Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Quan sát bảng sau và tìm khoảng biến thiên của mẫu số liệu

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu là: R =
50 - 10 = 40.

  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Chọn đáp án đúng?

    Hướng dẫn:

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow \frac{N}{4}
= 15

    => Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 va 17)

    Khi đó \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 15;m = 5;f = 12 \\c = 100 - 50 = 50 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{15 -
5}{12}.50 = \frac{275}{3}

  • Câu 3: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Thời gian chờ khám bệnh của hai phòng khám 1 và phòng khám 2 được cho trong bảng sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    Số bệnh nhân phòng 1

    3

    12

    15

    18

    Số bệnh nhân phòng 1

    5

    10

    12

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15. Sai|| Đúng

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20. Sai|| Đúng

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1. Sai|| Đúng

    Đáp án là:

    Thời gian chờ khám bệnh của hai phòng khám 1 và phòng khám 2 được cho trong bảng sau:

    Thời gian

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    Số bệnh nhân phòng 1

    3

    12

    15

    18

    Số bệnh nhân phòng 1

    5

    10

    12

    0

    Xét tính đúng, sai các mệnh đề sau:

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3. Đúng||Sai

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15. Sai|| Đúng

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20. Sai|| Đúng

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1. Sai|| Đúng

    (a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3.

    Chọn ĐÚNG.

    (b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} =
15.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là R_{1} = 20 - 0 =
20

    Chọn SAI.

    (c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} =
20.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là R_{2} = 15 - 0 =
15

    Chọn SAI.

    (d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1.

    R_{1} > R_{2} nên thời gian khám bệnh ở phòng khám số 1 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 2.

    Chọn SAI

  • Câu 4: Nhận biết
    Xác định khoảng biến thiên của mẫu số liệu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Tìm khoảng biến thiên của mẫu số liệu đã cho?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu bằng R
= 100 - 0 = 100.

  • Câu 5: Thông hiểu
    Tìm mốt của mẫu số liệu ghép nhóm

    Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:

    Mốt của mẫu số liệu trên là

    Hướng dẫn:

    Mốt M_{0} chứa trong nhóm \lbrack 40;60).

    Do đó: u_{m} = 40;u_{m + 1} =
60

    \Rightarrow u_{m + 1} - u_{m} = 60 - 40 =
20;n_{m - 1} = 9;n_{m} = 12;n_{m +
1} = 10

    M_{0} = 40 + \frac{12 - 9}{\begin{matrix}
(12 - 9)\  + \ (1 \\
\end{matrix}2 - 10)}(60 - 40) = 52.

  • Câu 6: Thông hiểu
    Chọn kết luận đúng

    Khảo sát về cân nặng của các học sinh lớp 11D3 người ta được một mẫu dữ liệu ghép nhóm như sau:

    Khoảng tứ phân vị của bảng số liệu ghép nhóm trên là

    Hướng dẫn:

     Ta có n = 40 \Rightarrow \frac{n}{4} =
10.

    Gọi x_{1},x_{2},\cdots,x_{40}là mẫu số liệu gốc về cân nặng của 40 học sinh lớp 11D3 và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}(x_{10} + x_{11})nên nhóm chứa tứ phân vị thứ nhất là nhóm [40;50). Do đó tứ phân vị thứ nhất của mẫu số liệu trên là

    Q_{1} = 40 + \frac{10 - 2}{10}.10 =
48.

    Ta có \frac{3n}{4} = 30.

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}(x_{30} + x_{31})nên nhóm chứa tứ phân vị thứ ba là nhóm [60;70). Do đó tứ phân vị thứ ba của mẫu số liệu trên là

    Q_{3} = 60 + \frac{30 - 28}{8}.10 =
62,5.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là

    \Delta_{Q} = Q_{3} - Q_{1} = 62,5 - 48 =
14,5.

  • Câu 7: Nhận biết
    Chọn kết luận đúng

    Kết quả khảo sát cân nặng của 40 quả cam Hòa Bình ở mỗi lô hàng 1 và lô hàng 2 được cho ở bảng sau:

    Cân nặng (gam)

    [100; 110)

    [110; 120)

    [120; 130)

    [130; 140)

    [140; 150)

    Số quả cam ở lô hàng 1

    0

    10

    11

    19

    0

    Số quả cam ở lô hàng 1

    3

    15

    12

    7

    3

    Sử dụng khoảng biến thiên, hãy cho biết cân nặng của 40 quả cam Hòa Bình của lô hàng nào có độ phân tán lớn hơn.

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm về cân nặng của 40 quả cam Hòa Bình của lô hàng 1 là 140 - 110 = 30 gam.

    Khoảng biến thiên của mẫu số liệu ghép nhóm về cân nặng của 40 quả cam Hòa Bình của lô hàng 2 là 150 – 100 = 50 gam.

    Do vậy, lô hàng 2 có cân nặng của 40 quả cam Hòa Bình phân tán lớn hơn lô hàng 1.

  • Câu 8: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Chọn kết luận đúng? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Hướng dẫn:

    Ta có:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Tần số tích lũy

    24

    86

    120

    141

    150

    Cỡ mẫu N = 150 \Rightarrow \frac{N}{4} =
37,5

    => Nhóm chứa tứ phân vị thứ nhất là [250; 300)

    Do đó: l = 250;m = 24,f = 62;c =
50

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 250 + \frac{37,5 - 24}{62}.50 \approx260,89

    N = 150 \Rightarrow \frac{3N}{4} =
112,5

    => Nhóm chứa tứ phân vị thứ ba là [300; 350)

    Do đó: l = 300;m = 86,f = 34;c =
50

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 300 + \dfrac{112,5 - 84}{34}.50 \approx338,97

    Vậy \Delta_{Q} = Q_{3} - Q_{1} \approx
78,08

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Dữ liệu thu được ghi trong bảng dưới đây.

    Chiều cao (cm)

    Số học sinh

    (120; 125]

    3

    (125; 130]

    5

    (130; 135]

    11

    (135; 140]

    6

    (140; 145]

    5

     

    N = 30

    Giá trị \Delta_{Q} là:

    Hướng dẫn:

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    (120; 125]

    3

    3

    (125; 130]

    5

    8

    (130; 135]

    11

    19

    (135; 140]

    6

    25

    (140; 145]

    5

    30

     

    N = 30

     

    Ta có: \frac{N}{4} = \frac{30}{4} =
7,5

    => Nhóm chứa tứ phân vị thứ nhất là: (125; 130]

    Khi đó: \left\{ \begin{matrix}l = 125;\dfrac{N}{4} = 7,5;m = 3 \\f = 5;d = 130 - 125 = 5 \\\end{matrix} ight.

    Vậy tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 125 + \frac{7,5 -
3}{5}.5 = 129,5

    Ta có: \frac{3N}{4} = \frac{3.30}{4} =
22,5

    => Nhóm chứa tứ phân vị thứ ba là (135; 140]

    Khi đó: \left\{ \begin{matrix}
l = 135;\frac{3N}{4} = 22,5;m = 19 \\
f = 6;d = 140 - 135 = 5 \\
\end{matrix} ight.

    Vậy tứ phân vị thứ ba là:

    \left\{ \begin{matrix}l = 135;\dfrac{3N}{4} = 22,5;m = 19 \\f = 6;d = 140 - 135 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = 135 + \frac{22,5 -
19}{6}.5 \approx 137,9

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
\frac{1655}{12} - 29,5 \approx 8,4

  • Câu 10: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Cân nặng

    [250; 290)

    [290; 330)

    [330; 370)

    [370; 410)

    [410; 450)

    Số quả

    3

    13

    18

    11

    5

    Tần số tích lũy

    3

    16

    34

    45

    50

    Cỡ mẫu N = 50

    Cỡ mẫu \Rightarrow \frac{N}{4} =
12,5

    => Nhóm chứa Q_{1} là [290; 330)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 290;m = 3,f = 13;c = 330
- 290 = 40

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 290 + \dfrac{12,5 - 3}{13}.40 =\dfrac{4150}{13}

    Cỡ mẫu N = 50 \Rightarrow \frac{3N}{4} =
37,5

    => Nhóm chứa Q_{3} là [370; 410)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 370;m = 34,f = 11;c =
410 - 370 = 40

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 370 + \dfrac{37,5 - 34}{11}.40 =\dfrac{4210}{11}.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = \frac{4210}{11} - \frac{4150}{13} =
\frac{9080}{143} \approx 63,5

  • Câu 11: Nhận biết
    Chọn công thức tính khoảng tứ phân vị

    Công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1}

  • Câu 12: Vận dụng
    Chọn đáp án đúng

    Điều tra về khối lượng \mathbf{27} củ khoai tây (đơn vị: gam) thu hoạch tại nông trường, ta có kết quả sau:

    Nhóm

    Tần số

    Tần số tích lũy

    \lbrack 74;\ \ 80) 4 4
    \lbrack 80;\ \ 86) 6 10
    \lbrack 86;\ \ 92) 3 13
    \lbrack 98;\ \ 104) 4 17
    \lbrack 92;\ \ 98) 3 20
    \lbrack 104;\ \ 110) 7 27
    n = 27

    Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a_{1} = 74, đầu mút phải của nhóm 6 là a_{7} = 110. Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là: R =
a_{7} - a_{1} = 110 - 74 = 36(gam)

    Số phần tử của mẫu là n = 27

    Ta có: \frac{n}{4} = \frac{27}{4} =
6,754 < 6,75 <
10. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 6,75. Xét nhóm 2 là nhóm \lbrack 80;\ \ 86)s = 80; h =
6; n_{2} = 6 và nhóm 1 là nhóm \lbrack 74;\ \ 80)cf_{1} = 4.

    Áp dụng công thức, ta có tứ phân vị thứ nhất là:

    Q_{1} = 80 + \left( \frac{6,75 - 4}{6}
\right).6 = 82,75(gam)

    Ta có: \frac{3n}{4} = \frac{3.27}{4} =
20,2520 < 20,25 <
27. Suy ra nhóm 6 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 20,25.

    Xét nhóm 6 là nhóm \lbrack 104;\ \
109)t = 104; l = 6; n_{6}
= 7 và nhóm 5 là nhóm \lbrack 98;\
\ 104)cf_{5} = 20.

    Áp dụng công thức, ta có tứ phân vị thứ ba là:

    Q_{3} = 104 + \left( \frac{20,25 - 20}{7}
\right).6 = \frac{1459}{14} \approx 104,2(gam)

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

    \Delta_{Q} = Q_{3} - Q_{1} \approx 104,2
- 82,75 = 21,45 (gam)

  • Câu 13: Thông hiểu
    Xác định khoảng tứ phân vị của mẫu số liệu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Khi đó khoảng tứ phân vị \Delta_{Q} là:

    Hướng dẫn:

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{N}{4} =
10,5

    => Nhóm chứa Q_{1} là [20; 40)

    (Vì 10,5 nằm giữa hai tần số tích lũy 5 và 14)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 9;c = 40 -
20 = 20

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \dfrac{10,5 - 5}{9}.20 =\dfrac{290}{9}

    Cỡ mẫu N = 42 \Rightarrow \frac{3N}{4} =
31,5

    => Nhóm chứa Q_{3} là [60; 80)

    (Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 60;m = 26,f = 10;c = 80
- 60 = 20

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 60 + \dfrac{31,5 - 26}{10}.20 =71.

    Vậy khoảng tứ phân vị của mẫu số liệu đã cho là:

    \Delta_{Q} = Q_{3} - Q_{1} = 71 -
\frac{290}{9} = \frac{349}{9}.

  • Câu 14: Nhận biết
    Xác định khoảng biến thiên

    Cho bảng tần số ghép nhóm dưới đây:

    Độ tuổi

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    [70; 75)

    [75; 80)

    [80; 85)

    [85; 90)

    Tần số

    4

    7

    4

    6

    16

    12

    2

    0

    Hãy xác định khoảng biến thiên của mẫu số liệu ghép nhóm trên?

    Hướng dẫn:

    Do nhóm số liệu [85; 90) có tần số là 0 nên ta sẽ chỉ xét đến nhóm số liệu [80; 85).

    Do đó: R = 85 – 50 = 35.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:

    101

    79

    79

    78

    75

    73

    68

    67

    67

    63

    63

    61

    60

    59

    57

    55

    55

    50

    47

    42

    Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?

    Hướng dẫn:

    Bảng số liệu ghép nhóm:

    Số lỗi

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    [90; 100)

    [100; 110)

    Tần số

    2

    5

    7

    5

    0

    0

    1

    Vậy R = 110 – 40 = 70

  • Câu 16: Vận dụng
    Chọn khẳng định đúng

    Cân nặng (đơn vị: kg) của một số lợn con mới sinh thuộc hai giống A và B được cho ở bảng sau.

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống A

    8

    28

    32

    17

    Giống B

    13

    14

    24

    14

    Chọn đáp án có khẳng định đúng?

    Hướng dẫn:

    Đối với lợn con giống A

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống A

    8

    28

    32

    17

    Tần số tích lũy

    8

    36

    68

    85

    Cỡ mẫu N = 85

    Ta có: \frac{N}{4} = \frac{{85}}{4}

    => Nhóm chứa Q_{1} là [1,1; 1,2)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,1;m = 8,f = 28;c = 1,2
- 1,1 = 0,1

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 1,1 + \dfrac{\dfrac{85}{4} - 8}{28}.0,1\approx 1,15

    Ta có: \frac{3N}{4} = \frac{3.85}{4} =
\frac{255}{4}

    => Nhóm chứa Q_{3} là [1,2; 1,3)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,2;m = 36,f = 32;c =
1,3 - 1,2 = 0,1

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 1,2 + \dfrac{\dfrac{255}{4} - 36}{32}.0,1\approx 1,29.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm A là \Delta Q_{A} = Q_{3} - Q_{1} \approx
0,14

    Đối với lợn con giống B

    Cân nặng

    [1,0; 1,1)

    [1,1; 1,2)

    [1,2; 1,3)

    [1,3; 1,4)

    Giống B

    13

    14

    24

    14

    Tần số tích lũy

    13

    27

    51

    65

    Cỡ mẫu N = 65

    Ta có: \frac{N}{4} =
\frac{65}{4}

    => Nhóm chứa Q_{1} là [1,1; 1,2)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,1;m = 13;f = 14;c =
1,2 - 1,1 = 0,1

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 1,1 + \dfrac{\dfrac{65}{4} - 13}{14}.0,1\approx 1,123

    Ta có: \frac{3N}{4} = \frac{3.65}{4} =
\frac{195}{4}

    => Nhóm chứa Q_{3} là [1,2; 1,3)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,2;m = 27;f = 24;c =
1,3 - 1,2 = 0,1

    \Rightarrow {Q_3} = l + \frac{{\frac{{3N}}{4} - m}}{f}.c= 1,2 + \frac{{\dfrac{{195}}{4} - 27}}{{24}}.0,1 \approx 1,29

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm B là \Delta Q_{B} = Q_{3} - Q_{1} \approx
0,167

    Ta thấy \Delta Q_{A} < \Delta
Q_{B} nên cân nặng của lợn con mới sinh thuộc giống A đồng đều hơn cân nặng của lợn con mới sinh thuộc giống B.

  • Câu 17: Thông hiểu
    Chọn đáp án đúng

    Ta có bảng sau về thời gian tập thể dục buổi sáng của bác Bình và bác An:

    Thời gian (phút)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    Bác Bình

    5

    12

    8

    3

    2

    Bác An

    0

    25

    5

    0

    0

    Hỏi hiệu khoảng biến thiên của mẫu số liệu của bác Bình và bác An là bao nhiêu?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là:

    40 – 15 = 25 (phút).

    Trong mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An, khoảng đầu tiên chứa dữ liệu là [20; 25) và khoảng cuối cùng chứa dữ liệu là [25; 30). Do đó khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An là: 30 – 20 = 10 (phút).

    Vậy hiệu khoảng biến thiên của bác Bình và bác An là: 25 - 10 = 15.

  • Câu 18: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:

    Độ tuổi

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số khách hàng

    6

    12

    16

    7

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai

    b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai

    c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai

    d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng

    Đáp án là:

    Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:

    Độ tuổi

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    Số khách hàng

    6

    12

    16

    7

    2

    Xét tính đúng sai của các khẳng định sau:

    a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai

    b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai

    c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai

    d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng

    a) Đúng: Giá trị đại diện nhóm [50;60) là 55

    b) Đúng: Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50;60) .

    c) Đúng: Nhóm chứa mốt là nửa khoảng [30;40).

    d) Sai: Khi đó

    u_{m} = 30;n_{m} = 16;n_{m- 1} = 12;n_{m + 1} = 7;u_{m + 1} - u_{m} = 40 - 30 = 10

    Ta có mốt là:

    M_{0} = 30 + \frac{16 - 12}{(16 - 2) +
(16 - 7)}.10 = \frac{430}{13} \approx 33,08

    Vậy độ tuổi được dự báo là thích xem phim đó nhiều nhất là 33 tuổi.

  • Câu 19: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu gốc

    Thời gian hoàn thành bài kiểm tra của học sinh lớp 12A được cho trong bảng sau:

    Thời gian (phút)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số học sinh

    8

    16

    4

    2

    Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc bằng bao nhiêu?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu gốc là R = 43 - 27 = 16

  • Câu 20: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Cho mẫu số liệu ghép nhóm:

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    12

    (30;40]

    9

    (40;50]

    7

    Tìm khoảng biến thiên?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu đã cho là: R = 50 - 0 = 50.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo