Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Kết nối tri thức bài 1 (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số y =
f(x) có đạo hàm f'(x) trên khoảng ( - \infty; + \infty). Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau?

    Hướng dẫn:

    Quan sát hình vẽ ta thấy:

    y = f'(x) \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.f'(x)
\leq 0 \Leftrightarrow 0 \leq x \leq 3

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0;3).

  • Câu 2: Nhận biết
    Xác định số cực trị của hàm số

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Đồ thị hàm số y = f(x) có mấy điểm cực trị?

    Hướng dẫn:

    Từ đồ thị suy ra đồ thị có điểm một điểm cực tiểu và một điểm cực đại.

  • Câu 3: Nhận biết
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau.

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số đồng biến trên (−∞; 2). Sai|| Đúng

    b) Hàm số nghịch biến trên (1; +∞). Đúng||Sai

    c) Hàm số có hai điểm cực trị. Sai|| Đúng

    d) Hàm số đạt cực đại tại x = 1. Đúng||Sai

    Quan sát bảng biến thiên, ta có các kết quả sau:

    a) Hàm số đồng biến trên (−∞; 1) nên khẳng định hàm số đồng biến trên (−∞; 2) là sai.

    b) Hàm số nghịch biến trên (1; +∞).

    c) Hàm số có đúng 1 điểm cực trị là x = 1.

    d) Hàm số có đạt cực đại tại x = 1.

  • Câu 4: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Giá trị cực đại của hàm số đã cho bằng:

    Hướng dẫn:

    Quan sát bảng biến thiên dễ thấy giá trị cực đại của hàm số đã cho bằng 3.

  • Câu 5: Nhận biết
    Tìm giá trị cực đại của hàm số

    Cho hàm số f(x) có bảng biến thiên như sau:

    Giá trị cực đại của hàm số đã cho bằng

    Hướng dẫn:

    Giá trị cực đại của hàm số đã cho bằng 2.

  • Câu 6: Nhận biết
    Cho hàm số y = f(x) có đồ thị như hình vẽ.

    Trắc nghiệm Toán 12 Kết nối tri thức bài 1

    Hàm số đạt giá trị cực tiểu tại:

  • Câu 7: Nhận biết
    Tìm số điểm cực trị

    Hàm số y = - x^{4} + 8x^{2} + 5 có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Hàm số y = - x^{4} + 8x^{2} + 5 là hàm trùng phương có a.b = - 8 <
0 nên hàm số có ba điểm cực trị.

  • Câu 8: Nhận biết
    Xác định khoảng nghịch biến của hàm số

    Hàm số f(x) =
\frac{2x + 3}{x - 1} nghịch biến trên khoảng nào?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    f'(x) = \frac{- 5}{(x - 1)^{2}} <
0;\forall x \in D suy ra hàm số nghịch biến trên ( - \infty;1)(1; + \infty).

  • Câu 9: Nhận biết
    Các dân tộc ít người phân bố chủ yếu ở khu vực nào của Trung Quốc?
  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số g(x) = \frac{1}{f(x)} đồng biến trên khoảng nào sau đây?

    Hướng dẫn:

    Ta có: g'(x) = -
\frac{f'(x)}{\left\lbrack f(x) ightbrack^{2}} >
0

    \Leftrightarrow \left\{ \begin{matrix}
f'(x) < 0 \\
f(x) eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 1 \\
1 < x < 3 \\
x eq \left\{ - 2;0;3 ight\} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 2 < x < - 1 \\
1 < x < 3 \\
\end{matrix} ight.

    Vậy hàm số g(x) = \frac{1}{f(x)} đồng biến trên các khoảng ( - \infty; - 2),(
- 2; - 1),(1;3)

    Suy ra hàm số g(x) =
\frac{1}{f(x)} đồng biến trên khoảng (1;2).

  • Câu 11: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y =
\frac{2x + 1}{x - 1}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có: y = \frac{2x + 1}{x - 1}
\Rightarrow y' = \frac{- 3}{(x - 1)^{2}} < 0;\forall x \in
D

    Suy ra hàm số nghịch biến trên tập xác định

    Hay hàm số nghịch biến trên các khoảng (
- \infty;1),(1; + \infty).

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} + \left( m^{2} - m + 2 ight)x^{2} + \left( 3m^{2} +
1 ight)x đạt cực tiểu tại x = -
2?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = x^{2} + 2\left( m^{2} - m
+ 2 ight)x + \left( 3m^{2} + 1 ight)

    Hàm số đạt cực tiểu tại x = - 2
\Rightarrow y'( - 2) = 0

    \Leftrightarrow m^{2} - 4m + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 3 \\
\end{matrix} ight.

    Lại có: y'' = 2x + 2\left( m^{2}
- m + 2 ight)

    y''( - 2) = 2m^{2} -
2m

    y''( - 2) > 0 \Leftrightarrow
2m^{2} - 2m > 0 \Leftrightarrow \left\lbrack \begin{matrix}
m > 1 \\
m < 0 \\
\end{matrix} ight.

    Để hàm số đạt cực tiểu tại x = -
2 thì m = 3 thỏa mãn.

    vậy giá trị m cần tìm là m =
3.

  • Câu 13: Nhận biết
    Chọn đáp án đúng

    Cho hàm số f(x)f'(x) = x^{2}(x - 1)(x + 2). Số điểm cực tiểu của hàm số đã cho là:

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    Dựa vào bảng xét dấu suy ra hàm số có 1 điểm cực tiểu.

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Số điểm cực trị của hàm số y = (x + 1)(x
- 2)(3 - x) là:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có:

    y' = (x - 2)(3 - x) + (x + 1)(3 - x)
- (x + 1)(x - 2)

    = - 3x^{2} + 8x - 1

    \Rightarrow y' = 0 \Leftrightarrow x
= \frac{4 \pm \sqrt{13}}{3}

    Ta có bảng xét dấu:

    Vậy hàm số có hai điểm cực trị.

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Điểm cực đại của đồ thị hàm số y = x^{3}
- 3x + 5 là điểm

    Hướng dẫn:

    Tập xác định: D\mathbb{= R}

    Ta có: y' = 3x^{2} - 3;y' = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có điểm cực đại của đồ thị hàm số là N( - 1;7).

  • Câu 16: Nhận biết
    Tìm số điểm cực tiểu của hàm số

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng xét dấu của f'(x) như sau:

    Số điểm cực tiểu của hàm số đã cho là

    Hướng dẫn:

    Đạo hàm f'(x) đổi dấu từ âm sang dương hai lần qua các điểm x = -
2x = 2 nên hàm số đã cho có hai điểm cực tiểu.

  • Câu 17: Thông hiểu
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số y =
f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ. Tìm tất cả các giá trị của m...

    Hàm số y = f(3 - 2x) + 2020 nghịch biến trên khoảng nào?

    Hướng dẫn:

    Ta có: y' = - 2f'(3 -
2x)

    y' < 0 \Leftrightarrow -
2f'(3 - 2x) < 0 \Leftrightarrow f'(3 - 2x) >
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
- 1 < 3 - 2x < 1 \\
3 - 2x > 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
1 < x < 2 \\
x < - \frac{1}{2} \\
\end{matrix} ight.

    Vậy hàm số y = f(3 - 2x) + 2020 nghịch biến trên khoảng (1;2).

  • Câu 18: Nhận biết
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số có đạo hàm f'(x) = (x + 2)^{3}(x - 2)^{3}(3 -
x). Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
x = 3 \\
\end{matrix} ight. ta có bảng xét dấu như sau:

    Vậy hàm số đồng biến trên khoảng (2;3).

  • Câu 19: Nhận biết
    Xác định số cực đại của hàm số

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng xét dấu của f'(x) như sau:

    Số điểm cực đại của hàm số y =
f(x) là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy, hàm số y
= f(x) đạt cực đại tại x = -
2 nên hàm số đã cho có 1 điểm cực đại.

  • Câu 20: Nhận biết
    Xác định hàm số thích hợp

    Hàm số nào dưới đây đồng biến trên khoảng ( - \infty; + \infty)?

    Hướng dẫn:

    Hàm số y = 3x^{3} + 3x - 2

    TXĐ: D\mathbb{= R}.

    Ta có:

    y' = 9x^{2} + 3 > 0,\forall
x\mathbb{\in R}, suy ra hàm số đồng biến trên khoảng ( - \infty; + \infty).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo