Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Kết nối tri thức bài 1 (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Hàm số đạt cực đại tại điểm

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy y' đối dấu từ ( + ) sang (-) tại x = 2.

    Nên hàm số đạt cực đại tại điểm x =
2.

  • Câu 2: Thông hiểu
    Tìm m để hàm số có cực trị

    Tìm tất cả các giá trị của tham số m để hàm số y= \frac{m}{3}x^{3} + x^{2} + x + 2017 có cực trị.

    Hướng dẫn:

    Nếu m = 0 thì y = x^{2} + x + 2017: Hàm bậc hai luôn có cực trị.

    Khi m eq 0, ta có y' = mx^{2} + 2x + 1.

    Để hàm số có cực trị khi và chỉ khi phương trình mx^{2} + 2x + 1 = 0 có hai nghiệm phân biệt

    \Leftrightarrow \left\{ \begin{matrix}
m eq 0 \\
\Delta' = 1 - m > 0 \\
\end{matrix} ight.\  \Leftrightarrow 0 eq m < 1.

    Hợp hai trường hợp ta được m <
1.

  • Câu 3: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) có đồ thị như hình vẽ. Hàm số đã cho nghịch biến trên khoảng nào?

    Hướng dẫn:

    Trên khoảng ( - 2\ ;\ 0) đồ thị hướng đi xuống là hàm số nghịch biến nên chọn.

    Trên khoảng ( - \infty\ ;\ 0) đồ thị có đoạn hướng đi lên là hàm số đồng biến và có đoạn hướng xuống là hàm số đồng nghịch biến nên loại.

    Trên khoảng ( - 2\ ;\ 2) đồ thị có hướng đi xuống là hàm số nghịch biến và có đoạn hướng đi lên là hàm số đồng biến nên loại.

    Trên khoảng (0\ ;\ 2) đồ thị có hướng đi lên là hàm số đồng biến nên loại.

  • Câu 4: Nhận biết
    Tìm giá trị cực đại của hàm số

    Cho hàm số f(x) có bảng biến thiên như sau:

    Giá trị cực đại của hàm số đã cho bằng

    Hướng dẫn:

    Giá trị cực đại của hàm số đã cho bằng 2.

  • Câu 5: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = \frac{{2x + 1}}{{ - x + 1}}. Mệnh đề nào dưới dây là đúng?

    Hướng dẫn:

    Tập xác định của hàm số D = \mathbb{R}\backslash \left\{ 1 ight\}

    Ta có: y' = \frac{3}{{{{\left( { - x + 1} ight)}^2}}} > 0,\forall x e 1

    Hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)

  • Câu 6: Thông hiểu
    Tìm phương án đúng

    Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số hàm số y = \frac{1}{3}\left( m^{2} - m \right)x^{3} +
2mx^{2} + 3x - 2 đồng biến trên khoảng ( - \infty;\  + \infty)?

    Hướng dẫn:

    Ta có:

    y' = \left( m^{2} - m ight)x^{2} +
4mx + 3

    Hàm số đã cho đồng biến trên khoảng ( -
\infty;\  + \infty) \Leftrightarrow y' \geq 0 với \forall x\mathbb{\in R}.

    + Với m = 0 ta có y' = 3 > 0 với \forall x\mathbb{\in R \Rightarrow} Hàm số đồng biến trên khoảng ( - \infty;\  +
\infty).

    + Với m = 1 ta có y' = 4x + 3 > 0 \Leftrightarrow x > -
\frac{3}{4} \Rightarrow m =
1 không thảo mãn.

    + Với \left\{ \begin{matrix}
m eq 1 \\
m eq 0 \\
\end{matrix} ight. ta có y'
\geq 0 với \forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
m^{2} - m > 0 \\
\Delta' = m^{2} + 3m \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m > 1 \\
m < 0 \\
\end{matrix} ight.\  \\
- 3 \leq m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow - 3 \leq m < 0.

    Tổng hợp các trường hợp ta được - 3 \leq
m \leq 0.

    m\mathbb{\in Z \Rightarrow}m \in \left\{
- 3;\  - 2;\ \  - 1;\ 0 ight\}.

    Vậy có 4 giá trị nguyên của m thỏa mãn bài ra.

  • Câu 7: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số f(x) xác định, liên tục trên tập số thực và đồ thị của hàm số f'(x) là đường cong như hình vẽ bên dưới.

    Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Từ đồ thị của hàm số f'(x) ta có:

    f'(x) \leq 0;\forall x \in ( -
\infty; - 3) \cup ( - 2; + \infty)

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0; + \infty).

  • Câu 8: Nhận biết
    Tìm điểm cực đại của hàm số

    Hàm số y = x^{3} - 12x + 3 đạt cực đại tại điểm

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 12

    y' = 0 \Leftrightarrow x = \pm
2

    Bảng biến thiên

    Từ bảng biến thiên ta thấy hàm số đạt cực đại tại x = - 2.

  • Câu 9: Thông hiểu
    Chọn đáp án đúng

    Điểm cực đại của đồ thị hàm số y = x^{3}
- 6x^{2} + 9x có tổng hoành độ và tung độ bằng

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 12x + 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Bảng biến thiên

    Khi đó: x_{CD} = 1 \Rightarrow y_{CD} = 4
\Rightarrow x_{CD} + y_{CD} = 5.

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Cho đồ thị hàm số y = f(x)như hình vẽ. Hàm số đã cho đồng biến trên khoảng

    Hướng dẫn:

    Dựa vào đồ thị ta có hàm số đồng biến trên ( - 2; - 1) .

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Cho hàm số f(x) có bảng biến thiên như sau:

    Điểm cực đại của hàm số đã cho là

    Hướng dẫn:

    Từ BBT của hàm số f(x) suy ra điểm cực đại của hàm số f(x)x = 1 .

  • Câu 12: Nhận biết
    Chọn giá trị cực tiểu của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực tiểu của hàm số đã cho là:

    Hướng dẫn:

    Quan sát bảng biến thiên nhận thấy giá trị cực tiểu của hàm số đã cho là - 4.

  • Câu 13: Nhận biết
    Chọn kết luận đúng

    Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng xét dấu f'(x) như sau:

    Kết luận nào sau đây đúng?

    Hướng dẫn:

    Dựa vào bảng xét dấu đạo hàm ta thấy: hàm số đạt cực trị tại x = 1;x = 3;x = 4.

    Tại x = 1;x = 4 ta thấy f'(x) đổi dấu từ âm sang dương nên hàm số đạt cực tiểu tại x = 1;x =
4.

    Tại x = 3 ta thấy f'(x) đổi dấu từ dương sang âm nên hàm số đạt cực đại tại x = 3.

  • Câu 14: Thông hiểu
    Tìm các giá trị nguyên của m

    Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{m}{3}x^{3} - 2mx^{2} + (3m + 5)x đồng biến trên \mathbb{R}.

    Hướng dẫn:

    Ta có y' = mx^{2} - 4mx + 3m +
5.

    Với a = 0 \Leftrightarrow m = 0
\Rightarrow y' = 5 > 0.

    Vậy hàm số đồng biến trên \mathbb{R}.

    Với a eq 0 \Leftrightarrow m eq
0. Hàm số đã cho đồng biến trên \mathbb{R} khi và chỉ khi

    y' \geq 0,\ \ \forall x\mathbb{\in R
\Leftrightarrow}\left\{ \begin{matrix}
a > 0 \\
\Delta \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
(2m)^{2} - m(3m + 5) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m^{2} - 5m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
0 \leq m \leq 5 \\
\end{matrix} ight.\  \Leftrightarrow 0 < m \leq 5.

    m \mathbb{\in Z \Rightarrow}m \in \left\{ 0;1;2;3;4;5 ight\}.

  • Câu 15: Nhận biết
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số có đạo hàm f'(x) = (x + 2)^{3}(x - 2)^{3}(3 -
x). Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
x = 3 \\
\end{matrix} ight. ta có bảng xét dấu như sau:

    Vậy hàm số đồng biến trên khoảng (2;3).

  • Câu 16: Nhận biết
    Tìm khoảng đồng biến của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ sau

    Hàm số y = f(x) đồng biến trên khoảng nào dưới đây

    Hướng dẫn:

    Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng (0;2).

  • Câu 17: Nhận biết
    Chọn mệnh đề đúng

    Hình vẽ sau đây mô tả đồ thị của hàm số y
= f(x):

    Chọn mệnh đề đúng?

    Hướng dẫn:

    Dựa vào đồ thị hàm số y = f(x) ta thấy hàm số đạt cực đại tại x =
0 và đạt cực tiểu tại x =
2.

  • Câu 18: Nhận biết
    Xác định số điểm cực trị của hàm số

    Cho hàm số y = 2x^{3} - x^{2} - 4x +
2. Hàm số có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Ta có: y' = 6x^{2} - 2x - 4 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = - \dfrac{2}{3} \\\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Vậy hàm số có hai điểm cực trị.

  • Câu 19: Nhận biết
    Xác định hàm số thích hợp

    Hàm số nào dưới đây đồng biến trên khoảng ( - \infty; + \infty)?

    Hướng dẫn:

    y = x^{3} + x \Rightarrow y' =
3x^{2} + 1 > 0,\ \ \forall x\mathbb{\in R}.

  • Câu 20: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = \frac{{x + 1}}{{1 - x}}. Khẳng định nào dưới đây là khẳng định đúng?

    Hướng dẫn:

    Hàm số y = \frac{{x + 1}}{{1 - x}} có tập xác định D = \mathbb{R}\backslash \left\{ 1 ight\} và có đạo hàm

    y' = \frac{2}{{{{\left( {x - 1} ight)}^2}}} > 0,\forall x \in D

    => A là khẳng định đúng

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo