Cho hàm số có bảng biến thiên trên
như sau:
Mệnh đề nào dưới đây đúng?
Dựa vào bảng biến thiên trên , ta có:
.
Cho hàm số có bảng biến thiên trên
như sau:
Mệnh đề nào dưới đây đúng?
Dựa vào bảng biến thiên trên , ta có:
.
Cho hàm số và có bảng biến thiên trên
như sau:
Mệnh đề nào sau đây là đúng?
Dựa vào bảng biến thiên, ta nhận thấy:
Hàm số có giá trị nhỏ nhất bằng , đạt tại
.
Ta có .
Mà nên không tồn tại
sao cho
.
Do đó hàm số không đạt GTLN trên
Vậy và hàm số không đạt giá trị lớn nhất trên
.
Tìm tất cả các giá trị thực của tham số m để hàm số đồng biến trên khoảng
?
Ta có:
Hàm số đồng biến trên khoảng
Vậy đáp án cần tìm là: .
Biết rằng hàm số đạt giá trị lớn nhất trên đoạn
tại
. Tính
Ta có:
Lập bảng biến thiên & dựa vào bảng biến thiên ta thấy hàm số đạt giá trị lớn nhất trên tại
Giá trị nhỏ nhất của hàm số trên đoạn
là:
Ta có:
Lại có:
Giá trị nhỏ nhất của hàm số trên đoạn
bằng
Ta có:
;
.
.
Cho hàm số . Tìm giá trị lớn nhất
và giá trị nhỏ nhất
của hàm số trên đoạn
Đạo hàm .
Ta có .
Suy ra hàm số nghịch biến trên đoạn
.
Vậy
Cho hàm số với
là tham số. Gọi
là tập hợp tất cả các giá trị của tham số
để hàm số có giá trị nhỏ nhất trên đoạn
bằng
. Tổng các phần tử của tập hợp
bằng:
Điều kiện
Ta có: . Vì
nên
Suy ra giá trị nhỏ nhất trên đoạn bằng
Kết hợp điều kiện
Vậy nên tổng các phần tử thuộc tập S bằng 1.
Cho hàm số xác định, liên tục trên
và có bảng biến thiên như sau:
Khẳng định nào sau đây là đúng?
"Hàm số có đúng một cực trị" sai vì hàm số có 2 điểm cực trị.
"Hàm số có giá trị cực tiểu bằng ."sai vì hàm số có giá trị cực tiểu bằng
.
"Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng " sai vì hàm số không có giá trị lớn nhất và giá trị nhỏ nhất trên
.
"Hàm số đạt cực đại tại và đạt cực tiểu tại
" Đúng.
Cho hàm số có đồ thị như hình vẽ sau:
Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Tính giá trị của biểu thức
?
Cho hàm số có đồ thị như hình vẽ sau:
Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Tính giá trị của biểu thức
?
Tìm giá trị nhỏ nhất của hàm số
.
TXĐ:
Đạo hàm
Ta có
Giá trị nhỏ nhất của hàm số là:
Đặt
Khi đó hàm số trở thành:
Xét hàm số trên đoạn
ta có:
=> Hàm số đồng biến trên
=>
Cho hàm số có bảng biến thiên sau:
Khẳng định nào sau đây là đúng?
"Hàm số có hai điểm cực trị" sai vì hàm số có ba điểm cực trị là
"Hàm số đạt giá trị lớn nhất bằng " sai vì hàm số không có giá trị lớn nhất.
"Hàm số có một điểm cực tiểu" sai vì hàm số có hai điểm cực tiểu là và
Biết rằng . Định giá trị tham số
?
Xét hàm số trên
Hàm số liên tục trên
Ta có:
Do đó hàm số nghịch biến trên khoảng
Vậy là giá trị cần tìm.
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn lần lượt là
. Kết luận nào sau đây đúng?
Quan sát đồ thị ta thấy
Cho hàm số với
là tham số. Tìm tất cả các giá trị của tham số
để hàm số đã cho đồng biến trên
?
Ta có:
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vậy đáp án cần tìm là .
Cho hàm số liên tục trên
và có bảng biến thiên như sau. Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Tính
.
Trên đoạn ta có giá trị lớn nhất
khi
và giá trị nhỏ nhất
khi
.
Khi đó .
Cho hàm số . Gọi M là giá trị lớn nhất của hàm số trên khoảng
. Tìm M.
Ta có:
Ta có bảng biến thiên

Từ bảng biến thiên ta có M = 1
Giá trị nhỏ nhất của hàm số trên đoạn
bằng:
Đạo hàm .
Suy ra hàm số nghịch biến trên
.
Hàm số nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng
Vậy là giá trị cần tìm.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: