Cho hàm số có bảng biến thiên như sau
Hàm số đạt cực đại tại điểm
Dựa vào bảng biến thiên ta thấy đối dấu từ
sang
tại
.
Nên hàm số đạt cực đại tại điểm .
Cho hàm số có bảng biến thiên như sau
Hàm số đạt cực đại tại điểm
Dựa vào bảng biến thiên ta thấy đối dấu từ
sang
tại
.
Nên hàm số đạt cực đại tại điểm .
Tìm tất cả các giá trị của tham số để hàm số
có cực trị.
Nếu thì
: Hàm bậc hai luôn có cực trị.
Khi , ta có
.
Để hàm số có cực trị khi và chỉ khi phương trình có hai nghiệm phân biệt
Hợp hai trường hợp ta được .
Cho hàm số có đồ thị như hình vẽ. Hàm số đã cho nghịch biến trên khoảng nào?
Trên khoảng đồ thị hướng đi xuống là hàm số nghịch biến nên chọn.
Trên khoảng đồ thị có đoạn hướng đi lên là hàm số đồng biến và có đoạn hướng xuống là hàm số đồng nghịch biến nên loại.
Trên khoảng đồ thị có hướng đi xuống là hàm số nghịch biến và có đoạn hướng đi lên là hàm số đồng biến nên loại.
Trên khoảng đồ thị có hướng đi lên là hàm số đồng biến nên loại.
Cho hàm số có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho bằng
Giá trị cực đại của hàm số đã cho bằng 2.
Cho hàm số . Mệnh đề nào dưới dây là đúng?
Tập xác định của hàm số
Ta có:
Hàm số đồng biến trên các khoảng (-∞; 1) và (1; +∞)
Hỏi có tất cả bao nhiêu giá trị nguyên của tham số để hàm số hàm số
đồng biến trên khoảng
?
Ta có:
Hàm số đã cho đồng biến trên khoảng với
.
+ Với ta có
với
Hàm số đồng biến trên khoảng
.
+ Với ta có
không thảo mãn.
+ Với ta có
với
.
Tổng hợp các trường hợp ta được .
.
Vậy có giá trị nguyên của
thỏa mãn bài ra.
Cho hàm số xác định, liên tục trên tập số thực và đồ thị của hàm số
là đường cong như hình vẽ bên dưới.
Khẳng định nào sau đây là khẳng định đúng?
Từ đồ thị của hàm số ta có:
Vậy hàm số nghịch biến trên khoảng
.
Hàm số đạt cực đại tại điểm
Ta có:
Bảng biến thiên
Từ bảng biến thiên ta thấy hàm số đạt cực đại tại .
Điểm cực đại của đồ thị hàm số có tổng hoành độ và tung độ bằng
Ta có:
Bảng biến thiên
Khi đó:
Cho đồ thị hàm số như hình vẽ. Hàm số đã cho đồng biến trên khoảng
Dựa vào đồ thị ta có hàm số đồng biến trên .
Cho hàm số có bảng biến thiên như sau:
Điểm cực đại của hàm số đã cho là
Từ BBT của hàm số suy ra điểm cực đại của hàm số
là
.
Cho hàm số có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho là:
Quan sát bảng biến thiên nhận thấy giá trị cực tiểu của hàm số đã cho là .
Cho hàm số liên tục trên
và có bảng xét dấu
như sau:
Kết luận nào sau đây đúng?
Dựa vào bảng xét dấu đạo hàm ta thấy: hàm số đạt cực trị tại .
Tại ta thấy
đổi dấu từ âm sang dương nên hàm số đạt cực tiểu tại
.
Tại ta thấy
đổi dấu từ dương sang âm nên hàm số đạt cực đại tại
.
Có tất cả bao nhiêu giá trị nguyên của tham số để hàm số
đồng biến trên
.
Ta có .
Với .
Vậy hàm số đồng biến trên .
Với . Hàm số đã cho đồng biến trên
khi và chỉ khi
.
Vì .
Cho hàm số có đạo hàm . Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có: ta có bảng xét dấu như sau:
Vậy hàm số đồng biến trên khoảng .
Cho hàm số có bảng biến thiên như hình vẽ sau
Hàm số đồng biến trên khoảng nào dưới đây
Từ bảng biến thiên suy ra hàm số đồng biến trên khoảng .
Hình vẽ sau đây mô tả đồ thị của hàm số :
Chọn mệnh đề đúng?
Dựa vào đồ thị hàm số ta thấy hàm số đạt cực đại tại
và đạt cực tiểu tại
.
Cho hàm số . Hàm số có bao nhiêu điểm cực trị?
Ta có:
Ta có bảng xét dấu như sau:
Vậy hàm số có hai điểm cực trị.
Hàm số nào dưới đây đồng biến trên khoảng ?
Vì .
Cho hàm số . Khẳng định nào dưới đây là khẳng định đúng?
Hàm số có tập xác định
và có đạo hàm
=> A là khẳng định đúng
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: