Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Bài 1 Nguyên Hàm CTST (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn kết luận đúng

    Xét hai câu sau:

    (I) \int_{}^{}\left( f(x) + g(x) \right)\
dx = \int_{}^{}{f(x)}\ dx + \int_{}^{}{g(x)}\ dx = F(x) + G(x) +
C,

    trong đó F(x)G(x) tương ứng là nguyên hàm của f(x),\ \ g(x).

    (II) Mỗi nguyên hàm của a.f(x) là tích của a với một nguyên hàm của f(x).

    Trong hai câu trên:

    Hướng dẫn:

    Các câu đúng là :

    (I) \int_{}^{}\left( f(x) + g(x) \right)\
dx = \int_{}^{}{f(x)}\ dx + \int_{}^{}{g(x)}\ dx = F(x) + G(x) +
C,

    trong đó F(x)G(x) tương ứng là nguyên hàm của f(x),\ \ g(x).

    (II) Mỗi nguyên hàm của a.f(x) là tích của a với một nguyên hàm của f(x).

  • Câu 2: Nhận biết
    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số: y = x^{2} - 3x
+ \frac{1}{x}

    Hướng dẫn:

    \left( \frac{x^{3}}{3} -
\frac{3}{2}x^{2} + \ln|x| \right)' = \frac{3x^{2}}{3} -
\frac{3.2x}{2} + \frac{1}{x} với \forall x > 0

    Vậy đáp án cần tìm là: F(x) =
\frac{x^{3}}{3} - \frac{3}{2}x^{2} + \ln|x| + C

  • Câu 3: Nhận biết
    Tìm nguyên hàm của hàm số

    Tìm nguyên hàm của hàm số f(x) =\cos3x.

    Hướng dẫn:

    Ta có \int_{}^{}{\cos3xdx =
\frac{1}{3}\int_{}^{}{d(\sin3x)} = \frac{\sin3x}{3}} + C

  • Câu 4: Nhận biết
    Xác định nguyên hàm

    Nguyên hàm \int_{}^{}{\left\lbrack
\sin(2x + 3) + \cos(3 - 2x) \right\rbrack dx} là:

    Hướng dẫn:

    Ta có:

    \int_{}^{}{\left\lbrack \sin(2x + 3) +
\cos(3 - 2x) \right\rbrack dx}

    = - 2cos(2x + 3) - 2sin(3 - 2x) +
C.

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Tìm nguyên hàm của hàm số f(x) = e^{x} -
e^{- x} .

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx = e^{x} + e^{-
x} + C},

  • Câu 6: Thông hiểu
    Tìm câu sai

    Cho hàm số f(x) = \frac{1}{2x -
3} . Gọi F(x) là một nguyên hàm của f(x). Chọn phương án sai.

    Hướng dẫn:

    Ta có F(x) = \int_{}^{}\frac{1}{2x - 3}dx
= \int_{}^{}{\frac{1}{2}.\frac{1}{(2x - 3)}d(2x - 3)}

    = \frac{\ln|2x - 3|}{2} + C

    Từ đây ta thấy F(x) = \frac{\ln|2x -
3|}{2} + 10 đúng.

    Với F(x) = \frac{\ln|4x - 6|}{4} +
10 ta thấy

    \frac{\ln|4x - 6|}{4} + 10 = \frac{ln2 +
\ln|2x - 3|}{4} + 10 eq F(x), vậy F(x) = \frac{\ln|4x - 6|}{4} + 10 sai.

  • Câu 7: Nhận biết
    Chọn đáp án đúng

    Tìm nguyên hàm của hàm số f(x) = (2x -
3)^{2} .

    Hướng dẫn:

    Ta có \int_{}^{}{f(x)dx =
\frac{1}{3.2}(2x - 3)^{3} + C}

  • Câu 8: Nhận biết
    Tìm nguyên hàm của hàm số f(x) = 7^x

    Tìm nguyên hàm của hàm số f\left( x ight) = {7^x} là 

    Gợi ý:

     Công thức áp dụng:

    \int {{a^u}du}  = \frac{{{a^u}}}{{\ln a}} + C

    Hướng dẫn:

     Ta có:

    \int {{7^x}dx}  = \frac{{7x}}{{\ln 7}} + C

  • Câu 9: Nhận biết
    Xác định nguyên hàm

    Hàm số nào sau đây là một nguyên hàm của hàm số f(x) = 25^{x}?

    Hướng dẫn:

    Vì: \left( \frac{25^{x}}{ln25}
ight)' = \frac{1}{ln25}.25^{x}.ln25 = 25^{x}

  • Câu 10: Thông hiểu
    Xác định họ nguyên hàm của hàm số

    Nguyên hàm của hàm số f(x) = \left( -
\frac{1}{x^{2}} - \frac{1}{x} \right)e^{- x}

    Hướng dẫn:

    Ta có f(x) = \left( - \frac{1}{x^{2}} -
\frac{1}{x} ight)e^{- x} = \left\lbrack \left( \frac{1}{x}
ight)' - \frac{1}{x} ightbrack e^{- x}

    \Rightarrow F(x) = \frac{e^{- x}}{x} +
C là nguyên hàm của hàm số đã cho.

  • Câu 11: Nhận biết
    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số f(x) = 4x\left(
1 + \ln x ight) là:

    Hướng dẫn:

    Ta có: \left\{ \begin{gathered}
  u = 1 + \ln x \hfill \\
  dv = 4xdx \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  du = \frac{1}{x}dx \hfill \\
  v = 2{x^2} \hfill \\ 
\end{gathered}  ight.

    Khi đó \int_{}^{}{f(x)dx} =
\int_{}^{}{4x\left( 1 + \ln x ight)dx} = \left( 1 + \ln x
ight)2x^{2} - \int_{}^{}{2xdx}

    = \left( 1 + \ln x ight)2x^{2} - x^{2}
+ C = x^{2}(1 + 2lnx) + C

  • Câu 12: Thông hiểu
    Chọn đáp án chính xác

    Biết rằng A = \int_{}^{}\frac{\cos
x}{\sin x + \cos x}dx;B = \int_{}^{}\frac{\sin x}{\sin x + \cos
x}dx. Xác định T = 4B -
2A?

    Hướng dẫn:

    Ta có: \left\{ \begin{gathered}
  A + B = \int 1 dx = x + {C_1} \hfill \\
  A - B = \int {\frac{{\cos x - \sin x}}{{\sin x + \cos x}}} dx = \ln \left| {\sin x + \cos x} ight| + {C_2} \hfill \\ 
\end{gathered}  ight.

    Do đó:\left\{ \begin{gathered}
  A = \frac{{x + \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} + {C_2}}}{2} \hfill \\
  B = \frac{{x - \ln \left| {\sin x + \cos x} ight|}}{2} + \frac{{{C_1} - {C_2}}}{2} \hfill \\ 
\end{gathered}  ight.

    \Rightarrow T = 4B - 2A = x - 3\ln\left|\sin x + \cos x ight| + C

  • Câu 13: Nhận biết
    Tìm câu sai

    Cho f(x),g(x) là các hàm số liên tục trên \mathbb{R} . Tìm khẳng định sai trong các khẳng định sau?

    Hướng dẫn:

    Đáp án sai là: \int_{}^{}{\left\lbrack
f(x).g(x) ightbrack dx =
\int_{}^{}{f(x)dx.}\int_{}^{}{g(x)dx}}.

  • Câu 14: Nhận biết
    Tìm nguyên hàm của hàm số

    Xác định nguyên hàm của hàm số f(x) =
3x^{2} + \frac{x}{2}?

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}\left( 3x^{2} + \frac{x}{2} ight)dx = x^{3} +
\frac{x^{2}}{4} + C.

  • Câu 15: Thông hiểu
    Tìm nguyên hàm của hàm số

    Biết \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C. Khi đó \int_{}^{}{f\left( e^{x}
ight)}dx tương ứng bằng

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C \Rightarrow f(x) = 6x - 4

    \Rightarrow f\left( e^{x} ight) =
6e^{x} - 4

    \Rightarrow \int_{}^{}{f\left( e^{x}
ight)}dx = \int_{}^{}{\left( 6e^{x} - 4 ight)dx} = 6e^{x} - 4e^{x} +
C

  • Câu 16: Nhận biết
    Chọn đáp án đúng

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{(2x - 1)^{2}}?

    Hướng dẫn:

    Ta có: \int_{}^{}{\frac{1}{(2x -1)^{2}}dx} = \int_{}^{}{(2x - 1)^{- 1}dx}

    = - \frac{1}{2}.\frac{1}{2x -2} + C = \frac{1}{2 - 4x} + C

  • Câu 17: Nhận biết
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm F(x) của hàm số f(x) = 2x + 3\sqrt{x} thỏa mãn F(1) = 0?

    Hướng dẫn:

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =
\int_{}^{}{\left( 2x + 3\sqrt{x} ight)dx}}

    \Rightarrow F(x) = \int_{}^{}{(2x)dx} +
6\int_{}^{}{\left( \sqrt{x} ight)^{2}d\left( \sqrt{x}
ight)}

    \Rightarrow F(x) = x^{2} + 2\sqrt{x^{3}}
+ C

    Theo bài ra ta có: F(1) = 0
\Leftrightarrow 3 + C = 0 \Leftrightarrow C = - 3

    Vậy x^{2} + 2\sqrt{x^{3}} -
3.

  • Câu 18: Nhận biết
    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Hướng dẫn:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 19: Nhận biết
    Chọn đáp án đúng

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Hướng dẫn:

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 20: Nhận biết
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm F(x) = \int_{}^{}{\left( x
+ \sin x \right)dx} biết F(0) =
19 .

    Hướng dẫn:

    Ta có:

    F(x) = \int_{}^{}{\left( x + \sin x
ight)dx = \frac{x^{2}}{2} - \cos x + C}

    F(0) = 19 \Rightarrow C = 20\Rightarrow F(x) = \frac{x^{2}}{2} - \cos x + 20

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo