Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân CTST (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính tích phân

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 5;3brackF(x) là một nguyên hàm của f(x). Biết rằng F( - 5) = 3;F(3) = \frac{15}{7}. Xác định tích phân I = \int_{- 5}^{3}{\left\lbrack
7f(x) - x ightbrack dx}?

    Hướng dẫn:

    Ta có: I = \int_{- 5}^{3}{\left\lbrack
7f(x) - x ightbrack dx} = \left. \ \left( 7F(x) ight) ight|_{-
5}^{3} - \left. \ \frac{x^{2}}{2} ight|_{- 5}^{3} = 2.

  • Câu 2: Nhận biết
    Tìm khẳng định sai

    Cho các hàm số y = f(x)y = g(x) liên tục trên \lbrack a;bbrack và số k tùy ý. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Khẳng định sai là: \int_{a}^{b}{x.f(x)dx}
= x\int_{a}^{b}{f(x)dx}

  • Câu 3: Thông hiểu
    Tìm tham số a thỏa mãn điều kiện

    Giá trị dương a sao cho \int_{0}^{a}{\frac{x^{2} + 2x + 2}{x +
1}dx} = \frac{a^{2}}{2} + a + ln3

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{a}{\frac{x^{2} + 2x + 2}{x
+ 1}dx} = \int_{0}^{a}{\frac{(x + 1)^{2} + 1}{x + 1}dx}

    = \int_{0}^{a}{x + 1 + \frac{1}{x + 1}d(x
+ 1)}

    = \left. \ \frac{(x + 1)^{2}}{2}
ight|_{0}^{a} + \left. \ \ln|x + 1| ight|_{0}^{a} = \frac{(a +
1)^{2}}{2} - \frac{1}{2} + \ln|a + 1|

    = \frac{a^{2}}{2} + a + \ln|a +
1|

    \Rightarrow a + 1 = 3 \Rightarrow a =
2.

  • Câu 4: Thông hiểu
    Chọn phương án đúng

    Tính tích phân: \int_{0}^{1}{\frac{x}{\sqrt{x +
1}}dx}

    Hướng dẫn:

    Ta có hai cách giải bài toán như sau:

    Cách 1: Thử trực tiếp bằng máy tính

    Cách 2: Đặt \sqrt{x + 1} = t, biến đổi

  • Câu 5: Nhận biết
    Chọn mệnh đề sai

    Giả sử f(x);g(x) là các hàm số bất kì liên tục trên \mathbb{R}a;b;c là các số thực. Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Theo tính chất tích phân ta có:

    \int_{a}^{b}{f(x)dx} +
\int_{b}^{c}{f(x)dx} + \int_{c}^{a}{f(x)dx}

    = \int_{a}^{b}{f(x)dx} +
\int_{b}^{c}{f(x)dx} - \int_{a}^{c}{f(x)dx}

    = \int_{a}^{c}{f(x)dx} -
\int_{a}^{c}{f(x)dx} = 0

    \int_{a}^{b}{c.f(x)dx} =
c.\int_{a}^{b}{f(x)dx};\forall x\mathbb{\in R}

    \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} + \int_{a}^{b}{g(x)dx}

    = \int_{a}^{b}{f(x)dx} -
\int_{a}^{b}{g(x)dx} + \int_{a}^{b}{g(x)dx}

    = \int_{a}^{b}{f(x)dx}

    Vậy mệnh đề sai: \int_{a}^{b}{\left\lbrack f(x)g(x) ightbrack
dx} = \int_{a}^{b}{f(x)dx}.\int_{a}^{b}{g(x)dx}

  • Câu 6: Nhận biết
    Tính giá trị của c

    Giả sử \int_{1}^{5}\frac{dx}{2x - 1} =
\ln c. Giá trị của c

    Hướng dẫn:

    Ta có: \int_{1}^{5}\frac{dx}{2x - 1} =
ln3

  • Câu 7: Nhận biết
    Tính giá trị của biểu thức

    Biết rằng I_{1} = \int_{0}^{1}{\left( x +
\sqrt{x + 1} \right)dx} = \frac{a}{6} + b\sqrt{2}. Giá trị của a - \frac{3}{4}b là:

    Hướng dẫn:

    Ta có:

    I_{1} = \int_{0}^{1}{\left( x + \sqrt{x +
1} ight)dx}

    = \left. \ \left(
\frac{x^{2}}{2} + \frac{2}{3}\sqrt{(x + 1)^{3}} ight) ight|_{0}^{1}
= - \frac{1}{6} + \frac{4\sqrt{2}}{3}

    \Rightarrow a = - 1,b = \frac{4}{3}
\Rightarrow a - \frac{3}{4}b = - 2

    Đáp án đúng là -2.

  • Câu 8: Nhận biết
    Tính tích phân I

    Cho \int_{1}^{2}{f(x)dx} = - 3. Tính I = \int_{2}^{4}{f\left( \frac{x}{2}
\right)dx}.

    Hướng dẫn:

    Ta có:

    Đặt \frac{x}{2} = t \Rightarrow dx =
2dt

    \Rightarrow I = \int_{1}^{2}{2f(t)dt} =
2\int_{1}^{2}{f(t)dt} = 2.( - 3) = - 6

  • Câu 9: Nhận biết
    Chọn khẳng định không đúng

    Cho tích phân I = \int_{a}^{b}{\left(
x^{2} + 1 \right)dx}. Khẳng định nào dưới đây không đúng?

    Hướng dẫn:

    Ta có:

    I = \int_{a}^{b}{\left( x^{2} + 1
ight)dx} = \left. \ \left( \frac{1}{3}x^{3} + x ight)
ight|_{a}^{b} = \frac{1}{3}b^{3} + b - \frac{1}{3}a^{3} -
a.

    Phát biểu (I = \int_{a}^{b}{\left( x^{2}
+ 1 ight)dx} = \int_{a}^{b}{x^{2}dx + \int_{a}^{b}{dx}}): đúng.

    Phát biểu (I = \left. \ \left( x^{3} + x
ight) ight|_{a}^{b}): sai.

    Phát biểu (I = \frac{1}{3}b^{3} + b -
\frac{1}{3}a^{3} - a): đúng.

    Phát biểu (I = \int_{a}^{b}{\left( x^{2}
+ 1 ight)dx} = \int_{a}^{b}{x^{2}dx + \int_{a}^{b}{dx}}): đúng.

  • Câu 10: Nhận biết
    Tính tích phân

    Cho hàm số f(x) liên tục trên đoạn \left\lbrack 0;\frac{\pi}{2}
ightbrack\int_{0}^{\frac{\pi}{2}}{f(x)dx} = 5. Tính tích phân I =
\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2sinx ightbrack
dx}?

    Hướng dẫn:

    Ta có:

    I =\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2\sin x ightbrack dx} =\int_{0}^{\frac{\pi}{2}}{f(x)dx} +\int_{0}^{\frac{\pi}{2}}{2\sin xdx}

    = 5 - \left. \ 2\cos xight|_{0}^{\frac{\pi}{2}} = 7

  • Câu 11: Nhận biết
    Chọn phương án thích hợp

    Tìm tất cả các số thực m dương thỏa mãn \int_{0}^{m}\frac{x^{2}dx}{x + 1} = ln2 -
\frac{1}{2}?

    Hướng dẫn:

    Thử các đáp án, suy ra m = 1

  • Câu 12: Nhận biết
    Tìm tích phân

    Cho hàm số f(x) liên tục trên tập số thực và thỏa mãn \int_{0}^{6}{f(x)dx}= 7;\int_{3}^{10}{f(x)dx} = 8;\int_{3}^{6}{f(x)dx} = 9. Khi đó giá trị I = \int_{0}^{10}{f(x)dx} bằng:

    Hướng dẫn:

    Ta có:

    \int_{3}^{10}{f(x)dx} =
\int_{3}^{6}{f(x)dx} + \int_{6}^{10}{f(x)dx}

    \Leftrightarrow \int_{6}^{10}{f(x)dx} =
\int_{3}^{6}{f(x)dx} - \int_{3}^{10}{f(x)dx} = 8 - 9 = 1

    \Rightarrow I = \int_{0}^{6}{f(x)dx} +
\int_{6}^{10}{f(x)dx} = 7 - 1 = 6

  • Câu 13: Nhận biết
    Chọn khẳng định sai

    Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Ta có: \int_{a}^{b}{f(x)dx} = -
\int_{b}^{a}{f(x)dx} nên khẳng định \int_{a}^{b}{f(x)dx} =
\int_{b}^{a}{f(x)dx} sai.

  • Câu 14: Nhận biết
    Tìm tham số a thỏa mãn điều kiện

    Xác định giá trị của tham số a thỏa mãn \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = a^{3} + 2?

    Hướng dẫn:

    Ta có: \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = \left. \ \left( x^{3} + 2x ight) ight|_{0}^{a} = a^{3}
+ 2a

    \Rightarrow \int_{0}^{a}{\left( 3x^{2} +
2 ight)dx} = a^{3} + 2 \Leftrightarrow a^{3} + 2a = a^{3} + 2
\Leftrightarrow a = 1

    Vậy đáp án a = 1.

  • Câu 15: Nhận biết
    Tính vận tốc chuyển động

    Cho một vật chuyển động có phương trình là: s = 2t^{3} - \frac{2}{t} + 3 (t được tính bằng giây, S tính bằng mét). Vận tốc của chuyển động thẳng t = 2s là:

    Hướng dẫn:

    Ta có v = s' = 6t^{2} +
\frac{2}{t^{2}}

    Với t = 2 \Rightarrow v = 6.2^{2} +
\frac{2}{2^{2}} = \frac{49}{2}

  • Câu 16: Thông hiểu
    Chọn đáp án đúng

    Tính tích phân I =\int_{0}^{\frac{\pi}{3}}{\frac{\sin x}{\cos^{3}x}dx}?

    Hướng dẫn:

    Đặt t = \cos x \Rightarrow dt = - \sin
xdx

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 1 \\x = \dfrac{\pi}{3} \Rightarrow t = \dfrac{1}{2} \\\end{matrix} ight.

    Khi đó:

    I = \int_{1}^{\frac{1}{2}}{\frac{-
1}{t^{3}}dt} = \int_{\frac{1}{2}}^{1}{\frac{1}{t^{3}}dt} = \left. \  -
\frac{1}{2t^{2}} ight|_{\frac{1}{2}}^{1} = - \frac{1}{2} + 2 =
\frac{3}{2}.

  • Câu 17: Nhận biết
    Tính tích phân

    Cho \int_{- 1}^{2}{f(x)dx} = 2\int_{- 1}^{2}{g(x)dx} = - 1, khi đó \int_{- 1}^{2}{\left\lbrack x + 2f(x)
+ 3g(x) ightbrack dx} bằng:

    Hướng dẫn:

    Ta có:

    \int_{- 1}^{2}{\left\lbrack x + 2f(x) +
3g(x) ightbrack dx} = \int_{- 1}^{2}{xdx} + 2\int_{- 1}^{2}{f(x)dx}
+ 3\int_{- 1}^{2}{g(x)dx}

    = \left. \ \frac{1}{2}x^{2} ight|_{-
1}^{2} + 2.2 + 3.( - 1) = \frac{5}{2}

  • Câu 18: Nhận biết
    Xác định quãng đường vật chuyển động

    Một vật chuyển động chậm dần đều với vận tốc v(t) = 30 - 2t(m/s). Hỏi trong 5s trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?

    Hướng dẫn:

    Khi dừng hẳn v(t) = 30 - 2t = 0
\Rightarrow t = 15(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{10}^{15}{v(t)dt} =
\int_{10}^{15}{(30 - 2t)dt} = 25m.

  • Câu 19: Thông hiểu
    Tính quãng đường S của ô tô

    Một ô tô đang chuyển động đều với vận tốc 12m/s thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t) = 12 - 2t(m/s) (trong đó t là thời gian tính bằng giây, kể từ lúc đạp phanh). Hỏi trong thời gian 8 giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?

    Hướng dẫn:

    Khi dừng hẳn v(t) = 12 - 2t = 0
\Rightarrow t = 6(s)

    Khi đó trong 8s trước khi dừng hẳn vật di chuyển được (bao gồm 2s trước khi đạp phanh):

    S = 2.12 + \int_{0}^{6}{v(t)dt} = 24 +
\int_{0}^{6}{(12 - 2t)dt}

    = 24 + \left. \ \left( 12t - t^{2}
ight) ight|_{0}^{6} = 24 + 36 = 60(m)

  • Câu 20: Nhận biết
    Tính tích phân

    Tích phân I =
\int_{0}^{\frac{\pi}{2}}{\sin xdx} có giá trị là:

    Hướng dẫn:

    Tích phân I =
\int_{0}^{\frac{\pi}{2}}{\sin xdx} có giá trị là:

    Cách 1:I = \int_{0}^{\frac{\pi}{2}}{\sin
xdx} = \left. \ \left( - \cos x ight) ight|_{0}^{\frac{\pi}{2}} =
1.

    Cách 2: Dùng máy tính cầm tay.

    Đáp án đúng là I = 1

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo