Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 7 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyzvới \overrightarrow{i},\overrightarrow{j},\overrightarrow{k} lần lượt là các vecto đơn vị trên các trục Ox,\ \ Oy,\ \ Oz. Tính tọa độ của vecto \overrightarrow{i} + \overrightarrow{j} -
\overrightarrow{k}.

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{i} = (1;0;0) \\
\overrightarrow{j} = (0;1;0) \\
\overrightarrow{k} = (0;0;1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{i} +
\overrightarrow{j} - \overrightarrow{k} = (1;1; - 1)

  • Câu 2: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm A(1;1; - 1)B(2;3;2). Vectơ \overrightarrow{AB} có tọa độ là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{AB} = (2 - 1;3 - 1;2 +
1) = (1;2;3)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(1;2;3).

  • Câu 3: Nhận biết
    Xác định tọa độ điểm trong không gian

    Trong không gian Oxyz, điểm đối xứng của điểm M(1;2;3) qua trục Ox có tọa độ là

    Hướng dẫn:

    Gọi M' là điểm đối xứng của M(1;2;3) qua trục Ox.

    Hình chiếu vuông góc của M(1;2;3) lên trục OxH(1;0;0)

    Khi đó H(1;0;0) là trung điểm của M'M. Do đó tọa độ của M'(1;
- 2; - 3)

  • Câu 4: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{a} = (2; - 3;3), \overrightarrow{b} = (0;2; - 1), \overrightarrow{c} = (3; - 1;5). Tìm tọa độ của vectơ \overrightarrow{u} =
2\overrightarrow{a} + 3\overrightarrow{b} -
2\overrightarrow{c}.

    Hướng dẫn:

    Ta có:

    2\overrightarrow{a} = (4; -
6;6)

    3\overrightarrow{b} = (0;6; -
3)

    - 2\overrightarrow{c} = ( - 6;2; -
10)

    \Rightarrow \overrightarrow{u} =
2\overrightarrow{a} + 3\overrightarrow{b} - 2\overrightarrow{c} = ( -
2;2; - 7).

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, điểm nào sau đây nằm trên mặt phẳng tọa độ (Oyz)?

    Hướng dẫn:

    Điểm thuộc (Oyz)x = 0. Vậy điểm cần tìm được là: N(0;4; - 1).

  • Câu 6: Thông hiểu
    Xác định tọa độ điểm M

    Trong không gian Oxyz, điểm M thuộc trục Ox và cách đều hai điểm A(4;2; - 1)B(2;1;0)

    Hướng dẫn:

    M \in Ox \Rightarrow
M(x;0;0).

    Ta có: \overrightarrow{MA} = (4 - x;2; -
1),\ \ \overrightarrow{MB} = (2 - x;1;0)

    M cách đều hai điểm A,\ \ B khi MA = MB

    \Leftrightarrow \sqrt{(4 - x)^{2} +
2^{2} + ( - 1)^{2}} = \sqrt{(2 - x)^{2} + 1^{2} + 0^{2}}

    \Leftrightarrow x = 4

  • Câu 7: Nhận biết
    Tìm tọa độ điểm M

    Trong không gian Oxyz giả sử \overrightarrow{OM} = 2\overrightarrow{i} +
3\overrightarrow{j} - \overrightarrow{k}, khi đó tọa độ điểm M

    Hướng dẫn:

    Ta có:

    \overrightarrow{OM} = 2\overrightarrow{i}
+ 3\overrightarrow{j} - \overrightarrow{k} = (2;3; - 1) hay M(2;3; - 1)

  • Câu 8: Thông hiểu
    Chọn phát biểu sai

    Trong không gian Oxyz, cho điểm M(2; - 5;4). Trong các phát biểu sau, phát biểu nào sai?

    Hướng dẫn:

    +) Ta có khoảng cách từ M đến mặt phẳng tọa độ (xOz) bằng | - 5| = 5 nên Khoảng cách từ M đến mặt phẳng tọa độ (xOz) bằng 5 đúng.

    +) Khoảng cách từ M đến trục Oz bằng \sqrt{2^{2} + ( - 5)^{2}} = \sqrt{29} nên Khoảng cách từ M đến trục Oz bằng \sqrt{29}” đúng.

    +) Tọa độ hình chiếu vuông góc của điểm Mlên mặt phẳng (yOz)I(0;
- 5;4).

    Suy ra tọa độ điểm M' đối xứng với M qua mặt phẳng (yOz)M'( - 2; - 5;4) nên Tọa độ điểm M' đối xứng với M qua mặt phẳng (yOz)M'(2;5; - 4)sai.

    +) Tọa độ hình chiếu vuông góc của điểm Mlên trục OyJ(0; -
5;0).

    Suy ra tọa độ điểm M' đối xứng với M qua trục OyM'(
- 2; - 5; - 4) nên Tọa độ điểm M' đối xứng với M qua trục OyM'(
- 2; - 5; - 4)” đúng.

  • Câu 9: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm A( - 1;2; - 3)B(2; - 1;0). Vectơ \overrightarrow{AB} có tọa độ là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{AB} = (2 + 1; - 1 - 2;0
+ 3) = (3; - 3;3)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(3; - 3;3).

  • Câu 10: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{a} = 6.\overrightarrow{i} +
8.\overrightarrow{k} + 7.\overrightarrow{j}. Khi đó tọa độ của \overrightarrow{a} là.

    Hướng dẫn:

    Do \overrightarrow{a} =
6\overrightarrow{i} + 8\overrightarrow{k} + 7\overrightarrow{j} =
6\overrightarrow{i} + 7\overrightarrow{j} + 8\overrightarrow{k}
\Rightarrow \overrightarrow{a} = (6;\ 7;\ 8).

  • Câu 11: Nhận biết
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, gọi a,b,c lần lượt là khoảng cách từ điểm M(1;3;2) đến ba mặt phẳng tọa độ (Oxy), (Oyz),(Oxz). Tính P
= a + b^{2} + c^{3} ?

    Hướng dẫn:

    Với A\left( x_{o}\ ;\ y_{o}\ ;\ z_{o}
ight) \in (Oxyz).

    Khi đó d\left(
A\ ,\ (Oxy) ight) = z_{o}, d\left( A\ ,\ (Oxz) ight) = y_{o}, d\left( A\ ,\ (Oyz) ight) =
x_{o}.

    Theo bài ra ta có:

    a = d\left( M;(Oxy)
ight) = 2;b = d\left( M\ ;(Oyz)
ight) = 1, c = d\left( \ M\
;(Oxz) ight) = 3.

    P = a + b^{2} + c^{3} = 2 + 1^{2} + 3^{3}
= 30.

  • Câu 12: Thông hiểu
    Tìm tọa độ điểm D theo yêu cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểmA(1;2 ; - 1);B(2; - 1 ;3);C( - 3 ;5 ;1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có \overrightarrow{AB}(\ 1;\ \  - 3;\
\ 4); \overrightarrow{AC}(\  - 4;\
\ 3;\ \ 2)nên \overrightarrow{AB};\overrightarrow{AC} không cùng phương hay A,B,C không thẳng hàng.

    Gọi D(\ x;\ \ y;\ \ z) \Rightarrow \overrightarrow{DC}(\  - 3 - x;\ \ 5 - y;\ \ 1 -
z).

    Lúc đó, ABCD là hình bình hành khi và chỉ khi \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
1 = - 3 - x \\
- 3 = 5 - y \Leftrightarrow \\
4 = 1 - z \\
\end{matrix} ight.\ \left\{ \begin{matrix}
x = - 4 \\
y = 8 \\
z = - 3 \\
\end{matrix} ight.

    Vậy tọa độ điểm cần tìm là: D( - 4\ ;\ \
8\ ;\  - 3)

  • Câu 13: Nhận biết
    Tìm điểm thuộc Oy

    Trong không gian Oxyz, điểm nào sau đây thuộc trục Oy?

    Hướng dẫn:

    Điểm thuộc trục Oy có dạng (0;m;0). Vậy điểm cần tìm là: M(0;5;0).

  • Câu 14: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho điểm \overrightarrow{u} = \overrightarrow{i} -
2\overrightarrow{k} + \overrightarrow{j}. Tìm tọa độ của \overrightarrow{u} là.

    Hướng dẫn:

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{i} = (1;0;0) \\
\overrightarrow{k} = (0;0;1) \\
\overrightarrow{j} = (0;1;0) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{u} =
\overrightarrow{i} - 2\overrightarrow{k} + \overrightarrow{j} = (1;1; -
2)

  • Câu 15: Nhận biết
    Tìm tọa độ hình chiếu

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là:

    Hướng dẫn:

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là điểm có tọa độ (2;0;0).

  • Câu 16: Nhận biết
    Tìm tọa độ điểm M

    Trong không gian Oxyz, cho điểm M thỏa mãn \overrightarrow{MO} = 3\overrightarrow{k} -
2\overrightarrow{i} + 4\overrightarrow{j}. Tọa độ điểm M bằng

    Hướng dẫn:

    Ta có: \overrightarrow{MO} =3 \overrightarrow{k} - 2\overrightarrow{i} + 4\overrightarrow{j}\Rightarrow M(2; - 4; - 3)

     

  • Câu 17: Nhận biết
    Chọn điểm thuộc mặt phẳng đã cho

    Trong không gian Oxyz, điểm nào sau đây thuộc mặt phẳng (Oyz)?

    Hướng dẫn:

    Ta có: A(x;y;z) \in (Oyz) \Rightarrow x =
0 nên điểm cần tìm là Q(0;4; -
1).

  • Câu 18: Thông hiểu
    Tìm tọa độ vecto

    Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \overrightarrow{u} = (2;0; - 3)\overrightarrow{v} = (0;2; - 1). Tìm tọa độ của vectơ \overrightarrow{a} =
\overrightarrow{u} + 2\overrightarrow{v}.

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} = \overrightarrow{u}
+ 2\overrightarrow{v} = (2;0; - 3) + 2.(0;2; - 1)

    = (2 + 0;0 + 2.2; - 3 + 2.( - 1)) =
(2;4; - 5)

  • Câu 19: Nhận biết
    Tìm tọa độ hình chiếu điểm M

    Trong không gian Oxyz, tọa độ hình chiếu của M( - 2;1;4) lên Oyz

    Hướng dẫn:

    Tọa độ hình chiếu của M( -
2;1;4) lên Oyz(0;1;4).

  • Câu 20: Nhận biết
    Chọn mệnh đề đúng

    Trong không gian Oxyz, cho điểm M(1;0;2). Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Vì tọa độ điểm M(1;0;2)x = 1;y = 0;z = 2 nên M \in (Oxz).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (70%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo