Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Kết nối tri thức bài 1 (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y =
\frac{x - 3}{x + 1}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y' = \frac{4}{(x + 1)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên từng khoảng ( - \infty; - 1)( - 1; + \infty).

  • Câu 2: Nhận biết
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A picture containing tableDescription automatically generated

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Dựa vào bảng biến thiên, hàm số đã cho nghịch biến trên các khoảng ( - \infty; - 1)(0;1).

  • Câu 3: Nhận biết
    Tìm hàm số nghịch biến trên R

    Hàm số nào dưới dây nghịch biến trên tập số thực?

    Hướng dẫn:

    Ta thấy hàm số y = - x^{2} - 3x có tập xác định \mathbb{R} và đạo hàm y = - 3x^{2} - 3 < 0;\forall
x\mathbb{\in R} nên nghịch biến trên \mathbb{R}.

  • Câu 4: Nhận biết
    Xác định điều kiện của m thỏa mãn yêu cầu

    Cho hàm y = \sqrt{x^{2} - 6x +
5}. Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Tập xác định: D = ( - \infty;1brack
\cup \lbrack 5; + \infty).

    Ta có y' = \frac{x - 3}{\sqrt{x^{2} -
6x + 5}} > 0, \forall x \in (5;
+ \infty).

    Vậy hàm số đồng biến trên khoảng (5; +
\infty).

  • Câu 5: Nhận biết
    Xác định hàm số đồng biến trên D

    Tìm hàm số luôn đồng biến trên từng khoảng xác định?

    Hướng dẫn:

    Xét hàm số y = \frac{- x - 8}{x +
3}

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}. Ta có: y' = \frac{5}{\left( x + 3^{2} ight)} >
0;\forall x eq 3

    Vậy hàm số đồng biến trên các khoảng ( -
\infty; - 3),( - 3; + \infty).

  • Câu 6: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số có bảng biến thiên như sau

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy trên khoảng (0;2) thì f'(x) < 0.

    Vậy hàm số nghịch biến trên khoảng (0;2).

  • Câu 7: Nhận biết
    Tìm điểm cực đại của hàm số

    Hàm số y = x^{3} - 12x + 3 đạt cực đại tại điểm

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 12

    y' = 0 \Leftrightarrow x = \pm
2

    Bảng biến thiên

    Từ bảng biến thiên ta thấy hàm số đạt cực đại tại x = - 2.

  • Câu 8: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2brack và có đồ thị là đường cong trong hình bên dưới.

    Hàm số y = f(x) đạt cực tiểu tại điểm

    Hướng dẫn:

    Theo hình vẽ thì hàm số y = f(x) đạt cực tiểu tại điểm x = 1.

  • Câu 9: Thông hiểu
    Xác định m để hàm số đồng biến trên tập xác định

    Tìm tất cả các giá trị thực của tham số m để hàm số y = \frac{x - m}{x + 1} đồng biến trên từng khoảng xác định?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y' = \frac{m + 1}{(x +
1)^{2}};\forall x eq - 1

    Hàm số đã cho đồng biến trên từng khoảng xác định khi và chỉ khi y' > 0

    \Leftrightarrow \frac{m + 1}{(x +
1)^{2}} > 0 \Leftrightarrow m + 1 > 0 \Leftrightarrow m > -
1

    Vậy đáp án cần tìm là m > -
1.

  • Câu 10: Nhận biết
    Tìm khoảng đồng biến của hàm số

    Cho hảm số có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào sau đây?

    Hướng dẫn:

    Trên ( - 1;1) đồ thị hàm số đi lên từ trái sang phải nên hàm số đã cho đồng biến.

  • Câu 11: Nhận biết
    Tìm số điểm cực trị của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số điểm cực trị của đồ thị hàm số là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy hàm số có 3 điểm cực trị.

  • Câu 12: Nhận biết
    Tìm tọa độ cực đại

    Cho hàm số y = f(x) có đồ thị như hình vẽ. Toạ độ điểm cực đại của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Dựa vào đồ thị hàm số đã cho, tọa độ điểm cực đại của đồ thị hàm số có tọa độ (1;3).

  • Câu 13: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = \frac{x^{2} + 3}{x +
1}. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Cách 1.

    Ta có: y' = \frac{x^{2} + 2x - 3}{(x
+ 1)^{2}}; y' = 0
\Leftrightarrow x^{2} + 2x - 3 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 3 \\
x = 1 \\
\end{matrix} ight.

    Lập bảng biến thiên. Vậy hàm số đạt cực tiểu tại x = 1 và giá trị cực tiểu bằng 2.

    Cách 2.

    Ta có y' = \frac{x^{2} + 2x - 3}{(x +
1)^{2}};x = 3 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 3 \\
x = 1 \\
\end{matrix} ight.

    y'' = \frac{8}{(x +
1)^{3}}. Khi đó: y''(1) =
\frac{1}{2} > 0; y''( -
3) = - \frac{1}{2} < 0.

    Nên hàm số đạt cực tiểu tại x =
1 và giá trị cực tiểu bằng 2.

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số thực m để hàm số y
= mx^{3} + mx^{2} + m(m - 1)x + 2 đồng biến trên \mathbb{R}.

    Hướng dẫn:

    TH1: m = 0 \Rightarrow y = 2 là hàm hằng nên loại m = 0.

    TH2: m eq 0. Ta có: y' = 3mx^{2} + 2mx + m(m - 1).

    Hàm số đồng biến trên \mathbb{R
\Leftrightarrow}f'(x) \geq 0\ \forall x\mathbb{\in R
\Leftrightarrow}

    \left\{ \begin{matrix}
\Delta' = m^{2} - 3m^{2}(m - 1) \leq 0 \\
3m > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2}(4 - 3m) \leq 0 \\
m > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \geq \frac{4}{3} \\
m > 0 \\
\end{matrix} ight.\  \Leftrightarrow m \geq \frac{4}{3}

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x) có bảng xét dấu của f'(x) như sau:

    Hỏi hàm số có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Dựa vào bảng xét dấu đã cho ta thấy f'(x) đổi dấu 4 lần nên hàm số f(x) có bốn điểm cực trị.

  • Câu 16: Nhận biết
    Tìm giá trị cực tiểu của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Xác định giá trị cực tiểu của hàm số đã cho.

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy:

    Hàm số đạt cực tiểu tại x = 0, giá trị cực tiểu là y = 1.

  • Câu 17: Nhận biết
    Xác định giá trị cực đại của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Giá trị cực đại của hàm số đã cho bằng

    Hướng dẫn:

    Dựa bào BBT ta có: Giá trị cực đại của hàm số là y_{CD} = 5

  • Câu 18: Nhận biết
    Tìm mệnh đề đúng

    Cho hàm số y = x^{3} + 3x + 2. Mệnh đề nào dưới đây là đúng?

    Hướng dẫn:

    Ta có:

    +) TXĐ: D\mathbb{= R}.

    +) y' = 3x^{2} + 3 > 0,\ \forall
x\mathbb{\in R}, do đó hàm số đồng biến trên \mathbb{R}.

  • Câu 19: Thông hiểu
    Tìm số cực trị của hàm số

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ sau:

    Khi đó số điểm cực trị của hàm số y =
\left| f(x) ight| là:

    Hướng dẫn:

    Từ giả thiết ta có đồ thị của hàm số y =
\left| f(x) ight| như sau:

    Vậy hàm số y = \left| f(x)
ight| có ba điểm cực trị.

  • Câu 20: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Hàm số đạt cực đại tại điểm

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy y' đối dấu từ ( + ) sang (-) tại x = 2.

    Nên hàm số đạt cực đại tại điểm x =
2.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo