Giá trị nhỏ nhất của hàm số là:
Tập xác định
Biến đổi f(x) như sau:
Đặt
Hàm số đã cho trở thành
Vậy giá trị nhỏ nhất của hàm số đã cho bằng 2018 tại
Giá trị nhỏ nhất của hàm số là:
Tập xác định
Biến đổi f(x) như sau:
Đặt
Hàm số đã cho trở thành
Vậy giá trị nhỏ nhất của hàm số đã cho bằng 2018 tại
Gọi lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Chọn kết luận đúng?
Ta có:
Mà
.
Cho hàm số . Khi đó nhận định nào đúng, nhận định nào sai?
a) Tập xác định của hàm số đã cho là . Sai||Đúng
b) Đồ thị của hàm số đã cho đi qua điểm . Đúng||Sai
c) Hàm số đạt cực trị tại . Sai||Đúng
d) Giá trị lớn nhất của hàm số đã cho trên đoạn bằng
. Đúng||Sai
Cho hàm số . Khi đó nhận định nào đúng, nhận định nào sai?
a) Tập xác định của hàm số đã cho là . Sai||Đúng
b) Đồ thị của hàm số đã cho đi qua điểm . Đúng||Sai
c) Hàm số đạt cực trị tại . Sai||Đúng
d) Giá trị lớn nhất của hàm số đã cho trên đoạn bằng
. Đúng||Sai
|
a) Sai |
b) Đúng |
c) Sai |
d) Đúng |
a) SAI vì Tập xác định của hàm số đã cho là .
b) ĐÚNG. Thay ta được
.
c) SAI. Ta có . Ta thấy
. Suy ra hàm số không đạt cực trị tại điểm
.
d) ĐÚNG. Ta có .Suy ra
.
. Vậy giá trị lớn nhất của hàm số đã cho trên đoạn
bằng
.
Tính diện tích lớn nhất của hình chữ nhật ABCD nội tiếp trong nửa đường tròn có bán kính 10cm (hình vẽ).
Tính diện tích lớn nhất của hình chữ nhật ABCD nội tiếp trong nửa đường tròn có bán kính 10cm (hình vẽ).
Tìm giá trị thực của tham số m để hàm số f(x) = -x3 – 3x2 + m có giá trị nhỏ nhất trên đoạn [-1; 1] bằng 0.
Xét hàm số f(x) = -x3 – 3x2 + m trên đoạn [-1; 1] ta có:
f’(x) = -3x2 – 6x
f’(x) = 0 =>
Ta tính được
Cho hàm số . Tìm giá trị lớn nhất
và giá trị nhỏ nhất
của hàm số trên đoạn
Đạo hàm
Ta có
Gọi là giá trị cực tiểu của hàm số
trên
. Mệnh đề nào sau đây là đúng?
Ta có:
Qua điểm thì hàm số đổi dấu từ
sang
trong khoảng
.
Suy ra trên khoảng hàm số chỉ có một cực trị và là giá trị cực tiểu nên đó cũng chính là giá trị nhỏ nhất của hàm số.
Vậy
Cho hàm số liên tục và có đồ thị trên đoạn
như hình vẽ bên. Tổng giá trị lớn nhất và nhỏ nhất của hàm số
trên đoạn
bằng
Dựa vào đồ thị hàm số ta có
,
Khi đó
Tìm giá trị nhỏ nhất của hàm số
trên khoảng
Ta có :
Lập bảng biến thiên & dựa vào bảng biến thiên ta thấy
Cho hàm số với
là tham số thực. Tìm tất cả các giá trị của
để hàm số có giá trị nhỏ nhất trên đoạn
bằng
Đạo hàm
Suy ra hàm số đồng biến trên
Theo bài ra:
.
Cho hàm số với
là tham số. Tích tất cả các giá trị của tham số
để giá trị lớn nhất của hàm số đã cho trên đoạn
bằng
bằng:
Ta có:
Vậy tích tất cả các giá trị của tham số bằng
.
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Xác định hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn ?
Từ đồ thị hàm số ta có:
Khi đó .
Giá trị lớn nhất của hàm số trên khoảng (0; 3)
Tập xác định
Xét hàm số trên khoảng (0;3)
Ta có:
Ta có bảng biến thiên:

Trên khoảng (0; 3) giá trị lớn nhất của hàm số y = 2
Cho hàm số liên tục trên đoạn
và có đồ thị như hình vẽ bên. Gọi
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn
. Giá trị của
là
Dựa vào đồ thị ta thấy GTLN của hàm số trên đoạn là
đạt được tại
và GTNN của hàm số số trên đoạn
là
đạt được tại
Một chất điểm chuyển động với quy luật . Thời điểm
(giây) tại vận tốc
của chuyển động đạt giá trị lớn nhất là:
Vận tốc của chuyển động là:
Vậy vận tốc đạt giá trị lớn nhất bằng khi
.
Giả sử lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
. Khi đó tổng của
và
bằng bao nhiêu?
Ta có:
Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là:
Tập xác định
Ta có:
Cho hàm số có đồ thị như hình vẽ sau:
Khi đó, giá trị lớn nhất của hàm số trên
là:
Đặt
Cho hàm số xác định và liên tục trên
có đồ thị như hình vẽ bên. Tìm giá trị nhỏ nhất
và giá trị lớn nhất
của hàm số
trên đoạn
.
Nhìn vào đồ thị ta thấy:
khi
hoặc
.
khi
hoặc
.
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là
. Tính giá trị biểu thức
?
Tập xác định
Ta có:
Khi đó:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: