Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Kết nối tri thức bài 1 (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Cho bảng biến thiên sau:

    Trắc nghiệm Toán 12 Kết nối tri thức bài 1

    Khẳng định sai là:

  • Câu 2: Nhận biết
    Tìm giá trị cực đại của hàm số

    Cho hàm số f(x) có bảng biến thiên như sau:

    Giá trị cực đại của hàm số đã cho bằng

    Hướng dẫn:

    Giá trị cực đại của hàm số đã cho bằng 2.

  • Câu 3: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho đạt cực tiểu tại

    Hướng dẫn:

    Từ bảng biến thiên ta có điểm cực tiểu của hàm số là x = 3.

  • Câu 4: Nhận biết
    Tìm khoảng nghịch biến của hàm số

    Hàm số y = \frac{1}{3}{x^3} - \frac{5}{2}{x^2} + 6x nghịch biến trên khoảng nào?

    Hướng dẫn:

     Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {y' = {x^2} - 2x + 6} \\   {y' < 0} \end{array} \Rightarrow } ight.{x^2} - 2x + 6 < 0 \Rightarrow 2 < x < 3

    => Hàm số nghịch biến trên khoảng (2; 3)

  • Câu 5: Nhận biết
    Tìm khẳng định đúng

    Cho hàm số y =
\frac{2x - 1}{x + 3}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y' = \frac{7}{(x + 3)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên mỗi khoảng (
- \infty;3)(3; +
\infty).

  • Câu 6: Nhận biết
    Xác định số cực trị của hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\} và có bảng xét dấu đạo hàm f'(x) như sau:

    Hàm số y = f(x) có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Dựa vào bảng xét dấu đạo hàm ta thấy hàm số y = f(x) có 1 điểm cực trị.

  • Câu 7: Thông hiểu
    Tìm tham số m theo yêu cầu

    Có bao nhiêu giá trị nguyên của tham số m sao cho hàm số f(x) = \frac{1}{3}x^{3} + mx^{2} + 4x + 3 đồng biến trên \mathbb{R}.

    Hướng dẫn:

    Ta có f'(x) = x^{2} + 2mx +
4.

    Hàm số đã cho đồng biến trên \mathbb{R} khi và chỉ khi f'(x) \geq 0,\ \forall x\mathbb{\in
R} (Dấu ‘=’ xảy ra tại hữu hạn điểm).

    Ta có f'(x) \geq 0,\ \forall
x\mathbb{\in R \Leftrightarrow}\Delta' \leq 0

    \Leftrightarrow \Delta' = m^{2} - 4
\leq 0

    \Leftrightarrow - 2 \leq m \leq
2.

    m\mathbb{\in Z} nên m \in \left\{ - 2;\  - 1;\ 0;\ 1;\ 2
ight\}, vậy có 5 giá trị nguyên của m thỏa mãn.

  • Câu 8: Nhận biết
    Tìm số cực trị của hàm số

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2}\left( {x - 1} ight)\left( {x - 2} ight)\left( {{3^x} - 1} ight),\forall x \in \mathbb{R}. Số điểm cực trị của hàm số đã cho bằng

    Hướng dẫn:

     Ta có:

    f'\left( x ight) = 0 \Leftrightarrow {x^2}\left( {x - 1} ight)\left( {x - 2} ight)\left( {{3^x} - 1} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 0} \\   {x = 2} \end{array}} ight.

    => Hàm số có 3 điểm cực trị

  • Câu 9: Nhận biết
    Chọn khoảng nghịch biến của hàm số

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau:

    Hướng dẫn:

    Do f'(x) < 0\forall x \in ( -
1;3) nên hàm số f(x) nghịch biến trên khoảng ( -
1;3).

  • Câu 10: Thông hiểu
    Ghi đáp án vào ô trống

    Cho hàm số y =x^{3} - x^{2} + 3mx - 1 với m là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2brack để hàm số đã cho đồng biến trên \mathbb{R}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =x^{3} - x^{2} + 3mx - 1 với m là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2brack để hàm số đã cho đồng biến trên \mathbb{R}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Nhận biết
    Xác định hàm số đồng biến trên khoảng cho trước

    Hàm số nào sau đây đồng biến trên các khoảng (-∞; 2) và (2; +∞)?

    Hướng dẫn:

     Ta có:

    y' = \frac{{2\left( {x - 2} ight) - \left( {2x - 5} ight)}}{{{{\left( {x - 2} ight)}^2}}} = \frac{1}{{{{\left( {x - 2} ight)}^2}}} > 0,\forall x \in \mathbb{R}\backslash \left\{ 2 ight\}

    Vậy hàm số y = \frac{{2x - 5}}{{x - 2}} đồng biến trên các khoảng (-∞; 2) và (2; +∞)

  • Câu 12: Thông hiểu
    Tìm điểm cực tiểu của hàm số

    Cho hàm số f(x) có đạo hàm f'(x) = x(1 - x)^{2}(3 - x)^{3}(x -
2)^{4} với mọi x\mathbb{\in
R}. Điểm cực tiểu của hàm số đã cho là

    Hướng dẫn:

    Ta có

    f'(x) = x(1 - x)^{2}(3 - x)^{3}(x -
2)^{4}

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Bảng xét dấu đạo hàm.

    Suy ra hàm số f(x) đạt cực tiểu tại x =
0

  • Câu 13: Nhận biết
    Xác định hàm số thích hợp

    Hàm số nào dưới đây đồng biến trên khoảng ( - \infty; + \infty)?

    Hướng dẫn:

    Hàm số y = 3x^{3} + 3x - 2

    TXĐ: D\mathbb{= R}.

    Ta có:

    y' = 9x^{2} + 3 > 0,\forall
x\mathbb{\in R}, suy ra hàm số đồng biến trên khoảng ( - \infty; + \infty).

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Hàm số nào dưới đây nghịch biến trên \mathbb{R}?

    Hướng dẫn:

    Xét hàm số y = - x^{3} - 3x + 1 ta có: y' = - 3x^{2} - 3 < 0;\forall
x\mathbb{\in R}

    Do đó hàm số y = - x^{3} - 3x +
1 nghịch biến trên \mathbb{R}.

  • Câu 15: Nhận biết
    Tìm mệnh đề sai

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Mệnh đề nào dưới đây sai?

    Hướng dẫn:

    Từ bảng biến thiên đã cho ta thấy mệnh đề sai là: “Hàm số có giá trị cực đại bằng 0.”

  • Câu 16: Nhận biết
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số có đạo hàm f'(x) = (x + 2)^{3}(x - 2)^{3}(3 -
x). Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
x = 3 \\
\end{matrix} ight. ta có bảng xét dấu như sau:

    Vậy hàm số đồng biến trên khoảng (2;3).

  • Câu 17: Thông hiểu
    Tìm m để hàm số không có cực trị

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= \frac{1}{3}x^{3} - mx^{2} + (5m - 4)x - 1 không có điểm cực trị?

    Hướng dẫn:

    Ta có: y' = x^{2} - 2mx + 5m -
4

    Hàm số đã cho không có cực trị khi và chỉ khi y' = 0 vô nghiệm hoặc có nghiệm kép.

    \Leftrightarrow \Delta' \leq 0
\Leftrightarrow m^{2} - 5m + 4 \leq 0 \Leftrightarrow m \in \lbrack
1;4brack

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2;3;4 ight\}

    Vậy có bốn giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 18: Nhận biết
    Tìm giá trị cực đại và giá trị cực tiểu của hàmsố

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm giá trị cực đại và giá trị cực tiểu của hàm số đã cho.

    Hướng dẫn:

    Từ bảng biến thiên ta có: y_{CÐ} =
0;y_{CT} = - 3.

  • Câu 19: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên.

    Hàm số có đạo hàm trên \mathbb{R}y'(2) = 0;\ y' đổi dấu từ âm sang dương khi đi qua x = 2 nên hàm số đạt cực tiểu tại x = 2.

  • Câu 20: Nhận biết
    Tính số cực trị của hàm số

    Cho hàm số f(x) có đạo hàm f'(x) = x\left( x^{2} - x ight)(x -
2). Số điểm cực trị của hàm số đã cho là:

    Hướng dẫn:

    Ta có: f'(x) = x\left( x^{2} - x
ight)(x - 2) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    x = 1;x = 2 là nghiệm bội lẻ và x = 0 là nghiệm bội chẵn nên hàm số có hai điểm cực trị.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo