Cho hàm số với
là tham số thực lớn hơn
thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Do đó nghịch biến trên
.
Từ đó suy ra
Vậy đáp án đúng là .
Cho hàm số với
là tham số thực lớn hơn
thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Do đó nghịch biến trên
.
Từ đó suy ra
Vậy đáp án đúng là .
Cho hàm số . Xét tính đúng sai của các mệnh đề sau:
a) . Đúng||Sai
b) . Sai||Đúng
b) Giá trị nhỏ nhất của hàm số trên là 150. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số trên là 150. Đúng||Sai
Cho hàm số . Xét tính đúng sai của các mệnh đề sau:
a) . Đúng||Sai
b) . Sai||Đúng
b) Giá trị nhỏ nhất của hàm số trên là 150. Sai||Đúng
c) Giá trị nhỏ nhất của hàm số trên là 150. Đúng||Sai
Ta có:
.
Bảng biến thiên.
.
Vậy giá trị nhỏ nhất của hàm số trên khoảng là
khi
.
a) đúng.
b) sai.
c) sai.
d) đúng.
Một chất điểm chuyển động với quy luật . Thời điểm
(giây) tại vận tốc
của chuyển động đạt giá trị lớn nhất là:
Vận tốc của chuyển động là:
Vậy vận tốc đạt giá trị lớn nhất bằng khi
.
Cho hàm số y = f(x) và có bảng biến thiên trên [-2; 3) như sau:

Giá trị lớn nhất của hàm số trên đoạn [-2; 3] bằng:
Từ đồ thị của hàm số y = f(x) ta thấy hàm số y = f(x) xác định và liên tục trên đoạn [-2; 3]
Ta có: f(x) ∈ [-2; 3] với =>
Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Giá trị biểu thức
là:
Ta có: nên hàm số đồng biến trên
.
Giá trị nhỏ nhất của hàm số là:
Tập xác định
Biến đổi f(x) như sau:
Đặt
Hàm số đã cho trở thành
Vậy giá trị nhỏ nhất của hàm số đã cho bằng 2018 tại
Sự ảnh hưởng khi sử dụng một loại thuốc với cá thể được một nhà sinh học mô tả bởi hàm số
, trong đó
là số lượng cá thể sau
giờ sử dụng thuốc. Vào thời điểm nào thì số lượng cá thể
bắt đầu giảm?
Xét ta có:
Ta thấy hàm số đạt cực đại tại và
nên sau
giờ thì cá thể bắt đầu giảm.
Cho hàm số với
thuộc
. Mệnh đề nào dưới đây đúng?
Hàm số xác định và liên tục trên .
;
Vậy .
Có bao nhiêu giá trị nguyên của tham số để hàm số
nghịch biến trên khoảng
?
Ta có:
Xét trên khoảng
ta có bảng biến thiên:
Suy ra mà
nên
Vậy có tất cả giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Cho hàm số có đồ thị như hình vẽ. Giá trị lớn nhất của hàm số
trên đoạn
là:
Dựa vào đồ thị ta thấy trên đoạn hàm số
có giá trị lớn nhất bằng
khi
Suy ra
Giá trị nhỏ nhất của hàm số trên đoạn
bằng
Ta có:
;
.
.
Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?
Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?
Tìm tất cả các giá trị thực của tham số m để hàm số đồng biến trên khoảng
?
Ta có:
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là: .
Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số trên tập
. Tính giá trị H của m.M
Tập xác định của hàm số y là:
Ta có:
Ta có bảng biến thiên như sau:

Từ bảng biến thiên ta được:
Cho hàm số liên tục trên đoạn
có đồ thị như hình vẽ:
Tìm giá trị nhỏ nhất của hàm số trên đoạn ?
Trên đoạn ta có:
và
Vậy .
Có bao nhiêu số thực dương để giá trị lớn nhất của hàm số
trên đoạn
bằng
?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên thì để giá trị lớn nhất của hàm số trên đoạn
bằng
thì
.
Khi đó
Khi đó chỉ có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.
Biết rằng hàm số đạt giá trị nhỏ nhất trên đoạn
tại
. Tính
Đạo hàm
Ta có khi
Tìm giá trị lớn nhất của hàm số
TXĐ: .
Đạo hàm
Ta có
Vận tốc của một chất điểm được xác định bởi công thức (với
được tính bằng giây). Vận tốc của chất điểm tại thời điểm gia tốc nhỏ nhất gần bằng:
Gia tốc của chất điểm gia tốc là hàm số bậc hai ẩn
đạt giá trị nhỏ nhất tại
Tại đó, vận tốc của chất điểm bằng .
Cho hàm số với
là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên
bằng
. Khi đó giá trị lớn nhất của hàm số đó là:
Ta có: do xét trên
nên nhận
Vì
Từ đó .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: