Điểm cực đại của đồ thị hàm số là điểm
Tập xác định:
Ta có:
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta có điểm cực đại của đồ thị hàm số là .
Điểm cực đại của đồ thị hàm số là điểm
Tập xác định:
Ta có:
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta có điểm cực đại của đồ thị hàm số là .
Cho hàm số xác định và liên tục trên
, đạo hàm
có đồ thị như hình vẽ sau:
Tìm số điểm cực tiểu của hàm số ?
Hàm số đạt cực tiểu tại điểm có đổi dấu từ âm sang dương. Dựa vào đồ thị hàm số có 1 điểm cực tiểu.
Cho hàm số có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng
Giá trị cực tiểu của hàm số đã cho bằng .
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đạt cực đại tại
Hàm số đạt cực đại tại điểm mà đạo hàm đổi dấu từ dương sang âm.
Từ bảng biến thiên hàm số đạt cực đại tại .
Hệ thức liên hệ giữa giá trị cực đại và giá trị cực tiểu
của hàm số
là:
Tập xác định
Ta có:
Lại có nên
là điểm cực tiểu của hàm số.
nên
là điểm cực đại của hàm số.
Do đó .
Hàm số nào dưới dây nghịch biến trên khoảng ?
Xét hàm số có
nên hàm số
nghịch biến trên khoảng
.
Hình vẽ sau đây mô tả đồ thị của hàm số :
Chọn mệnh đề đúng?
Dựa vào đồ thị hàm số ta thấy hàm số đạt cực đại tại
và đạt cực tiểu tại
.
Cho hàm số có đồ thị như hình vẽ:
Giá trị cực tiểu của hàm số đã cho bằng:
Dựa vào đồ thị của hàm số ta thấy giá trị cực tiểu của hàm số bằng -2.
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Hàm số đã cho đồng biến trên khoảng và
Hàm số đạt cực đại tại điểm
Ta có:
Bảng biến thiên
Từ bảng biến thiên ta thấy hàm số đạt cực đại tại .
Cho hàm số với m là tham số, khi đó có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Mà
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số xác định và liên tục trên khoảng
, có bảng biến thiên như hình sau:
Mệnh đề nào sau đây đúng?
Dựa vào bảng biến thiên ta thấy:
Hàm số nghịch biến trên khoảng
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là: “Hàm số đồng biến trên khoảng ”.
Cho hàm số liên tục trên đoạn
và có đồ thị là đường cong trong hình bên dưới.
Hàm số đạt cực tiểu tại điểm
Theo hình vẽ thì hàm số đạt cực tiểu tại điểm
.
Cho hàm số với
là tham số. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số nghịch biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Ta có:
Theo yêu cầu bài toán
Mà
Vậy tập hợp T có tất cả 3 phần tử.
Cho hàm số có đạo hàm trên
là
. Hàm số
đồng biến trên khoảng nào sau đây?
Ta có: . Lập bảng xét dấu như sau:
Suy ra hàm số đồng biến trên khoảng
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Từ bảng biến thiên ta thấy hàm số nghịch biến trên
Suy ra hàm số nghịch biến trên .
Cho hàm số có bảng xét dấu đạo hàm như sau
Mệnh đề nào dưới đây đúng?
Theo bảng xét dấu thì khi
nên hàm số nghịch biến trên khoảng
.
Cho hàm số . Xét các mệnh đề sau đây
1) Hàm số có 3 điểm cực trị.
2) Hàm số đồng biến trên các khoảng ;
.
3) Hàm số có 1 điểm cực trị.
4) Hàm số nghịch biến trên các khoảng ;
.
Có bao nhiêu mệnh đề đúng trong bốn mệnh đề trên?
Ta có:
Bảng xét dấu:
Hàm số có điểm cực trị, đồng biến trên khoảng
;
và nghịch biến trên khoảng
;
. Vậy mệnh đề
,
,
đúng.
Hàm số nào sau đây đồng biến trên các khoảng (-∞; 2) và (2; +∞)?
Ta có:
Vậy hàm số đồng biến trên các khoảng (-∞; 2) và (2; +∞)
Cho hàm số . Khẳng định nào dưới đây là khẳng định đúng?
Hàm số có tập xác định
và có đạo hàm
=> A là khẳng định đúng
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: