Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm khoảng tứ phân vị của bảng số liệu ghép nhóm

    Nhiệt độ trung bình hàng tháng trong một năm được ghi lại trong bảng sau:

    Tìm khoảng tứ phân vị của bảng số liệu trên.

    Hướng dẫn:

    Mẫu số liệu trên được sấp xếp theo thứ tự tăng dần như sau:

    16 16 18 20 20 24 25 25 28 29 30 30

    Trung vị của mẫu số liệu trên là:

    \frac{24 + 25}{2} = 25 \Rightarrow Q_{2} =
24,5

    Nửa dãy phía dưới số 24,5 (nghĩa là những số nhó hơn 24,5) gồm: 16 16 18 20 20 24 có trung vị là \frac{18 + 20}{2}
= 19 \Rightarrow Q_{1} =
19.

    Nứa dãy phía trên số 24,5 (nghĩa là những số lớn hơn 24,5) gồm: 25 25 28 29 30 30 có trung vị là \frac{28 + 29}{2}
= 28,5 \Rightarrow Q_{3} =
28,5.

    Do đó, tứ phân vị của mẫu số liệu:

    Q_{1}
= 19;Q_{2} = 24,5;Q_{3} = 28,5

    Vậy khoảng tứ phân vị của mẫu số liệu là:

    \Delta_{Q} = Q_{3} - Q_{1} = 28,5 - 19 =
9,5

  • Câu 2: Thông hiểu
    Xác định tứ phân vị thứ ba

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tính tứ phân vị thứ ba của mẫu số liệu ghép nhóm?

    Hướng dẫn:

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \frac{3N}{4} -m ight)}{f}.c = 165 + \frac{75 - 65}{27}.5 \approx 166,85

  • Câu 3: Nhận biết
    Xác định khoảng biến thiên

    Cho bảng tần số ghép nhóm dưới đây:

    Độ tuổi

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    [70; 75)

    [75; 80)

    [80; 85)

    [85; 90)

    Tần số

    4

    7

    4

    6

    16

    12

    2

    0

    Hãy xác định khoảng biến thiên của mẫu số liệu ghép nhóm trên?

    Hướng dẫn:

    Do nhóm số liệu [85; 90) có tần số là 0 nên ta sẽ chỉ xét đến nhóm số liệu [80; 85).

    Do đó: R = 85 – 50 = 35.

  • Câu 4: Thông hiểu
    Tìm khoản biến thiên và khoảng tứ phân vị

    Để đánh giá chất lượng một loại pin điện thoại mới, người ta ghi lại thời gian nghe nhạc liên tục của điện thoại được sạc đầy pin cho đến khi hết pin cho kết quả sau:

    Thời gian (giờ)

    [5; 5,5)

    [5,5; 6)

    [6; 6,5)

    [6,5; 7)

    [7; 7,5)

    Số chiếc điện thoại

    (tần số)

    2

    8

    15

    10

    5

    Khoảng biến thiên, khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là:

    Hướng dẫn:

    Khoảng biến thiên: R = 7,5 – 5 = 2,5.

    Khoảng tứ phân vị  \Delta_{Q} =
0,75

    Cỡ mẫu là n = 2 + 8 + 15 + 10 + 5 = 40.

    Gọi x1; x2; …; x40 thời gian nghe nhạc liên tục của điện thoại được sạc đầy pin cho đến khi hết pin và được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{x_{10} + x_{11}}{2}. Mà x_{10} \in [5,5; 6); x_{11} \in [6; 6,5). Do đó Q1 = 6.

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{x_{30} + x_{31}}{2} \in[6,5; 7) nên nhóm chứa tứ phân vị thứ ba là [6,5; 7).

    Q_{3} = 6,5 + \frac{\frac{3.40}{4} -
25}{10}(7 - 6,5) = 6,75

    Khoảng tứ phân vị  \Delta_{Q} = Q3 – Q1 = 6,75 – 6 = 0,75.

  • Câu 5: Nhận biết
    Chọn đáp án thích hợp

    Bạn Lan thống kê lại chiều cao (đơn vị: cm) của các học sinh nữ lớp 12B và lớp 12C ở bảng sau.

    Chiều cao(cm)

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    [175; 180)

    Số học sinh nữ lớp 12B

    0

    5

    13

    7

    0

    Số học sinh nữ lớp 12C

    2

    10

    9

    3

    1

    Chọn đáp án có khẳng định đúng.

    Hướng dẫn:

    Ta có

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12B là 170 - 155 = 15

    Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12C là 175 – 150 = 25

    Vì 15 < 25 nên mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12B có độ phân tán ít hơn so với mẫu số liệu ghép nhóm về chiều cao của các bạn nữ lớp 12C, hay nói cách khác chiều cao của các bạn nữ lớp 12B đồng đều hơn chiều cao của các bạn nữ lớp 12C.

  • Câu 6: Thông hiểu
    Xác định tứ phân vị thứ ba của mẫu số liệu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{3} của mẫu dữ liệu ghép nhóm trên?

    Hướng dẫn:

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{3N}{4} =
15

    => Nhóm chứa tứ phân vị thứ ba là [9; 11)

    (Vì 15 nằm giữa hai tần số tích lũy 9 và 16)

    Do đó: l = 9;m = 9,f = 7;c = 11 - 9 =
2

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 9 + \dfrac{15 - 9}{7}.2 = \dfrac{75}{7}\approx 10,7

  • Câu 7: Thông hiểu
    Xác định tính đúng sai của các nhận định

    Bạn An và bạn Bình làm thí nghiệm trồng cây. Mỗi bạn trồng 40 cây cần tây trong cốc, phần gốc của các cây khi bắt đầu trồng đều dài 4cm. Bảng 13Bảng 14 lần lượt biểu diễn mẫu số liệu ghép nhóm về số liệu thống kê chiều cao của các cây (đơn vị: centimét) mà bạn An và bạn Bình trồng sau 5 tuần.

    a) Chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng không bằng nhau. Sai||Đúng

    b) Khoảng biến thiên của cả hai mẫu số liệu trên là 20. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ở Bảng 13 là 5,5. Đúng||Sai

    d) Chiều cao của các cây mà bạn Bình trồng đồng đều hơn các cây mà bạn An trồng. Sai||Đúng

    Đáp án là:

    Bạn An và bạn Bình làm thí nghiệm trồng cây. Mỗi bạn trồng 40 cây cần tây trong cốc, phần gốc của các cây khi bắt đầu trồng đều dài 4cm. Bảng 13Bảng 14 lần lượt biểu diễn mẫu số liệu ghép nhóm về số liệu thống kê chiều cao của các cây (đơn vị: centimét) mà bạn An và bạn Bình trồng sau 5 tuần.

    a) Chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng không bằng nhau. Sai||Đúng

    b) Khoảng biến thiên của cả hai mẫu số liệu trên là 20. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ở Bảng 13 là 5,5. Đúng||Sai

    d) Chiều cao của các cây mà bạn Bình trồng đồng đều hơn các cây mà bạn An trồng. Sai||Đúng

    Chiều cao trung bình của cây do bạn An trồng là: {\overline{x}}_{\ _{A}} = 30,25(\
cm).

    Chiều cao trung bình của cây do bạn Bình trồng là: {\overline{x}}_{\ _{B}} = 30,25(\
cm).

    Suy ra chiều cao trung bình của mỗi cây do hai bạn An và Bình trồng là bằng nhau.

    Khoảng biến thiên của cả hai mẫu số liệu là 40 - 20 = 20.

    Xét mẫu số liệu ở Bảng 13.

    • Tứ phân vị thứ nhất Q_{1} của mẫu số liệu đó là:

    Q_{1} = 25 + \left( \frac{10 - 2}{16}
\right) \cdot 5 = 27,5(\ cm)

    • Tứ phân vị thứ ba Q_{3} của mẫu số liệu đó là:

    Q_{3} = 30 + \left( \frac{30 - 18}{20}
\right).5 = 33(\ cm)

    Suy ra khoảng tứ phân vị của mẫu số liệu ở Bảng 13 là 33 - 27,5 = 5,5.

    Phương sai của mẫu số liệu ở Bảng 13 là: s_{A}^{2} = 11,1875.

    Phương sai của mẫu số liệu ở Bảng 14 là: s_{B}^{2} = 13,6875.

    Suy ra s_{A}^{2} < s_{B}^2. Vậy chiều cao của các cây mà bạn An trồng đồng đều hơn các cây mà bạn Bình trồng.

    Đáp án: a) Sai, b) Đúng, c) Đúng, d) Sai.

  • Câu 8: Vận dụng
    Ghi đáp án vào ô trống

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Đáp án là:

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Lập mẫu số liệu ghép nhóm bao gồm cả tần số tích luỹ nhu ở Báng 8 .

    Số phần tử của mẫu là n = 40. Ta có: \frac{n}{2} = \frac{40}{2} = 2015 < 20 < 22. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 20 . Xét nhóm 3 có r = 50;d = 5;n_{3} = 7 và nhóm 2 có

    Nhóm

    Tần sồ

    Tần số tích luỹ

    \lbrack 40;45)

    4

    4

    \lbrack 45;50)

    11

    15

    \lbrack 50;55)

    7

    22

    \lbrack 55;60)

    8

    30

    \lbrack 60;65)

    8

    38

    \lbrack 65;70)

    2

    2

     

    n = 40

     

    cf_{2} = 15.

    Trung vị của mẫu số liệu ghép nhóm đó là:

    M_{e} = 50 + \left( \frac{20 - 15}{7}
ight) \cdot 5 = \frac{375}{7}(\ km/h).

    Suy ra a = 375.

  • Câu 9: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Tìm hiểu thời gian hoàn thành một bài tập (đơn vị: phút) của một số học sinh thu được kết quả sau:

    Thời gian

    \lbrack 0;\ 4) \lbrack 4;\ 8) \lbrack 8;12) \lbrack 12;16) \lbrack 16;20)

    Số học sinh

    2

    4

    7

    4

    3

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm này là

    Hướng dẫn:

    Cỡ mẫu: n = 2 + 4 + 7 + 4 + 3 =
20.

    Gọi x_{1};\ x_{2};\ \ldots;\ x_{20}thời gian hoàn thành bài tập của 20 học sinh và được sắp xếp theo thứ tự không giảm.

    Tứ phân vị thứ ba Q_{1}\frac{x_{5} + x_{6}}{2}. Do x_{5},\ \ x_{6} đều thuộc nhóm \lbrack 4;8) nên nhóm này chứa Q_{1}.

    Khi đó Q_{1} = 4 + \frac{\frac{20}{4} -
2}{4}.4 = 7

    Tứ phân vị thứ ba Q_{3}\frac{x_{15} + x_{16}}{2}. Do x_{15},\ \ x_{16} đều thuộc nhóm \lbrack 12;16) nên nhóm này chứa Q_{3}.

    Khi đó: Q_{3} = 12 + \frac{\frac{3.20}{4}
- 13}{4}.4 = 14.

    Vậy khoảng tứ phân vị của mẫu số liệu trên là \Delta_{Q} = Q_{3} - Q_{1} = 14 - 7 =
7.

  • Câu 10: Nhận biết
    Xác định tính đúng sai

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Xác định tính đúng sai của nhận xét sau: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200g” Đúng||Sai

    Đáp án là:

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Xác định tính đúng sai của nhận xét sau: “Trong 50 quả xoài trên, hiệu số cân nặng của hai quả bất kì không vượt quá 200g” Đúng||Sai

    Đúng vì giá trị 200 là khoảng biến thiên của mẫu số liệu ghép nhóm.

  • Câu 11: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Bạn Hằng rất thích nhảy hiện đại. Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn Hằng được thống kê lại ở bảng sau:

    Thời gian (phút)

    \lbrack 20;25) \lbrack 25;30) \lbrack 30;35) \lbrack 35;40) \lbrack 40;45)

    Số ngày

    6

    6

    4

    1

    1

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    Hướng dẫn:

    Kích thước mẫu là 18

    \Rightarrow Q_{2} =
\frac{1}{2}\left( x_{9} + x_{10} ight)

    Q_{1} = x_{5} \in \lbrack 20;25)
\Rightarrow Q_{1} = 20 + \dfrac{\dfrac{18}{4} - 0}{6}(5) =
\dfrac{95}{4}

    Q_{3} = x_{14} \in \lbrack 30;35)
\Rightarrow Q_{3} = 30 + \dfrac{\dfrac{3.18}{4} - 12}{4}(5) =
\dfrac{255}{8}

    \Delta Q = \frac{255}{8} - \frac{95}{4}
= 8,125

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Số điểm thi đấu của các đội được biểu diễn trong bảng dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 2]

    5

    (2; 4]

    16

    (4; 6]

    13

    (6; 8]

    7

    (8; 10]

    5

    (10; 12]

    4

    Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Nhóm dữ liệu

    Tần số

    Tần số tích lũy

    (0; 2]

    5

    5

    (2; 4]

    16

    21

    (4; 6]

    13

    34

    (6; 8]

    7

    41

    (8; 10]

    5

    46

    (10; 12]

    4

    50

    Tổng

    N = 50

     

    Ta có: N = 50 \Rightarrow \frac{N}{4} =
\frac{50}{4} = 12,5

    => Nhóm chứa tứ phân vị thứ nhất là: (2; 4]

    Khi đó: \left\{ \begin{matrix}
l = 2;\frac{N}{4} = 12,5;m = 5 \\
f = 16;d = 4 - 2 = 2 \\
\end{matrix} ight.

    Vậy tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 2 + \frac{12,5 -
5}{16}.2 = \frac{47}{16}

    Ta có: N = 50 \Rightarrow \frac{3N}{4} =
\frac{150}{4} = 37,5

    => Nhóm chứa tứ phân vị thứ ba là: (6; 8]

    Khi đó: \left\{ \begin{matrix}l = 6;\dfrac{3N}{4} = 37,5;m = 34 \\f = 7;d = 8 - 6 = 2 \\\end{matrix} ight.

    Vậy tứ phân vị thứ nhất là:\left\{ \begin{matrix}l = 2;\dfrac{N}{4} = 12,5;m = 5 \\f = 16;d = 4 - 2 = 2 \\\end{matrix} ight.

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 6 + \frac{37,5 -
34}{7}.2 = 7

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
7 - \frac{47}{16} \approx 4,06

  • Câu 13: Nhận biết
    Xác định khoảng biến thiên của mẫu số liệu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tìm khoảng biến thiên của mẫu số liệu đã cho?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu là R =
15 - 5 = 10.

  • Câu 14: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Quan sát bảng sau và tìm khoảng biến thiên của mẫu số liệu

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu là: R =
50 - 10 = 40.

  • Câu 15: Nhận biết
    Xác định khoảng biến thiên của mẫu số liệu ghép nhóm

    Cho bảng số liệu ghép nhóm về chiều cao (đơn vị centimét) của 36 học sinh trong lớp 12A1 như sau:

    Xác định khoảng biến thiên của mẫu số liệu ghép nhóm?

    Hướng dẫn:

    Ta có khoảng biến thiên của mẫu số liệu ghép nhóm trên là:

    R = a_{k + 1} - a_{1} = 180 - 150 =
30.

  • Câu 16: Vận dụng
    Ghi đáp án vào ô trống

    Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:

    101

    79

    79

    78

    75

    73

    68

    67

    67

    63

    63

    61

    60

    59

    57

    55

    55

    50

    47

    42

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:

    101

    79

    79

    78

    75

    73

    68

    67

    67

    63

    63

    61

    60

    59

    57

    55

    55

    50

    47

    42

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:

    Thời gian

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên.

    Hướng dẫn:

     Xác định u_{1} = 0 là giá trị đầu mút trái của nhóm đầu tiên và u_{k + 1}
= 100 là giá trị đầu mút phải của nhóm cuối cùng có chứa dữ liệu. Suy ra R = u_{k + 1} - u_{1} =
100 .

  • Câu 18: Thông hiểu
    Xác định tứ phân vị thứ ba của mẫu số liệu

    Tìm tứ phân vị thứ ba của mẫu số liệu:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [30; 35)

    2

    Hướng dẫn:

    Ta có:

    Thời gian

    Số học sinh

    Tần số tích lũy

    [0; 5)

    6

    6

    [5; 10)

    10

    16

    [10; 15)

    11

    27

    [15; 20)

    9

    36

    [20; 25)

    1

    37

    [25; 30)

    1

    38

    [30; 35)

    2

    40

    Cỡ mẫu là: N = 40 \Rightarrow
\frac{3N}{4} = 30

    => Nhóm chứa tứ phân vị thứ ba là [15; 20) (vì 30 nằm giữa hai tần số tích lũy 36 và 27)

    Khi đó \left\{ \begin{matrix}l = 15;\dfrac{3N}{4} = 30;m = 27;f = 9 \\c = 20 - 15 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 15 + \frac{30 -
27}{9}.5 = \frac{50}{3} \approx 17.

  • Câu 19: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Số tiền (đơn vị: nghìn đồng) của một số khách hàng mua sách ở một cửa hàng trong một ngày được ghi lại trong bảng sau:

    Giá tiền

    [40; 50)

    [50; 60)

    [60; 70)

    Số khách hàng mua

    2

    6

    4

    Xác định khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Hướng dẫn:

    Ta có:

    Giá tiền

    [40; 50)

    [50; 60)

    [60; 70)

    Số khách hàng mua

    2

    6

    4

    Tần số tích lũy

    2

    8

    12

    Cỡ mẫu N = 12

    Ta có: \frac{N}{4} = 3

    => Nhóm chứa Q_{1} là [50; 60)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 50;m = 2;f = 6;c = 60 -
50 = 10

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 50 + \frac{3 - 2}{6}.10 =\frac{155}{3}

    Ta có: \frac{3N}{4} = 9

    => Nhóm chứa Q_{3} là [60; 70)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 60;m = 8;f = 4;c = 70 -
60 = 10

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 60 + \frac{9 - 8}{4}.10 =\frac{125}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta Q = Q_{3} - Q_{1} =
\frac{65}{6}

  • Câu 20: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Thời gian chờ khám bệnh của hai phòng khám 1 và phòng khám 2 được cho trong bảng sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    Số bệnh nhân phòng 1

    3

    12

    15

    18

    Số bệnh nhân phòng 1

    5

    10

    12

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15. Sai|| Đúng

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20. Sai|| Đúng

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1. Sai|| Đúng

    Đáp án là:

    Thời gian chờ khám bệnh của hai phòng khám 1 và phòng khám 2 được cho trong bảng sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    Số bệnh nhân phòng 1

    3

    12

    15

    18

    Số bệnh nhân phòng 1

    5

    10

    12

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15. Sai|| Đúng

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20. Sai|| Đúng

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1. Sai|| Đúng

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3.

    Chọn ĐÚNG.

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} = 20 - 0 =
20

    Chọn SAI.

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} = 15 - 0 =
15

    Chọn SAI.

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1.

    R_{1} > R_{2} nên thời gian khám bệnh ở phòng khám số 1 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 2.

    Chọn SAI

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo