Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 2 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm giá trị thực của tham số

    Tìm giá trị thực của tham số a để hàm số f(x) = - x^{3} - 3x^{2} +
a có giá trị nhỏ nhất trên đoạn \lbrack - 1;1brack bằng 0.

    Hướng dẫn:

    Đạo hàm f'(x) = - 3x^{2} -
6x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \in \lbrack - 1;1brack \\
x = - 2 otin \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 1) = a - 2 \\
f(0) = a \\
f(1) = a - 4 \\
\end{matrix} ight. \Rightarrow
\min_{\lbrack - 1;1brack}f(x) = f(1) = a - 4

    Theo bài ra: \min_{\lbrack -
1;1brack}f(x) = 0 \Leftrightarrow a - 4 = 0 \Leftrightarrow a =
4

  • Câu 2: Nhận biết
    Tìm GTNN của hàm số trên khoảng

    Cho hàm số y = f\left( x ight) = \frac{{{x^2} + 3}}{{x - 1}}. Xác định giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [2; 4].

    Gợi ý:

    Học sinh cần nhớ công thức \left( {\frac{u}{v}} ight)' = \frac{{u'v - uv'}}{{{v^2}}}

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) = \frac{{{x^2} + 3}}{{x - 1}} trên [2; 4] ta có:

    \begin{matrix}  f'\left( x ight) = \dfrac{{{x^2} - 2x - 3}}{{{{\left( {x - 1} ight)}^2}}} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \in \left[ {2;4} ight]} \\   {{x^2} - 2x - 3 = 0} \end{array}} ight. \Rightarrow x = 3 \hfill \\ \end{matrix}

    Tính f(2) = 7; f(3) = 6; f(4) = 19/3

    Vậy \mathop {\min }\limits_{\left[ {2;4} ight]} f\left( x ight) = f\left( 3 ight) = 6

  • Câu 3: Thông hiểu
    Chọn mệnh đề đúng

    Gọi y_{CT} là giá trị cực tiểu của hàm số f(x) = x^{2} +
\frac{2}{x} trên (0; +
\infty). Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Ta có:

    f'(x) = 2x - \frac{2}{x^{2}} =
\frac{2x^{3} - 2}{x^{2}}

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 1 \in (0; + \infty)

    Qua điểm x = 1 thì hàm số đổi dấu từ '' - '' sang '' + '' trong khoảng (0; + \infty).

    Suy ra trên khoảng (0; + \infty) hàm số chỉ có một cực trị và là giá trị cực tiểu nên đó cũng chính là giá trị nhỏ nhất của hàm số.

    Vậy y_{CT} = \min_{(0; +
\infty)}y.

  • Câu 4: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x). Biết bảng xét dấu của f'(x) như sau

    a) Giá trị lớn nhất của hàm số y =
f(x)trên đoạn \lbrack -
1;2\rbrackf( -
1). Đúng||Sai

    b) Giá trị nhỏ nhất của hàm số y =
f(x)trên đoạn \lbrack -
1;3\rbrackf(3). Sai||Đúng

    c) Giá trị lớn nhất của hàm số h(x) =
f(2x)trên đoạn \lbrack -
1;1\rbrackf( - 1). Sai||Đúng

    d) Giá trị lớn nhất của hàm số g(x) =
f\left( x^{2} - 2x \right) - 3x^{2} + 6x - 5 trên \lbrack 0;2\rbrackf(0) - 2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x). Biết bảng xét dấu của f'(x) như sau

    a) Giá trị lớn nhất của hàm số y =
f(x)trên đoạn \lbrack -
1;2\rbrackf( -
1). Đúng||Sai

    b) Giá trị nhỏ nhất của hàm số y =
f(x)trên đoạn \lbrack -
1;3\rbrackf(3). Sai||Đúng

    c) Giá trị lớn nhất của hàm số h(x) =
f(2x)trên đoạn \lbrack -
1;1\rbrackf( - 1). Sai||Đúng

    d) Giá trị lớn nhất của hàm số g(x) =
f\left( x^{2} - 2x \right) - 3x^{2} + 6x - 5 trên \lbrack 0;2\rbrackf(0) - 2. Đúng||Sai

    a) Đúngb) Saic) Said) Đúng

    a) Đúng.

    Vì hàm số y = f(x) nghịch biến trên đoạn \lbrack - 1;2\rbrack nên giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;2\rbrackf( - 1) \Rightarrowa) Đúng.

    b) Sai.

    Căn cứ BXD ta thấy hàm số đạt cực tiểu tại x = 2 nên giá trị lớn nhất của hàm số y = f(x)trên đoạn \lbrack - 1;3\rbrackf(2) \Rightarrow b) Sai.

    c) Sai.

    Ta có h'(x) = 2f'(2x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
2x = - 1 \\
2x = 2
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = - \frac{1}{2} \\
x = 1
\end{matrix} \right..

    BBT của hàm số h(x) = f(2x)

    vậy giá trị lớn nhất của hàm số h(x) =
f(2x)trên đoạn \lbrack -
1;1\rbrackf( -
\frac{1}{2}) \Rightarrow c) Sai.

    d) Đúng.

    Ta có

    g'(x) = (2x - 2)f'\left( x^{2} -
2x \right) - 6x + 6 = (2x - 2)\left\lbrack f'\left( x^{2} - 2x
\right) - 3 \right\rbrack

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
2x - 2 = 0 \\
f'\left( x^{2} - 2x \right) - 3 = 0
\end{matrix} \right.

    Với x \in \lbrack 0;2\rbrack \Rightarrow
x^{2} - 2x \in \lbrack - 1;0\rbrack

    Trên \lbrack - 1;0\rbrack, f'\left( x^{2} - 2x \right) \leq 0 \Rightarrow
f'\left( x^{2} - 2x \right) - 3 < 0

    Do đó g'(x) = 0 \Leftrightarrow 2x -
2 = 0 \Leftrightarrow x = 1

    Ta có bảng biến thiên như sau

    Vậy hàm số đạt giá trị lớn nhất là g(1) =
f( - 1) - 2 tại x = 1 \Rightarrow d) Đúng

  • Câu 5: Thông hiểu
    Tìm GTLN của hàm số

    Cho hàm số y = {x^3} - \frac{3}{2}{x^2} + 1. Gọi M là giá trị lớn nhất của hàm số trên khoảng \left( { - 25;\frac{{11}}{{10}}} ight). Tìm M.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' = 3{x^2} - 3x \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên

    Tìm GTLN của hàm số

    Từ bảng biến thiên ta có M = 1

  • Câu 6: Thông hiểu
    Chọn phương án đúng

    Cho hàm số f(x) = \frac{3x - 1}{x -
3}. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn \lbrack 0;2brack.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{- 8}{(x -3)^2}.

    Ta có f'(x) < 0,\forall x \in
(0;2).

    Suy ra hàm số f(x) nghịch biến trên đoạn \lbrack 0;2brack.

    Vậy \left\{ \begin{matrix}
M = \max_{\lbrack 0;2brack}f(x) = f(0) = \frac{1}{3} \\
m = \min_{\lbrack 0;2brack}f(x) = f(2) = - 5 \\
\end{matrix} ight.\ .

  • Câu 7: Thông hiểu
    Tìm tham số m thỏa mãn yêu cầu

    Gọi m là giá trị nhỏ nhất của hàm số y = x + \frac{4}{x} trên khoảng (0; + \infty). Tìm m.

    Hướng dẫn:

    Cách 1:

    Hàm số y = x + \frac{4}{x} liên tục và xác định trên (0; +
\infty).

    Ta có

    y' = 1 - \frac{4}{x^{2}} =
\frac{x^{2} - 4}{x^{2}} \Rightarrow y' = 0\Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \in (0; + \infty) \\
x = - 2 otin (0; + \infty) \\
\end{matrix} ight..

    Bảng biến thiên

    Vậy giá trị nhỏ nhất là m = 4 khi x = 2.

    Cách 2:

    Với x \in (0;\  + \infty) \Rightarrow x;\
\frac{4}{x} > 0.

    Áp dụng bất đẳng thức Cô si ta có: x + \frac{4}{x} \geq 2\sqrt{x.\frac{4}{x}} =
4.

    Dấu bằng xảy ra khi và chỉ khi \left\{
\begin{matrix}
x > 0 \\
x = \dfrac{4}{x} \\
\end{matrix} ight.\  \Leftrightarrow x = 2. Vậy m = 4 khi x =
2.

  • Câu 8: Vận dụng
    Ghi đáp án vào ô trống

    Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết 8m^{2} kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết 8m^{2} kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Một chất điểm chuyển động theo phương trình S = - t^{3} + 9t^{2} + 21t + 9 trong đó t tính bằng giây (s)S tính bằng mét (m). Xét tính đúng sai của các khẳng định sau.

    a) v(t) = - 3t^{2} + 18t + 2. Sai||Đúng

    b) Vận tốc của chất điểm tại giây thứ 2 là 45\ m/s. Đúng||Sai

    c) Vận tốc của chất điểm tại thời điểm gia tốc triệt tiêu là 45\ m/s. Sai||Đúng

    d) Vận tốc chuyển động đạt giá trị lớn nhất tại thời điểm t = 3\ \ (s). Đúng||Sai

    Đáp án là:

    Một chất điểm chuyển động theo phương trình S = - t^{3} + 9t^{2} + 21t + 9 trong đó t tính bằng giây (s)S tính bằng mét (m). Xét tính đúng sai của các khẳng định sau.

    a) v(t) = - 3t^{2} + 18t + 2. Sai||Đúng

    b) Vận tốc của chất điểm tại giây thứ 2 là 45\ m/s. Đúng||Sai

    c) Vận tốc của chất điểm tại thời điểm gia tốc triệt tiêu là 45\ m/s. Sai||Đúng

    d) Vận tốc chuyển động đạt giá trị lớn nhất tại thời điểm t = 3\ \ (s). Đúng||Sai

    a) v(t) = S'(t) = - 3t^{2} + 18t +
21 nên a sai.

    b) Ta có: v(t) = S'(t) = - 3t^{2} +
18t + 2\overset{}{ightarrow}v(2) = 45\ m/s. nên b) đúng

    c) Ta có: a(t) = v'(t) = - 6t + 18 =
0 \Leftrightarrow t = 3\overset{}{ightarrow}v(3) = 48\ m/s. nên c) sai

    Vận tốc v(t) = S'(t) = - 3t^{2} + 18t
+ 21 = - 3(t - 3)^{2} + 48 \leq 48.

    Vậy \max v(t) = 48 khi t = 3.

    Vận tốc chuyển động đạt giá trị lớn nhất khi t = 3\ \ (s). nên d) đúng.

  • Câu 10: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất M của hàm số f(x) = sin^{3}x + cos2x + \sin x +
3.

    Hướng dẫn:

    Ta có f(x) = sin^{3}x + cos2x + \sin x +
3 = sin^{3}x - 2sin^{2}x + \sin x + 4.

    Đặt t = \sin x\ ;( - 1 \leq t \leq1).

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = t^{3} - 2t^{2} + t + 4 trên đoạn \lbrack -
1;1brack''.

    Đạo hàm g'(t) = 3t^{2} - 4t +
1

    \Rightarrow g'(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \in \lbrack - 1;1brack \\
t = \frac{1}{3} \in \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
g( - 1) = 0 \\
g\left( \dfrac{1}{3} ight) = \dfrac{112}{27} \\
g(1) = 4 \\
\end{matrix} ight. \Rightarrow
\max_{\lbrack - 1;1brack}g(t) = g\left( \dfrac{1}{3} ight) =
\frac{112}{27}

    \Rightarrow \max_{x\mathbb{\in R}}f(x) =
\frac{112}{27}

  • Câu 11: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x) có bảng biến thiên sau:

    Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    "Hàm số có hai điểm cực trị" sai vì hàm số có ba điểm cực trị là x =
- 1;\ x = 0;\ x = 1.

    "Hàm số đạt giá trị lớn nhất bằng -
3." sai vì hàm số không có giá trị lớn nhất.

    "Hàm số có một điểm cực tiểu" sai vì hàm số có hai điểm cực tiểu là x
= - 1x = 1.

  • Câu 12: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Mệnh đề nào sau dây đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.

  • Câu 13: Thông hiểu
    Chọn đáp án chính xác

    Tìm tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số f(x) = - x^{3} - 3x^{2} + m trên \lbrack - 1;1brack bằng 0?

    Hướng dẫn:

    Ta có: f'(x) = - 3x^{2} -
6x

    Xét f'(x) = 0 \Leftrightarrow -
3x^{2} - 6x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 2 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f( - 1) = m - 2 \\
f(0) = m \\
f(1) = m - 4 \\
\end{matrix} ight.m - 4
< m - 2 < m

    Khi đó \min_{\lbrack - 1;1brack}f(x) =
f(1) = m - 4

    Theo đề bài ra ta có:

    \min_{\lbrack - 1;1brack}f(x) = 0
\Leftrightarrow m - 4 = 0 \Leftrightarrow m = 4

    Vậy đáp án cần tìm là m = 4.

  • Câu 14: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên trên \lbrack - 5;7) như sau:

    Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

     Dựa vào bảng biến thiên trên \lbrack -
5;7) , ta có: \underset{\lbrack -
5;7)}{Min}f(x) = f(1) = 2 .

  • Câu 15: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) có bảng biến thiên như sau:

    a) \max_{x\mathbb{\in R}}f(x) =
5. Đúng||Sai

    b) \min_{x\mathbb{\in R}}f(x) =
2. Sai||Đúng

    c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên \lbrack - 1;1\rbrack là 7. Đúng||Sai

    d) \max_{x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack}f\left( \sin x \right) = 5. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) có bảng biến thiên như sau:

    a) \max_{x\mathbb{\in R}}f(x) =
5. Đúng||Sai

    b) \min_{x\mathbb{\in R}}f(x) =
2. Sai||Đúng

    c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên \lbrack - 1;1\rbrack là 7. Đúng||Sai

    d) \max_{x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack}f\left( \sin x \right) = 5. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    a) Trên \mathbb{R}, hàm số có giá trị lớn nhất bằng 5.

    b) Trên \mathbb{R}, hàm số không có giá trị nhỏ nhất.

    c) Trên \lbrack - 1;1\rbrack, hàm số có giá trị lớn nhất bằng 5, giá trị nhỏ nhất bằng 2.

    Do đó tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên \lbrack - 1;1\rbracklà 7

    d) Ta có: \forall x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack:\ \sin x \in \lbrack
0;1\rbrack\overset{}{\rightarrow}\max_{x \in \left\lbrack
0;\frac{\pi}{2} \right\rbrack}f\left( \sin x \right) = 3.

  • Câu 16: Thông hiểu
    Tìm các số thực dương của tham số m

    Có bao nhiêu số thực dương m để giá trị lớn nhất của hàm số y = x^{3} - 3x +
1 trên đoạn \lbrack m + 1;m +
2brack bằng 53?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên thì để giá trị lớn nhất của hàm số y = x^{3} - 3x + 1 trên đoạn \lbrack m + 1;m + 2brack bằng 53 thì m + 1
> 1 \Leftrightarrow m > 0.

    Khi đó \max_{\lbrack m + 1;m +
2brack}f(x) = f(m + 2) = (x + 2)^{3} - 3(m + 2) + 1 = 53

    \Leftrightarrow m^{3} + 6m^{2} + 9m - 50
= 0 \Leftrightarrow m = 2

    Khi đó chỉ có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 17: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Giá trị lớn nhất của hàm số f(x) = x^{3}
- 3x^{2} - 9x + 10 trên đoạn \lbrack - 2;2brack bằng

    Hướng dẫn:

    Xét hàm số f(x) = x^{3} - 3x^{2} - 9x +
10 trên đoạn \lbrack -
2;2brack

    \Rightarrow f'(x) = 3x^{2} - 6x -
9.

    f^{'(x)} = 0 \Leftrightarrow 3x^{2}
- 6x - 9 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \in \lbrack - 2;2brack \\
x = 3 otin \lbrack - 2;2brack \\
\end{matrix} ight.

    Ta có:

    f( - 2) = 8;f( - 1) = 15;f(2) = -
12.

    Vậy giá trị lớn nhất của hàm số f(x) =
x^{3} - 3x^{2} - 9x + 10 trên đoạn \lbrack - 2;2brack bằng 15.

  • Câu 18: Nhận biết
    Chọn đáp án đúng

    Tìm giá trị nhỏ nhất của hàm số y = x^{2}
+ \frac{8}{x} trên đoạn \left\lbrack \frac{1}{2};2
ightbrack?

    Hướng dẫn:

    Ta có: y' = 2x - \frac{8}{x^{2}} =
\frac{2x^{3} - 8}{x^{2}}

    \Rightarrow y' = 0 \Leftrightarrow
\frac{2x^{3} - 8}{x^{2}} = 0 \Leftrightarrow x^{3} = 4 \Leftrightarrow x
= \sqrt[3]{4}

    Ta có: \left| \begin{matrix}f\left( \dfrac{1}{2} ight) = \dfrac{65}{4} \\f(2) = 8 \\f\left( \sqrt[3]{4} ight) = 6\sqrt[3]{2} \\\end{matrix} ight.\  \Rightarrow \min_{\left\lbrack\frac{1}{2};\frac{1}{2} ightbrack}y = 6\sqrt[3]{2}.

  • Câu 19: Thông hiểu
    Chọn đáp án đúng:

    Xét hàm số y = f(x) = \frac{x-1}{2x+1} trên đoạn [0;1]. Khẳng định nào sau đây đúng?

  • Câu 20: Nhận biết
    Tìm min, max của hàm số trên đoạn

    Cho hàm số f(x) = x^{3} + 3x^{2} + x -
1. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;2brack lần lượt là:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} + 6x + 1\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{- 3 - \sqrt{6}}{3} \\x = \dfrac{- 3 + \sqrt{6}}{3} \\\end{matrix} ight.

    Khi đó: y( - 1) = 0;y\left( \frac{- 3 +
\sqrt{6}}{3} ight) = - \frac{4\sqrt{6}}{9};y(2) = 21

    \Rightarrow \left\{ \begin{gathered}
  \mathop {\max }\limits_{\left[ { - 1;2} ight]} y = y\left( 2 ight) = 21 \hfill \\
  \mathop {\min }\limits_{\left[ { - 1;2} ight]} y = y\left( {\frac{{ - 3 + \sqrt 6 }}{3}} ight) =  - \frac{{4\sqrt 6 }}{9} \hfill \\ 
\end{gathered}  ight.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo