Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân CTST (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính giá trị biểu thức

    Cho hàm số f(x) biết f(0) = 1, f'(x) liên tục trên \lbrack 0;3brack\int_{0}^{3}{f'(x)dx} = 9. Tính f(3)?

    Hướng dẫn:

    Ta có:

    \int_{0}^{3}{f'(x)dx} = 9
\Leftrightarrow \left. \ f(x) ight|_{0}^{3} = 9 \Rightarrow f(3) -
f(0) = 9

    \Rightarrow f(3) = 9 + f(0) = 9 + 1 =
10

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Một chiếc máy bay di chuyển với vận tốc là v(t) = 3t^{2} + 5(m/s). Hỏi quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 bằng bao nhiêu?

    Hướng dẫn:

    Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:

    S = \int_{4}^{10}{v(t)dt} =
\int_{4}^{10}{\left( 3t^{2} + 5 ight)dt}

    = \left. \ \left( t^{3} + 5t ight)
ight|_{4}^{10} = 996(m)

  • Câu 3: Nhận biết
    Tính tích phân

    Giá trị của tích phân \int_{- 1}^{0}{e^{x
+ 1}dx} bằng:

    Hướng dẫn:

    Ta có: \int_{- 1}^{0}{e^{x + 1}dx} =
\left. \ e^{x + 1} ight|_{- 1}^{0} = e^{1} - e^{0} = e -
1.

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Cho chuyển động thẳng xác định bởi phương trình S = 2t^{4} - t + 1, trong đó t được tính bằng giây và S được tính bằng mét. Vận tốc của chuyển động khi S = 2t^{4} - t + 1 là:

    Hướng dẫn:

    Ta có v = S' = 8t^{3} -
1

    Khi t = 1 \Rightarrow v = 8 - 1 =
7(m/s).

  • Câu 5: Nhận biết
    Tính gia tốc của chuyển động

    Cho chuyển động thẳng xác định bởi phương trình S = 2t^{3} - t + 1, trong đó t được tính bằng giây và S được tính bằng mét. Gia tốc của chuyển động khi t = 2s là:

    Hướng dẫn:

    v = s' = 6{t^2} - 1

    a = v'' = 12t

    Khi t = 2 \Rightarrow a = 24\left( {m/{s^2}} ight)

  • Câu 6: Nhận biết
    Xác định quãng đường vật chuyển động

    Một vật chuyển động chậm dần đều với vận tốc v(t) = 30 - 2t(m/s). Hỏi trong 5s trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?

    Hướng dẫn:

    Khi dừng hẳn v(t) = 30 - 2t = 0
\Rightarrow t = 15(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{10}^{15}{v(t)dt} =
\int_{10}^{15}{(30 - 2t)dt} = 25m.

  • Câu 7: Nhận biết
    Tính giá trị tích phân

    Giả sử \int_{0}^{9}{f(x)dx} = 37\int_{9}^{0}{g(x)dx} = 16. Khi đó I = \int_{0}^{9}{\left\lbrack 2f(x) +
3g(x) ightbrack dx} bằng

    Hướng dẫn:

    Ta có: \int_{9}^{0}{g(x)dx} = 16
\Rightarrow \int_{0}^{9}{g(x)dx} = - 16

    \Rightarrow I =
\int_{0}^{9}{\left\lbrack 2f(x) + 3g(x) ightbrack dx} =
\int_{0}^{9}{2f(x)dx} + \int_{0}^{9}{3g(x)dx}

    = 2.37 + 3.( - 16) = 26

  • Câu 8: Nhận biết
    Chọn khẳng định đúng

    Tính tích phân I = \int_{0}^{1}{(2x +
1)e^{x}dx} bằng cách đặt u = 2x +
1;dv = e^{x}dx. Công thức nào dưới đây chính xác?

    Hướng dẫn:

    Đặt \left\{ \begin{matrix}
u = 2x + 1 \\
dv = e^{x}dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = 2dx \\
v = e^{x} \\
\end{matrix} ight.

    Suy ra I =
\int_{0}^{1}{(2x + 1)e^{x}dx} = \left. \ \left\lbrack (2x + 1)e^{x}
ightbrack ight|_{0}^{1} - 2\int_{0}^{1}{e^{x}dx}

  • Câu 9: Nhận biết
    Tính thể tích hình phẳng

    Cho hàm số y = f(x) liên tục, nhận giá trị dương trên đoạn \lbracka;bbrack. Xét hình phẳng (H) giới hạn bởi đồ thị hảm số y = f(x), trục hoảnh và hai đường thảng x = a,x = b. Khối tròn xoay được tạo thành khi quay hình phẳng (H) quanh trục Ox có thế tích là:

    Hướng dẫn:

    Ta có: V = \pi\int_{a}^{b}{\left\lbrackf(x) ightbrack^{2}dx}.

  • Câu 10: Nhận biết
    Chọn phương án đúng

    Tích phân I = \int_{- 1}^{1}{\left( x^{3}
+ 3x + 2 \right)dx}có giá trị là:

    Hướng dẫn:

    Thực hiện giải toán theo hai bước sau:

    Cách 1: I = \int_{- 1}^{1}{\left( x^{3} +
3x + 2 ight)dx} = \left. \ \left( \frac{1}{4}x^{4} + \frac{3}{2}x^{2}
+ 2x ight) ight|_{- 1}^{1} = 4.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 11: Nhận biết
    Tính tích phân

    Tích phân I =
\int_{0}^{1}{3^{x}dx} bằng:

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{1}{3^{x}dx} = \left. \frac{3^{x}}{\ln3} ight|_{0}^{1} = \frac{2}{\ln3}

  • Câu 12: Nhận biết
    Tìm giá trị tích phân lượng giác

    Tích phân I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx} có giá trị là:

    Cách 1:I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx}= \left. \ \left( -
\frac{1}{2}\cos2x - \frac{1}{3}\sin3x ight) ight|_{-
\frac{\pi}{2}}^{\frac{\pi}{6}} = - \frac{3}{4}.

    Đáp án đúng là I = -
\frac{3}{4}.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 13: Thông hiểu
    Tính tích phân I

    Cho tích phân I = \int_{0}^{3}{\frac{x}{1
+ \sqrt{x + 1}}dx} nếu đặt t =
\sqrt{x + 1} thì I =
\int_{1}^{2}{f(t)dt} trong đó

    Hướng dẫn:

    Ta có: I = \int_{0}^{3}{\frac{x}{1 +
\sqrt{x + 1}}dx}

    t = \sqrt{x + 1} \Rightarrow t^{2} = x +
1 \Rightarrow 2tdt = dx

    I = \int_{0}^{3}{\frac{x\left( 1 -
\sqrt{x + 1} ight)}{1 - (x + 1)}dx} = \int_{0}^{3}{\left( \sqrt{x + 1}
- 1 ight)dx}

    I = 2\int_{1}^{2}{(t - 1)tdt} =
\int_{1}^{2}{\left( t^{2} - 1 ight)2dt} \Rightarrow f(t) = 2t^{2} -
2t

  • Câu 14: Thông hiểu
    Xác định tỉ số của a và b

    Cho gá trị của tích phân I_{1} = \int_{-
1}^{1}\left( x^{4} + 2x^{3} \right)dx = a, I_{2} = \int_{- 2}^{- 1}\left( x^{2} + 3x
\right)dx = b. Giá trị của \frac{a}{b} là:

    Hướng dẫn:

    Ta có:

    I_{1} = \int_{- 1}^{1}\left( x^{4} +
2x^{3} ight)dx = \left. \ \left( \frac{1}{5}x^{5} + \frac{1}{2}x^{4}
ight) ight|_{- 1}^{1} = \frac{2}{5} \Rightarrow a =
\frac{2}{5}.

    I_{2} = \int_{- 2}^{- 1}\left( x^{2} + 3x
ight)dx = \left. \ \left( \frac{1}{3}x^{3} + \frac{3}{2}x^{2} ight)
ight|_{- 2}^{- 1} = - \frac{13}{6} \Rightarrow b = -
\frac{13}{6}.

    \Rightarrow P = \frac{a}{b} = -
\frac{12}{65}.

    Đáp án đúng là P = -
\frac{12}{65}.

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Tích phân \int_{1}^{8}\sqrt[3]{x}dx bằng:

    Hướng dẫn:

    Ta có:

    \int_{1}^{8}\sqrt[3]{x}dx = \left. \
\left( \frac{3}{4}x\sqrt[3]{x} ight) ight|_{1}^{8} =
\frac{45}{4}.

  • Câu 16: Thông hiểu
    Chọn đáp án thích hợp

    Tích phân I = \int_{- 1}^{1}\left| x^{3}
+ x^{2} - x - 1 \right|dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{- 1}^{1}\left| x^{3}
+ x^{2} - x - 1 ight|dx có giá trị là:

    \underset{f(x)}{\overset{x^{3} + x^{2} -
x - 1}{︸}} = 0 \Leftrightarrow (x - 1)(x + 1)^{2} = 0 \Leftrightarrow x
= 1 \vee x = - 1

    Bảng xét dấu:

    Ta có:

    I = \int_{- 1}^{1}\left| x^{3} + x^{2} -
x - 1 ight|dx = - \int_{- 1}^{1}\left( x^{3} + x^{2} - x - 1
ight)dx

    = - \left. \ \left( \frac{1}{4}x^{4} +
\frac{1}{3}x^{3} - \frac{1}{2}x^{2} - x ight) ight|_{- 1}^{1} =
\frac{4}{3}.

    Đáp án đúng là I =
\frac{4}{3}.

  • Câu 17: Thông hiểu
    Tính giá trị tích phân I

    Tích phân I = \int_{0}^{1}{(2x + 1)\ln(x
+ 1)dx} có giá trị là:

    Hướng dẫn:

    Xét giá trị tích phân I =
\int_{0}^{1}{(2x + 1)\ln(x + 1)dx}

    Đặt \left\{ \begin{matrix}
u = \ln(x + 1) \\
dv = (2x + 1)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = \frac{1}{x + 1}dx \\
v = x^{2} + x \\
\end{matrix} ight..

    \Rightarrow I = \left. \ \left\lbrack
\left( x^{2} + x ight)\ln(x + 1) ightbrack ight|_{0}^{1} -
\int_{0}^{1}{xdx}

    = \left. \ \left\lbrack \left( x^{2} + x
ight)\ln(x + 1) ightbrack ight|_{0}^{1} - \left. \ \left(
\frac{x^{2}}{2} ight) ight|_{0}^{1} = 2ln2 -
\frac{1}{2}

    Đáp án đúng là I = 2ln2 -
\frac{1}{2}.

  • Câu 18: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn \int_{0}^{2}{f(x)dx}\  = 5,\int_{1}^{2}{f(x)dx\ }
= 3. Giá trị của biểu thức \int_{0}^{1}{f(x)dx} bằng

    Hướng dẫn:

    Ta có: \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx}

    \Rightarrow \int_{0}^{1}{f(x)dx} =
\int_{0}^{2}{f(x)dx} - \int_{1}^{2}{f(x)dx} = 5 - 3 = 2

  • Câu 19: Nhận biết
    Tính giá trị biểu thức

    Cho hàm số g(x) có đạo hàm trên đoạn \lbrack - 1;1brack. Có g( - 1) = 3 và tích phân I = \int_{- 1}^{1}{g'(x)dx} = - 2. Tính g(1).

    Hướng dẫn:

    Ta có:

    I = \int_{- 1}^{1}{g'(x)dx} = - 2
\Leftrightarrow g(1) - g( - 1) = - 2

    \Rightarrow g(1) = - 2 + g( - 1) = - 2 +
3 = 1

  • Câu 20: Nhận biết
    Tìm tích phân

    Cho hàm số f(x) liên tục trên tập số thực và thỏa mãn \int_{0}^{6}{f(x)dx}= 7;\int_{3}^{10}{f(x)dx} = 8;\int_{3}^{6}{f(x)dx} = 9. Khi đó giá trị I = \int_{0}^{10}{f(x)dx} bằng:

    Hướng dẫn:

    Ta có:

    \int_{3}^{10}{f(x)dx} =
\int_{3}^{6}{f(x)dx} + \int_{6}^{10}{f(x)dx}

    \Leftrightarrow \int_{6}^{10}{f(x)dx} =
\int_{3}^{6}{f(x)dx} - \int_{3}^{10}{f(x)dx} = 8 - 9 = 1

    \Rightarrow I = \int_{0}^{6}{f(x)dx} +
\int_{6}^{10}{f(x)dx} = 7 - 1 = 6

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo