Trong không gian , cho
. Gọi
là hình chiếu của
trên mặt phẳng
. Khi tứ giác
là hình bình hành thì giá trị
bằng?
là hình chiếu của
trên mặt phẳng
.
là hình bình hành
.
Vậy .
Trong không gian , cho
. Gọi
là hình chiếu của
trên mặt phẳng
. Khi tứ giác
là hình bình hành thì giá trị
bằng?
là hình chiếu của
trên mặt phẳng
.
là hình bình hành
.
Vậy .
Trong không gian hệ trục tọa độ , cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian , cho hình bình hành hình bình hành. Biết các điểm
. Xác định tọa độ điểm
?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian hệ trục tọa độ , cho lăng trụ tam giác
có tọa độ các điểm
. Xác định tọa độ điểm
?
Hình vẽ minh họa
Gọi tọa độ điểm
Vì là hình lăng trụ nên
Vậy tọa độ .
Trong không gian với hệ tọa độ , cho điểm
thỏa
và
. Tọa độ của vectơ
là
Ta có:
Suy ra
Trong không gian cho ba điểm
và
Để
thẳng hàng thì giá trị
bằng
Ta có
thẳng hàng khi
cùng phương
Vậy
Để theo dõi hành trình của một chiếc máy bay, ta có thể lập hệ toạ độ có gốc
trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng
trùng với mặt đất với trục
hướng về phía tây, trục
hướng về phía nam và trục
hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là
trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian
được lấy theo kilômét.

Quãng đường máy bay bay được với vận tốc trong nửa giờ là:
Vì máy bay duy trì hướng bay về phía nam nên tọa độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ tọa độ đã chọn là
Trong không gian , cho
,
. Điểm
thay đổi thuộc mặt phẳng
. Tính giá trị của biểu thức
khi
nhỏ nhất.
Gọi là điểm thỏa:
.
Ta có:
.
Do đó nhỏ nhất khi và chỉ khi
nhỏ nhất.
Điều này xảy ra khi và chỉ khi là hình chiếu của
lên mặt phẳng
.
Suy ra .
Vậy .
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Cho hình chóp có đáy
là tam giác đều cạnh bằng
vuông góc với đáy và
bằng 1. Thiết lập hệ tọa độ như hình vẽ bên dưới, tọa độ điểm
. Khi đó
bằng bao nhiêu?

Các vectơ đơn vị trên các trục lần lươt là
với
là điểm thuộc tia
sao cho
và
là điểm thuộc tia
sao cho
.
Vì đều và
nên
là trung điểm cùa
.
Mà nên
và
.
Vì và
cùng hướng và
nên
.
Theo quy tắc hình bình hành, ta có .
Suy ra . Vậy
Trong không gian hệ trục tọa độ , cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Trong không gian với một hệ trục toạ độ cho trước, ra đa phát hiện một chiếc máy bay di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 10 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì toạ độ của máy bay sau 5 phút tiếp theo là gì?

Gọi là vị trí của máy bay sau 5 phút tiếp theo. Vì hướng của máy bay không đổi nên
và
cùng hướng. Do vận tốc của máy bay không đổi và thời gian bay từ
đến
gấp đôi thời gian bay từ
đến
nên
.
Do đó .
Mặt khác, nên
.
Vậy tọa độ của máy bay sau 5 phút tiếp theo là .
Trong không gian với hệ trục cho ba điểm
thẳng hàng. Khi đó
bằng
Có .
thẳng hàng
cùng phương
.
Cho tứ diện có
là tam giác vuông tại
,
vuông góc với mặt phẳng
và có độ dài bằng 2. Chọn hệ trục tọa độ như hình bên dưới. Điểm
sao cho
là hình bình hành. Khi đó
bằng bao nhiêu?


Các vectơ đơn vị trên các trục lần lượt là
có độ dài bằng
.
Vì cùng hướng với
và
nên
Gọi sao cho
là hình bình hành, ta có
cùng hướng với
và
nên
Theo quy tắc hình bình hành, ta có:
Vì cùng hướng với
và
nên
Gọi
Để là hình bình hành thì
Vậy
Máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 15 phút tiếp theo bằng bao nhiêu?

Gọi là tọa độ của máy bay sau 15 phút tiếp theo.
Vì máy bay giữ nguyên hướng bay nên và
cùng hướng.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ gấp 2 lần thời gian bay từ
nên
Suy ra
Tọa độ của máy bay sau 15 phút tiếp theo là
Trong không gian , cho hình lập phương
có cạnh bằng 4, đỉnh
trùng với gốc
, các điểm
lần lượt nằm trên các tia
.
a. Tọa độ của điểm là:
Sai||Đúng
b. Tọa độ của vec tơ là:
Sai||Đúng
c. Tọa độ của vec tơ là:
Đúng||Sai
d. Tọa độ của vec tơ là:
Đúng||Sai
Trong không gian , cho hình lập phương
có cạnh bằng 4, đỉnh
trùng với gốc
, các điểm
lần lượt nằm trên các tia
.
a. Tọa độ của điểm là:
Sai||Đúng
b. Tọa độ của vec tơ là:
Sai||Đúng
c. Tọa độ của vec tơ là:
Đúng||Sai
d. Tọa độ của vec tơ là:
Đúng||Sai
Hình vẽ minh họa

(a) Tọa độ của điểm là:
Do cùng hướng với
và
nên
hay
.
Suy ra: .
» Chọn SAI.
(b) Tọa độ của vec tơ là:
Do cùng hướng với
và
nên
hay
.
Theo quy tắc hình bình hành, ta có: .
Suy ra: .
» Chọn SAI.
(c) Tọa độ của vec tơ là:
Do cùng hướng với
và
nên
hay
.
Suy ra: .
» Chọn ĐÚNG.
(d) Tọa độ của vec tơ là:
.
Theo quy tắc hình hộp, ta có: .
Suy ra:
» Chọn ĐÚNG.
Trong không gian cho
,
,
. Gọi
là điểm thuộc mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Khi đó
có giá trị là
Do thuộc mặt phẳng
nên
.
Ta có ,
,
.
.
Suy ra đạt giá trị nhỏ nhất
khi và chỉ khi
.
Vậy .
Trong không gian , cho
và
. Khi
thì giá trị
bằng?
Ta có: .
.
Vậy .
Trong không gian với hệ tọa độ Oxyz, cho hai điểm và
. Điểm
thỏa mãn
có tọa độ là:
Từ giả thiết nên ba điểm
thẳng hàng và
nằm khác phía so với điểm M do
âm.
Lại có
.
.
Gọi tọa độ , khi đó
Trong không gian hệ trục tọa độ cho điểm
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu đối xứng với
qua mặt phẳng
thì
.
Nếu đối xứng với
qua trục
thì
.
Nếu đối xứng với
qua gốc tọa độ thì
.
Vậy mệnh đề đúng là: “Nếu đối xứng với
qua mặt phẳng
thì
”.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: