Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm khoảng tứ phân vị của bảng số liệu ghép nhóm

    Nhiệt độ trung bình hàng tháng trong một năm được ghi lại trong bảng sau:

    Tìm khoảng tứ phân vị của bảng số liệu trên.

    Hướng dẫn:

    Mẫu số liệu trên được sấp xếp theo thứ tự tăng dần như sau:

    16 16 18 20 20 24 25 25 28 29 30 30

    Trung vị của mẫu số liệu trên là:

    \frac{24 + 25}{2} = 25 \Rightarrow Q_{2} =
24,5

    Nửa dãy phía dưới số 24,5 (nghĩa là những số nhó hơn 24,5) gồm: 16 16 18 20 20 24 có trung vị là \frac{18 + 20}{2}
= 19 \Rightarrow Q_{1} =
19.

    Nứa dãy phía trên số 24,5 (nghĩa là những số lớn hơn 24,5) gồm: 25 25 28 29 30 30 có trung vị là \frac{28 + 29}{2}
= 28,5 \Rightarrow Q_{3} =
28,5.

    Do đó, tứ phân vị của mẫu số liệu:

    Q_{1}
= 19;Q_{2} = 24,5;Q_{3} = 28,5

    Vậy khoảng tứ phân vị của mẫu số liệu là:

    \Delta_{Q} = Q_{3} - Q_{1} = 28,5 - 19 =
9,5

  • Câu 2: Thông hiểu
    Tìm khoảng biến thiên của mẫu số liệu

    Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:

    160

    161

    161

    162

    162

    162

    163

    163

    163

    164

    164

    164

    164

    165

    165

    165

    165

    165

    166

    166

    166

    166

    167

    167

    168

    168

    168

    168

    169

    169

    170

    171

    171

    172

    172

    174

    Chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 4 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau. Khi đó khoảng biến thiên của mẫu số liệu sau khi ghép nhóm là:

    Hướng dẫn:

    Khoảng biến thiên là 174 - 160 =
14

    Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4.

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.

    Khi đó ta có các nhóm là: \lbrack
160;164),\lbrack 164;168),\lbrack 168;172),\lbrack 172;176)

    Vậy bảng dữ liệu ghép nhóm đúng là:

    Vậy khoảng biến thiên của mẫu số liệu sau khi ghép nhóm là R = 176 - 160 = 16.

  • Câu 3: Vận dụng
    Chọn đáp án đúng

    Điều tra về khối lượng \mathbf{27} củ khoai tây (đơn vị: gam) thu hoạch tại nông trường, ta có kết quả sau:

    Nhóm

    Tần số

    Tần số tích lũy

    \lbrack 74;\ \ 80) 4 4
    \lbrack 80;\ \ 86) 6 10
    \lbrack 86;\ \ 92) 3 13
    \lbrack 98;\ \ 104) 4 17
    \lbrack 92;\ \ 98) 3 20
    \lbrack 104;\ \ 110) 7 27
    n = 27

    Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a_{1} = 74, đầu mút phải của nhóm 6 là a_{7} = 110. Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là: R =
a_{7} - a_{1} = 110 - 74 = 36(gam)

    Số phần tử của mẫu là n = 27

    Ta có: \frac{n}{4} = \frac{27}{4} =
6,754 < 6,75 <
10. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 6,75. Xét nhóm 2 là nhóm \lbrack 80;\ \ 86)s = 80; h =
6; n_{2} = 6 và nhóm 1 là nhóm \lbrack 74;\ \ 80)cf_{1} = 4.

    Áp dụng công thức, ta có tứ phân vị thứ nhất là:

    Q_{1} = 80 + \left( \frac{6,75 - 4}{6}
\right).6 = 82,75(gam)

    Ta có: \frac{3n}{4} = \frac{3.27}{4} =
20,2520 < 20,25 <
27. Suy ra nhóm 6 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 20,25.

    Xét nhóm 6 là nhóm \lbrack 104;\ \
109)t = 104; l = 6; n_{6}
= 7 và nhóm 5 là nhóm \lbrack 98;\
\ 104)cf_{5} = 20.

    Áp dụng công thức, ta có tứ phân vị thứ ba là:

    Q_{3} = 104 + \left( \frac{20,25 - 20}{7}
\right).6 = \frac{1459}{14} \approx 104,2(gam)

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

    \Delta_{Q} = Q_{3} - Q_{1} \approx 104,2
- 82,75 = 21,45 (gam)

  • Câu 4: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Kết quả đo chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được cho ở bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

     Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.

    Hướng dẫn:

    Cỡ mẫu n = 100.

    Gọi x_{1};x_{2};...;x_{100} là mẫu số liệu gốc về chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được xếp theo thứ tự không giảm.

    Ta có

    x_{1};...;x_{5} \in [8,4; 8,6),

    x_{6};...;x_{17} \in [8,6; 8,8),

    x_{18};...;x_{42} \in [8,8; 9,0),

    x_{43};...;x_{86} \in [9,0; 9,2),

    x_{87};...;x_{100} \in [9,2; 9,4).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{x_{25} + x_{26}}{2} \in [8,8; 9,0). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 8,8 + \frac{\frac{100}{4} - (5 +
12)}{25}(9,0 - 8,8) = 8,864

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{x_{75} + x_{76}}{2} \in [9,0; 9,2).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 20 + \frac{\frac{3.100}{4} - (5
+ 12 + 25)}{44}(9,2 - 9,0) = 9,15

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{Q} = Q_{3} - Q_{1} = 9,15 -
8,864 = 0,286

  • Câu 5: Thông hiểu
    Chọn đáp án đúng

    Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:

    101

    79

    79

    78

    75

    73

    68

    67

    67

    63

    63

    61

    60

    59

    57

    55

    55

    50

    47

    42

    Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?

    Hướng dẫn:

    Bảng số liệu ghép nhóm:

    Số lỗi

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    [90; 100)

    [100; 110)

    Tần số

    2

    5

    7

    5

    0

    0

    1

    Vậy R = 110 – 40 = 70

  • Câu 6: Thông hiểu
    Xác định tính đúng sai của các nhận định

    Bảng thống kê thời gian (đơn vị: phút) tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình và bạn An:

    a) Khoảng biến thiên của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 20. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình là 28. Sai||Đúng

    c) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 22. Sai||Đúng

    d) Dựa vào khoảng tứ phân vị của hai mẫu số liệu trên thì thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình phân tán hơn bạn An. Đúng||Sai

    Đáp án là:

    Bảng thống kê thời gian (đơn vị: phút) tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình và bạn An:

    a) Khoảng biến thiên của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 20. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình là 28. Sai||Đúng

    c) Khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 22. Sai||Đúng

    d) Dựa vào khoảng tứ phân vị của hai mẫu số liệu trên thì thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình phân tán hơn bạn An. Đúng||Sai

    a) Khoảng biến thiên của mẫu số liệu về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An là 35 - 15 = 20

    Mệnh đề đúng.

    b) Cỡ mẫu là: 28. Gọi x_{1}\ ;\ x_{2}\
;...;\ x_{28} là mẫu số liệu gốc về thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn Bình đã được sắp xếp theo thứ tự không giảm. Nên tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{7} + x_{8} \right) nên nhóm chứa tứ phân vị thứ nhất là nhóm \lbrack 20\ ;25)và ta có Q_{1} = 20 + \frac{\left( \frac{1.28}{4} - 5
\right)}{10}.5 = 21

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{21} + x_{22} \right) nên nhóm chứa tứ phân vị thứ ba là nhóm \lbrack 25\ ;30) và ta có Q_{3} = 25 + \frac{\left(\frac{3.28}{4} - 15\right)}{10}.5 = 28

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 28 - 21 =
7

    Mệnh đề Sai.

    c) Cỡ mẫu là: 28. Gọi x_{1}\ ;\ x_{2}\
;...;\ x_{28} thời gian tập thể dục buổi sáng mỗi ngày trong tháng 2 năm 2023 của bạn An và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự không giảm. Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{7} + x_{8}
\right) nên nhóm chứa tứ phân vị thứ nhất là nhóm \lbrack 20\ ;25)và ta có Q_{1} = 20 + \frac{\left( \frac{1.28}{4} - 5
\right)}{5}.5 = 22

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{21} + x_{22} \right) nên nhóm chứa tứ phân vị thứ ba là nhóm \lbrack 25\ ;30)và ta có Q_{3} = 25 + \frac{\left( \frac{3.28}{4} - 10
\right)}{15}.5 = 26

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} = 26 - 22 =
4

    Mệnh đề Sai.

    d) Do 4 <7 nên thời gian tập thể dục mỗi buổi sáng trong tháng 2 năm 2023 của bạn Bình phân tán hơn bạn An.

    Mệnh đề đúng.

  • Câu 7: Thông hiểu
    Chọn kết luận đúng

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Chọn đáp án đúng?

    Hướng dẫn:

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \Rightarrow \left\{ \begin{matrix}l = 50,\dfrac{N}{4} = 11,5,m = 5,f = 12 \\c = 55 - 50 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{11,5 -
5}{12}.5 \approx 52,7

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

    \Rightarrow \left\{ \begin{matrix}l = 65,\dfrac{3N}{4} = 34,5,m = 33,f = 5 \\c = 70 - 65 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c

    \Rightarrow Q_{3} = 65 + \frac{34,5 -
33}{5}.5 \approx 66,5

    Vậy khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} \approx 13,8.

  • Câu 8: Nhận biết
    Tìm mốt của mẫu số liệu ghép nhóm

    Cho mẫu số liệu điểm môn Toán của một nhóm học sinh như sau:

    Điểm

    \lbrack 6;7)

    \lbrack 7;8)

    \lbrack 8;9)

    \lbrack 9;10brack

    Số học sinh

    8

    7

    10

    5

    Mốt của mẫu số liệu (kết quả làm tròn đến hàng phần trăm) là:

    Hướng dẫn:

    Nhóm chứa Mốt là \lbrack
8;9).

    Mốt của mẫu số liệu là M_{e} = 8 +
\frac{10 - 7}{10 - 7 + 10 - 5}(9 - 8) \approx 8,38

  • Câu 9: Vận dụng
    Xét tính đúng sai của các khẳng định

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    Đáp án là:

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    a) Đúng. Khoảng biến thiên:

    R_{12A} = R_{12B} = 10 - 0 =
10.

    b) Lớp 12A:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (1 +
5)}{20}.(6 - 4) = 4,4.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (1 +
5 + 20)}{8}.(8 - 6) = 7.

    \Rightarrow \Delta Q_{12A} = Q_{3} -
Q_{1} = 2,6.

    c) Lớp 12B:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (2 +
3)}{10}.(6 - 4) = 5.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (2 +
3 + 10)}{18}.(8 - 6) = \frac{23}{3}.

    \Rightarrow \Delta Q_{12B} = Q_{3} -
Q_{1} = 2,67.

    d) Ta có \Delta Q_{12A} < \Delta
Q_{12B} \Rightarrow Lớp 12A sẽ đồng đều hơn so với lớp 12B.

  • Câu 10: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tính khoảng tứ phân vị của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    Do đó: \left\{ \begin{matrix}l = 155;\dfrac{N}{4} = 25;m = 15;f = 11 \\c = 160 - 155 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ nhất là:

    Q_{1} = l + \frac{\left( \frac{N}{4} - m
ight)}{f}.c = 155 + \frac{25 - 15}{11}.5 \approx 159,55

    Cỡ mẫu là: N = 100

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

    Do đó: \left\{ \begin{matrix}l = 165;\dfrac{3N}{4} = 75;m = 65;f = 27 \\c = 170 - 165 = 5 \\\end{matrix} ight.

    Khi đó tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\left( \dfrac{3N}{4} -m ight)}{f}.c = 165 + \dfrac{75 - 65}{27}.5 \approx 166,85

    Vậy khoảng tứ phân vị của mẫu số liệu là \Delta_{Q} = Q_{3} - Q_{1} \approx 166,85 - 159,55
= 7,3

  • Câu 11: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Bảng sau thống kê chiều cao của 38 học sinh lớp 12A1 của trường THPT X:

    Chiều cao

    [145;155)

    [155;165)

    [165;175)

    [175;180)

    Số học sinh

    8

    15

    6

    9

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: R = 185 - 145 = 40

  • Câu 12: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:

    Thời gian (s)

    Số vận động viên (người)

    (50,5; 55,5]

    2

    (55,5; 60,5]

    7

    (60,5; 65,5]

    8

    (65,5; 70,5]

    4

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 70,5 - 50,5 = 20

  • Câu 13: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Cho bảng thống kê kết quả đo chiều cao một số cây trong vườn như sau:

    Chiều cao

    [120; 150)

    [150; 180)

    [180; 210)

    [210; 240)

    Số cây

    15

    20

    31

    18

    Khoảng biến thiên của mẫu số liệu bằng:

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu bằng 240 - 120 = 120.

  • Câu 14: Nhận biết
    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Gọi Q_{1},Q_{2},Q_{3} là tứ phân vị thứ nhất, tứ phân vị thứ hai và thứ ba của mẫu số liệu ghép nhóm. Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Khoảng tứ phân vị của mẫu ghép nhóm có công thức là: \Delta Q = Q_{3} - Q_{1}.

  • Câu 15: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Bạn Hằng rất thích nhảy hiện đại. Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn Hằng được thống kê lại ở bảng sau:

    Thời gian (phút)

    \lbrack 20;25) \lbrack 25;30) \lbrack 30;35) \lbrack 35;40) \lbrack 40;45)

    Số ngày

    6

    6

    4

    1

    1

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    Hướng dẫn:

    Kích thước mẫu là 18

    \Rightarrow Q_{2} =
\frac{1}{2}\left( x_{9} + x_{10} ight)

    Q_{1} = x_{5} \in \lbrack 20;25)
\Rightarrow Q_{1} = 20 + \dfrac{\dfrac{18}{4} - 0}{6}(5) =
\dfrac{95}{4}

    Q_{3} = x_{14} \in \lbrack 30;35)
\Rightarrow Q_{3} = 30 + \dfrac{\dfrac{3.18}{4} - 12}{4}(5) =
\dfrac{255}{8}

    \Delta Q = \frac{255}{8} - \frac{95}{4}
= 8,125

  • Câu 16: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Thống kê thu nhập theo tháng của một số nhân viên trong phòng A (đơn vị: triệu đồng) được cho trong bảng sau:

    Thu nhập

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    Số nhân viên

    5

    10

    5

    2

    Xét tính đúng, sai các mệnh đề sau:

    (a) Cỡ mẫu là n = 22. Đúng||Sai

    (b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là Q_{1} = 10. Sai|| Đúng

    (c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là Q_{3} = 5. Sai|| Đúng

    (d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta Q = 5. Sai|| Đúng

    Đáp án là:

    Thống kê thu nhập theo tháng của một số nhân viên trong phòng A (đơn vị: triệu đồng) được cho trong bảng sau:

    Thu nhập

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    Số nhân viên

    5

    10

    5

    2

    Xét tính đúng, sai các mệnh đề sau:

    (a) Cỡ mẫu là n = 22. Đúng||Sai

    (b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là Q_{1} = 10. Sai|| Đúng

    (c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là Q_{3} = 5. Sai|| Đúng

    (d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta Q = 5. Sai|| Đúng

    Ta có:

    Thu nhập

    [3; 5)

    [5; 7)

    [7; 9)

    [9; 11)

    Số nhân viên

    5

    10

    5

    2

    Tần số tích lũy

    5

    15

    20

    22

    (a) Cỡ mẫu là n = 22

    Chọn ĐÚNG.

    (b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là Q_{1} = 10.

    Ta có:

    Ta có: \frac{N}{4} =
\frac{22}{4}

    => Nhóm chứa Q_{1} là [5; 7)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 5;m = 5;f = 10;c = 7 - 5
= 2

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 5 + \frac{\dfrac{22}{4} - 5}{10}.2 =5,1

    Chọn SAI

    (c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là Q_{3} = 5 .

    Ta có: \frac{3N}{4} = \frac{3.22}{4} =
\frac{33}{2}

    => Nhóm chứa Q_{3} là [7; 9)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 7;m = 15;f = 5;c = 9 - 7
= 2

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 7 + \dfrac{\dfrac{33}{2} - 15}{5}.2 =7,6.

    Chọn SAI

    (d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta Q = 5.

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta Q = Q_{3} - Q_{1} = 7,6 - 5,1 =
2,5

    Chọn SAI

  • Câu 17: Thông hiểu
    Chọn phương án đúng

    Mức thưởng Tết cho các nhân viên của 2 tổ tại một công ty được thống kê trong bảng sau:

    Mức thưởng Tết (triệu đồng)

    \lbrack 5;\ 10) \lbrack 10;\ 15) \lbrack 15;\ 20) \lbrack 20;\ 25) \lbrack 25;\ 30)

    Số nhân viên tổ A

    40

    25

    20

    10

    5

    Số nhân viên tổ B

    50

    30

    20

    10

    0

    Gọi R_{1};\ R_{2} tương ứng là khoảng biến thiên của mẫu số liệu ghép nhóm về mức thưởng Tết của các nhân viên Tổ A và Tổ B. Chọn phương án đúng?

    Hướng dẫn:

    Ta có: R_{1} = a_{k + 1} - a_{1} = 30 - 5
= 25.

    R_{2} = a_{k + 1} - a_{1} = 25 - 5 =
20.

    Vậy R_{1} > R_{2}.

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Số điểm thi đấu của các đội được biểu diễn trong bảng dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 2]

    5

    (2; 4]

    16

    (4; 6]

    13

    (6; 8]

    7

    (8; 10]

    5

    (10; 12]

    4

    Tìm khoảng tứ phân vị của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Nhóm dữ liệu

    Tần số

    Tần số tích lũy

    (0; 2]

    5

    5

    (2; 4]

    16

    21

    (4; 6]

    13

    34

    (6; 8]

    7

    41

    (8; 10]

    5

    46

    (10; 12]

    4

    50

    Tổng

    N = 50

     

    Ta có: N = 50 \Rightarrow \frac{N}{4} =
\frac{50}{4} = 12,5

    => Nhóm chứa tứ phân vị thứ nhất là: (2; 4]

    Khi đó: \left\{ \begin{matrix}
l = 2;\frac{N}{4} = 12,5;m = 5 \\
f = 16;d = 4 - 2 = 2 \\
\end{matrix} ight.

    Vậy tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 2 + \frac{12,5 -
5}{16}.2 = \frac{47}{16}

    Ta có: N = 50 \Rightarrow \frac{3N}{4} =
\frac{150}{4} = 37,5

    => Nhóm chứa tứ phân vị thứ ba là: (6; 8]

    Khi đó: \left\{ \begin{matrix}l = 6;\dfrac{3N}{4} = 37,5;m = 34 \\f = 7;d = 8 - 6 = 2 \\\end{matrix} ight.

    Vậy tứ phân vị thứ nhất là:\left\{ \begin{matrix}l = 2;\dfrac{N}{4} = 12,5;m = 5 \\f = 16;d = 4 - 2 = 2 \\\end{matrix} ight.

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 6 + \frac{37,5 -
34}{7}.2 = 7

    \Rightarrow \Delta_{Q} = Q_{3} - Q_{1} =
7 - \frac{47}{16} \approx 4,06

  • Câu 19: Nhận biết
    Chọn đáp án đúng

    Dũng là một học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần liên tiếp ở bảng sau:

    Thời gian giải rubik (giây)

    \lbrack 8;10) \lbrack 10 ; 12) \lbrack 12;14) \lbrack 14;16) \lbrack 16;18)

    Số lần

    4 6 8 4 3

    Khoảng biến thiên của mẫu số liệu ghép nhóm nhận giá trị nào trong các giá trị sau đây?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R=18-8=10.

  • Câu 20: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Đo chiều cao (tính bằngcm) của 500 học sinh trong một trường THPT ta thu được kết quả như sau:

    Chiều cao

    \lbrack 150;\ 154) \lbrack 154;\ 158) \lbrack 158;\ 162) \lbrack 162;\ 166) \lbrack 166;\ 170)

    Số học sinh

    25

    50

    200

    175

    50

    Khoảng biến thiên của mẫu số liệu trên là

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu trên là R = 170 - 150 = 20

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo