Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Bài 1 CD Nguyên Hàm (Mức Vừa)

Trắc nghiệm Toán 12 Cánh Diều: Nguyên hàm - Có đáp án

Bạn đang học Toán 12 theo chương trình Cánh Diều và muốn nâng cao kỹ năng giải bài tập nguyên hàmmức độ vận dụng trung bình? Bài viết này tổng hợp các câu hỏi trắc nghiệm Toán 12 Bài 1 – Nguyên hàm (CD) ở mức vừa, bám sát nội dung SGK, phù hợp cho học sinh ôn tập trước các kỳ kiểm tra, thi giữa kỳ hoặc thi học kỳ. Bên cạnh đó, phần bài tập tự luận có đáp án chi tiết sẽ giúp học sinh hiểu rõ phương pháp giải, từ đó nắm vững kiến thức và tăng khả năng làm bài nhanh – chính xác.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Cho \int_{}^{}{f(x)dx = F(x) +
C.} Khi đó với a ≠ 0, ta có \int_{}^{}{f(ax + b)dx}bằng:

    Hướng dẫn:

    Ta có:\int_{}^{}{f(ax + b)dx} =
\frac{1}{a}F(ax + b) + C

  • Câu 2: Thông hiểu
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)?

    Hướng dẫn:

    Ta có: f(x) = (x + 1)(x + 2) = x^{2} + 3x
+ 2

    Xét từng đáp án ta thấy:

    \left( \frac{x^{3}}{3} + \frac{3}{2}x^{2}
+ 2x \right)' = x^{2} + 3x + 2.

    Vậy nguyên hàm của hàm số f(x) = (x +
1)(x + 2) là: F(x) =
\frac{x^{3}}{3} + \frac{3}{2}x^{2} + 2x + C

  • Câu 3: Thông hiểu
    Tính giá trị của biểu thức

    Biết hàm số f(x) = 2x\left( 1 + 3x^{3}
\right) có nguyên hàm là F(x) =
ax^{2} + \frac{b}{c}x^{5} + C với a,b,c\mathbb{\in Z}\frac{b}{c} là phân số tối giản. Tính giá trị biểu thức T = \frac{a + b +
c}{a.b.c}.

    Hướng dẫn:

    Ta có: f(x) = 2x\left( 1 + 3x^{3} \right)
= 2x + 6x^{4}

    \int_{}^{}{f(x)dx} = x^{2} +
\frac{6x^{5}}{5} + C khi đó a = 1;b
= 6;c = 5

    \Rightarrow T = \frac{1 + 6 + 5}{1.6.5}
= \frac{2}{5}

    Vậy đáp án cần tìm là: T =
\frac{2}{5}

  • Câu 4: Nhận biết
    Tính giá trị của biểu thức

    Biết hàm số f(x) = (x - 3)^{4} có nguyên hàm là F(x) = \frac{(x -
3)^{a}}{b} + C với a,b\mathbb{\in
Z}. Tính giá trị biểu thức T =
a^{2} + b^{2}.

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} = \frac{(x -
3)^{5}}{5} + C = F(x)\ \

    F(x) = \frac{(x - 3)^{a}}{b} + C
\Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 5 \\
\end{matrix} \right.

    \Rightarrow T = 5^{2} + 5^{2} =
50

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Một nguyên hàm F(x)của f(x) = 3x^{2} + 1 thỏa F(1) = 0 là:

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} = x^{3} + x + C
= F(x)F(1) = 0 khi đó:

    1^{3} + 1 + C = 0 \Rightarrow C = -
2

    Vậy đáp án cần tìm là: F(x) = x^{3} + x -
2

  • Câu 6: Nhận biết
    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số: y = x^{2} - 3x
+ \frac{1}{x}

    Hướng dẫn:

    \left( \frac{x^{3}}{3} -
\frac{3}{2}x^{2} + \ln|x| \right)' = \frac{3x^{2}}{3} -
\frac{3.2x}{2} + \frac{1}{x} với \forall x > 0

    Vậy đáp án cần tìm là: F(x) =
\frac{x^{3}}{3} - \frac{3}{2}x^{2} + \ln|x| + C

  • Câu 7: Thông hiểu
    Tính giá trị của biểu thức

    Biết hàm số f(x) = (2x + 1)^{5} có nguyên hàm là F(x) = \frac{a}{b}(2x +
c)^{6} + C với a,b,c\mathbb{\in
Z}\frac{a}{b} là phân số tối giản. Tính giá trị biểu thức T =
\frac{a + b + c}{a.b.c}.

    Hướng dẫn:

    Ta có:

    \left\lbrack \frac{a}{b}(2x + c)^{6}
\right\rbrack' = \frac{6.a}{b}.2.(2x + c)^{5} = \frac{12.a}{b}.(2x +
c)^{5}

    Đồng bộ hệ số ta có: \left\{
\begin{matrix}
\frac{12.a}{b} = 1 \\
c = 1 \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
\frac{a}{b} = \frac{1}{12} \\
c = 1 \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 12 \\
c = 1 \\
\end{matrix} \right. (vì a,b,c\mathbb{\in Z}\frac{a}{b} là phân số tối giản)

    Khi đó: T = \frac{1 + 12 + 1}{1.12.1} =
\frac{14}{12} = \frac{7}{6}

  • Câu 8: Nhận biết
    Chọn phương án đúng

    Tìm nguyên hàm của hàm số:

    f(x) = 3\sin3x - \cos3x

    Hướng dẫn:

    Ta có:

    \int_{}^{}{(3sin3x - \cos3x)dx =\frac{3}{3}.( - \cos3x) - \frac{1}{3}.\sin3x + C}

  • Câu 9: Nhận biết
    Tính giá trị của biểu thức

    Biết hàm số f(x) = (x - 1)^{2} có nguyên hàm là F(x) = \frac{x^{3}}{a} +
bx^{2} + cx + C với a,b,c\mathbb{\in Z}. Tính giá trị biểu thức T = a + b + c.

    Hướng dẫn:

    Ta có:

    f(x) = (x - 1)^{2} = x^{2} - 2x +
1

    \int_{}^{}{f(x)dx} = \frac{x^{3}}{3} -
x^{2} + x + C = F(x)\ \

    Theo bài ra ta có: F(x) = \frac{x^{3}}{a}
+ bx^{2} + cx + C khi đó:

    \left\{ \begin{matrix}
\frac{1}{a} = \frac{1}{3} \\
b = - 1 \\
c = 1 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = - 1 \\
c = 1 \\
\end{matrix} \right.\  \Rightarrow T = 3 - 1 + 1 = 3

    Vậy đáp án cần tìm là: F(x) =
\frac{x^{4}}{4} - \frac{x^{3}}{3} + x^{2} - x +
\frac{49}{12}

  • Câu 10: Nhận biết
    Xác định nguyên hàm của hàm số

    Tìm một nguyên hàm F(x) của hàm số f(x) = 2 - x^{2} biết F(2) = \frac{7}{3}

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} = 2x -
\frac{x^{3}}{3} + C = F(x)

    Mặt khác F(2) = \frac{7}{3}

    \Leftrightarrow 2.2 - \frac{2^{3}}{3} +
C = \frac{7}{3}

    \Leftrightarrow C = 1

    Vậy đáp án cần tìm là: F(x) = 2x -
\frac{x^{3}}{3} + 1

  • Câu 11: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số f(x) = x^{2} + 3. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    \left( \frac{x^{3}}{3} + 3x
\right)' = x^{2} + 3;\forall x\mathbb{\in R} nên \int_{}^{}f(x)dx = \frac{x^{3}}{3} + 3x +
C.

    Vậy đáp án cần tìm là \int_{}^{}f(x)dx =
\frac{x^{3}}{3} + 3x + C.

  • Câu 12: Nhận biết
    Chọn đáp án đúng

    Hàm số F(x) = 5x^{3} + 4x^{2} - 7x + 120
+ C là họ nguyên hàm của hàm số nào sau đây?

    Hướng dẫn:

    Ta có: \left( 5x^{3} + 4x^{2} - 7x + 120
\right)' = 15x^{2} + 8x - 7 nên hàm số F(x) = 5x^{3} + 4x^{2} - 7x + 120 + C là họ nguyên hàm của hàm số f(x) = 15x^{2} + 8x
- 7.

  • Câu 13: Nhận biết
    Tìm nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = x^{3} + 3x +
2 là hàm số nào trong các hàm số sau?

    Hướng dẫn:

    \left( \frac{x^{4}}{4} +
\frac{3x^{2}}{2} + 2x \right)' = \frac{4x^{3}}{4} + \frac{3.2x}{2} +
2 = x^{3} + 3x + 2 với mọi x\mathbb{\in R}nên \int_{}^{}{f(x)dx} = F(x)

    Vậy đáp án cần tìm là: F(x) =
\frac{x^{4}}{4} + \frac{3x^{2}}{2} + 2x + C

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Cho hàm số f(x) = x^{3} - x^{2} + 2x -
1. Gọi F(x) là một nguyên hàm của f(x), biết rằng F(1) = 4 thì:

    Hướng dẫn:

    Ta có:

    \int_{}^{}{f(x)dx} = \frac{x^{4}}{4} -
\frac{x^{3}}{3} + x^{2} - x + C = F(x)

    Theo bài ra ta có: F(1) = 4

    \Leftrightarrow \frac{1^{4}}{4} -
\frac{1^{3}}{3} + 1^{2} - 1 + C = 4 \Leftrightarrow C =
\frac{49}{12}

    Vậy đáp án cần tìm là: F(x) =
\frac{x^{4}}{4} - \frac{x^{3}}{3} + x^{2} - x +
\frac{49}{12}

  • Câu 15: Nhận biết
    Tìm một nguyên hàm của hàm số f(x)

    Nguyên hàm F(x) của hàm số f(x) = 2x^{2} + x^{3} - 4 thỏa mãn điều kiện F(0) = 0

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} =
\frac{2}{3}x^{3} + \frac{1}{4}x^{4} - 4x + C = F(x)

    Theo bài ra ta có: F(0) = 0

    \Leftrightarrow \frac{2}{3}.0^{3} +
\frac{1}{4}.0^{4} - 4.0 + C = 0 \Leftrightarrow C = 0

    Vậy đáp án cần tìm là: F(x) =
\frac{2}{3}x^{3} + \frac{x^{4}}{4} - 4x

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Bạn còn 1 lượt làm bài tập miễn phí. Hãy mua tài khoản VnDoc PRO để học không giới hạn nhé! Bạn đã HẾT lượt làm bài tập miễn phí! Hãy mua tài khoản VnDoc PRO để làm Trắc nghiệm không giới hạn và tải tài liệu nhanh nhé! Mua ngay
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
🖼️

Lớp 12

Xem thêm