Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 2 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên trên \lbrack - 5;7) như sau:

    Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

     Dựa vào bảng biến thiên trên \lbrack -
5;7) , ta có: \underset{\lbrack -
5;7)}{Min}f(x) = f(1) = 2 .

  • Câu 2: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) và có bảng biến thiên trên \lbrack - 5;7) như sau:

    Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên, ta nhận thấy:

    Hàm số có giá trị nhỏ nhất bằng 2, đạt tại x
= 1 \in \lbrack - 5;7).

    Ta có \left\{ \begin{matrix}
f(x) \leq 9,\forall x \in \lbrack - 5;7) \\
\lim_{x ightarrow 7^{-}}f(x) = 9 \\
\end{matrix} ight..

    7 otin \lbrack - 5;7) nên không tồn tại x_{0} \in \lbrack -
5;7) sao cho f\left( x_{0} ight)
= 9.

    Do đó hàm số không đạt GTLN trên \lbrack
- 5;7).

    Vậy \min_{\lbrack - 5;7)}f(x) =
2 và hàm số không đạt giá trị lớn nhất trên \lbrack - 5;7).

  • Câu 3: Thông hiểu
    Tìm m để hàm số đồng biến trên R

    Tìm tất cả các giá trị thực của tham số m để hàm số y = x^{4} - 2(m - 1)x^{2} + m + 2020 đồng biến trên khoảng ( - 3; - 1)?

    Hướng dẫn:

    Ta có: y' = 4x^{3} - 4(m -
1)x

    Hàm số đồng biến trên khoảng ( - 3; -
1) \Leftrightarrow y' \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow 4x^{3} - 4(m - 1)x \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow x^{2} \leq m - 1;\forall
x \in ( - 3; - 1)

    \Leftrightarrow m - 1 \geq \max_{\lbrack
- 3; - 1brack}x^{2} \Leftrightarrow m - 1 \geq 9 \Leftrightarrow m
\geq 10

    Vậy đáp án cần tìm là: m \geq
10.

  • Câu 4: Thông hiểu
    Tính giá trị biểu thức

    Biết rằng hàm số f(x) = - x + 2018 -
\frac{1}{x} đạt giá trị lớn nhất trên đoạn (0;4) tại x_{0}. Tính P
= x_{0} + 2018.

    Hướng dẫn:

    Ta có:

    f'(x) = - 1 +
\frac{1}{x^{2}}

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in (0;4) \\
x = - 1 otin (0;4) \\
\end{matrix} ight.

    Lập bảng biến thiên & dựa vào bảng biến thiên ta thấy hàm số đạt giá trị lớn nhất trên (0;4) tại x = x_{0} = 1

    \Rightarrow P = 2019

  • Câu 5: Nhận biết
    Chọn giá trị nhỏ nhất của hàm số trên đoạn

    Giá trị nhỏ nhất của hàm số y = x^{3} -
3x + 4 trên đoạn \lbrack
0;2brack là:

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow x = \pm 1

    Lại có: \left\{ \begin{matrix}
f(0) = 4 \\
f(1) = 2 \\
f(2) = 6 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}y =
2

  • Câu 6: Nhận biết
    Chọn đáp án đúng

    Giá trị nhỏ nhất của hàm số f(x) = x^{3}
- 3x + 2 trên đoạn \lbrack -
3;2brack bằng

    Hướng dẫn:

    Ta có:

    f'(x) = 3x^{2} - 3; f'(x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight..

    \left\{ \begin{matrix}
f( - 3) = - 16 \\
f( - 1) = 4 \\
f(1) = 0 \\
f(3) = 20 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack - 3;3brack}f(x) = -
16.

  • Câu 7: Thông hiểu
    Chọn phương án đúng

    Cho hàm số f(x) = \frac{3x - 1}{x -
3}. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn \lbrack 0;2brack.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{- 8}{(x -3)^2}.

    Ta có f'(x) < 0,\forall x \in
(0;2).

    Suy ra hàm số f(x) nghịch biến trên đoạn \lbrack 0;2brack.

    Vậy \left\{ \begin{matrix}
M = \max_{\lbrack 0;2brack}f(x) = f(0) = \frac{1}{3} \\
m = \min_{\lbrack 0;2brack}f(x) = f(2) = - 5 \\
\end{matrix} ight.\ .

  • Câu 8: Thông hiểu
    Tính tổng tất cả các phần tử thuộc tập S

    Cho hàm số y = \frac{2mx + m^{2} + m -
2}{x + m}với m là tham số. Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack
1;4brack bằng 1. Tổng các phần tử của tập hợp S bằng:

    Hướng dẫn:

    Điều kiện x eq - m

    Ta có: y' = \frac{m^{2} - m + 2}{(x +
m)^{2}}. Vì \left\{ \begin{matrix}
a = 1 \\
\Delta_{m} = ( - 1)^{2} - 4.1.2 < 0 \\
\end{matrix} ight. nên m^{2} -
m + 2 > 0;\forall \in m

    \Rightarrow y' > 0;\forall x \in
\lbrack 1;4brack

    Suy ra giá trị nhỏ nhất trên đoạn \lbrack
1;4brack bằng y(1) = 1
\Leftrightarrow \frac{m^{2} + 3m - 2}{1 + m} = 1

    \Leftrightarrow \left\{ \begin{matrix}
m eq - 1 \\
m^{2} + 2m - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in \left\{ 1; - 3
ight\}

    Kết hợp điều kiện \left\{ \begin{matrix}
x eq - m \\
x \in \lbrack 1;4brack \\
\end{matrix} ight.\  \Rightarrow m = - 3(ktm)

    Vậy S = \left\{ 1 ight\} nên tổng các phần tử thuộc tập S bằng 1.

  • Câu 9: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    "Hàm số có đúng một cực trị" sai vì hàm số có 2 điểm cực trị.

    "Hàm số có giá trị cực tiểu bằng 1 ."sai vì hàm số có giá trị cực tiểu bằng - 1.

    "Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng - 1 " sai vì hàm số không có giá trị lớn nhất và giá trị nhỏ nhất trên \mathbb{R}.

    "Hàm số đạt cực đại tại x = 0 và đạt cực tiểu tại x =
1 " Đúng.

  • Câu 10: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f( -2x) trên đoạn \left\lbrack -1;\frac{1}{2} ightbrack. Tính giá trị của biểu thức B = 2m + 3M?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f( -2x) trên đoạn \left\lbrack -1;\frac{1}{2} ightbrack. Tính giá trị của biểu thức B = 2m + 3M?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số chứa căn

    Tìm giá trị nhỏ nhất m của hàm số f(x) = x + \sqrt{2 - x^2}.

    Hướng dẫn:

    TXĐ: D = \left\lbrack - \sqrt{2};\sqrt{2}
ightbrack.

    Đạo hàm f'(x) = 1 - \frac{x}{\sqrt{2
- x^{2}}}

    \Rightarrow f'(x) = 0
\Leftrightarrow \frac{x}{\sqrt{2 - x^{2}}} = 1

    \Leftrightarrow \sqrt{2 - x^{2}} = x
\Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
2 - x^{2} = x^{2} \\
\end{matrix} ight.

    \Leftrightarrow x = 1 \in \left\lbrack -
\sqrt{2};\sqrt{2} ightbrack

    Ta có \left\{ \begin{matrix}
f\left( - \sqrt{2} ight) = - \sqrt{2} \\
f(1) = 2 \\
f\left( \sqrt{2} ight) = \sqrt{2} \\
\end{matrix} ight.\  \Rightarrow m = - \sqrt{2}

  • Câu 12: Thông hiểu
    Giá trị nhỏ nhất của hàm số

    Giá trị nhỏ nhất của hàm số y = 2{\cos ^3}x - \frac{9}{2}{\cos ^2}x + 3\cos x + \frac{1}{2} là:

    Hướng dẫn:

    Đặt t = \cos x;t \in \left[ { - 1;1} ight]

    Khi đó hàm số trở thành:

    f\left( t ight) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2}

    Xét hàm số f\left( t ight) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2} trên đoạn \left[ { - 1;1} ight] ta có:

    f'\left( t ight) = 8{t^2} - 9t + 3 > 0;\forall t \in \left[ { - 1;1} ight]

    => Hàm số f(t) đồng biến trên \left( { - 1;1} ight)

    => \mathop {\min f\left( t ight)}\limits_{\left[ { - 1;1} ight]}  = f\left( { - 1} ight) = 1

  • Câu 13: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x) có bảng biến thiên sau:

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    "Hàm số có hai điểm cực trị" sai vì hàm số có ba điểm cực trị là x =
- 1;\ x = 0;\ x = 1.

    "Hàm số đạt giá trị lớn nhất bằng -
3." sai vì hàm số không có giá trị lớn nhất.

    "Hàm số có một điểm cực tiểu" sai vì hàm số có hai điểm cực tiểu là x
= - 1x = 1.

  • Câu 14: Thông hiểu
    Tìm m thỏa mãn biểu thức

    Biết rằng \min_{\lbrack -
3;0brack}\left( - \frac{1}{3}x^{3} + x^{2} - x + m ight) =
2. Định giá trị tham số m?

    Hướng dẫn:

    Xét hàm số y = - \frac{1}{3}x^{3} + x^{2}
- x + m trên \lbrack -
3;0brack

    Hàm số liên tục trên \lbrack -
3;0brack

    Ta có: f'(x) = - x^{2} + 2x - 1 = -
(x - 1)^{2} < 0\forall x \in \lbrack - 3;0brack

    Do đó hàm số nghịch biến trên khoảng ( -
3;0)

    \Rightarrow \min_{\lbrack -
3;0brack}f(x) = f(0) = m \Rightarrow m = 2

    Vậy m = 2 là giá trị cần tìm.

  • Câu 15: Nhận biết
    Chọn kết luận đúng

    Cho hàm số y = f(x) liên tục trên \lbrack 2;5brack và có đồ thị như hình vẽ:

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 2;5brack lần lượt là M;m. Kết luận nào sau đây đúng?

    Hướng dẫn:

    Quan sát đồ thị ta thấy \left\{\begin{matrix}\max_{\lbrack 2;5brack}y = M = 4 \\\min_{\lbrack 2;5brack}y = m = - 6 \\\end{matrix} ight.\  \Rightarrow M - m = 10

  • Câu 16: Thông hiểu
    Xác định giá trị tham số m thỏa mãn yêu cầu

    Cho hàm số y = - x^{3} + 6(m + 2)x^{2} -
m + 1 với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho đồng biến trên ( - 2; - 1)?

    Hướng dẫn:

    Ta có: y' = - 3x^{2} + 12(m +
2)x

    Hàm số y = - x^{3} + 6(m + 2)x^{2} - m +
1 đồng biến trên khoảng ( - 2; -
1) khi và chỉ khi:

    y' = - 3x^{2} + 12(m + 2)x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow - x^{2} + 4mx + 8x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow 4mx \geq x^{2} -
8x;\forall x \in ( - 2; - 1)

    \Leftrightarrow m \leq \frac{x}{4} - 2
\Leftrightarrow m \leq \frac{- 2}{4} - 2 = - \frac{5}{2}

    Vậy đáp án cần tìm là m \in \left( -
\infty; - \frac{5}{2} ightbrack.

  • Câu 17: Nhận biết
    Chọn phương án đúng

    Cho hàm số y = f(x) liên tục trên \lbrack - 3;2brack và có bảng biến thiên như sau. Gọi M,\ m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) trên đoạn \lbrack - 1;\ 2brack. Tính M + m.

    Hướng dẫn:

    Trên đoạn \lbrack - 1;\ 2brack ta có giá trị lớn nhất M = 3 khi x = - 1 và giá trị nhỏ nhất m = 0 khi x =
0.

    Khi đó M + m = 3 + 0 = 3.

  • Câu 18: Thông hiểu
    Tìm GTLN của hàm số

    Cho hàm số y = {x^3} - \frac{3}{2}{x^2} + 1. Gọi M là giá trị lớn nhất của hàm số trên khoảng \left( { - 25;\frac{{11}}{{10}}} ight). Tìm M.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 3x \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Tìm GTLN của hàm số

    Từ bảng biến thiên ta có M = 1

  • Câu 19: Thông hiểu
    Tìm m để giá trị nhỏ nhất hàm số trên đoạn cho trước

    Giá trị nhỏ nhất của hàm số y = \frac{x +
m^{2}}{x - 1} trên đoạn \lbrack -
1;0brack bằng:

    Hướng dẫn:

    Đạo hàm y' = \frac{- 1 - m^{2}}{(x -
1)^{2}} < 0,\forall x \in \lbrack - 1;0brack.

    Suy ra hàm số f(x) nghịch biến trên \lbrack - 1;0brack

    \Rightarrow \min_{\lbrack -
1;0brack}f(x) = f(0) = - m^{2}.

  • Câu 20: Thông hiểu
    Tìm điều kiện của tham số m theo yêu cầu

    Hàm số y = 2x^{3} - 3(m + 1)x^{2} + 6mx +
1 nghịch biến trên khoảng (1;3) khi và chỉ khi:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y = 2x^{3} - 3(m + 1)x^{2} + 6mx +
1

    \Rightarrow y' = 6x^{2} - 6(m + 1)x
+ 6m

    Hàm số nghịch biến trên khoảng (1;3)

    \Leftrightarrow y' \leq 0;\forall x
\in (1;3)

    \Leftrightarrow 6x^{2} - 6(m + 1)x + 6m
\leq 0;\forall x \in (1;3)

    \Leftrightarrow x^{2} - (m + 1)x + m
\leq 0;\forall x \in (1;3)

    \Leftrightarrow m \geq x;\forall x \in
(1;3)

    Vậy m \geq 3 là giá trị cần tìm.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo