Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 7 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Dưới đây là một giá đỡ chịu hai lực. Biểu diễn từng lực dưới dạng vectơ Descartes

    a. \overrightarrow{F_{2}} = -
200\overrightarrow{i} + 281\overrightarrow{j} +
200\overrightarrow{k}Sai||Đúng

    b. \overrightarrow{F_{1}} =
86,547\overrightarrow{i} + 185,601\overrightarrow{j} -
143,394\overrightarrow{k}Đúng||Sai

    c. Độ lớn lực tổng hợp lên giá đỡ bằng 485,297NĐúng||Sai

    d. Góc tạo bởi lực tổng hợp lên trục Oy16,145{^\circ}Sai||Đúng

    Đáp án là:

    Dưới đây là một giá đỡ chịu hai lực. Biểu diễn từng lực dưới dạng vectơ Descartes

    a. \overrightarrow{F_{2}} = -
200\overrightarrow{i} + 281\overrightarrow{j} +
200\overrightarrow{k}Sai||Đúng

    b. \overrightarrow{F_{1}} =
86,547\overrightarrow{i} + 185,601\overrightarrow{j} -
143,394\overrightarrow{k}Đúng||Sai

    c. Độ lớn lực tổng hợp lên giá đỡ bằng 485,297NĐúng||Sai

    d. Góc tạo bởi lực tổng hợp lên trục Oy16,145{^\circ}Sai||Đúng

    (a) \overrightarrow{F_{2}} = - 200\overrightarrow{i} +
281\overrightarrow{j} + 200\overrightarrow{k}

    Độ lớn lực F_{2} tác dụng lên từng trục tọa độ Descartes như sau:

    F_{X} = - 400cos60{^\circ} = - 200\ \
N

    F_{Y} = 400cos45{^\circ} = 282,84\ \
N

    F_{Z} = 400cos60{^\circ} = 200\ \
N

    \Rightarrow \overrightarrow{F_{2}} = -
200\overrightarrow{i} + 282,84\overrightarrow{j} +
200\overrightarrow{k}

    » Chọn SAI.

    (b) \overrightarrow{F_{1}} = 86,547\overrightarrow{i}
+ 185,601\overrightarrow{j} - 143,394\overrightarrow{k}

    Cắt mặt phẳng tọa độ lực F_{1} tác dụng lên trục tọa độ là xy là chiều ngang và - z là chiều dọc như hình vẽ

    Độ lớn lực F_{1} tác dụng lên trục tọa độ xy- z bằng

    F_{XY} = 250cos35{^\circ} =
204,788N

    F_{Z} = - 250sin35{^\circ} = -
143,394N

    Cắt mặt phẳng tọa độ lực F_{xy} tác dụng lên trục tọa độ là y là chiều ngang và x là chiều dọc như hình vẽ

    F_{X} = 204,788.sin25{^\circ} =
86,547N

    F_{Y} = 204,788.cos25{^\circ} =
185,601N

    Vậy \overrightarrow{F_{1}} =
86,547\overrightarrow{i} + 185,601\overrightarrow{j} -
143,394\overrightarrow{k}

    » Chọn ĐÚNG.

    (c) Độ lớn lực tổng hợp lên giá đỡ bằng 485,297N

    Lực tổng hợp tác dụng lên giá đỡ là :

    \overrightarrow{F_{R}} =
\overrightarrow{F_{1}} + \overrightarrow{F_{2}} = -
113,453\overrightarrow{i} + 468,441\overrightarrow{j} +
56,606\overrightarrow{k}

    F_{R} = \sqrt{113,453^{2} + 468,441^{2}
+ 56,606^{2}} \approx 485,297N

    » Chọn ĐÚNG.

    (d) Góc tạo bởi lực tổng hợp lên trục Oy16,145{^\circ}

    Gọi \alpha là góc tạo bởi lực tổng hợp lên trục Oy

    \cos\alpha = \frac{468,441}{485,297}
\Rightarrow \alpha \approx 15,145{^\circ}.

    » Chọn SAI.

  • Câu 2: Vận dụng cao
    Tính tổng a, b, c

    Cho tứ diện SABCABC là tam giác vuông tại B, BC = 3,\ \
BA = 2,\ \ SA vuông góc với mặt phẳng (ABC) và có độ dài bằng 2. Chọn hệ trục tọa độ như hình bên dưới. Điểm D(a;b;c) sao cho SBCD là hình bình hành. Khi đó a + b + c bằng bao nhiêu?

    Hướng dẫn:

    Các vectơ đơn vị trên các trục Bx,By,Bz lần lượt là \overrightarrow{i},\ \ \overrightarrow{j},\ \
\overrightarrow{k} có độ dài bằng 1.

    Vì \overrightarrow{BA} cùng hướng với \overrightarrow{j} và BA = 2 nên \overrightarrow{BA} =
2\overrightarrow{j}

    Gọi I \in Bz sao cho SABI là hình bình hành, ta có \overrightarrow{BI} cùng hướng với \overrightarrow{k} và BI = SA = 2 nên \overrightarrow{BI} =
3\overrightarrow{k}

    Theo quy tắc hình bình hành, ta có: \overrightarrow{BS} = \overrightarrow{BA} +
\overrightarrow{BI} = 2\overrightarrow{j} +
3\overrightarrow{k}

    Vì \overrightarrow{BC} cùng hướng với \overrightarrow{i} và BC = 3 nên \overrightarrow{BC} =
3\overrightarrow{i}

    Gọi \overrightarrow{BD} =
a\overrightarrow{i} + b\overrightarrow{j} +
c\overrightarrow{k}

    \overrightarrow{CD} =\overrightarrow{BD} - \overrightarrow{BC}= a\overrightarrow{i} +b\overrightarrow{j} + c\overrightarrow{k} - 3\overrightarrow{i}= (a -3)\overrightarrow{i} + b\overrightarrow{j} +c\overrightarrow{k}

    Để SBCD là hình bình hành thì

    \overrightarrow{BS} =
\overrightarrow{CD} \Leftrightarrow 2\overrightarrow{j} +
3\overrightarrow{k} = (a - 3)\overrightarrow{i} + b\overrightarrow{j} +
c\overrightarrow{k}

    \Leftrightarrow \left\{ \begin{matrix}
a - 3 = 0 \\
b = 2 \\
c = 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 2 \\
c = 3 \\
\end{matrix} \right.

    Vậy a + b + c = 8

  • Câu 3: Vận dụng
    Chọn đáp án đúng

    Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là 8m, chiều rộng là 6m và chiều cao là 3m. Một chiếc đèn được treo tại chính giữa trần nhà của phòng học. Xét hệ trục toạ độ Oxyz có gốc O trùng với một góc phòng và mặt phẳng (Oxy) trùng với mặt sàn, đơn vị đo được lấy theo mét. Hãy tìm toạ độ của điểm treo đèn

    A rectangular box with a straight line and a straight lineDescription automatically generated with medium confidence

    Hướng dẫn:

    Gọi toạ độ các điểm B(6\ ;\ 0\ ;\ 0)\ ;\
C(6\ ;\ 8\ ;\ 0)\ ;\ D(0\ ;\ 8\ ;\ 0) như hình vẽ dưới đây:

    A diagram of a rectangular box with letters and numbersDescription automatically generated

    Gọi N là trung điểm của OC, N' là hình chiếu của N lên mặt phẳng trần nhà suy ra N' là điểm treo đèn.

    Khi đó N(3;\ 4\ ;\ 0) \Rightarrow
N'(3;\ 4\ ;\ 3)

    Vậy toạ độ của điểm treo đèn là (3;\ 4\
;\ 3)

  • Câu 4: Vận dụng cao
    Xác định tọa độ của máy bay

    Trong không gian với một hệ trục toạ độ cho trước, ra đa phát hiện một chiếc máy bay di chuyển với vận tốc và hướng không đổi từ điểm A(800;500;7) đến điểm B(940;550;8) trong 10 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì toạ độ của máy bay sau 5 phút tiếp theo là gì?

    A drawing of a point of a personDescription automatically generated with medium confidence

    Hướng dẫn:

    Gọi D(x;y;z) là vị trí của máy bay sau 5 phút tiếp theo. Vì hướng của máy bay không đổi nên \overrightarrow{AB} và \overrightarrow{BD} cùng hướng. Do vận tốc của máy bay không đổi và thời gian bay từ A đến B gấp đôi thời gian bay từ B đến D nên AB =
2BD.

    Do đó \overrightarrow{BD} =
\frac{1}{2}\overrightarrow{AB} = (70;25;0,5).

    Mặt khác, \overrightarrow{BD} = (x -
940;y - 550;z - 8) nên \left\{
\begin{matrix}
x - 940 = 70 \\
y - 550 = 25 \\
z - 8 = 0,5 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1010 \\
y = 575 \\
z = 8,5 \\
\end{matrix} \right.\  \Rightarrow D(1010;575;8,5).

    Vậy tọa độ của máy bay sau 5 phút tiếp theo là (1\ \ 010;575;8,5).

  • Câu 5: Thông hiểu
    Xác định tọa độ điểm

    Trong không gian Oxyz, cho \overrightarrow{OM} = 2\overrightarrow{i} +
\overrightarrow{k} - 3\overrightarrow{j}. Tọa độ điểm M là:

    Hướng dẫn:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{OM} =
2\overrightarrow{i} + \overrightarrow{k} - 3\overrightarrow{j} suy ra tọa độ M(2; - 3;1).

  • Câu 6: Vận dụng
    Tìm tọa độ vecto của máy bay

    Cho biết máy bay Ađang bay với vận tốc \overrightarrow{u} =
(300;200;400) (đơn vị:km/h). Máy bay B ngược hướng và có tốc độ gấp 2 lần tốc độ của máy bay A. Tọa độ vectơ vận tốc \overrightarrow{v} của máy bay B

    Hướng dẫn:

    Tọa độ vectơ vận tốc \overrightarrow{v} của máy bay Blà:

    \overrightarrow{v} = -
2\overrightarrow{u} \Rightarrow \overrightarrow{v} = ( - 600; - 400; -
800)

  • Câu 7: Vận dụng
    Xác định tọa độ điểm M

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A( - 1;2;3)B(3; - 1;2). Điểm M thỏa mãn MA.\overrightarrow{MA} =
4MB.\overrightarrow{MB} có tọa độ là:

    Hướng dẫn:

    Từ giả thiết MA.\overrightarrow{MA} =
4MB.\overrightarrow{MB} \Rightarrow \overrightarrow{MA} =
4\frac{MB}{MA}.\overrightarrow{MB} nên ba điểm M;A;B thẳng hàng và A;B nằm cùng phía so với điểm M do \frac{4MB}{MA} dương.

    Lại có MA.\overrightarrow{MA} =
4MB.\overrightarrow{MB}

    \Rightarrow \left(
MA.\overrightarrow{MA} \right)^{2} = \left( 4MB.\overrightarrow{MB}
\right)^{2}

    \Rightarrow MA^{4} = 16MB^{4} \Rightarrow
MA = 2MB.

    Vậy B là trung điểm của MA.

    Khi đó ta đươc tọa độ điểm M(7; -
4;1).

  • Câu 8: Thông hiểu
    Tìm tọa độ điểm D thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;3),B(2;3; - 4),C( - 3;1;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
- 3 - x = 1 \\
1 - y = 3 \\
2 - z = - 7 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = - 2 \\
z = 9 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4; - 2;9).

  • Câu 9: Vận dụng
    Xét tính đúng sai của mỗi khẳng định

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    a) Sai

    Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là ( -
1,5\ ;\  - 1\ ;\ 0,5).

    b) Đúng

    Chiếc khinh khí cầu thứ nhất có tọa độ là (2,5\ ;\ 1\ ;\ 0,7).

    Khoảng cách giữa hai chiếc khinh khí cầu là

    \sqrt{(2,5 + 1,5)^{2} + (1 + 1)^{2} +
(0,7 + 0,5)^{2}}

    = \frac{2\sqrt{134}}{5} \approx
4,6(km)

    c) Sai

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:

    \sqrt{2,5^{2} + 1^{2} + 0,7^{2}} =
\frac{3\sqrt{86}}{10} \approx 2,8(km)

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:

    \sqrt{( - 1,5)^{2} + ( - 1)^{2} +
0,5^{2}} = \frac{\sqrt{14}}{2} \approx 1,9(km)

    Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.

    d) Đúng

    Vị trí của chiếc flycam là

    \left( \frac{2,5 - 1,5}{2}\ ;\ \frac{1 -
1}{2}\ ;\ \frac{0,7 + 0,5}{2} ight) = (0,5\ ;\ 0\ ;\
0,6).

    Khoảng cách bay của flycam là:

    \sqrt{0,5^{2} + 0^{2} + 0,6^{2}} =
\frac{\sqrt{61}}{10} \approx 0,8(km)

    Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ (3\ ;\ 1\ ;\  - 1)

    \sqrt{3^{2} + 1^{2} + ( - 1)^{2}} =
\sqrt{11} \approx 3,3(km) > 0,8(km)

    Vậy flycam không đến được vị trí có tọa độ (3\ ;\ 1\ ;\  - 1).

  • Câu 10: Thông hiểu
    Chọn khẳng định đúng

    Trong không gian Oxyz. cho điểm M(3; - 1;2). Tìm tọa độ điểm N đối xứng với điểm M qua mặt phẳng (Oyz)?

    Hướng dẫn:

    Lấy đối xứng qua mặt phẳng (Oyz) thì x đổi dấu còn y;z giữ nguyên nên điểm N có tọa độ là N( - 3; - 1;2).

  • Câu 11: Vận dụng cao
    Tìm tọa độ của máy bay theo yêu cầu

    Máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(600;400;20)đến điểm N(800;500;30) trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 15 phút tiếp theo bằng bao nhiêu?

    1

    Hướng dẫn:

    Gọi Q(x;y;z) là tọa độ của máy bay sau 15 phút tiếp theo.

    \overrightarrow{MN} =
(200;100;10)

    \overrightarrow{NQ} = (x - 800;y - 500;z
- 30)

    Vì máy bay giữ nguyên hướng bay nên \overrightarrow{MN}\overrightarrow{NQ} cùng hướng.

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M \rightarrow N gấp 2 lần thời gian bay từ N \rightarrow Q nên MN = 2NQ

    Suy ra \overrightarrow{MN} =2\overrightarrow{NQ} \Leftrightarrow \left\{ \begin{matrix}200 = 2(x - 800) \\100 = 2(y - 500) \\10 = 2(z - 30) \\\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}x = 900 \\y = 550 \\z = 35 \\\end{matrix} \right.\  \Rightarrow Q(900;550;35)

    Tọa độ của máy bay sau 15 phút tiếp theo là (900;550;35)

  • Câu 12: Vận dụng
    Chọn khẳng định đúng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A(1;0;1),B(2;1;2),D(1; -
1;1),C'(4;5; - 5). Tìm tọa độ điểm A'?

    Hướng dẫn:

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    \Rightarrow \overrightarrow{AA'} =
\overrightarrow{AB} - \overrightarrow{AD} -
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (1;1;1) = \overrightarrow{i} + \overrightarrow{j}
+ \overrightarrow{k} \\
\overrightarrow{AD} = (0; - 1;0) = 0.\overrightarrow{i} -
\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AC'} = (3;5; - 6) = 3.\overrightarrow{i} +
5\overrightarrow{j} - 6\overrightarrow{k} \\
\end{matrix} ight. do đó \Rightarrow \overrightarrow{AA'} =
2\overrightarrow{i} + 5\overrightarrow{j} - 6\overrightarrow{k} hay \overrightarrow{AA'} = (3;5; -
6)

    Suy ra A'(3;5; - 6)

  • Câu 13: Vận dụng
    Xác định tính đúng sai của các nhận định

    Trong không gian Oxyz, cho hình bình hành OABC với A(1;\ 2;\ 3), B(5;\ 0;\  - 1), và C(a;b;c)

    a. Tọa độ điểm O(0;0;1).Sai||Đúng

    b. Tọa độ vectơ \overrightarrow{OA} =
(1;\ 2;\ 3). Đúng||Sai

    c. \overrightarrow{OB} =
5.\overrightarrow{i} - \overrightarrow{k}. Đúng||Sai

    d. Nếu OABC hình bình hành, thì a + b + c = 2. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hình bình hành OABC với A(1;\ 2;\ 3), B(5;\ 0;\  - 1), và C(a;b;c)

    a. Tọa độ điểm O(0;0;1).Sai||Đúng

    b. Tọa độ vectơ \overrightarrow{OA} =
(1;\ 2;\ 3). Đúng||Sai

    c. \overrightarrow{OB} =
5.\overrightarrow{i} - \overrightarrow{k}. Đúng||Sai

    d. Nếu OABC hình bình hành, thì a + b + c = 2. Đúng||Sai

    (a) Tọa độ điểm O(0;0;1).

    Trong không gian Oxyz, gốc tọa độ O(0;0;0).

    » Chọn SAI.

    (b) Tọa độ vectơ \overrightarrow{OA} = (1;\ 2;\ 3).

    Điểm A(1;\ 2;\ 3), suy ra \overrightarrow{OA} = 1.\overrightarrow{i} +
2.\overrightarrow{j} + 3.\overrightarrow{k} = (1;\ 2;\ 3) .

    » Chọn ĐÚNG.

    (c) \overrightarrow{OB}
= 5.\overrightarrow{i} - \overrightarrow{k}.

    Ta có B(5;\ 0;\  - 1). Suy ra vectơ \overrightarrow{OB} =
5.\overrightarrow{i} - 1.\overrightarrow{k}.

    » Chọn ĐÚNG.

    (d) Nếu OABC hình bình hành, thì a + b + c =
2.

    Ta có \overrightarrow{OA} =
1.\overrightarrow{i} + 2.\overrightarrow{j} + 3.\overrightarrow{k} =
(1;\ 2;\ 3), C(a;b;c)

    \Rightarrow \overrightarrow{OC} =
a\overrightarrow{i} + b\overrightarrow{j} +
c\overrightarrow{k}\overrightarrow{CB} = \overrightarrow{OB} -
\overrightarrow{OC}

    = \left( 5.\overrightarrow{i} -1.\overrightarrow{k} \right) - \left( a.\overrightarrow{i} +b.\overrightarrow{j} + c.\overrightarrow{k} \right)= (5 - a;b; - 1 -c).

    OABC hình bình hành, thì \left\{ \begin{matrix}
5 - a = 1 \\
b = 2 \\
- 1 - c = 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 4 \\
b = 2 \\
c = - 4 \\
\end{matrix} \right.. Khi đó a +
b + c = 2.

    » Chọn ĐÚNG.

  • Câu 14: Vận dụng
    Tính giá trị biểu thức

    Trong không gian với hệ trục Oxyz cho ba điểm A( - 1;2; - 3),\ \ B(1;0;2),\ \ C(x;y; -
2) thẳng hàng. Khi đó x +
y bằng

    Hướng dẫn:

    \overrightarrow{AB} = (2; - 2;5),\ \
\overrightarrow{AC} = (x + 1;y - 2;1).

    A,\ B,\ C thẳng hàng \Leftrightarrow \overrightarrow{AB},\overrightarrow{AC} cùng phương

    \Leftrightarrow \frac{x + 1}{2} = \frac{y
- 2}{- 2} = \frac{1}{5}

    \Leftrightarrow \left\{ \begin{matrix}
x = - \dfrac{3}{5} \\
y = \dfrac{8}{5} \\
\end{matrix} ight.\  \Rightarrow x + y = 1.

  • Câu 15: Thông hiểu
    Tìm tọa độ điểm D theo yêu cầu

    Trong không gian Oxyz, cho ba điểm A( - 1\ ;\ 0\ ;\ 2), B(2\ ;\ 1\ ;\  - 3)C(1\ ;\  - 1\ ;\ 0). Tìm tọa độ điểm D sao cho ABCD là hình bình hành.

    Hướng dẫn:

    Gọi D(a\ ;\ b\ ;\ c); \overrightarrow{AB} = (3\ ;\ 1\ ;\  - 5); \overrightarrow{AC} = (2\ ;\  - 1\ ;\  -
2)

    \frac{3}{2} eq \frac{1}{-
1} nên \overrightarrow{AB} không cùng phương \overrightarrow{AC}
\Rightarrow tồn tại hình bình hành ABCD.

    Suy ra ABCD là hình bình hành khi \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
3 = 1 - a \\
1 = - 1 - b \\
- 5 = - c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 2 \\
b = - 2 \\
c = 5 \\
\end{matrix} ight..

    Vậy D( - 2\ ;\  - 2\ ;\ 5).

  • Câu 16: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyzcho hình hộp chữ nhật OABC.EFGH có các cạnh OA = 5, OC = 8, OE =
7 (xem hình vẽ dưới đây). Tọa độ H(x;y;z). Tính giá trị biểu thức P = 50x + 75y + 1000z

    Hướng dẫn:

    Ta có H \in (yOz) và hình chiếu của H lên Oy trùng với C nên H(0;\
8;\ 7).

    P = 50x + 75y + 1000z = 50.0 + 75.8 +
1000.7 = 7600.

  • Câu 17: Vận dụng cao
    Chọn phương án đúng

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 2,\ \ SA vuông góc với đáy và SA bằng 1. Thiết lập hệ tọa độ như hình vẽ bên dưới, tọa độ điểm S\left(
a;\sqrt{b};c \right). Khi đó a + b
+ c bằng bao nhiêu?

    Hướng dẫn:

    Các vectơ đơn vị trên các trục Ox,Oy,Oz lần lươt là \overrightarrow{i} = \overrightarrow{OC},\ \
\overrightarrow{j} = \overrightarrow{OE},\ \ \overrightarrow{k} =
\overrightarrow{OH} với E là điểm thuộc tia Oy sao cho OE = 1H là điểm thuộc tia Oz sao cho OH
= 1.

    \Delta ABC đều và AO\bot BC nên O là trung điểm cùa BC.

    BC = 2 nên OB = OC = 1OA = \sqrt{3}.

    Vì \overrightarrow{OA}\overrightarrow{j} cùng hướng và OA = \sqrt{3} nên \overrightarrow{OA} =
\sqrt{3}\overrightarrow{j}.

    Theo quy tắc hình bình hành, ta có \overrightarrow{OS} = \overrightarrow{OA} +
\overrightarrow{OH} = \sqrt{3}\overrightarrow{j} +
\overrightarrow{k}.

    Suy ra S\left( 0;\sqrt{3};1
\right). Vậy a + b + c = 0 + 3 + 1
= 4

  • Câu 18: Thông hiểu
    Ghi đáp án đúng vào ô trống

    ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm I(3;4;5)là tâm của nguồn phát âm với bán kính 10\ m. Để kiểm tra một điểm ở vị trí\ M(7;10;17) có nhận được cường độ âm phát ra tại I hay không người ta sẽ tính khoảng cách giữa hai vị trí IM. Hỏi khoảng cách giữa hai vị trí IMlà bao nhiêu mét?

    Đáp án: 14 (m)

    Đáp án là:

    ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm I(3;4;5)là tâm của nguồn phát âm với bán kính 10\ m. Để kiểm tra một điểm ở vị trí\ M(7;10;17) có nhận được cường độ âm phát ra tại I hay không người ta sẽ tính khoảng cách giữa hai vị trí IM. Hỏi khoảng cách giữa hai vị trí IMlà bao nhiêu mét?

    Đáp án: 14 (m)

    Ta có

    IM = \sqrt{(7 - 3)^{2} + (10 - 4)^{2} +
(17 - 5)^{2}}

    = \sqrt{4^{2} + 6^{2} + 12^{2}} =
\sqrt{196} = 14 (m).

    Đáp số 14(m).

  • Câu 19: Thông hiểu
    Tìm tọa độ điểm B

    Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' với A( - 2\ ;\ 1\ ;\ 3),C(2\ ;\ 3;\ 5),B'(2\ ;\ 4\
;\  - 1),D'(0\ ;\ 2\ ;1). Tìm tọa độ điểm B.

    Hướng dẫn:

    Gọi B(x\ ;\ y\ ;\ z) là điểm cần tìm.

    Gọi II' lần lượt là trung điểm ACB'D'

    \Rightarrow I(0\ ;\ 2\ ;\ 4)I'(1\ ;\ 3\ ;\ 0).

    \overrightarrow{I'I} = ( - 1\ ;\  -
1\ ;\ 4);\overrightarrow{B'B} = (x - 2\ ;\ y - 4\ ;\ z +
1)

    Ta có: \overrightarrow{B'B} =
\overrightarrow{I'I} \Leftrightarrow \left\{ \begin{matrix}
x - 2 = - 1 \\
y - 4 = - 1 \\
z + 1 = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 3 \\
z = 3 \\
\end{matrix} ight..

    Vậy B(1\ ;\ 3\ ;\ 3).

  • Câu 20: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho ba điểm A(3;5; - 1),\ \ B(7;x;1)C(9;2;y). Để A,\ \ B,\ \ C thẳng hàng thì giá trị x + y bằng

    Hướng dẫn:

    Ta có \overrightarrow{AB} = (4;x - 5;2),\
\ \overrightarrow{AC} = (6; - 3;y + 1)

    A,\ \ B,\ \ C thẳng hàng khi \overrightarrow{AB},\ \
\overrightarrow{AC} cùng phương

    \Leftrightarrow \frac{4}{6} = \frac{x -
5}{- 3} = \frac{2}{y + 1} \Leftrightarrow \left\{ \begin{matrix}
6(x - 5) = - 12 \\
4(y + 1) = 12 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 2 \\
\end{matrix} \right.

    Vậy x+y=5

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo