Tìm giá trị thực của tham số để hàm số
có giá trị nhỏ nhất trên đoạn
bằng
Đạo hàm
Ta có
Theo bài ra:
Tìm giá trị thực của tham số để hàm số
có giá trị nhỏ nhất trên đoạn
bằng
Đạo hàm
Ta có
Theo bài ra:
Cho hàm số . Xác định giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [2; 4].
Học sinh cần nhớ công thức
Xét hàm số trên [2; 4] ta có:
Tính f(2) = 7; f(3) = 6; f(4) = 19/3
Vậy
Gọi là giá trị cực tiểu của hàm số
trên
. Mệnh đề nào sau đây là đúng?
Ta có:
Qua điểm thì hàm số đổi dấu từ
sang
trong khoảng
.
Suy ra trên khoảng hàm số chỉ có một cực trị và là giá trị cực tiểu nên đó cũng chính là giá trị nhỏ nhất của hàm số.
Vậy
Cho hàm số . Biết bảng xét dấu của
như sau

a) Giá trị lớn nhất của hàm số trên đoạn
là
. Đúng||Sai
b) Giá trị nhỏ nhất của hàm số trên đoạn
là
. Sai||Đúng
c) Giá trị lớn nhất của hàm số trên đoạn
là
. Sai||Đúng
d) Giá trị lớn nhất của hàm số trên
là
. Đúng||Sai
Cho hàm số . Biết bảng xét dấu của
như sau

a) Giá trị lớn nhất của hàm số trên đoạn
là
. Đúng||Sai
b) Giá trị nhỏ nhất của hàm số trên đoạn
là
. Sai||Đúng
c) Giá trị lớn nhất của hàm số trên đoạn
là
. Sai||Đúng
d) Giá trị lớn nhất của hàm số trên
là
. Đúng||Sai
a) Đúngb) Saic) Said) Đúng
a) Đúng.
Vì hàm số nghịch biến trên đoạn
nên giá trị lớn nhất của hàm số trên đoạn
là
a) Đúng.
b) Sai.
Căn cứ BXD ta thấy hàm số đạt cực tiểu tại nên giá trị lớn nhất của hàm số
trên đoạn
là
b) Sai.
c) Sai.
Ta có .
BBT của hàm số là

vậy giá trị lớn nhất của hàm số trên đoạn
là
c) Sai.
d) Đúng.
Ta có
Với
Trên ,
Do đó
Ta có bảng biến thiên như sau

Vậy hàm số đạt giá trị lớn nhất là tại
d) Đúng
Cho hàm số . Gọi M là giá trị lớn nhất của hàm số trên khoảng
. Tìm M.
Ta có:
Ta có bảng biến thiên

Từ bảng biến thiên ta có M = 1
Cho hàm số . Tìm giá trị lớn nhất
và giá trị nhỏ nhất
của hàm số trên đoạn
Đạo hàm .
Ta có .
Suy ra hàm số nghịch biến trên đoạn
.
Vậy
Gọi là giá trị nhỏ nhất của hàm số
trên khoảng
. Tìm
.
Cách 1:
Hàm số liên tục và xác định trên
.
Ta có
.
Bảng biến thiên
Vậy giá trị nhỏ nhất là khi
Cách 2:
Với
Áp dụng bất đẳng thức Cô si ta có:
Dấu bằng xảy ra khi và chỉ khi Vậy
khi
Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?
Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?
Một chất điểm chuyển động theo phương trình trong đó
tính bằng giây
và
tính bằng mét
. Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) Vận tốc của chất điểm tại giây thứ 2 là Đúng||Sai
c) Vận tốc của chất điểm tại thời điểm gia tốc triệt tiêu là Sai||Đúng
d) Vận tốc chuyển động đạt giá trị lớn nhất tại thời điểm Đúng||Sai
Một chất điểm chuyển động theo phương trình trong đó
tính bằng giây
và
tính bằng mét
. Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) Vận tốc của chất điểm tại giây thứ 2 là Đúng||Sai
c) Vận tốc của chất điểm tại thời điểm gia tốc triệt tiêu là Sai||Đúng
d) Vận tốc chuyển động đạt giá trị lớn nhất tại thời điểm Đúng||Sai
a) nên a sai.
b) Ta có: nên b) đúng
c) Ta có: nên c) sai
Vận tốc .
Vậy khi
.
Vận tốc chuyển động đạt giá trị lớn nhất khi nên d) đúng.
Tìm giá trị lớn nhất của hàm số
.
Ta có .
Đặt
Khi đó, bài toán trở thành Tìm giá trị lớn nhất của hàm số
trên đoạn
.
Đạo hàm
Ta có
Cho hàm số có bảng biến thiên sau:
Khẳng định nào sau đây là đúng?
"Hàm số có hai điểm cực trị" sai vì hàm số có ba điểm cực trị là
"Hàm số đạt giá trị lớn nhất bằng " sai vì hàm số không có giá trị lớn nhất.
"Hàm số có một điểm cực tiểu" sai vì hàm số có hai điểm cực tiểu là và
Cho hàm số liên tục trên
và có bảng biến thiên như sau:
Mệnh đề nào sau dây đúng?
Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.
Tìm tất cả các giá trị thực của tham số để giá trị nhỏ nhất của hàm số
trên
bằng
?
Ta có:
Xét
Mà và
Khi đó
Theo đề bài ra ta có:
Vậy đáp án cần tìm là .
Cho hàm số có bảng biến thiên trên
như sau:
Mệnh đề nào dưới đây đúng?
Dựa vào bảng biến thiên trên , ta có:
.
Cho hàm số có bảng biến thiên như sau:

a) Đúng||Sai
b) Sai||Đúng
c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên
là 7. Đúng||Sai
d) Sai||Đúng
Cho hàm số có bảng biến thiên như sau:

a) Đúng||Sai
b) Sai||Đúng
c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên
là 7. Đúng||Sai
d) Sai||Đúng
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
a) Trên hàm số có giá trị lớn nhất bằng 5.
b) Trên hàm số không có giá trị nhỏ nhất.
c) Trên , hàm số có giá trị lớn nhất bằng 5, giá trị nhỏ nhất bằng 2.
Do đó tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên
là 7
d) Ta có:
Có bao nhiêu số thực dương để giá trị lớn nhất của hàm số
trên đoạn
bằng
?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên thì để giá trị lớn nhất của hàm số trên đoạn
bằng
thì
.
Khi đó
Khi đó chỉ có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.
Giá trị lớn nhất của hàm số trên đoạn
bằng
Xét hàm số trên đoạn
Ta có:
.
Vậy giá trị lớn nhất của hàm số trên đoạn
bằng 15.
Tìm giá trị nhỏ nhất của hàm số trên đoạn
?
Ta có:
Ta có: .
Xét hàm số trên đoạn [0;1]. Khẳng định nào sau đây đúng?
Cho hàm số . Giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
lần lượt là:
Tập xác định
Ta có:
Khi đó:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: