Hình chiếu vuông góc của điểm trên mặt phẳng
là:
Hình chiếu vuông góc của điểm trên mặt phẳng
là điểm có tọa độ
.
Hình chiếu vuông góc của điểm trên mặt phẳng
là:
Hình chiếu vuông góc của điểm trên mặt phẳng
là điểm có tọa độ
.
Trong không gian , cho
. Tọa độ
bằng?
Ta có:
Trong không gian , cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.
Trong không gian , mặt phẳng
đi qua điểm nào sau đây?
Xét điểm ta có:
đúng nên
.
Trong không gian với hệ trục tọa độ , cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Tìm tọa độ véctơ biết rằng
và
.
Ta có .
Trong không gian , cho điểm
thỏa mãn
. Khi điểm
thì giá trị
bằng?
Ta có:
Vậy
Cho tọa độ của vec tơ
Ta có:
nên tọa độ của
Trong không gian với hệ tọa độ , cho điểm
thỏa
và
. Tọa độ của vectơ
là
Ta có:
Suy ra
Trong không gian , cho điểm
thỏa mãn
. Tọa độ điểm
bằng
Ta có:
Trong không gian , cho điểm
. Tìm tọa độ của
là.
Ta có:
Trong không gian với hệ tọa độ , gọi
,
,
lần lượt là khoảng cách từ điểm
đến ba mặt phẳng tọa độ
,
,
. Tính
?
Với .
Khi đó ,
,
.
Theo bài ra ta có:
;
,
.
.
Trong không gian , hình chiếu vuông góc của điểm
trên mặt phẳng
là
Tọa độ hình chiếu của điểm A trên mặt phẳng là:
.
Trong không gian , góc giữa hai mặt phẳng
và
bằng:
Ta có: góc giữa hai mặt phẳng và
bằng:
.
Trong không gian với hệ trục tọa độ , cho ba điểm
. Tìm tọa độ điểm
sao cho tứ giác
là hình bình hành.
Hình vẽ minh họa
Ta có ;
nên
không cùng phương hay
không thẳng hàng.
Gọi
.
Lúc đó, là hình bình hành khi và chỉ khi
Vậy tọa độ điểm cần tìm là:
Trong không gian , cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian với hệ trục tọa độ , cho điểm
. Khẳng định nào sau đây đúng?
Vì tọa độ điểm có
nên
.
Trong không gian , cho điểm
. Tọa độ trung điểm của
là.
Tọa độ trung điểm I của AB là:
Trong không gian , điểm nào sau đây nằm trên mặt phẳng tọa độ
?
Điểm thuộc có
. Vậy điểm cần tìm được là:
.
Trong không gian hệ trục tọa độ , cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: