Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 2 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính giá trị của biểu thức P

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = x + \sqrt{4 - x^{2}} lần lượt là M;m. Tính giá trị biểu thức P = M^{2} - m^{2}?

    Hướng dẫn:

    Tập xác định D = \lbrack -
2;2brack

    Ta có: y' = 1 - \frac{x}{\sqrt{4 -
x^{2}}} \Rightarrow y' = 0 \Leftrightarrow 1 - \frac{x}{\sqrt{4 -
x^{2}}} = 0

    \Leftrightarrow x = \sqrt{4 - x^{2}}
\Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x^{2} = 4 - x^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x = \pm \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow x = \sqrt{2}

    Khi đó: \left\{ \begin{matrix}
f(2) = 2;f( - 2) = - 2 \\
f\left( \sqrt{2} ight) = 2\sqrt{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
\max_{\lbrack - 2;2brack}f(x) = M = 2\sqrt{2} \\
\min_{\lbrack - 2;2brack}f(x) = m = - 2 \\
\end{matrix} ight.

    \Rightarrow P = M^{2} - m^{2} =
4

  • Câu 2: Vận dụng cao
    Ghi đáp án vào ô trống

    Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao 2m, một phía rộng 1m, một phía rộng 1,2m. Một người thợ cần mang một số ống thép cứng các loại có độ dài 2m, 2,5m, 3m, 3,5m, 4m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?

    Đáp án: 4

    Đáp án là:

    Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao 2m, một phía rộng 1m, một phía rộng 1,2m. Một người thợ cần mang một số ống thép cứng các loại có độ dài 2m, 2,5m, 3m, 3,5m, 4m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?

    Đáp án: 4

    Ống thép muốn qua được hành lang (bên này qua bên kia) phải qua được góc vuông giữa hành lang.

    Vì vậy chiều dài l của ống thép phải thỏa mãn l \leq AN, \forall a \in \left( 0;\frac{\pi}{2} ight)
\Leftrightarrow l \leq \min_{\left( 0;\frac{\pi}{2}
ight)}AN(*)

    Ta có AN = \sqrt{AB^{2} + BN^{2}} =
\sqrt{AB^{2} + 4}

    Trong đó AB = AM + MB =
\frac{AH}{\sin\alpha} + \frac{BK}{\cos\alpha} = \frac{1}{\sin\alpha} +
\frac{1,2}{\cos\alpha}

    Xét hàm số g(\alpha) =
\frac{1}{\sin\alpha} + \frac{1,2}{\cos\alpha}

    \Rightarrow g'(\alpha) = -
\frac{\cos\alpha}{sin^{2}\alpha} + \frac{1,2sina}{cos^{2}a} =
0

    \Leftrightarrow 1,2sin^{3}\alpha =
cos^{3}\alpha

    \Leftrightarrow \tan\alpha =
\frac{1}{\sqrt[3]{1,2}} \Leftrightarrow \alpha =
\arctan\frac{1}{\sqrt[3]{1,2}}

    Vì vậy \min_{\left( 0;\frac{\pi}{2}
ight)}g(\alpha) = g\left( \arctan\frac{1}{\sqrt[3]{1,2}}
ight)

    \Rightarrow (*) \Leftrightarrow l \leq
\sqrt{\left\lbrack g\left( \arctan\frac{1}{\sqrt[3]{1,2}} ight)
ightbrack^{2} + 4} \approx 3,69504

  • Câu 3: Thông hiểu
    Tìm m để hàm số đồng biến trên R

    Tìm tất cả các giá trị thực của tham số m để hàm số y = x^{4} - 2(m - 1)x^{2} + m + 2020 đồng biến trên khoảng ( - 3; - 1)?

    Hướng dẫn:

    Ta có: y' = 4x^{3} - 4(m -
1)x

    Hàm số đồng biến trên khoảng ( - 3; -
1) \Leftrightarrow y' \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow 4x^{3} - 4(m - 1)x \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow x^{2} \leq m - 1;\forall
x \in ( - 3; - 1)

    \Leftrightarrow m - 1 \geq \max_{\lbrack
- 3; - 1brack}x^{2} \Leftrightarrow m - 1 \geq 9 \Leftrightarrow m
\geq 10

    Vậy đáp án cần tìm là: m \geq
10.

  • Câu 4: Vận dụng
    Ghi đáp án vào ô trống

    Một công ty du lịch tổ chức tour du lịch với giá mỗi tour là 5000000 đồng một khách cho 30 khách. Từ khách thứ 31, cứ thêm một khách, giá của tour lại được giảm a nghìn (a là số nguyên dương). Số khách thêm của tour không quá 15 người. Biết rằng nếu nhận thêm từ 1 đến 8 khách thì doanh thu tăng dần theo số khách nhận thêm. Tìm giá trị lớn nhất của a.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một công ty du lịch tổ chức tour du lịch với giá mỗi tour là 5000000 đồng một khách cho 30 khách. Từ khách thứ 31, cứ thêm một khách, giá của tour lại được giảm a nghìn (a là số nguyên dương). Số khách thêm của tour không quá 15 người. Biết rằng nếu nhận thêm từ 1 đến 8 khách thì doanh thu tăng dần theo số khách nhận thêm. Tìm giá trị lớn nhất của a.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Vận dụng
    Tìm m để bất phương trình nghiệm đúng với mọi x

    Tìm các giá trị của tham số m để bất phương trình \frac{{{x^2} + 3x + 3}}{{x + 1}} \geqslant m nghiệm đúng với mọi x \in \left[ {0;1} ight]

    Hướng dẫn:

    Xét hàm số g\left( x ight) = \frac{{{x^2} + 3x + 3}}{{x + 1}},x \in \left[ {0;1} ight] ta có:

    \begin{matrix}  g\left( x ight) = x + 2 + \dfrac{1}{{x + 1}} \hfill \\   \Rightarrow g'\left( x ight) = 1 - \dfrac{1}{{{{\left( {x + 1} ight)}^2}}} \hfill \\  g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0\left( {tm} ight)} \\   {x =  - 2\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => \left\{ {\begin{array}{*{20}{c}}  {g\left( 0 ight) = 3} \\   {g\left( 1 ight) = \dfrac{7}{2}} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;1} ight]} g\left( x ight) = \frac{7}{2};\mathop {\min }\limits_{\left[ {0;1} ight]} g\left( x ight) = 3

    Ta có:

    \frac{{{x^2} + 3x + 3}}{{x + 1}} \geqslant m,\left( {\forall x \in \left[ {0;1} ight]} ight) \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {g\left( 0 ight) = 3} \\   {g\left( 1 ight) = \dfrac{7}{2}} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left[ {0;1} ight]} g\left( x ight) \geqslant m \Leftrightarrow m \leqslant 3

  • Câu 6: Thông hiểu
    Tìm m để giá trị nhỏ nhất hàm số trên đoạn cho trước

    Giá trị nhỏ nhất của hàm số y = \frac{x +
m^{2}}{x - 1} trên đoạn \lbrack -
1;0brack bằng:

    Hướng dẫn:

    Đạo hàm y' = \frac{- 1 - m^{2}}{(x -
1)^{2}} < 0,\forall x \in \lbrack - 1;0brack.

    Suy ra hàm số f(x) nghịch biến trên \lbrack - 1;0brack

    \Rightarrow \min_{\lbrack -
1;0brack}f(x) = f(0) = - m^{2}.

  • Câu 7: Vận dụng
    Xét tính đúng sai của các nhận định

    Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá 30.000 đồng một chiếc và mỗi tháng cơ sở bán được trung bình 3000 chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá 30.000 đồng mà cứ tăng giá thêm 1000 đồng thì mỗi tháng sẽ bán ít hơn 100 chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là 18.000.

    a) Nếu cơ sở bán mỗi chiếc khăn với giá 37000 thì số tiền lãi sau 1 tháng là 44. Sai||Đúng

    b) Sau khi cơ sở tăng giá mỗi chiếc khăn thêm x thì tổng số lợi nhuận một tháng của cơ sở được tính theo công thứcf(x) = - 100x^{2}
+ 1800x + 36000. Đúng||Sai

    c) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm 800 chiếc. Sai||Đúng

    d) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá 39000 đồng. Đúng||Sai

    Đáp án là:

    Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá 30.000 đồng một chiếc và mỗi tháng cơ sở bán được trung bình 3000 chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá 30.000 đồng mà cứ tăng giá thêm 1000 đồng thì mỗi tháng sẽ bán ít hơn 100 chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là 18.000.

    a) Nếu cơ sở bán mỗi chiếc khăn với giá 37000 thì số tiền lãi sau 1 tháng là 44. Sai||Đúng

    b) Sau khi cơ sở tăng giá mỗi chiếc khăn thêm x thì tổng số lợi nhuận một tháng của cơ sở được tính theo công thứcf(x) = - 100x^{2}
+ 1800x + 36000. Đúng||Sai

    c) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm 800 chiếc. Sai||Đúng

    d) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá 39000 đồng. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    Gọi số tiền cần tăng giá mỗi chiếc khăn là x .

    Vì cứ tăng giá thêm 1 thì số khăn bán ra giảm 100 chiếc nên tăng x thì số khăn bán ra giảm 100x chiếc.

    Do đó tổng số khăn bán ra mỗi tháng là: 3000 - 100x chiếc.

    Lúc đầu bán với giá 30, mỗi chiếc khăn có lãi 12. Sau khi tăng giá, mỗi chiếc khăn thu được số lãi là: 12 +
x.

    Do đó tổng số lợi nhuận một tháng thu được sau khi tăng giá là:

    f(x) = (3000 - 100x)(12 +
x).

    Xét hàm số f(x) = (3000 - 100x)(12 +
x) trên (0; + \infty).

    Ta có:f(x) = - 100x^{2} + 1800x +
36000.

    f'(x) = - 200x + 1800

    f'(x) = 0 \Leftrightarrow - 200x +
1800 = 0 \Leftrightarrow x = 9

    Lập bảng biến thiên của hàm số f(x) trên (0;\  + \infty) ta thấy hàm số đạt giá trị lớn nhất khix = 9

    hư vậy, để thu được lợi nhuận cao nhất thì cơ sở sản xuất cần tăng giá bán mỗi chiếc khăn là 9.000 đồng, tức là mỗi chiếc khăn bán với giá mới là39.000 đồng.

  • Câu 8: Vận dụng
    Ghi đáp án vào ô trống

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Đường dây điện 110KV kéo từ trạm phát trong đất liền ra Côn Đảo. Biết BC =
60km, AB = 100km, góc \widehat{ABC} = 90{^\circ}, như hình vẽ. Mỗi km dây điện dưới nước chi phí là 5000\ USD, chi phí cho mỗi km dây điện trên bờ là 3000\ USD. Đặt x = AG.

    a) Khi x = 20\ km thì đường dây điện nối từ C về G dài 100km. Đúng||Sai

    b) Khi x = 20\ km thì tổng chi phí mắc điện là 560.000USD. Đúng||Sai

    c) Tổng chi phí mắc điện nhỏ nhất khi x =
50km. Sai||Đúng

    d) Tổng chi phí mắc điện nhỏ nhất là 540.000USD.Đúng||Sai

    Đáp án là:

    Đường dây điện 110KV kéo từ trạm phát trong đất liền ra Côn Đảo. Biết BC =
60km, AB = 100km, góc \widehat{ABC} = 90{^\circ}, như hình vẽ. Mỗi km dây điện dưới nước chi phí là 5000\ USD, chi phí cho mỗi km dây điện trên bờ là 3000\ USD. Đặt x = AG.

    a) Khi x = 20\ km thì đường dây điện nối từ C về G dài 100km. Đúng||Sai

    b) Khi x = 20\ km thì tổng chi phí mắc điện là 560.000USD. Đúng||Sai

    c) Tổng chi phí mắc điện nhỏ nhất khi x =
50km. Sai||Đúng

    d) Tổng chi phí mắc điện nhỏ nhất là 540.000USD.Đúng||Sai

    Tổng quan đáp án bài tập:

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

    a) Có AG = x \Rightarrow BG = 100 -
x với 0 \leq x \leq
100.

    Xét tam giác CBG vuông tại BCG =
\sqrt{CB^{2} + BG^{2}} = \sqrt{3600 + (100 - x)^{2}}.

    Khi x = 20\ km \Rightarrow CG = 100\
km.

    b) Chi phí tiền mắc điện là f(x) = 3000x
+ 5000.\sqrt{3600 + (100 - x)^{2}}

    Khi x = 20\ km \Rightarrow CG = 100\
km và tổng chi phí mắc điện là T =
f(20) = 560.000\ USD.

    c) Để chi phí mắc điện ít nhất thì f(x) đạt giá trị nhỏ nhất.

    Ta có f'(x) = 3000 - 5000\frac{(100 -
x)}{\sqrt{3600 + (100 - x)^{2}}}

    \Rightarrow f'(x) = 0 \Rightarrow f'(x) = 0

    \Leftrightarrow 3000 = 5000\frac{(100 - x)}{\sqrt{3600 +(100 - x)^{2}}}\Leftrightarrow \left\lbrack \begin{matrix}x = 55 \\x = 145(l)\end{matrix} \right..

    Ta có

    \begin{matrix}
f(0) = 583095,1895USD \\
f(55) = 540.000USD \\
f(100) = 600.000USD
\end{matrix}

    Vậy chi phí mắc điện nhỏ nhất khi x =
55km.

    d) chi phí mắc điện nhỏ nhất là 540.000USD

  • Câu 10: Thông hiểu
    Chọn phương án đúng

    Cho hàm số f(x) = \frac{3x - 1}{x -
3}. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn \lbrack 0;2brack.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{- 8}{(x -3)^2}.

    Ta có f'(x) < 0,\forall x \in
(0;2).

    Suy ra hàm số f(x) nghịch biến trên đoạn \lbrack 0;2brack.

    Vậy \left\{ \begin{matrix}
M = \max_{\lbrack 0;2brack}f(x) = f(0) = \frac{1}{3} \\
m = \min_{\lbrack 0;2brack}f(x) = f(2) = - 5 \\
\end{matrix} ight.\ .

  • Câu 11: Thông hiểu
    Tìm GTLN của hàm số

    Cho hàm số y = {x^3} - \frac{3}{2}{x^2} + 1. Gọi M là giá trị lớn nhất của hàm số trên khoảng \left( { - 25;\frac{{11}}{{10}}} ight). Tìm M.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 3x \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Tìm GTLN của hàm số

    Từ bảng biến thiên ta có M = 1

  • Câu 12: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Một công ty bất động sản A có 100 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 triệu đồng một tháng thì mọi căn hộ đều có người thuê, và cứ mỗi lần tăng giá cho thuê mỗi căn hộ thêm 200000 đồng mỗi tháng thì có thêm 4 căn hộ bị bỏ trống. Gọi x,\left( x\mathbb{\in N} \right) là số lần tăng giá cho thuê mỗi căn hộ của công ty A. Các mệnh đề dưới đây đúng hay sai?

    a) Nếu giữ nguyên giá thuê mỗi căn hộ là 3 triệu đồng một tháng thì công ty A thu về 300 triệu đồng mỗi tháng. Đúng||Sai

    b) Sau x lần tăng giá cho thuê mỗi căn hộ của công ty A, số căn hộ có người thuê là 100 - 4x. Đúng||Sai

    c) Giá thuê một căn hộ của công ty A200000x đồng/tháng sau x lần tăng giá. Sai||Đúng

    d) Công ty A thu về nhiều nhất là 320 triệu đồng/tháng. Đúng||Sai

    Đáp án là:

    Một công ty bất động sản A có 100 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ với giá 3 triệu đồng một tháng thì mọi căn hộ đều có người thuê, và cứ mỗi lần tăng giá cho thuê mỗi căn hộ thêm 200000 đồng mỗi tháng thì có thêm 4 căn hộ bị bỏ trống. Gọi x,\left( x\mathbb{\in N} \right) là số lần tăng giá cho thuê mỗi căn hộ của công ty A. Các mệnh đề dưới đây đúng hay sai?

    a) Nếu giữ nguyên giá thuê mỗi căn hộ là 3 triệu đồng một tháng thì công ty A thu về 300 triệu đồng mỗi tháng. Đúng||Sai

    b) Sau x lần tăng giá cho thuê mỗi căn hộ của công ty A, số căn hộ có người thuê là 100 - 4x. Đúng||Sai

    c) Giá thuê một căn hộ của công ty A200000x đồng/tháng sau x lần tăng giá. Sai||Đúng

    d) Công ty A thu về nhiều nhất là 320 triệu đồng/tháng. Đúng||Sai

    a) Nếu giữ nguyên giá thuê mỗi căn hộ là 3 triệu đồng một tháng thì công ty A thu về: 3\
\ .\ \ 100 = 300

    Suy ra mệnh đề đúng.

    b) Sau x lần tăng giá cho thuê mỗi căn hộ, công ty A có số căn hộ bị bỏ trống là: 4x.

    Khi đó, số căn hộ có người thuê là: 100 -
4x.

    Suy ra mệnh đề đúng.

    c) Sau x lần tăng giá, giá thuê mỗi căn hộ của công ty A tăng thêm: 200000x.

    Khi đó, giá thuê mỗi căn hộ của công ty A là: 3000000
+ 200000x.

    Suy ra mệnh đề sai.

    d) Mỗi tháng, công ty A thu về: (100 - 4x).(3000000 + 200000x).

    Ta thấy: 100 - 4x > 0 \Leftrightarrow
x < 25.

    Công ty A muốn có thu nhập thì không được tăng quá 24 lần tăng giá thuê mỗi căn hộ.

    Xét hàm số: y = (100 - 4x).(3000000 +
200000x) = - 800000x^{2} + 8000000x
+ 300000000 trên \lbrack
0;24\rbrack.

    y' = - 1600000x + 8000000 = 0
\Leftrightarrow x = 5 \in \lbrack 0;24\rbrack.

    Ta có: y(0) = 300000000

    y(5) = 320000000

    y(24) = 31200000

    Suy ra \underset{x \in \lbrack
0;24\rbrack}{Max}\ y = y(5) = 320000000.

    Vậy công ty A thu về nhiều nhất là 320000000 đồng/tháng hay 320 triệu đồng/tháng.

    Suy ra mệnh đề đúng.

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm f'(x) = x^{2}(x - 2)\left( x^{2} - 6x + might) với mọi x\mathbb{\inR}. Có bao nhiêu số nguyên m \in\lbrack - 2019;2019brack để hàm số g(x) = f(1 - x) nghịch biến trên khoảng ( - \infty; - 1)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm f'(x) = x^{2}(x - 2)\left( x^{2} - 6x + might) với mọi x\mathbb{\inR}. Có bao nhiêu số nguyên m \in\lbrack - 2019;2019brack để hàm số g(x) = f(1 - x) nghịch biến trên khoảng ( - \infty; - 1)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu
    Tìm GTLN của hàm số

    Giá trị lớn nhất của hàm số y = \sqrt { - {x^2} + 4x} trên khoảng (0; 3)

    Hướng dẫn:

    Tập xác định D = \left[ {0;4} ight]

    Xét hàm số y = \sqrt { - {x^2} + 4x} trên khoảng (0;3)

    Ta có:

    \begin{matrix}  y' = \frac{{ - x + 2}}{{\sqrt { - {x^2} + 4x} }} \hfill \\  y' = 0 \Leftrightarrow x = 2 \hfill \\ \end{matrix}

    Ta có bảng biến thiên:

    Tìm GTLN của hàm số

    Trên khoảng (0; 3) giá trị lớn nhất của hàm số y = 2

  • Câu 15: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số f(x) liên tục trên \lbrack - 1;3brack và có đồ thị như hình vẽ:

    Giá trị lớn nhất của hàm số y = g(x) =f\left( 3\left| \cos x ight| - 1 ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) liên tục trên \lbrack - 1;3brack và có đồ thị như hình vẽ:

    Giá trị lớn nhất của hàm số y = g(x) =f\left( 3\left| \cos x ight| - 1 ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số chứa căn

    Tìm giá trị nhỏ nhất m của hàm số f(x) = x + \sqrt{2 - x^2}.

    Hướng dẫn:

    TXĐ: D = \left\lbrack - \sqrt{2};\sqrt{2}
ightbrack.

    Đạo hàm f'(x) = 1 - \frac{x}{\sqrt{2
- x^{2}}}

    \Rightarrow f'(x) = 0
\Leftrightarrow \frac{x}{\sqrt{2 - x^{2}}} = 1

    \Leftrightarrow \sqrt{2 - x^{2}} = x
\Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
2 - x^{2} = x^{2} \\
\end{matrix} ight.

    \Leftrightarrow x = 1 \in \left\lbrack -
\sqrt{2};\sqrt{2} ightbrack

    Ta có \left\{ \begin{matrix}
f\left( - \sqrt{2} ight) = - \sqrt{2} \\
f(1) = 2 \\
f\left( \sqrt{2} ight) = \sqrt{2} \\
\end{matrix} ight.\  \Rightarrow m = - \sqrt{2}

  • Câu 17: Vận dụng cao
    Tìm min và max của hàm số

    Cho hai số thực x, y thỏa mãn x \geqslant 0;y \geqslant 0 và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} lần lượt là:

    Hướng dẫn:

    Ta có: 

    P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} = \frac{{x\left( {x + 1} ight) + y\left( {y + 1} ight)}}{{\left( {x + 1} ight)\left( {y + 1} ight)}} = \frac{{{{\left( {x + y} ight)}^2} - 2xy + 1}}{{xy + x + y + 1}} = \frac{{2 - 2xy}}{{2 + xy}}

    Đặt t = xy ta được P = \frac{{2 - 2t}}{{2 + t}}

    x \geqslant 0;y \geqslant 0 \Rightarrow t \geqslant 0

    Mặt khác 1 = x + y \geqslant 2\sqrt {xy}  \Leftrightarrow xy \leqslant \frac{1}{4} \Rightarrow t \leqslant \frac{1}{4}

    Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} trên \left[ {0;\frac{1}{4}} ight]

    Xét hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} xác định và liên tục trên \left[ {0;\frac{1}{4}} ight]

    Ta có: g'\left( t ight) = \frac{{ - 6}}{{{{\left( {2 + t} ight)}^2}}} < 0,\forall t \in \left( {0;\frac{1}{4}} ight)

    => Hàm số g(t) nghịch biến trên đoạn \left[ {0;\frac{1}{4}} ight]

    => \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( {\dfrac{1}{4}} ight) = \dfrac{2}{3}} \\   {\mathop {\max }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( 0 ight) = 1} \end{array}} ight.

  • Câu 18: Vận dụng
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f\left( x ight) = \left| { - {x^2} - 4x + 5} ight| trên đoạn [-6; 6] 

    Hướng dẫn:

    Xét hàm số g(x) = -x2 – 4x + 5 liên tục trên đoạn [-6; 6]

    Ta có: g’(x) = -2x – 4

    => g’(x) = 0 => x = -2 thuộc [-6; 6]

    Ta lại có g(x) = 0 => x2 – 4x + 5 = 0 => x = 1 (tm) hoặc x = -5 (tm)

    Ta tính được: \left\{ {\begin{array}{*{20}{c}}  {g\left( { - 6} ight) =  - 7} \\   {g\left( { - 2} ight) = 9} \\   {g\left( 6 ight) =  - 55} \\   {g\left( 1 ight) = g\left( { - 5} ight) = 0} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ { - 6;6} ight]} f\left( x ight) = 55

  • Câu 19: Vận dụng
    Tìm m để bất phương trình có nghiệm

    Giá trị của tham số m để bất phương trình (x - 2 - m)\sqrt{x - 1} \leq m - 4 có nghiệm là:

    Hướng dẫn:

    Đặt t = \sqrt{x - 1};(t \geq
0)

    Khi đó bất phương trình ban đầu trở thành:

    \left( t^{2} - m - 1 ight).t \leq m - 4
\Leftrightarrow m \geq \frac{t^{3} - t + 4}{t + 1}

    Xét hàm số f(t) = \frac{t^{3} - t + 4}{t
+ 1} trên \lbrack 0; +
\infty)

    Ta có: f'(t) = \frac{2t^{3} + 3t^{2}
- 5}{(t + 1)^{2}} = \frac{(t - 1)\left( 2t^{2} + 5t + 5 ight)}{(t +
1)^{2}}

    f'(t) = 0 \Leftrightarrow t =
1

    Bảng biến thiên của f(t) = \frac{t^{3} -
t + 4}{t + 1};t \in \lbrack 0; + \infty)

    Từ bảng biến thiên suy ra để bất phương trình có nghiệm thì m \geq 2.

  • Câu 20: Vận dụng cao
    Ghi đáp án vào ô trống

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo