Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 2 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên khoảng

    Tính giá trị nhỏ nhất của hàm số y = 3x +
\frac{4}{x^{2}} trên khoảng (0; +
\infty).

    Hướng dẫn:

    Cách 1:

    y = 3x + \frac{4}{x^{2}} = \frac{3x}{2}
+ \frac{3x}{2} + \frac{4}{x^{2}} \geq
3\sqrt[3]{\frac{3x}{2}.\frac{3x}{2}.\frac{4}{x^{2}}} =
3\sqrt[3]{9}

    Dấu " = " xảy ra khi \frac{3x}{2} = \frac{4}{x^{2}}
\Leftrightarrow x = \sqrt[3]{\frac{8}{3}}.

    Vậy \min_{(0; + \infty)}y =
3\sqrt[3]{9}

    Cách 2:

    Xét hàm số y = 3x +
\frac{4}{x^{2}} trên khoảng (0; +
\infty)

    Ta có y = 3x + \frac{4}{x^{2}}
\Rightarrow y' = 3 - \frac{8}{x^{3}}

    Cho y' = 0 \Leftrightarrow
\frac{8}{x^{3}} = 3 \Leftrightarrow x^{3} = \frac{8}{3} \Leftrightarrow
x = \sqrt[3]{\frac{8}{3}}

    \Rightarrow \min_{(0; + \infty)}y =
y\left( \sqrt[3]{\frac{8}{3}} ight) = 3\sqrt[3]{9}

  • Câu 2: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) = \frac{x + m}{x +
1} thỏa mãn \max_{\lbrack
1;2brack}y + \min_{\lbrack 1;2brack}y = \frac{9}{2}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Hàm số đơn điệu trên đoạn \lbrack
1;2brack nên \max_{\lbrack
1;2brack}y + \min_{\lbrack 1;2brack}y = f(1) + f(2)

    \Leftrightarrow \frac{1 + m}{2} +
\frac{2 + m}{3} = \frac{9}{2} \Leftrightarrow m = 4

    Vậy đáp án cần tìm là 2 < m \leq
4.

  • Câu 3: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) và có bảng biến thiên trên \lbrack - 5;7) như sau:

    Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Dựa vào bảng biến thiên, ta nhận thấy:

    Hàm số có giá trị nhỏ nhất bằng 2, đạt tại x
= 1 \in \lbrack - 5;7).

    Ta có \left\{ \begin{matrix}
f(x) \leq 9,\forall x \in \lbrack - 5;7) \\
\lim_{x ightarrow 7^{-}}f(x) = 9 \\
\end{matrix} ight..

    7 otin \lbrack - 5;7) nên không tồn tại x_{0} \in \lbrack -
5;7) sao cho f\left( x_{0} ight)
= 9.

    Do đó hàm số không đạt GTLN trên \lbrack
- 5;7).

    Vậy \min_{\lbrack - 5;7)}f(x) =
2 và hàm số không đạt giá trị lớn nhất trên \lbrack - 5;7).

  • Câu 4: Nhận biết
    Xác định tính đúng sai của từng phương án

    Hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có bảng biến thiên như sau.

    Gọi Mm lần lượt là GTLN và GTNN của hàm số trên \lbrack - 1;3brack. Xét tính đúng sai của các khẳng định sau:

    a) m = f(2) Sai|| Đúng

    b) M = f(4) Sai|| Đúng

    c) m = f( - 1) Đúng||Sai

    d) M = f(0) Đúng||Sai

    Đáp án là:

    Hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có bảng biến thiên như sau.

    Gọi Mm lần lượt là GTLN và GTNN của hàm số trên \lbrack - 1;3brack. Xét tính đúng sai của các khẳng định sau:

    a) m = f(2) Sai|| Đúng

    b) M = f(4) Sai|| Đúng

    c) m = f( - 1) Đúng||Sai

    d) M = f(0) Đúng||Sai

    Dựa vào bảng biến thiên trên \lbrack -
1;3brack ta có:

    m = f( - 1) = 0

    M = f(0) = 5

  • Câu 5: Thông hiểu
    Giá trị lớn nhất của hàm số

    Giá trị lớn nhất của hàm số y = \sqrt {3 - 2x - {x^2}}

    Hướng dẫn:

    Điều kiện xác định 3 - 2x - {x^2} \geqslant 0 \Leftrightarrow  - 3 \leqslant x \leqslant 1

    Xét hàm số f\left( x ight) = \sqrt {3 - 2x - {x^2}} trên \left[ { - 3;1} ight] ta có:

    f'\left( x ight) = \frac{{ - 2 - 2x}}{{2\sqrt {3 - 2x - {x^2}} }} =  - \frac{{x + 1}}{{\sqrt {3 - 2x - {x^2}} }}

    Phương trình f'\left( x ight) = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 3 < x < 1} \\   {x + 1 = 0} \end{array}} ight. \Rightarrow x =  - 1

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 3} ight) = 0} \\   {f\left( { - 1} ight) = 2} \\   {f\left( 1 ight) = 0} \end{array}} ight.

    \Rightarrow \mathop {\max f\left( x ight)}\limits_{\left[ { - 3;1} ight]}  = f\left( { - 1} ight) = 2

  • Câu 6: Thông hiểu
    Tính giá trị biểu thức 3M + m

    Cho hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight]. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tính giá trị biểu thức 3M + m.

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight] ta có:

    f'\left( x ight) = \frac{8}{{{{\left( {x - 3} ight)}^2}}} < 0

    => f\left( x ight) là hàm số nghịch biến trên \left( {0;2} ight)

    => \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 2 ight) =  - 5} \\   {\mathop {\max f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 0 ight) = \dfrac{1}{3}} \end{array}} ight. \Rightarrow 3M + m =  - 2

  • Câu 7: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Cho hàm số f(x) = x^{3} - 3x +
e^{m} với m là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên \lbrack 0;2brack bằng 0. Khi đó giá trị lớn nhất của hàm số đó là:

    Hướng dẫn:

    Ta có: f'(x) = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight. do xét trên \lbrack 0;2brack nên nhận x = 1

    \left\{ \begin{matrix}
f(1) = e^{m} - 2 \\
f(0) = e^{m} \\
f(2) = e^{m} + 2 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}f(x) = e^{m}
- 2 = 0 \Leftrightarrow e^{m} = 2

    Từ đó \max_{\lbrack 0;2brack}f(x) =
e^{m} + 2 = 4.

  • Câu 8: Nhận biết
    Tính tổng m + M

    Cho hàm số f(x) liên tục trên đoạn \lbrack 0\ ;\ 3brack và có đồ thị như hình vẽ bên. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên \lbrack 0\
;\ 3brack. Giá trị của M +
m bằng?

    Hướng dẫn:

    Dựa vào hình vẽ ta có: M = 3, m = - 2 nên M + m = 1.

  • Câu 9: Thông hiểu
    Xác định tích các giá trị của m

    Cho hàm số y = \frac{x - m^{2}}{x +
2} với m là tham số. Tích tất cả các giá trị của tham số m để giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack - 1;1brack bằng \frac{1}{4} bằng:

    Hướng dẫn:

    Ta có: y' = \frac{2 + m^{2}}{(x +
2)^{2}} > 0;\forall x \in \lbrack - 1;1brack

    \Rightarrow \max_{\lbrack - 1;1brack}y
= y(1) = \frac{1 - m^{2}}{3} = \frac{1}{4} \Leftrightarrow m = \pm
\frac{1}{2}

    Vậy tích tất cả các giá trị của tham số m bằng -
\frac{1}{4}.

  • Câu 10: Thông hiểu
    Ghi đáp án vào ô trống

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu
    Tìm m thỏa mãn điều kiện

    Gọi m là giá trị nhỏ nhất của hàm số y = x - 1 + \frac{4}{x - 1} trên khoảng (1; + \infty). Tìm m?

    Hướng dẫn:

    Tập xác định D = R\backslash\left\{ 1
ight\}.

    y' = \frac{x^{2} - 2x - 3}{(x -
1)^{2}}\ \ ,\ y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight..

    Bảng biến thiên:

    \Rightarrow m = \min_{(1; + \ \infty)}y =
4 khi x = 3

  • Câu 12: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị của đạo hàm y = f'(x) như hình vẽ sau:

    Trên đoạn \lbrack - 3;4brack, hàm số g(x) = 2f(x) + (1 - x)^{2} đạt giá trị nhỏ nhất tại điểm nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị của đạo hàm y = f'(x) như hình vẽ sau:

    Trên đoạn \lbrack - 3;4brack, hàm số g(x) = 2f(x) + (1 - x)^{2} đạt giá trị nhỏ nhất tại điểm nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Thông hiểu
    Tìm tham số m thỏa mãn yêu cầu

    Tìm giá trị nhỏ nhất m của hàm số f(x) = x^{2} + \frac{2}{x} trên khoảng (0; + \infty).

    Hướng dẫn:

    Ta có :

    f'(x) = 2x - \frac{2}{x^{2}} =
\frac{2\left( x^{3} - 1 ight)}{x^{2}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 1 \in (0; + \infty)

    Lập bảng biến thiên & dựa vào bảng biến thiên ta thấy \min_{(0; + \infty)}f(x) = f(1) = 3.

  • Câu 14: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f(x) =
x^{3} - 2x^{2} - 4x + 1 trên đoạn \lbrack 1;3brack.

    Hướng dẫn:

    Đạo hàm f'(x) = 3x^{2} - 4x -
4

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \in \lbrack 1;3brack \\
x = - \frac{2}{3} otin \lbrack 1;3brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(1) = - 4 \\
f(2) = - 7 \\
f(3) = - 2 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
2

    Cách 2. Sử dụng chức năng MODE 7 và nhập hàm f(X) = X^{3} - 2X^{2} - 4X + 1 với thiết lập Start 1, End 3, Step 0,2.

    Quan sát bảng giá trị F(X) ta thấy giá trị lớn nhất F(X) bằng - 2 khi X = 3.

  • Câu 15: Thông hiểu
    Ghi đáp án vào ô trống

    Tính diện tích lớn nhất của hình chữ nhật ABCD nội tiếp trong nửa đường tròn có bán kính 10cm (hình vẽ).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tính diện tích lớn nhất của hình chữ nhật ABCD nội tiếp trong nửa đường tròn có bán kính 10cm (hình vẽ).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Thông hiểu
    Chọn mệnh đề đúng

    Gọi y_{CT} là giá trị cực tiểu của hàm số f(x) = x^{2} +
\frac{2}{x} trên (0; +
\infty). Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Ta có:

    f'(x) = 2x - \frac{2}{x^{2}} =
\frac{2x^{3} - 2}{x^{2}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 1 \in (0; + \infty)

    Qua điểm x = 1 thì hàm số đổi dấu từ '' - '' sang '' + '' trong khoảng (0; + \infty).

    Suy ra trên khoảng (0; + \infty) hàm số chỉ có một cực trị và là giá trị cực tiểu nên đó cũng chính là giá trị nhỏ nhất của hàm số.

    Vậy y_{CT} = \min_{(0; +
\infty)}y.

  • Câu 17: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x) có bảng biến thiên sau:

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    "Hàm số có hai điểm cực trị" sai vì hàm số có ba điểm cực trị là x =
- 1;\ x = 0;\ x = 1.

    "Hàm số đạt giá trị lớn nhất bằng -
3." sai vì hàm số không có giá trị lớn nhất.

    "Hàm số có một điểm cực tiểu" sai vì hàm số có hai điểm cực tiểu là x
= - 1x = 1.

  • Câu 18: Nhận biết
    Chọn kết luận đúng

    Cho hàm số y = f(x) liên tục trên \lbrack 2;5brack và có đồ thị như hình vẽ:

    Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 2;5brack lần lượt là M;m. Kết luận nào sau đây đúng?

    Hướng dẫn:

    Quan sát đồ thị ta thấy \left\{\begin{matrix}\max_{\lbrack 2;5brack}y = M = 4 \\\min_{\lbrack 2;5brack}y = m = - 6 \\\end{matrix} ight.\  \Rightarrow M - m = 10

  • Câu 19: Thông hiểu
    Chọn đáp án đúng

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f(x) = x\sqrt{4 - x^{2}}.

    Hướng dẫn:

    TXĐ: D = \lbrack -
2;2brack.

    Ta có:

    f'(x) = \sqrt{4 - x^{2}} -
\frac{x^{2}}{\sqrt{4 - x^{2}}} = \frac{4 - 2x^{2}}{\sqrt{4 -
x^{2}}}

    \Rightarrow f'(x) = 0

    \Leftrightarrow 4 - 2x^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = \sqrt{2} \in \lbrack - 2;2brack \\
x = - \sqrt{2} \in \lbrack - 2;2brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 2) = 0 \\
f\left( - \sqrt{2} ight) = - 2 \\
f\left( \sqrt{2} ight) = 2 \\
f(2) = 0 \\
\end{matrix} ight.\  \Rightarrow M = 2;\ m = - 2

  • Câu 20: Thông hiểu
    Tìm Min của f(x) trên khoảng

    Tìm giá trị nhỏ nhất của hàm số f\left( x ight) = \frac{2}{{{x^2}}} - \frac{1}{{2x - 2}} trên khoảng (0; 1)

    Hướng dẫn:

    Hàm số xác định và liên tục trên (0; 1) ta có:

    \begin{matrix}  f'\left( x ight) = \dfrac{{ - 4}}{{{x^3}}} + \dfrac{1}{{2{{\left( {x - 1} ight)}^2}}} \hfill \\  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow {x^3} - 8{x^2} + 16x - 8 = 0 \hfill \\   \Leftrightarrow \left( {x - 2} ight)\left( {{x^2} - 6x + 4} ight) = 0 \hfill \\   \Rightarrow x = 3 - \sqrt 5  \hfill \\ \end{matrix}

    Lập bảng biến thiên:

    Tìm Min của f(x) trên khoảng

    Từ bảng biến thiên ta có: \mathop {\min }\limits_{\left( {0;1} ight)} f\left( x ight) = \frac{{11 + 5\sqrt 5 }}{4}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo