Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình đường phẳng (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Viết phương trình đường phân giác

    Trong không gian Oxyz, cho hai đường thẳng cắt nhau \Delta_{1}:\frac{x +1}{1} = \frac{y - 2}{2} = \frac{z + 1}{3},\Delta_{2}:\frac{x + 1}{1} =\frac{y - 2}{2} = \frac{z + 1}{- 3}. Trong mặt phẳng \left( \Delta_{1};\Delta_{2} ight), hãy viết phương trình đường phân giác d của góc nhọn tạo bởi \Delta_{1};\Delta_{2}

    Hướng dẫn:

    Hai đường thẳng đã cho cùng đi qua điểm I(−1; 2; −1) và có các vectơ chỉ phương tương ứng là \overrightarrow{u_{1}} =
(1;2;3),\overrightarrow{u_{2}} = (1;2; - 3)

    Ta có \overrightarrow{u_{1}}.\overrightarrow{u_{2}} = -
4 < 0, suy ra góc giữa hai vectơ \overrightarrow{u_{1}}\overrightarrow{u_{2}} là góc tù.

    Lại có \left| \overrightarrow{u_{1}}
ight| = \left| \overrightarrow{u_{2}} ight|

    Kết hợp hai điều này, ta suy ra d có một vectơ chỉ phương là \overrightarrow{u} = \overrightarrow{u_{1}} -
\overrightarrow{u_{2}} = (0;0;6) = 6(0;0;1)

    Tóm lại, đường thẳng cần tìm đi qua điểm I(−1; 2; −1) và có một vectơ chỉ phương là \overrightarrow{u} =
(0;0;1)

    Vậy phương trình đường thẳng d là: \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 2: Thông hiểu
    Tính góc giữa hai mặt phẳng

    Trong không gian với hệ toạ độ Oxyz, cho (P):x - 2y + 2z - 5 = 0,A( - 3;0;1),B(1; -
1;3). Viết phương trình đường thẳng d qua A, song song với (P) sao cho khoảng cách từ B đến d là lớn nhất.

    Hướng dẫn:

    Hình vẽ minh họa

    ( - 3 - 2\ .0 + 2\ .1 - 5).\left( 1 -
2.( - 1) + 2.3 - 5 ight) < 0 nên hai điểm A, B khác phía so với (P).

    Gọi H là hình chiếu của B lên d.

    Ta có: BH ≤ BA nên khoảng cách BH từ B đến d lớn nhất khi và chỉ khi H trùng A.

    Khi đó AB ⊥ d.

    VTPT của (P) là \overrightarrow{n} = (1;
- 2;2),\overrightarrow{AB} = (4; - 1;2)

    VTCP của d là \overrightarrow{u} =
\left\lbrack \overrightarrow{n};\overrightarrow{AB} ightbrack = ( -
2;6;7)

    Mà d qua A(−3; 0; 1) nên phương trình đường thẳng d là: \frac{x + 3}{2} = \frac{y}{- 6} = \frac{z - 1}{-
7}

  • Câu 3: Vận dụng cao
    Viết phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \left( d_{1} \right):\left\{ \begin{matrix}
x = t \\
y = 4 - t \\
z = - 1 + 2t \\
\end{matrix} \right., \left(
d_{2} \right):\frac{x}{2} = \frac{y - 2}{1} = \frac{z}{1}, \left( d_{3} \right):\frac{x + 1}{5} =
\frac{y - 1}{2} = \frac{z + 1}{1}. Viết phương trình đường thẳng \left( d_{3} \right):\frac{x + 1}{5} =
\frac{y - 1}{2} = \frac{z + 1}{1} cắt ba đường thẳng \left( d_{1} \right);\left( d_{2} \right);\left(
d_{3} \right) lần lượt tại các điểm A;B;C sao choAB = BC.

    Hướng dẫn:

    Ta có: A \in \left( d_{1} \right)
\Rightarrow A(a;4 - a; - 1 + 2a).

    B \in \left( d_{2} \right) \Rightarrow
B(2b;2 + b;b).

    C \in \left( d_{3} \right) \Rightarrow C(
- 1 + 5c;1 + 2c; - 1 + c).

    B là trung điểm của AC nên \left\{ \begin{matrix}2b = \dfrac{a - 1 + 5c}{2} \\2 + b = \dfrac{4 - a + 1 + 2c}{2} \\b = \dfrac{- 1 + 2a - 1 + c}{2} \\\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
a - 4b + 5c = 1 \\
- a - 2b + 2c = - 1 \\
2a - 2b + c = 2 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 0 \\
\end{matrix} \right..

    \Rightarrow
A(1;3;1),B(0;2;0).

    (d) đi qua điểm B(0;2;0) và có VTCP \overrightarrow{BA} = (1;1;1) có phương trình \frac{x}{1} = \frac{y - 2}{1} =
\frac{z}{1}.

  • Câu 4: Thông hiểu
    Phương trình đường trung tuyến

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tham số của trung tuyến AM ?

    Hướng dẫn:

     Vì AM là trung tuyến nên M là trung điểm của BC. Gọi M\left( {{x_M},{y_M},{z_M}} ight)

    Từ tọa độ của B và C, ta tính được tọa độ của M là nghiệm của hệ:

    \begin{array}{l}\left\{ \begin{array}{l}{x_M} = \frac{{2 + 3}}{2}\\{y_M} = \frac{{ - 1 - 2}}{2}\\{z_M} = \frac{{4 + 5}}{2}\end{array} ight.\\ \Rightarrow M\left( {\frac{5}{2}, - \frac{3}{2},\frac{9}{2}} ight)\end{array}

    Ta có 1 vecto chỉ phương của (AM) là \overrightarrow {AM}  = \left( {\frac{3}{2}, - \frac{7}{2},\frac{{15}}{2}} ight) = \frac{1}{2}\left( {3, - 7,15} ight)

    (AM) là đường thẳng đi qua A (1,2,-3) và nhận vecto (3,-7,15) làm 1 VTCP có phương trình là:

    \begin{array}{l}\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 - 7t\\z = 15t - 3\end{array} ight.\\(t \in R)\end{array}  

  • Câu 5: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, gọi d đi qua điểm A(1; - 1;2), song song với (P):2x - y - z + 3 = 0, đồng thời tạo với đường thẳng \Delta:\frac{x + 1}{1} = \frac{y
- 1}{- 2} = \frac{z}{2} một góc lớn nhất. Phương trình đường thẳng d là.

    Hướng dẫn:

    \Delta có vectơ chỉ phương \overrightarrow{a_{\Delta}} = (1; -
2;2)

    d có vectơ chỉ phương \overrightarrow{a_{d}} = (a;b;c)

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (2; - 1; -
1)

    d//(P) nên \overrightarrow{a_{d}}\bot\overrightarrow{n_{P}}
\Leftrightarrow \overrightarrow{a_{d}}.\overrightarrow{n_{P}} = 0
\Leftrightarrow 2a - b - c = 0 \Leftrightarrow c = 2a - b

    \cos(\Delta,d) = \frac{|5a -
4b|}{3\sqrt{5a^{2} - 4ab + 2b^{2}}} = \frac{1}{3}\sqrt{\frac{(5a -
4b)^{2}}{5a^{2} - 4ab + 2b^{2}}}

    Đặt t = \frac{a}{b}, ta có: \cos(\Delta,d) = \frac{1}{3}\sqrt{\frac{(5t
- 4)^{2}}{5t^{2} - 4t + 2}}

    Xét hàm số f(t) = \frac{(5t -
4)^{2}}{5t^{2} - 4t + 2}, ta suy ra được: \max f(t) = f\left( - \frac{1}{5} ight) =
\frac{5\sqrt{3}}{3}

    Do đó: \max\left\lbrack \cos(\Delta,d)
ightbrack = \sqrt{\frac{5\sqrt{3}}{27}} \Leftrightarrow t = -
\frac{1}{5} \Rightarrow \frac{a}{b} = - \frac{1}{5}

    Chọn a = 1 \Rightarrow b = - 5,c =
7

    Vậy phương trình đường thẳng d\frac{x - 1}{1} = \frac{y + 1}{- 5} =
\frac{z - 2}{7}

  • Câu 6: Vận dụng cao
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(3; - 1;0) và đường thẳng : d:\frac{x - 2}{- 1} = \frac{y + 1}{2} =
\frac{z - 1}{1}. Mặt phẳng (\alpha) chứa d sao cho khoảng cách từ A đến (\alpha) lớn nhất có phương trình là:

    Hướng dẫn:

    Gọi H là hình chiếu vuông góc của A lên (\alpha), K là hình chiếu vuông góc của A lên d.

    Ta có: d(A;d) = AK cố định và d\left( A;(\alpha) \right) = AH \leq AK
\Rightarrow d\left( A;(\alpha) \right)_{MAX} bằng AK khi H
\equiv K.

    d:\frac{x - 2}{- 1} = \frac{y + 1}{2} =
\frac{z - 1}{1} qua M(2; -
1;1), có VTCP \overrightarrow{u_{d}} = ( - 1;2;1).

    Gọi (P) là mặt phẳng qua A và chứa có VTPT\overrightarrow{n_{P}} = \left\lbrack
\overrightarrow{u_{d}},\overrightarrow{AM} \right\rbrack =
(2;0;2).

    Mặt phẳng (\alpha) có một VTPT là \overrightarrow{n_{\alpha}} =
\left\lbrack \overrightarrow{n_{P}},\overrightarrow{u_{d}} \right\rbrack
= ( - 4; - 4;4) = - 4(1;1; - 1)(\alpha) qua M(2; - 1;1) có phương trình: 1(x - 2) + 1(y + 1) - 1(z - 1) = 0 \Leftrightarrow
x + y - z = 0.

  • Câu 7: Vận dụng
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng d:\frac{x}{1} = \frac{y}{1} = \frac{z + 1}{-2},\Delta_{1}:\frac{x - 3}{2} = \frac{y}{1} = \frac{z -1}{1},\Delta_{2}:\frac{x - 1}{1} = \frac{y - 2}{2} =\frac{z}{1}. Đường thẳng \Delta vuông góc với d đồng thời cắt \Delta_{1};\Delta_{2} tương ứng tại H;K sao cho độ dài HK nhỏ nhất. Biết rằng \Delta có một vectơ chỉ phương \overrightarrow{u} = (h;\ k;\ 1). Giá trị h - k bằng?

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
H \in \Delta_{1} \Leftrightarrow H(3 + 2t;t;1 + t) \\
K \in \Delta_{2} \Leftrightarrow K(1 + m;2 + 2m;m) \\
\end{matrix} ight.

    Suy ra \overrightarrow{HK} = (m - 2t -
2;2m - t + 2;m - t - 1)

    Đường thẳng d có một VTCP là \overrightarrow{u_{d}} = (1;1; - 2)

    \Delta\bot d \Rightarrow
\overrightarrow{u_{d}}.\overrightarrow{HK} = 0

    \Leftrightarrow \ m - t + 2 = 0
\Leftrightarrow m = t - 2

    \Rightarrow \overrightarrow{HK} = ( - t
- 4;t - 2; - 3)

    Ta có: HK^{2} = ( - t - 4)^{2} + (t -
2)^{2} + ( - 3)^{2} = 2(t + 1)^{2} + 27 \geq 27;\forall t\mathbb{\in
R}

    \Rightarrow \min HK = \sqrt{27} khi và chỉ khi t = - 1

    \Rightarrow \overrightarrow{HK} = ( - 3;
- 3; - 3) \Rightarrow \overrightarrow{u} = (1;1;1)

    \Rightarrow h = k = 1 \Rightarrow h - k
= 0

  • Câu 8: Vận dụng
    Định phương trình đường thẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x + 2}{1} = \frac{y - 2}{1} =
\frac{z}{- 1} và mặt phẳng (P):x +
2y - 3z + 4 = 0. Phương trình tham số của đường thẳng d nằm trong (P), cắt và vuông góc đường thẳng \Delta là:

    Hướng dẫn:

    Gọi M = \Delta \cap (P)

    M \in \Delta \Rightarrow M( - 2 + t;2 +
t; - t)

    M \in (P) \Rightarrow t = - 1
\Rightarrow M( - 3;1;1)

    (P) có vectơ pháp tuyến \overrightarrow{n_{P}} = (1;2; - 3)

    \Delta có vectơ chỉ phương \overrightarrow{a_{\Delta}} = (1;1; -
1)

    \left. \ \begin{matrix}
d \subset (P) \Rightarrow
\overrightarrow{a_{d}}\bot\overrightarrow{n_{P}} \\
d\bot\Delta \Rightarrow
\overrightarrow{a_{d}}\bot\overrightarrow{a_{\Delta}} \\
\end{matrix} ight\} \Rightarrow \overrightarrow{a_{d}} = \left\lbrack
\overrightarrow{n_{P}},\overrightarrow{a_{\Delta}} ightbrack = (1; -
2; - 1)

    d đi qua điểm M( - 3;1;1) và có vectơ chỉ phương là \overrightarrow{a_{d}}

    Vậy phương trình tham số của d\left\{ \begin{matrix}
x = - 3 + t \\
y = 1 - 2t \\
z = 1 - t \\
\end{matrix} ight.\ .

  • Câu 9: Vận dụng cao
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho A(1; −1; 2), B(−2; 0; 3), C(0; 1; −2). Điểm M(a; b; c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S = \overrightarrow{MA}.\overrightarrow{MB} +
2\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó, T = 12a + 12b + c có giá trị là:

    Hướng dẫn:

    Chọn I sao cho 4\overrightarrow{IA} + 3\overrightarrow{IB} +
5\overrightarrow{IC} = \overrightarrow{0}

    Ta tính được I\left( -
\frac{1}{6};\frac{1}{12};\frac{7}{12} ight)

    Ta thấy

    \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = \left( \overrightarrow{MI} +
\overrightarrow{IA} ight).\left( \overrightarrow{MI} +
\overrightarrow{IB} ight) \\
\overrightarrow{MB}.\overrightarrow{MC} = \left( \overrightarrow{MI} +
\overrightarrow{IB} ight).\left( \overrightarrow{MI} +
\overrightarrow{IC} ight) \\
\overrightarrow{MC}.\overrightarrow{MA} = \left( \overrightarrow{MI} +
\overrightarrow{IC} ight).\left( \overrightarrow{MI} +
\overrightarrow{IA} ight) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MA}.\overrightarrow{MB} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IA} + \overrightarrow{IB}
ight) + \overrightarrow{IA}.\overrightarrow{IB} \\
\overrightarrow{MB}.\overrightarrow{MC} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IB} + \overrightarrow{IC}
ight) + \overrightarrow{IB}.\overrightarrow{IC} \\
\overrightarrow{MC}.\overrightarrow{MA} = {\overrightarrow{MI}}^{2} +
\overrightarrow{MI}\left( \overrightarrow{IC} + \overrightarrow{IA}
ight) + \overrightarrow{IC}.\overrightarrow{IA} \\
\end{matrix} ight.

    S = 6{\overrightarrow{MI}}^{2} +
\overrightarrow{IA}.\overrightarrow{IB} +
2\overrightarrow{IB}.\overrightarrow{IC} +
3\overrightarrow{IC}.\overrightarrow{IA} + \overrightarrow{MI}\left(
4\overrightarrow{IA} + 3\overrightarrow{IB} + 5\overrightarrow{IC}
ight)

    \Rightarrow S = 6MI^{2} +\underset{CONST}{\overset{4\overrightarrow{IA} + 3\overrightarrow{IB} +5\overrightarrow{IC}}{︸}}

    Do vậy, biểu thức S đạt giá trị nhỏ nhất khi MI nhỏ nhất.

    Vậy M là hình chiếu vuông góc của I\left(
\frac{- 1}{6};\frac{1}{12};\frac{7}{12} ight) lên (Oxy) \Rightarrow M\left( \frac{- 1}{6};\frac{1}{12};0
ight)

    Ta xác định được \left\{ \begin{matrix}a = - \dfrac{1}{6} \\b = \dfrac{1}{12} \\c = 0 \\\end{matrix} ight.\  \Rightarrow T = - 1

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho đường thẳng (d):\frac{x - 1}{2} = \frac{y + 2}{3}
= \frac{z - 4}{1} và đường thẳng (\Delta):\frac{x + 1}{2} = \frac{y}{- 1} = \frac{z
+ 2}{- 1}.

    a) Đường thẳng (d) qua điểm M(1; - 2;4) và có một vectơ chỉ phương \overrightarrow u  = \left( {2;3;1} \right).Đúng||Sai

    b) Đường thẳng qua điểm N( - 5;2; - 2) và có một vectơ chỉ phương  \overrightarrow{v} = (2; - 1; -
1) .Sai||Đúng

    c) Đường thẳng (d) có phương trình tham số \left\{ \begin{matrix}
x = 1 + 2t \\
y = - 2 + 3t \\
z = 4 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và đường thẳng \Delta có phương trình tham số \left\{ \begin{matrix}
x = - 1 + 2t' \\
y = - t' \\
z = - 2 - t'
\end{matrix} \right.\ ;\left( t'\mathbb{\in R} \right).Đúng||Sai

    d) Đường thẳng (d) và đường thẳng \Delta vuông góc và cắt nhau.Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho đường thẳng (d):\frac{x - 1}{2} = \frac{y + 2}{3}
= \frac{z - 4}{1} và đường thẳng (\Delta):\frac{x + 1}{2} = \frac{y}{- 1} = \frac{z
+ 2}{- 1}.

    a) Đường thẳng (d) qua điểm M(1; - 2;4) và có một vectơ chỉ phương \overrightarrow u  = \left( {2;3;1} \right).Đúng||Sai

    b) Đường thẳng qua điểm N( - 5;2; - 2) và có một vectơ chỉ phương  \overrightarrow{v} = (2; - 1; -
1) .Sai||Đúng

    c) Đường thẳng (d) có phương trình tham số \left\{ \begin{matrix}
x = 1 + 2t \\
y = - 2 + 3t \\
z = 4 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right) và đường thẳng \Delta có phương trình tham số \left\{ \begin{matrix}
x = - 1 + 2t' \\
y = - t' \\
z = - 2 - t'
\end{matrix} \right.\ ;\left( t'\mathbb{\in R} \right).Đúng||Sai

    d) Đường thẳng (d) và đường thẳng \Delta vuông góc và cắt nhau.Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    Phương án a) đúng vì dựa vào phương trình chính tắc ta thấy đường thẳng (d) qua điểm M(1; - 2;4) và có một vectơ chỉ phương \overrightarrow{u} = (2;3;1).

    Phương án b) sai vì: \frac{- 5 + 1}{2} =
\frac{2}{- 1} \neq \frac{- 2 + 2}{- 1} do đó điểm N không thuộc đường thẳng \Delta.

    Phương án c) đúng vì từ phương trình d:\frac{x - 1}{2} = \frac{y + 2}{3} = \frac{z -
4}{1} = t suy ra \left\{
\begin{matrix}
x = 1 + 2t \\
y = - 2 + 3t \\
z = 4 + t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Và từ phương trình \Delta:\frac{x + 1}{2}
= \frac{y}{- 1} = \frac{z + 2}{- 1} = t' suy ra \left\{ \begin{matrix}
x = - 1 + 2t' \\
y = - t' \\
z = - 2 - t'
\end{matrix} \right.\ ;\left( t'\mathbb{\in R} \right)

    Phương án d) sai vì

    Đường thẳng (d) có một vectơ chỉ phương \overrightarrow{u} = (2;3;1) và đường thẳng \Delta có một vectơ chỉ phương \overrightarrow{v} = (2; - 1; -
1)

    Ta có \overrightarrow{u}.\overrightarrow{v} = 2.2 + 3.(
- 1) + 1.( - 1) = 0 do đó d\bot\Delta.

    Gọi A là giao điểm (nếu có) của d và \Delta, tọa độ A là nghiệm hệ phương trình \left\{ \begin{matrix}
1 + 2t = - 1 + 2t' \\
- 2 + 3t = - t' \\
4 + t = - 2 - t'
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
2t - 2t' = - 2\ \ \ (1) \\
3t + t' = 2\ \ \ (2) \\
t + t' = - 6\ \ \ (3)
\end{matrix} \right.

    (1);(2) \Leftrightarrow \left\{
\begin{matrix}
t = \frac{1}{4} \\
t' = \frac{5}{4}
\end{matrix} \right.

    Khi đó t + t' = \frac{3}{2} không thỏa mãn (3). Vậy hai đường thẳng (d)\Delta vuông góc nhưng không cắt nhau.

  • Câu 11: Vận dụng cao
    Xác định vectơ pháp tuyến của mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\frac{x - 1}{- 2} = \frac{y + 2}{1} =
\frac{z}{2} và điểm A(1;4;2). Gọi (\alpha) là mặt phẳng chứa d sao cho khoảng cách từ A đến (\alpha) lớn nhất. Mặt phẳng (\alpha) có một véctơ pháp tuyến là

    Hướng dẫn:

    Ta có d \subset (\alpha) \Rightarrow
d\left( A;(\alpha) \right) \leq d(A;d) \Rightarrow d\left( A;(\alpha)
\right)_{\max} = d(A;d)

    Khi hình chiếu của A trên d cũng là hình chiếu của A trên (\alpha).

    Gọi H là hình chiếu vuông góc của A trên d.

    Ta có H \in d:\frac{x - 1}{- 2} = \frac{y
+ 2}{1} = \frac{z}{2} \Rightarrow H(1 - 2t; - 2 + t;2t).

    AH\bot d \Rightarrow
\overrightarrow{AH}.\overrightarrow{u_{d}} = 0. (1) (với \overrightarrow{u_{d}} là một véctơ chỉ phương của d)

    Ta có \left\{ \begin{matrix}
\overrightarrow{AH} = ( - 2t;t - 6;2t - 2) \\
\overrightarrow{u_{d}} = ( - 2;1;2) \\
\end{matrix} \right..

    Từ (1) \Rightarrow 4t + t - 6 + 2(2t - 2)
= 0 \Leftrightarrow 9t - 10 = 0
\Leftrightarrow t = \frac{10}{9} \Rightarrow H\left( -
\frac{11}{9};\frac{- 8}{9};\frac{20}{9} \right).

    Vậy mặt phẳng (\alpha) có một véctơ pháp tuyến là \overrightarrow{AH} =
\left( \frac{- 20}{7};\frac{- 44}{7};\frac{2}{7} \right)

    \Rightarrow
\overrightarrow{n_{\alpha}}(10;22; - 1) cũng là một véc tơ pháp tuyến của mặt phẳng (\alpha).

  • Câu 12: Vận dụng
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 1;2),B(3; - 4; - 2) và đường thẳng d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm I(a;b;c) thuộc d là điểm thỏa mãn IA + IB đạt giá trị nhỏ nhất. Khi đó T = a + b + c bằng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{u} = (4;
- 6; - 8)

    A = (1; - 1;2),B = (3; - 4; - 2)
\Rightarrow \overrightarrow{AB} = (2; - 3; - 4)

    Ta có \overrightarrow{AB} = (2; - 3; -
4) cùng phương với \overrightarrow{u} = (4; - 6; - 8)

    A(1; - 1;2) otin d \Rightarrow
\overrightarrow{AB}//d \Rightarrow A,B,d đồng phẳng.

    Xét mặt phẳng chứa ABd. Gọi A^{'} là điểm đối xứng của A qua d_{1}

    (\alpha) là mặt phẳng qua A, vuông góc với d.

    Khi đó, giao điểm H của d với (\alpha) là trung điểm của AA^{'}.

    (\alpha) có 1 vectơ pháp tuyến \overrightarrow{n} = (2; - 3; - 4) đi qua A(1; - 1;2) có phương trình:

    2(x - 1) - 3(y + 1) - 4(z - 2) =
0

    \Leftrightarrow 2x - 3y - 4z + 3 =
0

    H \in d:\left\{ \begin{matrix}
x = 2 + 4t \\
y = - 6t \\
z = - 1 - 8t \\
\end{matrix} \Rightarrow ight. Giả sử H(2 + 4t; - 6t; - 1 - 8t).

    H \in (\alpha) \Rightarrow 2(2 + 4t) -
3( - 6t) - 4( - 1 - 8t) + 3 = 0

    \Leftrightarrow 58t + 11 = 0
\Leftrightarrow t = - \frac{11}{58} \Rightarrow H\left(
\frac{36}{29};\frac{33}{29};\frac{15}{29} ight)

    Ta có IA + IB = IA^{'} + IB^{'}
\geq A^{'}B \Rightarrow min(IA + IB) = A^{'}B khi và chỉ khi I trùng với I_{0} là giao điểm của A^{'}Bd.

    \Rightarrow \overrightarrow{HI_{0}} =\frac{1}{2}\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}x_{I_{0}} - \dfrac{36}{29} = \dfrac{1}{2}.2 \\y_{I_{0}} - \dfrac{33}{29} = \dfrac{1}{2}.( - 3) \\z_{I_{0}} - \dfrac{15}{29} = \dfrac{1}{2}.( - 4) \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{I_{0}} = \dfrac{65}{29} \\y_{I_{0}} = - \dfrac{21}{58} \\z_{I_{0}} = - \dfrac{43}{29} \\\end{matrix} ight.\  ight.\\Rightarrow I_{0}\left( \dfrac{65}{29}; - \dfrac{21}{58}; - \frac{43}{29}ight)

    \Rightarrow a + b + c = \frac{65}{29} -
\frac{21}{58} - \frac{43}{29} = - \frac{21}{58}.

  • Câu 13: Vận dụng
    Viết phương trình đường thẳng d

    Trong không gian Oxyz, cho đường thẳng \Delta:\frac{x + 1}{2} = \frac{y}{3} =
\frac{z + 1}{- 1} và hai điểm A(1;\
2; - 1),B(3; - 1; - 5). Gọi d là đường thẳng đi qua điểm A và cắt đường thẳng \Delta sao cho khoảng cách từ điểm B đến đường thẳng d là nhỏ nhất. Phương trình đường thẳng d là:

    Hướng dẫn:

    Gọi I = \Delta \cap d. Khi đó I( - 1 + 2t;3t; - 1 - t)

    Ta có \overrightarrow{AB} = (2; - 3; -
4),\overrightarrow{AI} = (2t - 2;3t - 2; - t)

    \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AI} ightbrack = (8 - 15t;6t -
8;10 - 12t)

    Khoảng cách từ B đến d được tính như sau:

    d(B;d) = \frac{\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AI} ightbrack ight|}{\left|
\overrightarrow{AI} ight|} = \sqrt{\frac{405t^{2} - 576t +
228}{14t^{2} - 20t + 8}}

    Xét hàm số f(t) = \frac{405t^{2} - 576t +
228}{14t^{2} - 20t + 8} ta có:

    f'(t) = \dfrac{- 36t^{2} + 96t -48}{\left( 14t^{2} - 20t + 8 ight)^{2}} \Rightarrow f'(t) =\Leftrightarrow \left\lbrack \begin{matrix}t = \dfrac{2}{3} \\t = 2 \\\end{matrix} ight.

    Bảng biến thiên

    Dựa vào bảng biến thiên ta có: d(B;d) nhỏ nhất khi f(t) đạt giá trị nhỏ nhất bằng 27 tại t =
\frac{2}{3}

    Suy ra \overrightarrow{AI} = \left(
\frac{1}{3};2; - \frac{5}{3} ight)

    Khi đó vectơ \overrightarrow{u} =
3\overrightarrow{AI} = (1;6; - 5) là vectơ chỉ phương của đường thẳng d

    Vậy phương trình đường thẳng cần tìm là: \frac{x - 1}{1} = \frac{y - 2}{6} = \frac{z + 1}{-
5}.

  • Câu 14: Vận dụng
    Xác định phương trình thích hợp nhất

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 5 = 0 và hai điểm A( - 3;0;1),\ B(1; - 1;3). Trong các đường thẳng đi qua A và song song với (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là.

    Hướng dẫn:

    Gọi \Delta là đường thẳng cần tìm

    Gọi mặt phẳng (Q) qua A( - 3;0;1) và song song với (P). Khi đó: (Q):x - 2y + 2z + 1 = 0

    Gọi K,H lần lượt là hình chiếu của B lên \Delta,(Q). Ta có d(B,\Delta) = BK \geq BH. Do đó AH là đường thẳng cần tìm.

    (Q) có vectơ pháp tuyến \overrightarrow{n_{Q}} = (1; - 2;2)

    BH qua B và có vectơ chỉ phương \overrightarrow{a_{BH}} = \overrightarrow{n_{Q}} =
(1; - 2;2)

    BH:\left\{ \begin{matrix}
x = 1 + t \\
y = - 1 - 2t \\
z = 3 + 2t \\
\end{matrix} ight.

    \Delta đi qua điểm A( - 3;0;1) và có vectơ chỉ phương \overrightarrow{a_{\Delta}} = \overrightarrow{AH}
= \left( \frac{26}{9};\frac{11}{9}; - \frac{2}{9} ight) =
\frac{1}{9}(26;11; - 2)

    H \in BH \Rightarrow H(1 + t; - 1 - 2t;3
+ 2t)

    H \in (P) \Rightarrow t = - \frac{10}{9}
\Rightarrow H\left( - \frac{1}{9};\frac{11}{9};\frac{7}{9}
ight)

    Vậy phương trình của \Delta\Delta:\frac{x + 3}{26} = \frac{y}{11} =
\frac{z - 1}{- 2}

  • Câu 15: Vận dụng cao
    Tìm vectơ pháp tuyến của mặt phẳng

    Cho đường thẳng d:\left\{ \begin{matrix}
x = - t \\
y = 2t - 1 \\
z = t + 2 \\
\end{matrix} \right. và mặt phẳng (\alpha):2x - y - 2z - 2 = 0. Mặt phẳng (P) qua d và tạo với (\alpha) một góc nhỏ nhất. Một véc tơ pháp tuyến của (P) là:

    Hướng dẫn:

    Gọi \Delta = (\alpha) \cap (P);A = d \cap
(\alpha);B \in d(B \neq A); H là hình chiếu vuông góc của B lên (\alpha); K là hình chiếu của H lên \Delta.

    Suy ra: \left( \widehat{d;(\alpha)}
\right) = \widehat{BAH} cố định; \left( \widehat{(P);(\alpha)} \right) =
\widehat{BKH}.

    \widehat{BKH} \geq
\widehat{BAH} (vì HK \leq
HA) \Rightarrow \left(
\widehat{d;(\alpha)} \right) \leq \left( \widehat{(P);(\alpha)}
\right).

    Suy ra \left( \widehat{(P);(\alpha)}
\right) nhỏ nhất bằng \left(
\widehat{d;(\alpha)} \right) khi K
\equiv A.

    Khi đó \Delta\bot d và có một VTCP \overrightarrow{u_{\Delta}} =
\left\lbrack \overrightarrow{u_{d}};\overrightarrow{n_{\alpha}}
\right\rbrack = - 3(1;0;1).

    (P) có một VTPT \overrightarrow{n_{P}} = \left\lbrack
\overrightarrow{u_{\Delta}};\overrightarrow{u_{d}} \right\rbrack = 2( -
1;1;1).

  • Câu 16: Vận dụng
    Chọn kết quả chính xác

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 5 = 0 và hai điểm A(−3; 0; 1), B(1; −1; 3). Trong các đường thẳng đi qua A và song song với (P), đường thẳng nào cách B một khoảng cách nhỏ nhất?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi d là đường thẳng cần tìm.

    Gọi (Q) là mặt phẳng qua A(−3; 0; 1) và song song với (P): x − 2y + 2z − 5 = 0.

    ⇒ (Q): x − 2y + 2z + 1 = 0d ⊂ (Q).

    Gọi H, K lần lượt là hình chiếu của B lên d và (Q) thì BH > BK.

    Do đó d(B; d) nhỏ nhất khi và chỉ khi H ≡ K.

    Đường thẳng BK đi qua B(1; −1; 3) và vuông góc với (Q) \Rightarrow BK:\left\{ \begin{matrix}
x = 1 + t \\
y = - 1 - 2t \\
z = 3 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Lại có: K = BK \cap (Q) \Rightarrow K =
\left( \frac{- 1}{9};\frac{11}{9};\frac{7}{9} ight)

    Đường thẳng d qua A và nhận \overrightarrow{AK} = \left(
\frac{26}{9};\frac{11}{9};\frac{- 2}{9} ight) làm vectơ chỉ phương nên đường thẳng cần tìm là: \frac{x +
3}{26} = \frac{y}{11} = \frac{z - 1}{- 2}.

  • Câu 17: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho tứ diện đều ABCDA(4;
- 1;2),B(1;2;2),C(1; - 1;5),D\left( x_{D};\ y_{D};z_{D} ight) với y_{D} > 0. Tính p = 2x_{D} + \ y_{D} - z_{D}?

    Hướng dẫn:

    Gọi G là trọng tâm tam giác ABC, suy ra G(2; 0; 3).

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 3;3;0) \\
\overrightarrow{AC} = ( - 3;0;3) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (1;\ 1;\ 1)

    AB = 3\sqrt{2}

    Đường thẳng đi qua G vuông góc với (ABC) có phương trình \left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do đó D(2 + t;t;3 + t)

    AD = AB \Rightarrow (t - 2)^{2} + 2(t
+ 1)^{2} = 18 \Rightarrow \left\lbrack \begin{matrix}
t = 2 \\
t = - 2 \\
\end{matrix} ight.

    y_{D} > 0 \Rightarrow y = 2
\Rightarrow P = 5

  • Câu 18: Vận dụng cao
    Tính góc giữa hai đường thẳng

    Trong không gian Oxyz, cho điểm A(1;1;1)và đường thẳng (d):\left\{ \begin{matrix}
x = 1 + t \\
y = - 1 + t \\
z = 3 - t \\
\end{matrix} \right.. Trong tất cả các đường thẳng đi qua gốc tọa độ O, cắt đường thẳng (d);\left( d_{1} \right) là đường thẳng mà khoảng cách đến A là lớn nhất, \left(
d_{2} \right) là đường thẳng mà khoảng cách đến A là nhỏ nhất. Tính cosin góc giữa hai đường thẳng \left(
d_{1} \right);\left( d_{2} \right)?

    Hướng dẫn:

    Gọi (P) là mặt phẳng chứa (d)và đi qua O : (P):x -
2y - z = 0

    Gọi H là hình chiếu vuông góc của A lên mặt phẳng (P)

    \Rightarrow H\left(
\frac{4}{3};\frac{1}{3};\frac{2}{3} \right) \Rightarrow
\overrightarrow{OH} = \frac{1}{3}(4;1;2) =
\frac{1}{2}\overrightarrow{u_{1}}

    \left( d_{2} \right)là đường thẳng qua O và H. Suy ra \left( d_{2}
\right) có một VTCP \overrightarrow{u_{1}} = (4;1;2):

    Gọi B là giao điểm của (d)\left(
d_{2} \right)

    \Rightarrow B(1 + t; - 1 + t;3 -
t)

    \Rightarrow \overrightarrow{OB} = (1 +
t; - 1 + t;3 - t)

    Khoảng cách từ Ađến \left( d_{2} \right) lớn nhất khi

    OA\bot\left( d_{2} \right)
\Leftrightarrow \overrightarrow{OA}.\overrightarrow{OB} = 0
\Leftrightarrow t = - 3 \Leftrightarrow \overrightarrow{OB} = ( - 2; -
4;6)

    => d2 có một VTCP \overrightarrow{u_{2}} = (1;2; - 3)

    Ta có\cos\left( d_{1};d_{2} \right) =
\frac{\left| \overrightarrow{u_{1}}.\overrightarrow{u_{2}}
\right|}{\left| \overrightarrow{u_{1}} \right|.\left|
\overrightarrow{u_{2}} \right|} = 0.

  • Câu 19: Vận dụng cao
    2 đường thẳng chéo nhau viết PTTQ

    Cho hai đường thẳng chéo nhau \left( d ight):\left\{ \begin{array}{l}x = 2 + t\\y = 1 - t\\z = 2t\end{array} ight.\left( d' ight):\left\{ \begin{array}{l}x + 2z - 2 = 0\\y - 3 = 0\end{array} ight.

    Mặt phẳng song song và cách đều và có phương trình tổng quát:

    Hướng dẫn:

    Phương trình (d) cho biết A(2, 1, 0) \in (d) và (d) có vectơ chỉ phương \overrightarrow a  = \left( {1, - 1,2} ight)

    Chuyển (\triangle ) về dạng tham số \left\{ \begin{array}{l}x = 2 - 2t\\y = 3\\z = t\end{array} ight. để có B(2, 3, 0) \in (\triangle ) và vectơ chỉ phương \overrightarrow b  = \left( { - 2,0,1} ight) .

    Gọi I là trung điểm AB  thì I (2, 2, 0), M(x, y, z) bất kỳ \in (P) .

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {IM}  = 0 \Leftrightarrow x + 5y + 2z - 12 = 0là phương trình của mặt phẳng (P).

  • Câu 20: Vận dụng
    Xác định phương trình đường thẳng d

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABCA(2;1;
- 2),B(4; - 1;1),C(0; - 3;1). Phương trình d đi qua trọng tâm của tam giác ABC và vuông góc với mặt phẳng (ABC)

    Hướng dẫn:

    Gọi G là trọng tâm ABC, ta có G(2 ; -1 ; 0)

    Gọi \overrightarrow{a_{d}} là vectơ chỉ phương của d

    \overrightarrow{AB} = (2; -
2;3)

    \overrightarrow{AC} = ( - 2; -
4;3)

    d\bot(ABC) \Rightarrow \left\{
\begin{matrix}
d\bot AB \\
d\bot AC \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
{\overrightarrow{a}}_{d}\bot\overrightarrow{AB} \\
{\overrightarrow{a}}_{d}\bot\overrightarrow{AC} \\
\end{matrix} ight.

    \Rightarrow {\overrightarrow{a}}_{d} =
\left\lbrack \overrightarrow{AB};\overrightarrow{AC} ightbrack = (6;
- 12; - 12) = 6(1; - 2; - 2)

    d đi qua G(2; - 1;0) và có vectơ chỉ phương là \overrightarrow{a_{d}} = (1; - 2; -
2)

    Vậy phương trình tham số của d\left\{ \begin{matrix}
x = 2 + t \\
y = - 1 - 2t \\
z = - 2t \\
\end{matrix} ight.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (35%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo