Trong không gian , góc giữa hai mặt phẳng
và
bằng:
Ta có: góc giữa hai mặt phẳng và
bằng:
.
Trong không gian , góc giữa hai mặt phẳng
và
bằng:
Ta có: góc giữa hai mặt phẳng và
bằng:
.
Trong không gian , điểm nào sau đây thuộc trục
?
Điểm thuộc trục Oy có dạng . Vậy điểm cần tìm là:
.
Trong không gian cho
. Tọa độ của
là
Ta có:
Trong không gian với hệ trục tọa độ , cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Tích tất cả giá trị của để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Tích tất cả giá trị của để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Gọi là góc giữa hai đường thẳng đã cho.
Đường thẳng có vectơ chỉ phương là
.
Đường thẳng có vectơ chỉ phương là
.
Ta có:
Vậy tích tất cả các giá trị của tham số a bằng -4.
Trong không gian , hình chiếu vuông góc của điểm
trên mặt phẳng
là
Tọa độ hình chiếu của điểm A trên mặt phẳng là:
.
Trong không gian , tọa độ hình chiếu của
lên
là
Tọa độ hình chiếu của lên
là
.
Trong không gian hệ trục tọa độ , cho các điểm
. Tìm tọa độ điểm
để tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian với hệ tọa độ , cho hình lập phương
có độ dài cạnh bằng 1 như hình vẽ.
Tọa độ của vectơ là
Ta có:
ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm
là tâm của nguồn phát âm với bán kính
. Để kiểm tra một điểm ở vị trí
có nhận được cường độ âm phát ra tại
hay không người ta sẽ tính khoảng cách giữa hai vị trí
và
. Hỏi khoảng cách giữa hai vị trí
và
là bao nhiêu mét?
Đáp án: 14 (m)
ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm
là tâm của nguồn phát âm với bán kính
. Để kiểm tra một điểm ở vị trí
có nhận được cường độ âm phát ra tại
hay không người ta sẽ tính khoảng cách giữa hai vị trí
và
. Hỏi khoảng cách giữa hai vị trí
và
là bao nhiêu mét?
Đáp án: 14 (m)
Ta có
(m).
Đáp số 14(m).
Trong không gian , cho vectơ
. Tọa độ điểm
là:
Ta có:
Trong không gian với hệ trục tọa độ , cho hai véc tơ
và
. Tọa độ của véc tơ
tương ứng là:
Ta có: .
.
Suy ra .
Cho tọa độ của vec tơ
Ta có:
nên tọa độ của
Trong không gian , điểm nào sau đây nằm trên mặt phẳng tọa độ
?
Điểm thuộc có
. Vậy điểm cần tìm được là:
.
Trong không gian , cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian , cho điểm
thỏa mãn
. Tọa độ điểm
bằng
Ta có:
Trong không gian cho điểm
. Tìm tọa độ hình chiếu vuông góc của
trên mặt phẳng
.
Vì nên tọa độ hình chiếu vuông góc của
trên mặt phẳng
là
.
Trong không gian . cho điểm
. Tìm tọa độ điểm
đối xứng với điểm
qua mặt phẳng
?
Lấy đối xứng qua mặt phẳng thì
đổi dấu còn
giữ nguyên nên điểm
có tọa độ là
.
Trong không gian , điểm nào sau đây thuộc mặt phẳng
?
Do điểm thuộc mặt phẳng nên điểm đó có tọa độ dạng
Suy ra điểm là đáp án cần tìm.
Trong không gian , cho
và
. Vectơ
có tọa độ là
Ta có:
và
khi đó:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: