Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 2 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 4t^{3} - \frac{t^{4}}{2}(người). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

    Đáp án: Ngày thứ 4||tư

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ tf(t) = 4t^{3} - \frac{t^{4}}{2}(người). Nếu xem f'(t) là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?

    Đáp án: Ngày thứ 4||tư

    Điều kiện t \geq 0.

    Ta có g(t) = f'(t) = 12t^{2} -
2t^{3}, g'(t) = 24t -
6t^{2}, g'(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} ight..

    Bảng biến thiên:

    Vậy tốc độ truyền bệnh lớn nhất vào ngày thứ 4.

    Đáp số: 4.

  • Câu 2: Vận dụng
    Xét tính đúng sai của các nhận định

    Có hai cây cột, một cây cao 12m và một cây cao 28mđứng cách nhau 30m.Chúng được giữ bằng hai sợi dây, gắn vào một cọc duy nhất nối từ mặt đất đến đỉnh mỗi cột. Gọi x là khoảng cách từ cột cao 12m đến cọc.

    Xét tính đúng sai của các nhận định dưới đây:

    a) Để tổng chiều dài của dây ngắn nhất thì x \in (0;30).Đúng||Sai

    b) Chiều dài sợi dây nối từ cọc đến đỉnh cột cao 28m\sqrt{1684 + x^{2}}. Sai||Đúng

    c) Tổng chiều dài của dây là \sqrt{144 +
x^{2}} + \sqrt{1684 - 60x + x^{2}}. Đúng||Sai

    d) Tổng chiều dài ngắn nhất của dây là 48,5m. Sai||Đúng

    Đáp án là:

    Có hai cây cột, một cây cao 12m và một cây cao 28mđứng cách nhau 30m.Chúng được giữ bằng hai sợi dây, gắn vào một cọc duy nhất nối từ mặt đất đến đỉnh mỗi cột. Gọi x là khoảng cách từ cột cao 12m đến cọc.

    Xét tính đúng sai của các nhận định dưới đây:

    a) Để tổng chiều dài của dây ngắn nhất thì x \in (0;30).Đúng||Sai

    b) Chiều dài sợi dây nối từ cọc đến đỉnh cột cao 28m\sqrt{1684 + x^{2}}. Sai||Đúng

    c) Tổng chiều dài của dây là \sqrt{144 +
x^{2}} + \sqrt{1684 - 60x + x^{2}}. Đúng||Sai

    d) Tổng chiều dài ngắn nhất của dây là 48,5m. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    a) Rõ ràng để tổng chiều dài dây ngắn nhất thì cọc phải nằm trong khoảng giữa hai cây cột nên x \in
(0;30).

    b) AC = x \Rightarrow BC = 30 -
x nên chiều dài sợi dây nối từ cọc đến đỉnh cột cao 28m là:

    \sqrt{28^{2} + (30 - x)^{2}} = \sqrt{1684 - 60x +
x^{2}}.

    c) Chiều dài sợi dây nối từ cọc đến đỉnh cột cao 12m\sqrt{12^{2} + x^{2}} = \sqrt{144 +
x^{2}}

    Suy ra tổng chiều dài của sợi dây là \sqrt{144 + x^{2}} + \sqrt{1684 - 60x +
x^{2}}.

    d) Xét hàm số f(x) = \sqrt{144 + x^{2}} +
\sqrt{1684 - 60x + x^{2}} với x \in
\lbrack 0;30\rbrack

    Ta có f'(x) = \frac{x}{\sqrt{144 +
x^{2}}} + \frac{x - 30}{\sqrt{1684 - 60x + x^{2}}}

    f'(x) = 0 \Leftrightarrow
x\sqrt{1684 - 60x + x^{2}} = (30 - x)\sqrt{144 + x^{2}}

    \Rightarrow x^{2}\left( 1684 - 60x +
x^{2} \right) = (30 - x)^{2}\left( 144 + x^{2} \right)

    \Leftrightarrow 640x^{2} + 8540x -
129600 = 0

    \Leftrightarrow x = 9;x = -
\frac{45}{2}

    Do x \in \lbrack 0;30\rbrack nên ta nhận x = 9

    Ta có f(0) \approx 53,04;f(9) = 50;f(30)
= 60,31

    Vậy chiều dài ngắn nhất của dây là 50m.

  • Câu 3: Vận dụng
    Xác định vận tốc lớn nhất

    Người ta khảo sát gia tốc a(t) của một vật thể chuyển động (t là khoảng thời gian tính bằng giâu từ lúc vật thể chuyển động) từ giây thứ nhất đến giây thứ ba ghi nhận được a(t) là một hàm số liên tục có đồ thị như hình bên:

    Xác định vận tốc lớn nhất

    Hỏi trong thời gian từ giây thứ nhất đến giây thứ ba được khảo sát đó, thời điểm nào vận tốc lớn nhất?

    Gợi ý:

     Gợi ý: Mối quan hệ giữa gia tốc và vận tốc

    a\left( t ight) = v'\left( t ight)

    Hướng dẫn:

    Từ đồ thị ta có: a(t) = 0 => v’(t) = 0 = > t = 2

    Ta có bảng biến thiên:

    Xác định vận tốc lớn nhất

    => Vận tốc lớn nhất đạt được khi t = 2

  • Câu 4: Vận dụng
    Ghi đáp án vào ô trống

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Đáp án là:

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Ta có:

    h'(t) = 24 + 10t -t^{2}

    h'(t) = 0

    \Leftrightarrow 24 + 10t - t^{2} = 0\Leftrightarrow \left\lbrack \begin{matrix}t = - 2(ktm) \\t = 12(tm) \\\end{matrix} ight.

    Bảng biến thiên:

    Mực nước lên cao nhất thì phải mất 12 giờ.

    Hay mực nước lên cao nhất là lúc 20 giờ.

    Vậy phải thông báo cho dân di dời vào 15giờ chiều cùng ngày.

  • Câu 5: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) có bảng biến thiên như sau:

    a) \max_{x\mathbb{\in R}}f(x) =
5. Đúng||Sai

    b) \min_{x\mathbb{\in R}}f(x) =
2. Sai||Đúng

    c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên \lbrack - 1;1\rbrack là 7. Đúng||Sai

    d) \max_{x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack}f\left( \sin x \right) = 5. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) có bảng biến thiên như sau:

    a) \max_{x\mathbb{\in R}}f(x) =
5. Đúng||Sai

    b) \min_{x\mathbb{\in R}}f(x) =
2. Sai||Đúng

    c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên \lbrack - 1;1\rbrack là 7. Đúng||Sai

    d) \max_{x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack}f\left( \sin x \right) = 5. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    a) Trên \mathbb{R}, hàm số có giá trị lớn nhất bằng 5.

    b) Trên \mathbb{R}, hàm số không có giá trị nhỏ nhất.

    c) Trên \lbrack - 1;1\rbrack, hàm số có giá trị lớn nhất bằng 5, giá trị nhỏ nhất bằng 2.

    Do đó tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên \lbrack - 1;1\rbracklà 7

    d) Ta có: \forall x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack:\ \sin x \in \lbrack
0;1\rbrack\overset{}{\rightarrow}\max_{x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack}f\left( \sin x \right) = 3.

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = \frac{{\sin x + 1}}{{{{\sin }^2}x + \sin x + 1}}. Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Chọn mệnh đề đúng.

    Hướng dẫn:

    Đặt t = \sin x,t \in \left[ { - 1;1} ight]

    Khi đó y = f\left( t ight) = \frac{{t + 1}}{{{t^2} + t + 1}}

    \begin{matrix}  f'\left( t ight) = \dfrac{{ - {t^2} - 2t}}{{{{\left( {{t^2} + t + 1} ight)}^2}}} \hfill \\  f'\left( t ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {t = 0\left( {tm} ight)} \\   {t =  - 2\left( L ight)} \end{array}} ight. \hfill \\  f\left( 0 ight) = 1;f\left( { - 1} ight) = 0;f\left( 1 ight) = \frac{2}{3} \hfill \\ \end{matrix}

    Vậy M = 1; m = 0 => M = m + 1

  • Câu 7: Thông hiểu
    Tính giá trị biểu thức P

    Biết rằng hàm số f(x) = x^{3} - 3x^{2} -
9x + 28 đạt giá trị nhỏ nhất trên đoạn \lbrack 0;4brack tại x_{0}. Tính P
= x_{0} + 2018.

    Hướng dẫn:

    Đạo hàm f'(x) = 3x^{2} - 6x -
9

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 otin \lbrack 0;4brack \\
x = 3 \in \lbrack 0;4brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(0) = 28 \\
f(3) = 1 \\
f(4) = 8 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;4brack}f(x) =
1 khi x = 3 = x_{0} ightarrow P =
2021

  • Câu 8: Vận dụng cao
    Ghi đáp án vào ô trống

    Một sợi dây kim loại dài 60cm được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một sợi dây kim loại dài 60cm được cắt thành hai đoạn. Đoạn thứ nhất được uốn thành một hình vuông, đoạn thứ hai được uốn thành một vòng tròn. Hỏi khi tổng diện tích của hình vuông và hình tròn ở trên nhỏ nhất thì chiều dài đoạn dây uốn thành hình vuông bằng bao nhiêu (làm tròn đến hàng phần trăm)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Thông hiểu
    Chọn khẳng định đúng

    Xét hàm số y = f(x) với x \in \lbrack - 1;5brack có bảng biến thiên như sau:

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    “Hàm số đã cho không tồn taị GTLN trên đoạn \lbrack - 1;5brack “ Đúng. Vì \lim_{x ightarrow 5^{-}}y = + \infty nên hàm số không có GTLN trên đoạn \lbrack -
1;5brack.

    “Hàm số đã cho đạt GTNN tại x = -
1x = 2 trên đoạn \lbrack - 1;5brack”. Sai. Hàm số đã cho chỉ đạt GTNN tại x = 2 trên đoạn \lbrack - 1;5brack.

    “Hàm số đã cho đạt GTNN tại x = -
1 và đạt GTLN tại x = 5 trên đoạn \lbrack - 1;5brack” Sai. Hàm số đã cho chỉ đạt GTNN tại x =
2 trên đoạn \lbrack -
1;5brack\lim_{x ightarrow
5^{+}}y = + \infty.

    “Hàm số đã cho đạt GTNN tại x =
0 trên đoạn \lbrack -
1;5brack” Sai. Hàm số đã cho chỉ đạt GTNN tại x = 2 trên đoạn \lbrack - 1;5brack.

  • Câu 10: Thông hiểu
    Xác định hàm số theo yêu cầu

    Hàm số nào sau đây không có giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack - 2;2brack?

    Hướng dẫn:

    Nhận thấy hàm số y = \frac{x - 1}{x +
1} không xác định tại x = - 1 \in [ - 2;2]

    Lại có \lim_{x ightarrow -
1^{+}}\frac{x - 1}{x + 1} = - \infty;\ \lim_{x ightarrow -
1^{-}}\frac{x - 1}{x + 1} = + \infty.

    Do đó hàm số này không có giá trị nhỏ nhất và lớn nhất trên \lbrack - 2;2brack.

  • Câu 11: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số

    Cho hàm số y = \frac{x^{2} - 4x}{2x +
1}. Tính giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack 0;3brack?

    Hướng dẫn:

    Hàm số y = \frac{x^{2} - 4x}{2x +
1} liên tục trên đoạn \lbrack
0;3brack

    Ta có: y' = \frac{2x^{2} + 2x -
4}{(2x + 1)^{2}} \Rightarrow y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
f(0) = 0 \\
f(1) = - 1 \\
f(3) = - \frac{3}{7} \\
\end{matrix} ight.\  \Rightarrow f(1) < f(3) < f(0) nên \min_{\lbrack 0;3brack}y = y(1) = -
1.

  • Câu 12: Vận dụng cao
    Tìm liều lượng thuốc lớn nhất cần dùng

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam). Tính liều lượng thuốc cần tiêm (đơn vị miligam) cho bệnh nhân để huyết áp giảm nhiều nhất.

    Hướng dẫn:

    Xét G\left( x ight) = 0,035{x^2}.\left( {15 - x} ight) ta có:

    \begin{matrix}  G'\left( x ight) = 0,035\left( {30x - 3{x^2}} ight) \hfill \\  G'\left( x ight) = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 10} \end{array}} ight. \hfill \\ \end{matrix}

    Mặt khác \left\{ {\begin{array}{*{20}{c}}  {G\left( 0 ight) = G\left( {15} ight) = 0} \\   {G\left( {10} ight) = 17,5} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ {0;15} ight]}  = 17,5 \Rightarrow x = 10

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Đường dây điện 110KV kéo từ trạm phát trong đất liền ra Côn Đảo. Biết BC =
60km, AB = 100km, góc \widehat{ABC} = 90{^\circ}, như hình vẽ. Mỗi km dây điện dưới nước chi phí là 5000\ USD, chi phí cho mỗi km dây điện trên bờ là 3000\ USD. Đặt x = AG.

    a) Khi x = 20\ km thì đường dây điện nối từ C về G dài 100km. Đúng||Sai

    b) Khi x = 20\ km thì tổng chi phí mắc điện là 560.000USD. Đúng||Sai

    c) Tổng chi phí mắc điện nhỏ nhất khi x =
50km. Sai||Đúng

    d) Tổng chi phí mắc điện nhỏ nhất là 540.000USD.Đúng||Sai

    Đáp án là:

    Đường dây điện 110KV kéo từ trạm phát trong đất liền ra Côn Đảo. Biết BC =
60km, AB = 100km, góc \widehat{ABC} = 90{^\circ}, như hình vẽ. Mỗi km dây điện dưới nước chi phí là 5000\ USD, chi phí cho mỗi km dây điện trên bờ là 3000\ USD. Đặt x = AG.

    a) Khi x = 20\ km thì đường dây điện nối từ C về G dài 100km. Đúng||Sai

    b) Khi x = 20\ km thì tổng chi phí mắc điện là 560.000USD. Đúng||Sai

    c) Tổng chi phí mắc điện nhỏ nhất khi x =
50km. Sai||Đúng

    d) Tổng chi phí mắc điện nhỏ nhất là 540.000USD.Đúng||Sai

    Tổng quan đáp án bài tập:

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

    a) Có AG = x \Rightarrow BG = 100 -
x với 0 \leq x \leq
100.

    Xét tam giác CBG vuông tại BCG =
\sqrt{CB^{2} + BG^{2}} = \sqrt{3600 + (100 - x)^{2}}.

    Khi x = 20\ km \Rightarrow CG = 100\
km.

    b) Chi phí tiền mắc điện là f(x) = 3000x
+ 5000.\sqrt{3600 + (100 - x)^{2}}

    Khi x = 20\ km \Rightarrow CG = 100\
km và tổng chi phí mắc điện là T =
f(20) = 560.000\ USD.

    c) Để chi phí mắc điện ít nhất thì f(x) đạt giá trị nhỏ nhất.

    Ta có f'(x) = 3000 - 5000\frac{(100 -
x)}{\sqrt{3600 + (100 - x)^{2}}}

    \Rightarrow f'(x) = 0 \Rightarrow f'(x) = 0

    \Leftrightarrow 3000 = 5000\frac{(100 - x)}{\sqrt{3600 +(100 - x)^{2}}}\Leftrightarrow \left\lbrack \begin{matrix}x = 55 \\x = 145(l)\end{matrix} \right..

    Ta có

    \begin{matrix}
f(0) = 583095,1895USD \\
f(55) = 540.000USD \\
f(100) = 600.000USD
\end{matrix}

    Vậy chi phí mắc điện nhỏ nhất khi x =
55km.

    d) chi phí mắc điện nhỏ nhất là 540.000USD

  • Câu 15: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số f(x) = x^{3} + \left( 1 +
m^{2} ight)x + 1. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để giá trị lớn nhất của hàm số trên đoạn \lbrack 0;1brack không vượt quá 7. Hỏi tập S có bao nhiêu phần tử là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) = x^{3} + \left( 1 +
m^{2} ight)x + 1. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để giá trị lớn nhất của hàm số trên đoạn \lbrack 0;1brack không vượt quá 7. Hỏi tập S có bao nhiêu phần tử là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Thông hiểu
    Chọn đáp án đúng:

    Giá trị lớn nhất của hàm số y = f(x) = 2x^{3} + 3x^{2} - 12x + 2 trên đoạn [-1;2] có giá trị là một số thuộc khoảng nào dưới đây?

  • Câu 17: Vận dụng cao
    Tìm số phần tử của tập hợp S

    Cho hàm số f(x) = x^{3} - 3x^{2} + m^{2}
- 2m với m là tham số. Gọi S tập hợp tất cả các giá trị nguyên của tham số m thỏa mãn 3\max_{\lbrack - 3;1brack}f\left( |x| ight) +
2\min_{\lbrack - 3;1brack}f\left( |x| ight) \leq 112. Số phần tử của tập hợp S bằng:

    Hướng dẫn:

    Ta có: f\left( |x| ight) = f\left( | -
x| ight);\forall x\mathbb{\in R}

    \Rightarrow \left\{ \begin{matrix}
\max_{\lbrack - 3;1brack}f\left( |x| ight) = \max_{0;3}f(x) \\
\min_{\lbrack - 3;1brack}f\left( |x| ight) = \min_{\lbrack
0;3brack}f(x) \\
\end{matrix} ight.

    Đạo hàm f'(x) = 3x^{2} - 6x =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow f(0) = m^{2} - 2m \\
x = 2 \Rightarrow f(2) = m^{2} - 2m - 4 \\
\end{matrix} ight.f(3) =
m^{2} - 2m

    Suy ra 3\max_{\lbrack -
3;1brack}f\left( |x| ight) + 2\min_{\lbrack - 3;1brack}f\left( |x|
ight) \leq 112

    \Leftrightarrow 3\left( m^{2} - 2m
ight) + 2\left( m^{2} - 2m - 4 ight) \leq 112

    \Leftrightarrow m^{2} - 2m - 24 \leq 0
\Leftrightarrow - 4 \leq m \leq 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 4; - 3;...;5;6 ight\}

    Vậy có tất cả 11 giá trị nguyên của tham số m.

  • Câu 18: Vận dụng
    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]

    Hướng dẫn:

     Từ đồ thị ta có: f’(x) = 0 => \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện

  • Câu 19: Vận dụng cao
    Tính giá trị nhỏ nhất của biểu thức

    Cho x, y, z là ba số thực thuộc đoạn [1; 9] và x \geqslant y,x \geqslant z. Giá trị nhỏ nhất của biểu thức P = \frac{y}{{10y - x}} + \frac{1}{2}\left( {\frac{y}{{y + z}} + \frac{x}{{z + x}}} ight) bằng:

    Hướng dẫn:

    Ta có:

    \frac{1}{{1 + a}} + \frac{1}{{a + b}} \geqslant \frac{2}{{1 + \sqrt {ab} }} \Rightarrow {\left( {\sqrt a  - \sqrt b } ight)^2}\left( {\sqrt {ab}  - 1} ight) \geqslant 0(đúng do ab \geqslant 1)

    Dấu bằng xảy ra khi và chỉ khi a = b hoặc ab = 1

    Áp dụng bất đẳng thức trên ta có:

    P = \dfrac{1}{{10 - \dfrac{x}{y}}} + \dfrac{1}{2}\left( {\dfrac{1}{{1 + \dfrac{z}{y}}} + \dfrac{1}{{1 + \dfrac{x}{z}}}} ight) \geqslant \dfrac{1}{{10 - \dfrac{x}{y}}} + \dfrac{1}{{1 + \sqrt {\frac{x}{y}} }}

    Đặt \sqrt {\frac{x}{y}}  = t \in \left[ {1;3} ight]. Xét hàm số f\left( t ight) = \frac{1}{{10 - {t^2}}} + \frac{1}{{1 + t}} trên đoạn [1; 3]

    \begin{matrix}  f'\left( t ight) = \dfrac{{2t}}{{{{\left( {10 - {t^2}} ight)}^2}}} - \dfrac{1}{{{{\left( {1 + t} ight)}^2}}} \hfill \\  f'\left( t ight) = 0 \hfill \\   \Rightarrow {t^4} - 2{t^3} - 24{t^2} - 2t + 100 = 0 \hfill \\   \Rightarrow \left( {t - 2} ight)\left( {{t^3} - 24t - 50} ight) = 0 \Rightarrow t = 2 \hfill \\ \end{matrix}

    Do {t^3} - 24t - 50 < 0,\forall t \in \left[ {1;3} ight]

    Ta có bảng biến thiên

    Tính giá trị nhỏ nhất của biểu thức

    Suy ra {P_{\min }} = \frac{1}{2} khi và chỉ khi \left\{ {\begin{array}{*{20}{c}}  {x = 4y} \\   {\left[ {\begin{array}{*{20}{c}}  {\dfrac{z}{y} = \dfrac{x}{z}} \\   {\dfrac{x}{y} = 1} \end{array}} ight.} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {x = 4y} \\   {z = 2y} \end{array}} ight.

  • Câu 20: Vận dụng
    Xác định tính đúng sai của từng phương án

    Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v = 10(km/h) thì phần thứ hai bằng 30 nghìn đồng/giờ.

    Xét tính đúng sai của các mệnh đề sau:

    a) Khi vận tốc v = 10(km/h) thì chi phí nguyên liệu cho phần thứ nhất trên 1 km đường sông là 48000 đồng. Đúng||Sai

    b) Hàm số xác định tổng chi phí nguyên liệu trên 1 km đường sông với vận tốc x (km/h)f(x) = \frac{480}{x} +
0,03x^{3}. Sai||Đúng

    c) Khi vận tốc v = 30 (km/h) thì tổng chi phí nguyên liệu trên 1 km đường sông là 43000 đồng. Đúng||Sai

    d) Vận tốc của tàu để tổng chi phí nguyên liệu trên 1 km đường sông nhỏ nhất là v=20(km/h). Đúng||Sai

    Đáp án là:

    Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v = 10(km/h) thì phần thứ hai bằng 30 nghìn đồng/giờ.

    Xét tính đúng sai của các mệnh đề sau:

    a) Khi vận tốc v = 10(km/h) thì chi phí nguyên liệu cho phần thứ nhất trên 1 km đường sông là 48000 đồng. Đúng||Sai

    b) Hàm số xác định tổng chi phí nguyên liệu trên 1 km đường sông với vận tốc x (km/h)f(x) = \frac{480}{x} +
0,03x^{3}. Sai||Đúng

    c) Khi vận tốc v = 30 (km/h) thì tổng chi phí nguyên liệu trên 1 km đường sông là 43000 đồng. Đúng||Sai

    d) Vận tốc của tàu để tổng chi phí nguyên liệu trên 1 km đường sông nhỏ nhất là v=20(km/h). Đúng||Sai

    a) Đúng: Thời gian tàu chạy quãng đường 1 km là: \frac{1}{10} (giờ)

    Chi phí tiền nhiên liệu cho phần thứ nhất là: \frac{1}{10}.480000 = 48000 (đồng).

    b) Sai: Gọi x (km/h) là vận tốc của tàu, x > 0

    Thời gian tàu chạy quãng đường 1 km là: \frac{1}{x} (giờ)

    Chi phí tiền nhiên liệu cho phần thứ nhất là: \frac{1}{x}.480 = \frac{480}{x} (nghìn đồng)

    Hàm chi phí cho phần thứ hai là p =
k.x^{3} (nghìn đồng/ giờ)

    Khi x = 10 \Rightarrow p = 30 \Rightarrow
k = 0,03 \Rightarrow p = 0,03x^{3} (nghìn đồng/ giờ)

    Do đó chi phí phần 2 để chạy 1 km là: \frac{1}{x}.0,03x^{3} = 0,03x^{2} (nghìn đồng)

    Vậy tổng chi phí f(x) = \frac{480}{x} +
0,03x^{3},

    c) Đúng. Tổng chi phí f(x) =
\frac{480}{x} + 0,03x^{3}

    Thay x = v = 30 ta được f(30) = \frac{480}{30} + 0,03(30)^{3} =
43(nghìn đồng).

    d) Đúng f(x) = \frac{480}{x} + 0,03x^{3}
= \frac{240}{x} + \frac{240}{x} + 0,03x^{2} \geq 3\sqrt[3]{1728} =
36

    Dấu ’’=’’ xảy ra khi x = 20.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo