrightarrow x - 2y - 2z - 2 = 0\end{array}

    Câu hỏi này cho ta thấy mối quan hệ giữa đường thẳng và mặt phẳng, từ 2 đường thảng ta có thể viết PT được của 1 mp.

  • Câu 9: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;2; - 2),B(2;2; - 4). Giả sử I(a;b;c) là tâm đường tròn ngoại tiếp tam giác OAB. Tính T = a^{2} + b^{2} + c^{2}.

    Hướng dẫn:

    Ta có OA = AB = 2\sqrt{2} nên tam giác OAB cân tại OAB, vì vậy I thuộc đường trung tuyến qua A(d):\left\{ \begin{matrix}
x = 1 + t \\
y = 1 - t \\
z = - 2 \\
\end{matrix} \right.\  \Rightarrow I(1 + t;1 - t; - 2)

    IA = IO \Leftrightarrow t = 0
\Rightarrow I(2;0; - 2)

    Do đó T = 8

  • Câu 10: Thông hiểu
    Hai đường thẳng cắt nhau

    Tìm tọa độ giao điểm của hai đường thẳng:

    Hướng dẫn:

     Theo đề bài, ta biến đổi được (b) có dạng:

    \begin{array}{l}\left( b ight):\frac{{x - 2}}{2} = \frac{{y + 3}}{1} = \frac{{z - 1}}{2}\\ \Rightarrow \frac{{x - 2}}{2} = \frac{{y + 3}}{1} = \frac{{z - 1}}{2} = t\\ \Rightarrow \left\{ \begin{array}{l}x - 2 = 2t\\y + 3 = t\\z - 1 = 2t\end{array} ight.\\ \Leftrightarrow \left\{ \begin{array}{l}x = 2 + 2t\\y =  - 3 + t\\z = 1 + 2t\end{array} ight.\end{array}

    Thay x, y, z vào phương trình x+2y+z =9 , ta có:

    => Tọa độ giao điểm của (a) và (b): A (0, - 4, - 1)

  • Câu 11: Vận dụng
    PTTQ của (d) khi là giao tuyến

    Cho hình hộp chữ nhật ABCD.EFGHAB = a;\,\,AD = b;\,\,AE = c trong hệ trục Oxyz  sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với  Ox,Oy,Oz . Gọi  M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của giao tuyến (d) của mặt phẳng (MNP) và (xOy)

    Hướng dẫn:

    Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:

    M\left( {a,\frac{b}{2},0} ight);\,\,\,N\left( {\frac{a}{2},0,c} ight);\,\,\,P\left( {0,b,\frac{c}{2}} ight)

    Như vậy ta tính được vecto \overrightarrow {MN}\overrightarrow {MP} theo a, b, c.

    \overrightarrow {MN}  =  - \frac{1}{2}\left( {a,b, - 2c} ight);\,\,\,\overrightarrow {MP}  =  - \frac{1}{2}\left( {2a, - b, - c} ight)

    (MNP) có vecto pháp tuyến là tích có hướng của 2 vecto  \overrightarrow {MN}\overrightarrow {MP}

    =  > \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } ight] =  - 3\left( {bc,ca,ab} ight) = \overrightarrow {{n_P}}

    (MNP) có đi qua M và nhận \overrightarrow {{n_P}} làm 1 VTCP có phương trình là:

    \begin{array}{l}\left( {MNP} ight):bc\left( {x - a} ight) + ca\left( {y - \frac{b}{2}} ight) + ab.z = 0\\ =  > \left( {MNP} ight):2bcx + 2cay + 2abz - 3abc = 0\\ =  > (d):2bcx + 2cay + 2abz - 3abc = 0;\,\,\,z = 0\end{array}

  • Câu 12: Thông hiểu
    Xác định công thức đúng

    Cho hai đường thẳng chéo nhau \left(
D_{1} \right):\ \frac{x\  - \ x_{1}}{a_{1}} = \frac{y\  - \
y_{1}}{a_{2}} = \frac{z\  - \ z_{1}}{a_{3}}\left( D_{2} \right):\ \frac{x\  - \ x_{2}}{b_{1}}
= \frac{y\  - \ y_{2}}{b_{2}} = \frac{z\  - \ z_{2}}{b_{3}} \left( a_{1},a_{2},a_{3},b_{1},b_{2},b_{3}
\neq \ \ 0 \right); với \overrightarrow{a} = \left( a_{1},a_{2},a_{3}
\right); \overrightarrow{b} =
\left( b_{1},b_{2},b_{3} \right)\overrightarrow{AB} = \left( x_{2} - x_{1},y_{2} -
y_{1},z_{2} - z_{1} \right).Khoảng cách hay đoạn vuông góc chung giữa \left( D_{1} \right)\left( D_{2} \right) tính bởi công thức nào sau đây?

    Hướng dẫn:

    Công thức đúng cần tìm là: d\left(
D_{1},D_{2} \right) = \frac{\left| \left\lbrack
\overrightarrow{a},\overrightarrow{b} \right\rbrack.\overrightarrow{AB}
\right|}{\left| \left\lbrack \overrightarrow{a},\overrightarrow{b}
\right\rbrack \right|}

  • Câu 13: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyz, cho đường thẳng d:\frac{x + 1}{2} = \frac{y}{1} =
\frac{z - 2}{- 1} và hai điểm A( -
1;3;1),B(0;2; - 1). Gọi C(m;n;p) là điểm thuộc đường thẳng d sao cho diện tích tam giác ABC bằng 2\sqrt{2}. Giá trị của tổng m + n + p bằng:

    Hướng dẫn:

    Phương trình tham số của đường thẳng \left\{ \begin{matrix}
x = - 1 + 2t \\
y = t \\
x = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Vì C thuộc d nên tọa độ của C có dạng C(
- 1 + 2t;t;2 - t)

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1; - 2) \\
\overrightarrow{AC} = (2t;t - 3;1 - t) \\
\end{matrix} ight.

    Suy ra \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3t - 7; - 3t -
1;3t - 3)

    Diện tích tam giác ABC là

    S_{\Delta ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\frac{1}{2}\sqrt{(3t - 7)^{2} + ( - 3t - 1)^{2} + (3t -
3)^{2}}

    Theo bài ra ta có

    S_{\Delta ABC} = 2\sqrt{2}
\Leftrightarrow \frac{1}{2}\sqrt{27t^{2} - 54t + 59} =
2\sqrt{2}

    \Leftrightarrow 27t^{2} - 54t + 59 = 32
\Leftrightarrow (t - 1)^{2} = 0 \Leftrightarrow t = 1

    Với t = 1 thì C (1; 1; 1) nên m = 1;n =
1;p = 1

    Vậy giá trị của tổng m + n + p =
3

  • Câu 14: Vận dụng
    Phương trình tổng quát

    Viết phương trình tổng quát của đường thẳng (d) qua A (2, 3, 1)  cắt đường thẳng \left( {{d_1}} ight):\frac{{x - 2}}{3} = y + 3 = \frac{{z + 1}}{2} và vuông góc đường thẳng \left( {{d_2}} ight):x = t - 2;\,\,y = 4 - 2t;\,\,z = 3 - t,\,\,\,t \in R\,\,

    Hướng dẫn:

     Lấy điểm B\left( {2, - 3, - 1} ight) nằm trên đường thẳng (d1).

    Theo đề bài, ta có (d1) qua B\left( {2, - 3, - 1} ight) có vecto chỉ phương là \overrightarrow a  = \left( {3,1,2} ight)

    Ta có: \overrightarrow b  = \overrightarrow {AB}  = \left( {0, - 6, - 2} ight) =  - 2\left( {0,3,1} ight)

    Vecto pháp tuyến của mặt phẳng (P) chứa A và \left( {{d_1}} ight):\overrightarrow n  = \left[ {\overrightarrow a ,\overrightarrow b } ight] =  - \left( {5,3, - 9} ight)

    \Rightarrow \left( P ight):5\left( {x - 2} ight) + 3\left( {y - 3} ight) - 9\left( {z - 1} ight) = 0 \Leftrightarrow 5x + 3y - 9z - 10 = 0 (1)

    Xét tiếp đường thẳng có vecto chỉ phương của là vecto pháp tuyến của mặt phẳng qua A và vuông góc với . Ta có phương trình mp (Q) là

    \left( Q ight):\left( {x - 2} ight) - 2\left( {y - 3} ight) - \left( {z - 1} ight) = 0 \Leftrightarrow x - 2y - z + 5 = 0 (2)

    Từ (1) và (2) ta suy ra:

    \Rightarrow \left( d ight):5x + 3y - 9z - 10 = 0;x - 2y - z + 5 = 0

  • Câu 15: Vận dụng cao
    Xác định phương trình đường thẳng d

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x}{1} = \frac{y - 1}{2} = \frac{z -
2}{- 1} và mặt phẳng (P):x + 2y +
2z - 4 = 0. Phương trình đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với \Delta

    Hướng dẫn:

    Đường thẳng \Delta:\frac{x}{1} = \frac{y
- 1}{2} = \frac{z - 2}{- 1} có vectơ chỉ phương \overrightarrow{u} = (1;1; - 1), và mặt phẳng (P):x + 2y + 2z - 4 = 0 có vectơ pháp tuyến \overrightarrow{n} =
(1;1;2) suy ra \left\lbrack
\overrightarrow{u};\overrightarrow{n} \right\rbrack = (4; -
3;1).

    Gọi M = d \cap \Delta \Rightarrow M = (P)
\cap \Delta

    M \in \Delta \Rightarrow M(t;1 + t;2 -
t); M \in (P)

    \Rightarrow t + 2(1 + t) + 2(2 - t) - 4
= 0 \Rightarrow t = - 2

    Suy ra M = ( - 2; - 1;4).

    Đường thẳng đi qua M = ( - 2; - 1;4) và nhận \left\lbrack \overrightarrow{u};\overrightarrow{n}
\right\rbrack = (4; - 3;1) làm vectơ chỉ phương nên có phương trình là: d:\left\{ \begin{matrix}
x = - 2 - 4t \\
y = - 1 + 3t \\
z = 4 - t \\
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right).

  • Câu 16: Vận dụng
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0; −1; 2), B(1; 1; 2) và đường thẳng d:\frac{x + 1}{1} =
\frac{y}{1} = \frac{z - 1}{1}. Biết điểm M(a; b; c) thuộc đường thẳng d sao cho tam giác MAB có diện tích nhỏ nhất. Khi đó giá trị T = a + 2b + 3c bằng:

    Hướng dẫn:

    S_{MAB} =
\frac{1}{2}.AB.d(M,AB) nên SMAB nhỏ nhất khi d(M, AB) nhỏ nhất. Phương trình của AB:\left\{ \begin{matrix}
x = t \\
y = - 1 + 2t \\
z = 2 \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Dễ dàng kiểm tra AB và d chéo nhau.

    Gọi H là hình chiếu của M lên đường thẳng AB.

    Khi đó d(M, AB) = MH nhỏ nhất khi MH là đoạn vuông góc chung của d và AB.

    Ta có: M \in d \Rightarrow M( - 1 + s;s;1
+ s),H \in AB

    \Rightarrow H(t; - 1 +
2t;2)

    \Rightarrow \overrightarrow{MH} = (t - s
+ 1;2t - s - 1;1 - s)

    Vectơ chỉ phương của d và AB theo thứ tự là \overrightarrow{u} = (1;1;1),\overrightarrow{v} =
(1;2;0)

    \left\{ \begin{matrix}\overrightarrow{MH}\bot\overrightarrow{u} \\\overrightarrow{MH}\bot\overrightarrow{v} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}1(t - s + 1) + 1(2t - s - 1) + 1(1 - s) = 0\  \\1(t - s + 1) + 2(2t - s - 1) + 0(1 - s) = 0 \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}t = 1 \\s = \dfrac{4}{3} \\\end{matrix} ight.

    Vậy M\left(
\frac{1}{3};\frac{4}{3};\frac{7}{3} ight) \Rightarrow T =
10

  • Câu 17: Vận dụng
    Viết phương trình đường vuông góc chung

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{1} = \frac{y + 2}{1} = \frac{z- 3}{- 1},d_{2}:\frac{x}{1} = \frac{y - 1}{2} = \frac{z - 6}{3} chéo nhau. Viết phương trình đường vuông góc chung của d_{1},d_{2}.

    Hướng dẫn:

    Đường thẳng d_{1},d_{2} lần lượt có vectơ chỉ phương là \overrightarrow{u_{1}} = (1;1; -
1),\overrightarrow{u_{2}} = (1;2;3)

    Giả sử ∆ giao với d_{1},d_{2} lần lượt tại \left\{ \begin{matrix}
A(1 + s; - 2 + s;3 - s) \\
B(t;1 + 2t;6 + 3t) \\
\end{matrix} ight., khi đó ta có \overrightarrow{AB} = ( - 1 - s + t;3 - s + 2t;3 +
s + 3t)

    Do ∆ là đường vuông góc chung, suy ra:

    \left\{ \begin{matrix}
\overrightarrow{u_{1}}.\overrightarrow{AB} = 0 \\
\overrightarrow{u_{2}.}\overrightarrow{AB} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
1( - 1 - s + t) + 1(3 - s + 2t) - 1(3 + s + 3t) = 0 \\
1( - 1 - s + t) + 2(3 - s + 2t) + 3(3 + s + 3t) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}- 3s = 1 \\14t = - 14 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}s = - \dfrac{1}{3} \\t = - 1 \\\end{matrix} ight.

    Đường vuông góc chung của d_{1},d_{2} nhận \overrightarrow{AB} = \left( -
\frac{5}{3};\frac{4}{3}; - \frac{1}{3} ight) làm VTCP và đi qua điểm B( - 1; - 1;3)

    Vậy ta có phương trình đường thẳng: \frac{x + 1}{5} = \frac{y + 1}{- 1} = \frac{z -
3}{1}

  • Câu 18: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyz, cho hai điểm A (2; 1; 1), B (0; 3; −1). Điểm M nằm trên mặt phẳng (P) : 2x + y + z − 4 = 0 sao cho MA + MB nhỏ nhất là:

    Hướng dẫn:

    Thay tọa độ của A, B vào vế trái của phương trình mặt phẳng (P) : 2x + y + z − 4 = 0 ta được: (2.2 + 1 + 1 − 4) (2.0 + 3 − 1 − 4) = −4 < 0

    Suy ra A, B nằm về hai phía của mặt phẳng (P).

    Vậy MA + MB ≥ AB dấu “ = ” xảy ra khi M = AB ∩ (P).

    Ta có \overrightarrow{AB} = ( - 2;2; -
2) chọn vtcp của đường thẳng AB: \overrightarrow{u} = (1; - 1;1).

    Vậy phương trình đường thẳng AB: \left\{
\begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Tọa độ (x; y; z) của M là nghiệm hệ:

    \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 1 + t \\
2x + y + z - 4 = 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 1 + t \\
2(2 + t) + (1 - t) + (1 + t) - 4 = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = 0 \\
t = - 1 \\
\end{matrix} ight.\  \Rightarrow M(1;2;0)

  • Câu 19: Vận dụng cao
    Tính tổng C

    Trong không gian tọa độ Oxyz cho các điểm A(1;5;0),B(3;3;6) và đường thẳng \Delta:\frac{x + 1}{2} = \frac{y -
1}{- 1} = \frac{z}{2}. Gọi M(a;b;c)
\in \Delta sao cho chu vi tam giác MAB đạt giá trị nhỏ nhất. Tính tổng C = MA + MB + AB?

    Hướng dẫn:

    Ta cóM(a;b;c) \in \Delta \Rightarrow M(2t
- 1; - t + 1;2t).

    Từ đó ta có: C = MA + MB + AB =
\sqrt{9t^{2} + 20} + \sqrt{9t^{2} - 36t + 56} + 2\sqrt{11}.

    C(t) = \sqrt{9t^{2} + 20} + \sqrt{9t^{2}
- 36t + 56} + 2\sqrt{11}

    \Rightarrow C'(t) =
\frac{9}{\sqrt{9t^{2} + 20}} + \frac{9t - 18}{\sqrt{9t^{2} - 36t + 56}}
= 0

    \Rightarrow t = 1

    Lập BBT ta có: \min C(t) = C(1)
\Rightarrow t = 1 \Rightarrow M(1;0;2).

    Khi đó: C = MA + MB + AB = T

    Đề xuất: Đánh giá f(t) = \sqrt{9t^{2} +
20} + \sqrt{9t^{2} - 36t + 56} như sau

    f(t) = \sqrt{9t^{2} + 20} + \sqrt{9t^{2}
- 36t + 56}

    = \sqrt{9t^{2} + 20} + \sqrt{9(t -
2)^{2} + 20}

    Trong hệ trục Oxy, chọn \overrightarrow{u} = \left( 2t;2\sqrt{5}
\right),\overrightarrow{v} = \left( - 3(t - 2);2\sqrt{5}
\right), \overrightarrow{u} +
\overrightarrow{v} = \left( 6;4\sqrt{5} \right). Khi đó
    f(t) = \left| \overrightarrow{u} \right| +
\left| \overrightarrow{v} \right| \geq \left| \overrightarrow{u} +
\overrightarrow{v} \right| = 2\sqrt{14}.

    Đẳng thức xảy ra khi và chi khi \overrightarrow{u};\overrightarrow{v} cùng hướng\Leftrightarrow \frac{3t}{- 3(t -
2)} = \frac{2\sqrt{5}}{2\sqrt{5}} \Leftrightarrow t = 1 \Rightarrow
M(1;0;2).

  • Câu 20: Vận dụng cao
    Xác định số đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \left( d_{1} \right):\frac{x - 1}{1} = \frac{y +
1}{- 2} = \frac{z + 1}{1}, \left(
d_{2} \right):\frac{x}{1} = \frac{y}{- 2} = \frac{z - 1}{1}, \left( d_{3} \right):\frac{x - 1}{2} =
\frac{y + 1}{1} = \frac{z - 1}{1}, \left( d_{4} \right):\frac{x}{1} = \frac{y - 1}{-
1} = \frac{z}{- 1}. Số đường thẳng trong không gian cắt cả đường thẳng trên là

    Hướng dẫn:

    \left( d_{1} \right) đi qua điểm M_{1}(3; - 1; - 1) và có VTCP \overrightarrow{u_{1}} = (1; - 2;1).

    \left( d_{2} \right) đi qua điểm M_{2}(0;0;1) và có VTCP \overrightarrow{u_{2}} = (1; - 2;1).

    \overrightarrow{M_{1}M_{2}} = ( -
3;1;2).

    \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} \right\rbrack =
\overrightarrow{0}\left\lbrack
\overrightarrow{u_{1}};\overrightarrow{M_{1}M_{2}} \right\rbrack = ( -
5; - 5; - 5) \neq \overrightarrow{0} nên \left( d_{1} \right) song song với \left( d_{2} \right).

    Gọi (P) là mặt phẳng chứa hai đường thẳng \left( d_{1} \right)\left( d_{2} \right).

    (P) đi qua điểm M_{2}(0;0;1) và có \overrightarrow{n_{P}} = \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{M_{1}M_{2}} \right\rbrack = ( -
5; - 5; - 5) hay \overrightarrow{n}
= (1;1;1) có phương trình 1(x - 1)
+ 1(y - 0) + 1(z - 1) = 0 \Leftrightarrow x + y + z - 1 =
0.

    Gọi A = \left( d_{3} \right) \cap
(P). Xét hệ phương trình \left\{
\begin{matrix}
x = 1 + 2t \\
y = - 1 + t \\
z = 1 + t \\
x + y + z - 1 = 0 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 1 \\
z = 1 \\
t = 0 \\
\end{matrix} \right.\  \Rightarrow A(1; - 1;1).

    Gọi B = \left( d_{4} \right) \cap
(P). Xét hệ phương trình \left\{
\begin{matrix}
x = t' \\
y = 1 - t' \\
z = - t' \\
x + y + z - 1 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 1 \\
z = 0 \\
t' = 0 \\
\end{matrix} \right.\  \Rightarrow B(0;1;0).

    \overrightarrow{BA} = (1; -
2;1) cùng phương với \overrightarrow{u_{1}} nên (d) không thỏa mãn.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo