Quan sát bảng sau và tìm khoảng biến thiên của mẫu số liệu
|
Khoảng dữ liệu |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
|
Tần số |
8 |
12 |
22 |
17 |
Khoảng biến thiên của mẫu số liệu là: .
Quan sát bảng sau và tìm khoảng biến thiên của mẫu số liệu
|
Khoảng dữ liệu |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
|
Tần số |
8 |
12 |
22 |
17 |
Khoảng biến thiên của mẫu số liệu là: .
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
|
Số tiền (nghìn đồng) |
Số người |
|
[0; 50) |
5 |
|
[50; 100) |
12 |
|
[100; 150) |
23 |
|
[150; 200) |
17 |
|
[200; 250) |
3 |
Chọn đáp án đúng?
Ta có:
|
Số tiền (nghìn đồng) |
Số người |
Tần số tích lũy |
|
[0; 50) |
5 |
5 |
|
[50; 100) |
12 |
17 |
|
[100; 150) |
23 |
40 |
|
[150; 200) |
17 |
57 |
|
[200; 250) |
3 |
60 |
|
|
N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 va 17)
Khi đó
Thời gian chờ khám bệnh của hai phòng khám 1 và phòng khám 2 được cho trong bảng sau:
|
Thời gian |
[0; 5) |
[5; 10) |
[10; 15) |
[15; 20) |
|
Số bệnh nhân phòng 1 |
3 |
12 |
15 |
18 |
|
Số bệnh nhân phòng 1 |
5 |
10 |
12 |
0 |
Xét tính đúng, sai các mệnh đề sau:
(a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3. Đúng||Sai
(b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là . Sai|| Đúng
(c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là . Sai|| Đúng
(d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1. Sai|| Đúng
Thời gian chờ khám bệnh của hai phòng khám 1 và phòng khám 2 được cho trong bảng sau:
|
Thời gian |
[0; 5) |
[5; 10) |
[10; 15) |
[15; 20) |
|
Số bệnh nhân phòng 1 |
3 |
12 |
15 |
18 |
|
Số bệnh nhân phòng 1 |
5 |
10 |
12 |
0 |
Xét tính đúng, sai các mệnh đề sau:
(a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3. Đúng||Sai
(b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là . Sai|| Đúng
(c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là . Sai|| Đúng
(d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1. Sai|| Đúng
(a) Tổng số bệnh nhân chờ khám bệnh ở phòng khám số 1 dưới 5 phút là 3.
Chọn ĐÚNG.
(b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là .
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 1 là
Chọn SAI.
(c) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là .
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian chờ khám bệnh của phòng khám số 2 là
Chọn SAI.
(d) Thời gian chờ khám bệnh ở phòng khám số 2 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 1.
Vì nên thời gian khám bệnh ở phòng khám số 1 phân tán hơn thời gian chờ khám bệnh ở phòng khám số 2.
Chọn SAI
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
|
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
Tìm khoảng biến thiên của mẫu số liệu đã cho?
Khoảng biến thiên của mẫu số liệu bằng .
Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:
Mốt của mẫu số liệu trên là
Mốt chứa trong nhóm
.
Do đó:
;
.
Khảo sát về cân nặng của các học sinh lớp 11D3 người ta được một mẫu dữ liệu ghép nhóm như sau:
Khoảng tứ phân vị của bảng số liệu ghép nhóm trên là
Ta có
Gọi là mẫu số liệu gốc về cân nặng của 40 học sinh lớp 11D3 và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.
Tứ phân vị thứ nhất của mẫu số liệu gốc là nên nhóm chứa tứ phân vị thứ nhất là nhóm [40;50). Do đó tứ phân vị thứ nhất của mẫu số liệu trên là
Ta có
Tứ phân vị thứ ba của mẫu số liệu gốc là nên nhóm chứa tứ phân vị thứ ba là nhóm [60;70). Do đó tứ phân vị thứ ba của mẫu số liệu trên là
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là
Kết quả khảo sát cân nặng của 40 quả cam Hòa Bình ở mỗi lô hàng 1 và lô hàng 2 được cho ở bảng sau:
|
Cân nặng (gam) |
[100; 110) |
[110; 120) |
[120; 130) |
[130; 140) |
[140; 150) |
|
Số quả cam ở lô hàng 1 |
0 |
10 |
11 |
19 |
0 |
|
Số quả cam ở lô hàng 1 |
3 |
15 |
12 |
7 |
3 |
Sử dụng khoảng biến thiên, hãy cho biết cân nặng của 40 quả cam Hòa Bình của lô hàng nào có độ phân tán lớn hơn.
Khoảng biến thiên của mẫu số liệu ghép nhóm về cân nặng của 40 quả cam Hòa Bình của lô hàng 1 là 140 - 110 = 30 gam.
Khoảng biến thiên của mẫu số liệu ghép nhóm về cân nặng của 40 quả cam Hòa Bình của lô hàng 2 là 150 – 100 = 50 gam.
Do vậy, lô hàng 2 có cân nặng của 40 quả cam Hòa Bình phân tán lớn hơn lô hàng 1.
Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:
|
Tổng thu nhập |
[200; 250) |
[250; 300) |
[300; 350) |
[350; 400) |
[400; 450) |
|
Số hộ gia đình |
24 |
62 |
34 |
21 |
9 |
Chọn kết luận đúng? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Ta có:
|
Tổng thu nhập |
[200; 250) |
[250; 300) |
[300; 350) |
[350; 400) |
[400; 450) |
|
Số hộ gia đình |
24 |
62 |
34 |
21 |
9 |
|
Tần số tích lũy |
24 |
86 |
120 |
141 |
150 |
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [250; 300)
Do đó:
Khi đó tứ phân vị thứ nhất là:
=> Nhóm chứa tứ phân vị thứ ba là [300; 350)
Do đó:
Khi đó tứ phân vị thứ ba là:
Vậy
Một cuộc khảo sát chiều cao của 30 học sinh cùng đợt được thực hiện tại một trường học. Dữ liệu thu được ghi trong bảng dưới đây.
|
Chiều cao (cm) |
Số học sinh |
|
(120; 125] |
3 |
|
(125; 130] |
5 |
|
(130; 135] |
11 |
|
(135; 140] |
6 |
|
(140; 145] |
5 |
|
N = 30 |
Giá trị là:
Ta có:
|
Chiều cao (cm) |
Số học sinh |
Tần số tích lũy |
|
(120; 125] |
3 |
3 |
|
(125; 130] |
5 |
8 |
|
(130; 135] |
11 |
19 |
|
(135; 140] |
6 |
25 |
|
(140; 145] |
5 |
30 |
|
N = 30 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: (125; 130]
Khi đó:
Vậy tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là (135; 140]
Khi đó:
Vậy tứ phân vị thứ ba là:
Cho bảng thống kê cân nặng của 50 quả xoài được lựa chọn ngẫu nhiên sau khi thu hoạch như sau:
|
Cân nặng |
[250; 290) |
[290; 330) |
[330; 370) |
[370; 410) |
[410; 450) |
|
Số quả |
3 |
13 |
18 |
11 |
5 |
Tìm khoảng tứ phân vị của mẫu số liệu đã cho?
Ta có:
|
Cân nặng |
[250; 290) |
[290; 330) |
[330; 370) |
[370; 410) |
[410; 450) |
|
Số quả |
3 |
13 |
18 |
11 |
5 |
|
Tần số tích lũy |
3 |
16 |
34 |
45 |
50 |
Cỡ mẫu N = 50
Cỡ mẫu
=> Nhóm chứa là [290; 330)
Khi đó ta tìm được các giá trị:
Cỡ mẫu
=> Nhóm chứa là [370; 410)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là
Công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm là
Công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
Điều tra về khối lượng củ khoai tây (đơn vị: gam) thu hoạch tại nông trường, ta có kết quả sau:
|
Nhóm |
Tần số |
Tần số tích lũy |
| 4 | 4 | |
| 6 | 10 | |
| 3 | 13 | |
| 4 | 17 | |
| 3 | 20 | |
| 7 | 27 | |
| n = 27 |
Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là
Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là , đầu mút phải của nhóm 6 là
. Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:
(gam)
Số phần tử của mẫu là
Ta có: mà
. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng
. Xét nhóm 2 là nhóm
có
;
;
và nhóm 1 là nhóm
có
.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(gam)
Ta có: mà
. Suy ra nhóm 6 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng
.
Xét nhóm 6 là nhóm có
;
;
và nhóm 5 là nhóm
có
.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(gam)
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:
(gam)
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
|
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
Khi đó khoảng tứ phân vị là:
Ta có:
|
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
N = 42 |
|
Tần số tích lũy |
5 |
14 |
26 |
36 |
42 |
|
Cỡ mẫu
=> Nhóm chứa là [20; 40)
(Vì 10,5 nằm giữa hai tần số tích lũy 5 và 14)
Khi đó ta tìm được các giá trị:
Cỡ mẫu
=> Nhóm chứa là [60; 80)
(Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu đã cho là:
.
Cho bảng tần số ghép nhóm dưới đây:
|
Độ tuổi |
[50; 55) |
[55; 60) |
[60; 65) |
[65; 70) |
[70; 75) |
[75; 80) |
[80; 85) |
[85; 90) |
|
Tần số |
4 |
7 |
4 |
6 |
16 |
12 |
2 |
0 |
Hãy xác định khoảng biến thiên của mẫu số liệu ghép nhóm trên?
Do nhóm số liệu [85; 90) có tần số là 0 nên ta sẽ chỉ xét đến nhóm số liệu [80; 85).
Do đó: R = 85 – 50 = 35.
Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:
|
101 |
79 |
79 |
78 |
75 |
|
73 |
68 |
67 |
67 |
63 |
|
63 |
61 |
60 |
59 |
57 |
|
55 |
55 |
50 |
47 |
42 |
Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?
Bảng số liệu ghép nhóm:
|
Số lỗi |
[40; 50) |
[50; 60) |
[60; 70) |
[70; 80) |
[80; 90) |
[90; 100) |
[100; 110) |
|
Tần số |
2 |
5 |
7 |
5 |
0 |
0 |
1 |
Vậy R = 110 – 40 = 70
Cân nặng (đơn vị: kg) của một số lợn con mới sinh thuộc hai giống A và B được cho ở bảng sau.
|
Cân nặng |
[1,0; 1,1) |
[1,1; 1,2) |
[1,2; 1,3) |
[1,3; 1,4) |
|
Giống A |
8 |
28 |
32 |
17 |
|
Giống B |
13 |
14 |
24 |
14 |
Chọn đáp án có khẳng định đúng?
Đối với lợn con giống A
|
Cân nặng |
[1,0; 1,1) |
[1,1; 1,2) |
[1,2; 1,3) |
[1,3; 1,4) |
|
Giống A |
8 |
28 |
32 |
17 |
|
Tần số tích lũy |
8 |
36 |
68 |
85 |
Cỡ mẫu
Ta có:
=> Nhóm chứa là [1,1; 1,2)
Khi đó ta tìm được các giá trị:
Ta có:
=> Nhóm chứa là [1,2; 1,3)
Khi đó ta tìm được các giá trị:
.
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm A là
Đối với lợn con giống B
|
Cân nặng |
[1,0; 1,1) |
[1,1; 1,2) |
[1,2; 1,3) |
[1,3; 1,4) |
|
Giống B |
13 |
14 |
24 |
14 |
|
Tần số tích lũy |
13 |
27 |
51 |
65 |
Cỡ mẫu
Ta có:
=> Nhóm chứa là [1,1; 1,2)
Khi đó ta tìm được các giá trị:
Ta có:
=> Nhóm chứa là [1,2; 1,3)
Khi đó ta tìm được các giá trị:
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm B là
Ta thấy nên cân nặng của lợn con mới sinh thuộc giống A đồng đều hơn cân nặng của lợn con mới sinh thuộc giống B.
Ta có bảng sau về thời gian tập thể dục buổi sáng của bác Bình và bác An:
|
Thời gian (phút) |
[15; 20) |
[20; 25) |
[25; 30) |
[30; 35) |
[35; 40) |
|
Bác Bình |
5 |
12 |
8 |
3 |
2 |
|
Bác An |
0 |
25 |
5 |
0 |
0 |
Hỏi hiệu khoảng biến thiên của mẫu số liệu của bác Bình và bác An là bao nhiêu?
Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác Bình là:
40 – 15 = 25 (phút).
Trong mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An, khoảng đầu tiên chứa dữ liệu là [20; 25) và khoảng cuối cùng chứa dữ liệu là [25; 30). Do đó khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bác An là: 30 – 20 = 10 (phút).
Vậy hiệu khoảng biến thiên của bác Bình và bác An là: .
Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:
|
Độ tuổi |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
|
Số khách hàng |
6 |
12 |
16 |
7 |
2 |
Xét tính đúng sai của các khẳng định sau:
a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai
b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai
c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai
d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng
Thống kê độ tuổi khách hàng đến xem phim trong một phòng của rạp chiếu phim sau 1 giờ được ghi lại trong bảng sau:
|
Độ tuổi |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
|
Số khách hàng |
6 |
12 |
16 |
7 |
2 |
Xét tính đúng sai của các khẳng định sau:
a) Giá trị đại diện nhóm [50; 60) là 55. Đúng||Sai
b) Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50; 60). Đúng||Sai
c) Nhóm chứa mốt là nửa khoảng [30; 40). Đúng||Sai
d) Độ tuổi được dự báo là thích xem phim đó nhiều nhất là 31 tuổi. Sai||Đúng
a) Đúng: Giá trị đại diện nhóm [50;60) là 55
b) Đúng: Độ tuổi được dự báo là ít xem phim đó nhất là thuộc nhóm [50;60) .
c) Đúng: Nhóm chứa mốt là nửa khoảng [30;40).
d) Sai: Khi đó
Ta có mốt là:
Vậy độ tuổi được dự báo là thích xem phim đó nhiều nhất là 33 tuổi.
Thời gian hoàn thành bài kiểm tra của học sinh lớp 12A được cho trong bảng sau:
|
Thời gian (phút) |
[25; 30) |
[30; 35) |
[35; 40) |
[40; 45) |
|
Số học sinh |
8 |
16 |
4 |
2 |
Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc bằng bao nhiêu?
Khoảng biến thiên của mẫu số liệu gốc là
Cho mẫu số liệu ghép nhóm:
|
Nhóm |
Tần số |
|
(0;10] |
8 |
|
(10;20] |
14 |
|
(20;30] |
12 |
|
(30;40] |
9 |
|
(40;50] |
7 |
Tìm khoảng biến thiên?
Khoảng biến thiên của mẫu số liệu đã cho là: .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: