Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 2 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f( -2x) trên đoạn \left\lbrack -1;\frac{1}{2} ightbrack. Tính giá trị của biểu thức B = 2m + 3M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f( -2x) trên đoạn \left\lbrack -1;\frac{1}{2} ightbrack. Tính giá trị của biểu thức B = 2m + 3M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Nhà máyA chuyên sản xuất một loại sản phẩm cho nhà máyB. Hai nhà máy thỏa thuận rằng, hằng tháng A cung cấp cho B số lượng sản phẩm theo đơn đặt hàng của B. Nếu số lượng đặt hàng là x tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là P(x) =
45 - 0,001x^{2}. Cho phí để A sản xuất x tấn sản phẩm trong một tháng là C(x) = 100 + 30x triệu đồng. Xét tính đúng sai của các khẳng định dưới đây:

    a) Chi phí để A sản xuất 10 tấn sản phẩm trong một tháng là 400 triệu đồng. Đúng||Sai

    b) Số tiền A thu được khi bán 10 tấn sản phẩm cho B600 triệu đồng. Sai||Đúng

    c) Lợi nhuận mà A thu được khi bán x tấn sản phẩm (0 \leq x \leq 100) cho BH(x) = -
0,001x^{3} + 15x - 100. Đúng||Sai

    d) A bán cho B khoảng 70,7 tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất. Đúng||Sai

    Đáp án là:

    Nhà máyA chuyên sản xuất một loại sản phẩm cho nhà máyB. Hai nhà máy thỏa thuận rằng, hằng tháng A cung cấp cho B số lượng sản phẩm theo đơn đặt hàng của B. Nếu số lượng đặt hàng là x tấn sản phẩm thì giá bán cho mỗi tấn sản phẩm là P(x) =
45 - 0,001x^{2}. Cho phí để A sản xuất x tấn sản phẩm trong một tháng là C(x) = 100 + 30x triệu đồng. Xét tính đúng sai của các khẳng định dưới đây:

    a) Chi phí để A sản xuất 10 tấn sản phẩm trong một tháng là 400 triệu đồng. Đúng||Sai

    b) Số tiền A thu được khi bán 10 tấn sản phẩm cho B600 triệu đồng. Sai||Đúng

    c) Lợi nhuận mà A thu được khi bán x tấn sản phẩm (0 \leq x \leq 100) cho BH(x) = -
0,001x^{3} + 15x - 100. Đúng||Sai

    d) A bán cho B khoảng 70,7 tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất. Đúng||Sai

    a) Đúng

    b) Sai

    c) Đúng

    d) Đúng

    a) Chi phí để A sản xuất 10 tấn sản phẩm trong một tháng là C(10) = 100 + 30.10 = 400triệu đồng. Do đó a) đúng.

    b) Số tiền A thu được khi bán 10 tấn sản phẩm cho BR(10) =
10.P(10) = 10.\left( 45 - 0,001.10^{2} \right) = 449 triệu đồng. Do đó b) sai.

    c) Lợi nhuận mà A thu được là:

    H(x) = R(x) - C(x) = xP(x) - C(x) = P(x)

    =45x - 0,001x^{3} - (100 + 30x) = - 0,001x^{3} + 15x - 100

    Do đó c) đúng.

    d) Xét hàm số H(x) = - 0,001x^{3} + 15x -
100, (0 \leq x \leq 100) ta có:

    H'(x) = - 0,003x^{2} + 15, H'(x) = 0\Leftrightarrow - 0,003x^{2} +15 = 0\Leftrightarrow x = 50\sqrt{2} .

    Ta có H(0) = - 100; H\left( 50\sqrt{2} \right) = 500\sqrt{2} -
100; H(100) = 400.

    Vậy A bán cho B khoảng 50\sqrt{2} \approx 70,7 tấn sản phẩm mỗi tháng thì thu được lợi nhuận lớn nhất bằng H\left( 50\sqrt{2} \right) = 500\sqrt{2} -
100. Do đó d) đúng.

  • Câu 3: Vận dụng cao
    Xét tính đúng sai của các nhậnđịnh

    Một tấm bìa cứng hình chữ nhật có kích thước 3m \times 8m. Người ta cắt mỗi góc của tấm bìa một hình vuông có cạnh là x để tạo ra hình hộp chữ nhật không nắp. Xét tính đúng, sai của các mệnh đề sau:

    a) Điều kiện của x0 < x < \frac{3}{2}. Đúng||Sai

    b) Diện tích mặt đáy của chiếc hộp là (8
- 2x)(3 - 2x). Đúng||Sai

    c) Thể tích của chiếc hộp là (8 -
2x)^{2}(3 - 2x). Sai||Đúng

    d) Với x = \frac{2}{3}(m) thì chiếc hộp có thể tích lớn nhất. Đúng||Sai

    Đáp án là:

    Một tấm bìa cứng hình chữ nhật có kích thước 3m \times 8m. Người ta cắt mỗi góc của tấm bìa một hình vuông có cạnh là x để tạo ra hình hộp chữ nhật không nắp. Xét tính đúng, sai của các mệnh đề sau:

    a) Điều kiện của x0 < x < \frac{3}{2}. Đúng||Sai

    b) Diện tích mặt đáy của chiếc hộp là (8
- 2x)(3 - 2x). Đúng||Sai

    c) Thể tích của chiếc hộp là (8 -
2x)^{2}(3 - 2x). Sai||Đúng

    d) Với x = \frac{2}{3}(m) thì chiếc hộp có thể tích lớn nhất. Đúng||Sai

    Hình vẽ minh họa

    a) Ta có chiều dài, chiều rộng, chiều cao của chiếc hộp lần lượt là 8 - 2x;3 - 2x;\ x.

    Suy ra điều kiện của x0 < x < \frac{3}{2}. Vậy a) Đúng.

    b) Đáy của chiếc hộp là hình chữ nhật có diện tích là S = (8 - 2x)(3 - 2x). Vậy b) Đúng.

    c) Thể tích của chiếc hộp là: V = x(8 -
2x)(3 - 2x). Vậy c) Sai.

    d) Xét hàm số: V(x) = x(3 - 2x)(8 - 2x) =
4x^{3} - 22x^{2} + 24x trên \left(
0;\frac{3}{2} \right).

    Ta có: V'(x) = 12x^{2} - 44x + 24 =
4\left( 3x^{2} - 11x + 6 \right).

    Khi đó: V'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 3 \\
x = \frac{2}{3}
\end{matrix} \right..

    Bảng biến thiên:

    Từ BBT ta thấy hàm số đạt giá trị lớn nhất trên \left( 0;\frac{3}{2} \right) khi x = \frac{2}{3}. Vậy d) Đúng

  • Câu 4: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên khoảng

    Tính giá trị nhỏ nhất của hàm số y = 3x +
\frac{4}{x^{2}} trên khoảng (0; +
\infty).

    Hướng dẫn:

    Cách 1:

    y = 3x + \frac{4}{x^{2}} = \frac{3x}{2}
+ \frac{3x}{2} + \frac{4}{x^{2}} \geq
3\sqrt[3]{\frac{3x}{2}.\frac{3x}{2}.\frac{4}{x^{2}}} =
3\sqrt[3]{9}

    Dấu " = " xảy ra khi \frac{3x}{2} = \frac{4}{x^{2}}
\Leftrightarrow x = \sqrt[3]{\frac{8}{3}}.

    Vậy \min_{(0; + \infty)}y =
3\sqrt[3]{9}

    Cách 2:

    Xét hàm số y = 3x +
\frac{4}{x^{2}} trên khoảng (0; +
\infty)

    Ta có y = 3x + \frac{4}{x^{2}}
\Rightarrow y' = 3 - \frac{8}{x^{3}}

    Cho y' = 0 \Leftrightarrow
\frac{8}{x^{3}} = 3 \Leftrightarrow x^{3} = \frac{8}{3} \Leftrightarrow
x = \sqrt[3]{\frac{8}{3}}

    \Rightarrow \min_{(0; + \infty)}y =
y\left( \sqrt[3]{\frac{8}{3}} ight) = 3\sqrt[3]{9}

  • Câu 5: Thông hiểu
    Xác định số giá trị nguyên của m

    Có bao nhiêu giá trị nguyên của tham số m
\in \lbrack - 10;10brack để hàm số y = x^{3} - 3x^{2} + 3mx + 2020 nghịch biến trên khoảng (1;2)?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6x + 3m \leq
0;\forall x \in (1;2)

    \Leftrightarrow m \leq - x^{2} +
2x;\forall x \in (1;2)

    Xét f(x) = - x^{2} + 2x trên khoảng (1;2) ta có bảng biến thiên:

    Suy ra m \leq 0m \in \lbrack - 10;10brack nên m \in \left\{ - 10; - 9;...; - 1;0
ight\}

    Vậy có tất cả 11 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 6: Vận dụng cao
    Ghi đáp án vào ô trống

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Đáp án là:

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Gọi hàm số bậc ba y = f(x) = ax^{3} +
bx^{2} + cx + d

    \Rightarrow f'(x) = 3ax^{2} + 2bx +
c.

    Vì đồ thị hàm số đi qua hai điểm (0;1)
\Rightarrow d = 1.

    Vì đồ thị hàm số đi qua hai điểm A(2;5)
\Rightarrow 8a + 4b + 2c + 1 = 5.

    Vì hàm số có hai điểm cực trị x = 0;x =
2

    \Rightarrow \left\{ \begin{matrix}
f'(0) = 0 \\
f'(2) = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
c = 0 \\
12a + 4b = 0 \\
\end{matrix} ight. .

    \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow f(x) = - x^{3} + 3x^{2} + 1f'(x) = - 3x^{2} + 6x.

    Gọi M\left( x_{0};y_{0} ight),\ x_{0}
> 0, là điểm nằm trên hòn đảo và nối với mặt đường và d là tiếp tuyến của đồ thị hàm số song song với mặt đường.

    Suy ra M là tiếp điểm của d với y = f(x).

    Đường thẳng y = 36 - 9x có hệ số góc k = - 9

    \Rightarrow f'\left( x_{0} ight) =
- 9 \Leftrightarrow - 3x_{0}^{2} + 6x_{0} = - 9

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 3 \\
x_{0} = - 1 \\
\end{matrix} ight.\  \Rightarrow M(3;1).

    Độ dài cây cầu ngắn nhất bằng khoảng cách từ điểm M đến đường thẳng 9x + y - 36 = 0.

    h = \frac{|9.3 + 1 - 36|}{\sqrt{9^{2} +
1^{2}}} \approx 0,883.

    Vì đơn vị của hệ trục là 100m nên độ dài ngắn nhất của cây cầu là 88,3m.

  • Câu 7: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên tập xác định

    Giá trị nhỏ nhất của hàm số y = \sqrt{4 -
x} + \sqrt{3} trên tập xác định của nó là

    Hướng dẫn:

    Tập xác định của hàm số là: D = ( -
\infty;4brack.

    Ta có y' = \frac{- 1}{2\sqrt{4 - x}}
< 0,\ \forall x \in D

    Bảng biến thiên

    Từ bảng biến thiên suy ra \min_{( -
\infty;4brack}y = \sqrt{3} khi x
= 4.

  • Câu 8: Thông hiểu
    Chọn phương án đúng

    Giá trị nhỏ nhất của hàm số y = x +
\frac{2}{x} - \left( 1 + \sqrt{2} \right)^{2} trên khoảng (0; + \infty)

    Hướng dẫn:

    Hàm số xác định và liên tục trên khoảng (0; + \infty).

    y' = 1 - \frac{2}{x^{2}} =
\frac{x^{2} - 2}{x^{2}}.

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = \sqrt{2} \\
x = - \sqrt{2} \\
\end{matrix} ight.\ .

    Bảng biến thiên:

    Vậy \min_{(0; + \infty)}y = f\left(
\sqrt{2} ight) = - 3.

  • Câu 9: Vận dụng cao
    Ghi đáp án vào ô trống

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Vận dụng
    Tìm giá trị lớn nhất của hàm số chứa căn

    Tìm giá trị lớn nhất M của hàm số f(x) = \sqrt{x} + \sqrt{2 - x} +
2\sqrt{2x - x^{2}}.

    Hướng dẫn:

    TXĐ: D = \lbrack 0;2brack.

    Đặt t = \sqrt{x} + \sqrt{2 - x}\ \left(
\sqrt{2} \leq t \leq 2 ight).

    \Rightarrow t^{2} = x + 2\sqrt{x}\sqrt{2
- x} + 2 - x

    \Rightarrow 2\sqrt{2x - x^2} = t^2 -2

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = t^{2} + t - 2 trên đoạn \left\lbrack \sqrt{2};2
ightbrack''.

    Xét hàm số g(t) = t^2 + t - 2 xác định và liên tục trên \left\lbrack
\sqrt{2};2 ightbrack.

    Đạo hàm g'(t) = 2t + 1 > 0,\
\forall t \in \left( \sqrt{2};2 ight).

    Suy ra hàm số g(t) đồng biến trên đoạn \left\lbrack \sqrt{2};2
ightbrack.

    Do đó \max_{\left\lbrack \sqrt{2};2
ightbrack}g(t) = g(2) = 4 \Rightarrow \max_{\lbrack 0;2brack}f(x)
= 4.

  • Câu 11: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số f(x) có bảng biến thiên của hàm số y = f^{'}(x) như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m \in ( - 10;10) để hàm số y = f(3x - 1) + x^{3} - 3mx đồng biến trên khoảng ( - 2;1)?

    Đáp án: 6

    Đáp án là:

    Cho hàm số f(x) có bảng biến thiên của hàm số y = f^{'}(x) như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m \in ( - 10;10) để hàm số y = f(3x - 1) + x^{3} - 3mx đồng biến trên khoảng ( - 2;1)?

    Đáp án: 6

    Để hàm số y = f(3x - 1) + x^{3} -
3mx đồng biến trên khoảng ( -
2;1)

    \Leftrightarrow y' \geq 0,\forall x
\in ( - 2;1)

    \Leftrightarrow 3f'(3x - 1) + 3x^{2}
- 3m \geq 0,\forall x \in ( - 2;1)

    \Leftrightarrow m \leq f^{'}(3x - 1)
+ x^{2},\forall x \in ( - 2;1)(*)

    Đặt k(x) = f^{'}(3x - 1),h(x) =
x^{2}g(x) = f^{'}(3x - 1) +
x^{2} = k(x) + h(x).

    Ta có: \min_{( - 2;1)}k(x) = k(0) = -
4.

    Do đó, ta có: \min_{( - 2;1)}f^{'}(3x
- 1) = f^{'}( - 1) = - 4 khi 3x
- 1 = - 1 \Leftrightarrow x = 0.

    \Rightarrow \min_{( - 2;1)}k(x) = k(0) =
- 4.

    Do đó, \min_{( - 2;1)}g(x) = g(0) = k(0)
+ h(0) = 0 - 4 = - 4.

    Từ (*) ta có m \leq f^{'}(3x - 1) + x^{2},\forall x \in ( -
2;1)

    \Leftrightarrow m \leq \min_{( -
2;1)}g(x) \Leftrightarrow m \leq - 4.

    m \in ( - 10;10) \Rightarrow m \in \{- 9;\ldots; - 4\}.

    Vậy có tất cả 6 số nguyên thỏa mãn.

  • Câu 12: Vận dụng
    Ghi đáp án vào ô trống

    Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết 8m^{2} kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết 8m^{2} kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Vận dụng
    Tìm giá trị lớn nhất nhỏ nhất của hàm số 

    Tìm giá trị lớn nhất của hàm số f\left( x ight) = \frac{{2{x^2} + 7x + 23}}{{{x^2} + 2x + 10}}

    Hướng dẫn:

    Dễ thấy nên hàm số xác định trên toàn trục số.

    Gọi m là một giá trị tùy ý của hàm số, khi đó phương trình

    \begin{matrix}  \dfrac{{2{x^2} + 7x + 23}}{{{x^2} + 2x + 10}} = m \hfill \\   \Leftrightarrow 2{x^2} + 7x + 23 = m\left( {{x^2} + 2x + 10} ight) \hfill \\   \Leftrightarrow \left( {m - 2} ight){x^2} + \left( {2m - 7} ight)x + 10m - 23 = 0 \hfill \\ \end{matrix}

    Ta xét hai trường hợp sau:

    TH1: Nếu  m = 2 phương trình trở thành

    - 3x - 3 = 0 \Leftrightarrow x =  - 1

    Vậy phương trình có nghiệm khi m = 2

    TH2: Nếu m e 2 khi đó phương trình bậc 2 có nghiệm khi và chỉ khi:

    \begin{matrix}  \Delta  = {\left( {2m - 7} ight)^2} - 4\left( {m - 2} ight)\left( {10m - 23} ight) \geqslant 0 \hfill \\   \Leftrightarrow  - 36m + 144m - 135 \geqslant 0 \hfill \\   \Rightarrow \dfrac{3}{2} \leqslant m \leqslant \dfrac{5}{2} e 2 \hfill \\   \Rightarrow \max f\left( x ight) = \dfrac{5}{2},\min f\left( x ight) = \dfrac{3}{2} \hfill \\ \end{matrix}

     

  • Câu 14: Vận dụng
    Tìm max của hàm số trên đoạn

    Tìm giá trị lớn nhất M của hàm số f(x) = \left| x^{2} - 3x + 2 \right| -
x trên đoạn \lbrack -
4;4\rbrack.

    Hướng dẫn:

    Hàm số f(x) xác định và liên tục trên đoạn \lbrack - 4;4brack.

    Nếu x \in \lbrack 1;2brack thì x^{2} - 3x + 2 \leq 0 nên suy ra f(x) = - x^{2} + 2x - 2.

    Đạo hàm f'(x) = - 2x + 2

    \Rightarrow f'(x) = 0 \Leftrightarrow
x = 1 \in \lbrack 1;2brack

    Ta có \left\{ \begin{matrix}
f(1) = - 1 \\
\ f(2) = - 2 \\
\end{matrix} ight.\ .

    Nếu x \in \lbrack - 4;1brack \cup
\lbrack 2;4brack thì x^{2} - 3x +
2 \geq 0 nên suy ra f(x) = x^{2} -
4x + 2.

    Đạo hàm f'(x) = 2x - 4

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 2 \in [ - 4;1] \cup \lbrack
2;4brack

    Ta có \left\{ \begin{matrix}
f( - 4) = 34 \\
\ f(1) = - 1 \\
f(2) = - 2 \\
f(4) = 2 \\
\end{matrix} ight..

    So sánh hai trường hợp, ta được \max_{\lbrack - 4;4brack}f(x) = f( - 4) =
34

  • Câu 15: Vận dụng cao
    Tính GTNN của biểu thức

    Cho hai số thực a, b dương thỏa mãn 2\left( {{a^2} + {b^2}} ight) + ab = \left( {a + b} ight)\left( {ab + 2} ight). Giá trị nhỏ nhất của biểu thức T = 4\left( {\frac{{{a^3}}}{{{b^3}}} + \frac{{{b^3}}}{{{a^3}}}} ight) - 9\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} ight) bằng:

    Hướng dẫn:

    Ta có:

    2\left( {\frac{a}{b} + \frac{b}{a}} ight) + 1 = \left( {a + b} ight)\left( {1 + \frac{2}{{ab}}} ight) = a + b + \frac{2}{a} + \frac{2}{b}

    \geqslant 2\sqrt {2\left( {a + b} ight)\left( {\frac{1}{a} + \frac{1}{b}} ight)}  = 2\sqrt {2\left( {2 + \frac{a}{b} + \frac{b}{a}} ight)}

    Đặt t = \frac{a}{b} + \frac{b}{a} \Rightarrow t \geqslant \frac{5}{2}

    \Rightarrow P = 4\left( {{t^3} - 3t} ight) - 9\left( {{t^2} - 2} ight) = 4{t^3} - 9{t^2} - 12t + 18 = f\left( t ight)

    \begin{matrix}  f'\left( t ight) = 12{t^2} - 18t - 12 > 0,\forall t > \dfrac{5}{2} \hfill \\   \Rightarrow f\left( t ight) \geqslant f\left( {\dfrac{5}{2}} ight) =  - \dfrac{{23}}{4} \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x) có bảng biến thiên sau:

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    "Hàm số có hai điểm cực trị" sai vì hàm số có ba điểm cực trị là x =
- 1;\ x = 0;\ x = 1.

    "Hàm số đạt giá trị lớn nhất bằng -
3." sai vì hàm số không có giá trị lớn nhất.

    "Hàm số có một điểm cực tiểu" sai vì hàm số có hai điểm cực tiểu là x
= - 1x = 1.

  • Câu 17: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm f'(x) = x^{2}(x - 2)\left( x^{2} - 6x + might) với mọi x\mathbb{\inR}. Có bao nhiêu số nguyên m \in\lbrack - 2019;2019brack để hàm số g(x) = f(1 - x) nghịch biến trên khoảng ( - \infty; - 1)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm f'(x) = x^{2}(x - 2)\left( x^{2} - 6x + might) với mọi x\mathbb{\inR}. Có bao nhiêu số nguyên m \in\lbrack - 2019;2019brack để hàm số g(x) = f(1 - x) nghịch biến trên khoảng ( - \infty; - 1)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Thông hiểu
    Tính giá trị biểu thức

    Tập giá trị của hàm số f(x) = x +
\frac{9}{x} với x \in \lbrack
2;4brack là đoạn \lbrack
a;bbrack. Tính P = b -
a.

    Hướng dẫn:

    Ta có: f'(x) = 1 - \frac{9}{x^{2}} =
\frac{x^{2} - 9}{x^{2}}

    ightarrow f'(x) = 0

    \Leftrightarrow x^{2} - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 3 \in \lbrack 2;4brack \\
x = - 3 otin \lbrack 2;4brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(2) = \frac{13}{2} \\
f(3) = 6 \\
f(4) = \frac{25}{4} \\
\end{matrix} ight. \Rightarrow
\min_{\lbrack 2;4brack}f(x) = 6;\max_{\lbrack 2;4brack}f(x) =
\frac{13}{2}

    \Rightarrow \lbrack a;bbrack =
\left\lbrack 6;\frac{13}{2} ightbrack \Rightarrow P = b - a = \frac{13}{2} - 6 =
\frac{1}{2}

  • Câu 19: Thông hiểu
    Tìm m thỏa mãn yêu cầu

    Biết giá trị lớn nhất của hàm số y = -
2x^{3} + 3x^{2} + m trên đoạn \lbrack 0;2brack bằng 5. Tìm giá trị của tham số m?

    Hướng dẫn:

    Ta có: y' = - 6x^{2} + 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Bảng biến thiên

    Dựa vào bảng biến thiên ta có:

    \max_{\lbrack 0;2brack}f(x) = 5
\Leftrightarrow f(1) = 5 \Leftrightarrow m + 1 = 5 \Leftrightarrow m =
4

  • Câu 20: Vận dụng
    Ghi đáp án vào ô trống

    Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là f\left( x ight) = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} ight| trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là f\left( x ight) = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} ight| trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo