Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 2 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm GTLN của hàm số lượng giác

    Tìm giá trị lớn nhất M của hàm số f(x) = \frac{\sin x + 1}{sin^{2}x + \sin
x + 1}.

    Hướng dẫn:

    Đặt t = \sin x; ( - 1 \leq t \leq1).

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = \frac{t + 1}{t^2 + t + 1} trên đoạn \lbrack -
1;1brack''.

    Đạo hàm g'(t) = \frac{- t^{2} -
2t}{\left( t^{2} + t + 1 ight)^{2}} \Rightarrow g'(t) =
0

    \Leftrightarrow - t^2 - 2t = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \in \lbrack - 1;1brack \\
t = - 2 otin \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
g( - 1) = 0 \\
g(0) = 1 \\
g(1) = \frac{2}{3} \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 1;1brack}g(t) =
g(0) = 1 \Rightarrow
\max_{x\mathbb{\in R}}f(x) = 1 .

  • Câu 2: Thông hiểu
    Chọn đáp án thích hợp

    Đợt xuất khẩu gạo của tính B kéo dài trong 20 ngày. Người ta nhận thấy có lượng xuất khẩu gạo tính theo ngày thứ t được xác định bởi công thức S(t) = t^{3} - 24t^{2} + 144t +
2500. Hỏi trong mấy ngày đó, ngày thứ mấy có số lượng xuất khẩu gạo cao nhất?

    Gợi ý:

    Khảo sát hàm số, tìm giá trị lớn nhất của S(t).

    Từ đó kết luận ngày xuất khẩu gạo cao nhất.

    Hướng dẫn:

    Xét hàm số S(t) = t^{3} - 24t^{2} + 144t
+ 2500 với 1 \leq t \leq
20.

    Ta có: S^{'}(t) = 3t^{2} - 48t +
144

    S^{'}(t) = 0 \Rightarrow 3t^{2} -
48t + 144 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 4 \in \lbrack 1;20brack \\
t = 12 \in \lbrack 1;20brack \\
\end{matrix} ight.

    Lại có: S(1) = 2621;S(4) = 2756;S(12) =
2500;S(20) = 3780.

    Do đó: \max_{\lbrack 1;20brack}S(t) =
S(20) = 3780.

    Vậy ngày thứ 20 là ngày có số lượng gạo xuất khẩu cao nhất.

  • Câu 3: Nhận biết
    Tính tổng min và max của hàm số trên đoạn

    Cho hàm số f(x) liên tục trên \lbrack - 1;5brack và có đồ thị trên đoạn \lbrack - 1;5brack như hình vẽ bên dưới. Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên đoạn \lbrack - 1;5brack bằng

    Hướng dẫn:

    Từ đồ thị ta thấy: \left\{ \begin{matrix}
M = \max_{\lbrack - 1;5brack}f(x) = 3 \\
n = \min_{\lbrack - 1;5brack}f(x) = - 2 \\
\end{matrix} ight.\  \Rightarrow M + n = 1.

  • Câu 4: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) có bảng biến thiên như sau:

    a) \max_{x\mathbb{\in R}}f(x) =
5. Đúng||Sai

    b) \min_{x\mathbb{\in R}}f(x) =
2. Sai||Đúng

    c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên \lbrack - 1;1\rbrack là 7. Đúng||Sai

    d) \max_{x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack}f\left( \sin x \right) = 5. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) có bảng biến thiên như sau:

    a) \max_{x\mathbb{\in R}}f(x) =
5. Đúng||Sai

    b) \min_{x\mathbb{\in R}}f(x) =
2. Sai||Đúng

    c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên \lbrack - 1;1\rbrack là 7. Đúng||Sai

    d) \max_{x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack}f\left( \sin x \right) = 5. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    a) Trên \mathbb{R}, hàm số có giá trị lớn nhất bằng 5.

    b) Trên \mathbb{R}, hàm số không có giá trị nhỏ nhất.

    c) Trên \lbrack - 1;1\rbrack, hàm số có giá trị lớn nhất bằng 5, giá trị nhỏ nhất bằng 2.

    Do đó tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên \lbrack - 1;1\rbracklà 7

    d) Ta có: \forall x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack:\ \sin x \in \lbrack
0;1\rbrack\overset{}{\rightarrow}\max_{x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack}f\left( \sin x \right) = 3.

  • Câu 5: Thông hiểu
    Chọn phương án đúng

    Trên đoạn \lbrack 0;3brack, hàm số y = - x^{3} + 3x đại giá trị lớn nhất tại điểm

    Hướng dẫn:

    Tập xác định: \mathbb{R}.

    y' = - 3x^{2} + 3

    y' = 0 \Leftrightarrow - 3x^{2} + 3
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in (0;3) \\
x = - 1 otin (0;3) \\
\end{matrix} ight.

    Ta có y(0) = 0;y(1) = 2;y(3) = -
18.

    Vậy max_{\lbrack 0;3brack}y = y(1) =
2.

  • Câu 6: Thông hiểu
    Tính giá trị biểu thức 3M + m

    Cho hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight]. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tính giá trị biểu thức 3M + m.

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight] ta có:

    f'\left( x ight) = \frac{8}{{{{\left( {x - 3} ight)}^2}}} < 0

    => f\left( x ight) là hàm số nghịch biến trên \left( {0;2} ight)

    => \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 2 ight) =  - 5} \\   {\mathop {\max f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 0 ight) = \dfrac{1}{3}} \end{array}} ight. \Rightarrow 3M + m =  - 2

  • Câu 7: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trên đoạn \lbrack - 1\ ;\
3brack như hình vẽ bên. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy: \max_{\lbrack - 1;3brack}f(x) = 5 tại x = 0.

    Suy ra \max_{\lbrack - 1;3brack}f(x) =
f(0).

  • Câu 8: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng xét dấu đạo hàm như sau:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

  • Câu 9: Thông hiểu
    Tính giá trị biểu thức

    Gọi M,\ m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x)
= 2x^{3} + 3x^{2} - 1 trên đoạn \left\lbrack - 2; - \frac{1}{2}
\right\rbrack. Tính P = M -
m.

    Hướng dẫn:

    Đạo hàm f'(x) = 6x^{2} +
6x

    \Rightarrow \ f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 otin \left\lbrack - 2; - \frac{1}{2} ightbrack \\
x = - 1 \in \left\lbrack - 2; - \frac{1}{2} ightbrack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 2) = - 5 \\
f( - 1) = 0 \\
f\left( - \frac{1}{2} ight) = - \frac{1}{2} \\
\end{matrix} ight. \Rightarrow
\left\{ \begin{matrix}
m = \min_{\left\lbrack - 2; - \frac{1}{2} ightbrack}f(x) = - 5 \\
M = \max_{\left\lbrack - 2; - \frac{1}{2} ightbrack}f(x) = 0 \\
\end{matrix} ight.

    \Rightarrow P = M - m = 5

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x). Biết bảng xét dấu của f'(x) như sau

    a) Giá trị lớn nhất của hàm số y =
f(x)trên đoạn \lbrack -
1;2\rbrackf( -
1). Đúng||Sai

    b) Giá trị nhỏ nhất của hàm số y =
f(x)trên đoạn \lbrack -
1;3\rbrackf(3). Sai||Đúng

    c) Giá trị lớn nhất của hàm số h(x) =
f(2x)trên đoạn \lbrack -
1;1\rbrackf( - 1). Sai||Đúng

    d) Giá trị lớn nhất của hàm số g(x) =
f\left( x^{2} - 2x \right) - 3x^{2} + 6x - 5 trên \lbrack 0;2\rbrackf(0) - 2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x). Biết bảng xét dấu của f'(x) như sau

    a) Giá trị lớn nhất của hàm số y =
f(x)trên đoạn \lbrack -
1;2\rbrackf( -
1). Đúng||Sai

    b) Giá trị nhỏ nhất của hàm số y =
f(x)trên đoạn \lbrack -
1;3\rbrackf(3). Sai||Đúng

    c) Giá trị lớn nhất của hàm số h(x) =
f(2x)trên đoạn \lbrack -
1;1\rbrackf( - 1). Sai||Đúng

    d) Giá trị lớn nhất của hàm số g(x) =
f\left( x^{2} - 2x \right) - 3x^{2} + 6x - 5 trên \lbrack 0;2\rbrackf(0) - 2. Đúng||Sai

    a) Đúngb) Saic) Said) Đúng

    a) Đúng.

    Vì hàm số y = f(x) nghịch biến trên đoạn \lbrack - 1;2\rbrack nên giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;2\rbrackf( - 1) \Rightarrowa) Đúng.

    b) Sai.

    Căn cứ BXD ta thấy hàm số đạt cực tiểu tại x = 2 nên giá trị lớn nhất của hàm số y = f(x)trên đoạn \lbrack - 1;3\rbrackf(2) \Rightarrow b) Sai.

    c) Sai.

    Ta có h'(x) = 2f'(2x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
2x = - 1 \\
2x = 2
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = - \frac{1}{2} \\
x = 1
\end{matrix} \right..

    BBT của hàm số h(x) = f(2x)

    vậy giá trị lớn nhất của hàm số h(x) =
f(2x)trên đoạn \lbrack -
1;1\rbrackf( -
\frac{1}{2}) \Rightarrow c) Sai.

    d) Đúng.

    Ta có

    g'(x) = (2x - 2)f'\left( x^{2} -
2x \right) - 6x + 6 = (2x - 2)\left\lbrack f'\left( x^{2} - 2x
\right) - 3 \right\rbrack

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
2x - 2 = 0 \\
f'\left( x^{2} - 2x \right) - 3 = 0
\end{matrix} \right.

    Với x \in \lbrack 0;2\rbrack \Rightarrow
x^{2} - 2x \in \lbrack - 1;0\rbrack

    Trên \lbrack - 1;0\rbrack, f'\left( x^{2} - 2x \right) \leq 0 \Rightarrow
f'\left( x^{2} - 2x \right) - 3 < 0

    Do đó g'(x) = 0 \Leftrightarrow 2x -
2 = 0 \Leftrightarrow x = 1

    Ta có bảng biến thiên như sau

    Vậy hàm số đạt giá trị lớn nhất là g(1) =
f( - 1) - 2 tại x = 1 \Rightarrow d) Đúng

  • Câu 11: Thông hiểu
    Tính giá trị của biểu thức

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = \frac{x}{2} - \sqrt{x + 2} trên đoạn \lbrack - 1;34brack lần lượt là Mm. Tính giá trị của biểu thức A = M + 3m?

    Hướng dẫn:

    Ta có: y' = \frac{1}{2} -
\frac{1}{2\sqrt{x + 2}} = \frac{\sqrt{x + 2} - 1}{2\sqrt{x +
2}}

    y' = 0 \Leftrightarrow \sqrt{x + 2}
= 1 \Leftrightarrow x = - 1

    \left\{ \begin{matrix}f( - 1) = - \dfrac{3}{2} \\f(34) = 11 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}m = - \dfrac{3}{2} \\M = 11 \\\end{matrix} ight.\  \Rightarrow A = \frac{13}{2}

  • Câu 12: Vận dụng
    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]

    Hướng dẫn:

     Từ đồ thị ta có: f’(x) = 0 => \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện

  • Câu 13: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Cho hàm số f(x) = x^{3} - 3x +
e^{m} với m là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên \lbrack 0;2brack bằng 0. Khi đó giá trị lớn nhất của hàm số đó là:

    Hướng dẫn:

    Ta có: f'(x) = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight. do xét trên \lbrack 0;2brack nên nhận x = 1

    \left\{ \begin{matrix}
f(1) = e^{m} - 2 \\
f(0) = e^{m} \\
f(2) = e^{m} + 2 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}f(x) = e^{m}
- 2 = 0 \Leftrightarrow e^{m} = 2

    Từ đó \max_{\lbrack 0;2brack}f(x) =
e^{m} + 2 = 4.

  • Câu 14: Nhận biết
    GTLN của hàm số trên khoảng là bao nhiêu?

    Cho hàm số y = f(x) và có bảng biến thiên trên [-2; 3) như sau:

    GTLN của hàm số trên khoảng là bao nhiêu?

    Giá trị lớn nhất của hàm số trên đoạn [-2; 3] bằng:

    Hướng dẫn:

    Từ đồ thị của hàm số y = f(x) ta thấy hàm số y = f(x) xác định và liên tục trên đoạn [-2; 3]

    Ta có: f(x) ∈ [-2; 3] với \forall x \in \mathbb{R} => \mathop {\max }\limits_{\left[ { - 2;3} ight]} f\left( x ight) = f\left( 3 ight) = 4

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = x4 – 2x2 + 5. Khẳng định nào sau đây đúng:

    Hướng dẫn:

    Tập xác định D = \mathbb{R}

    \begin{matrix}  y' = 4{x^3} - 4x \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Chọn đáp án đúng

    Dựa vào bảng biến thiên ta thấy hàm số có giá trị nhỏ nhất, không có giá trị lớn nhất.

  • Câu 16: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = \frac{mx - m^{2} - 2}{- x
+ 1}với m là tham số thực lớn hơn - 3 thỏa mãn \max_{\lbrack - 4; - 2brack}y = -
\frac{1}{3}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: y' = \frac{- m^{2} + m - 2}{(
- x + 1)^{2}} < 0;x \in \lbrack - 4; - 2brack

    Do đó y = \frac{mx - m^{2} - 2}{- x +
1} nghịch biến trên \lbrack - 4; -
2brack.

    Từ đó suy ra

    \max_{\lbrack - 4; - 2brack}y = -
\frac{1}{3} \Leftrightarrow \frac{- m^{2} - 4m - 2}{5} = -
\frac{1}{3}

    \Leftrightarrow 3m^{2} + 12m + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = \dfrac{- 6 + \sqrt{33}}{3}(TM) \\m = \dfrac{- 6 - \sqrt{33}}{3}(L) \\\end{matrix} ight.

    Vậy đáp án đúng là - \frac{1}{2} < m
< 0.

  • Câu 17: Thông hiểu
    Tìm tham số m thỏa mãn điều kiện

    Cho hàm số f(x) = \frac{x - m^{2} + m}{x
+ 1} với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack bằng - 2.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{m^2 - m +1}{(x + 1)^{2}} > 0,\forall x \in \lbrack 0;1brack.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0;1brack

    \Rightarrow \min_{\lbrack
0;1brack}f(x) = f(0) = - m^{2} + m

    Theo bài ra:

    \min_{\lbrack 0;1brack}f(x) = - 2
\Leftrightarrow - m^{2} + m = - 2

    \Leftrightarrow m^{2} - m - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 2 \\
\end{matrix} ight..

  • Câu 18: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) và có bảng biến thiên trên \lbrack - 5;7) như sau:

    Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên, ta nhận thấy:

    Hàm số có giá trị nhỏ nhất bằng 2, đạt tại x
= 1 \in \lbrack - 5;7).

    Ta có \left\{ \begin{matrix}
f(x) \leq 9,\forall x \in \lbrack - 5;7) \\
\lim_{x ightarrow 7^{-}}f(x) = 9 \\
\end{matrix} ight..

    7 otin \lbrack - 5;7) nên không tồn tại x_{0} \in \lbrack -
5;7) sao cho f\left( x_{0} ight)
= 9.

    Do đó hàm số không đạt GTLN trên \lbrack
- 5;7).

    Vậy \min_{\lbrack - 5;7)}f(x) =
2 và hàm số không đạt giá trị lớn nhất trên \lbrack - 5;7).

  • Câu 19: Thông hiểu
    Ghi đáp án vào ô trống

    Một chất điểm chuyển động thẳng với quãng đường biến thiên theo thời gian bởi quy luật s(t) = t^{3} - 4t^{2} +
12(m), trong đó t(s) là khoảng thời gian tính từ lúc bắt đầu chuyển động. Vận tốc của chất điểm đó đạt giá trị bé nhất khi t bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một chất điểm chuyển động thẳng với quãng đường biến thiên theo thời gian bởi quy luật s(t) = t^{3} - 4t^{2} +
12(m), trong đó t(s) là khoảng thời gian tính từ lúc bắt đầu chuyển động. Vận tốc của chất điểm đó đạt giá trị bé nhất khi t bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Thông hiểu
    Tìm giá trị tham số m

    Tính giá trị của tham số m biết rằng giá trị lớn nhất của hàm số y = x + \sqrt{4 - x^{2}} + m3\sqrt{2}?

    Hướng dẫn:

    Ta có: y = x + \sqrt{4 - x^{2}} +
m có tập xác định D = \lbrack -
2;2brack

    y' = 1 + \frac{- x}{\sqrt{4 -
x^{2}}};\forall x \in ( - 2;2)

    y' = 0 \Leftrightarrow 1 + \frac{-
x}{\sqrt{4 - x^{2}}} = 0 \Leftrightarrow \sqrt{4 - x^{2}} =
x

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
4 - x^{2} = x^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x = \pm \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow x = \sqrt{2}

    Ta có: \left\{ \begin{matrix}
y(2) = 2 + m \\
y( - 2) = 2 + m \\
y\left( \sqrt{2} ight) = 2\sqrt{2} + m \\
\end{matrix} ight. . Theo bài ra ta có: 2\sqrt{2} + m = 3\sqrt{2} \Leftrightarrow m =
\sqrt{2}

    Vậy đáp án cần tìm là m =
\sqrt{2}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo