Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 4 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định m thỏa mãn yêu cầu

    Cho hàm số f(x) = ax^{3} + bx^{2} + cx +
d;(a eq 0) có đồ thị như hình vẽ:

    Tập hợp các giá trị của tham số m để phương trình f(x + m) = m có đúng ba nghiệm phân biệt là:

    Hướng dẫn:

    Đồ thị hàm số f(x + m) = m có được bằng cách tịnh tiến đồ thị hàm số y =
f(x) sang trái hoặc sang phải theo phương song song với trục hoành |m| đơn vị.

    Suy ra phương trình f(x + m) = m có đúng ba nghiệm phân biệt khi và chỉ khi m
\in ( - 2;2).

  • Câu 2: Thông hiểu
    Xác định số giao điểm

    Cho hàm số y = x^{4} - 3x^{2} có đồ thị (C). Số giao điểm của đồ thị (C) và đường thẳng y = 2

    Hướng dẫn:

    Số giao điểm của đồ thị (C) và đường thẳng y = 2 là số nghiệm của phương trình sau:

    x^{4} - 3x^{2} = 2 \Leftrightarrow x^{4}
- 3x^{2} - 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} = \frac{3 + \sqrt{17}}{2} \\
x^{2} = \frac{3 - \sqrt{17}}{2} < 0 \\
\end{matrix} ight.\  \Leftrightarrow x = \pm \sqrt{\frac{3 +
\sqrt{17}}{2}}.

    Phương trình hoành độ giao điểm có 2 nghiệm nên số giao điểm của đồ thị (C) và đường thẳng là 2.

  • Câu 3: Vận dụng
    Xác định số cặp điểm thỏa mãn yêu cầu

    Cho hàm số y = x^{3} + x^{2} - 4 có đồ thị (C). Hỏi có bao nhiêu cặp điểm A;B \in (C) sao cho ba điểm O;A;B thẳng hàng và OA - 2OB = 0 với O là gốc tọa độ?

    Hướng dẫn:

    Gọi d là đường thẳng đi qua ba điểm O, A, B khi đó d có phương trình y =
k.x

    Khi đó hoành độ của O, A, B là nghiệm của phương trình x^{3} + x^{2} - 4 = kx

    Giả sử A\left( x_{1};kx_{1}
ight),B\left( x_{2};kx_{2} ight) khi đó ta có: \left\{ \begin{matrix}
{x_{1}}^{3} + {x_{1}}^{2} - 4 = kx_{1} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    Do OA - 2OB = 0 nên \overrightarrow{OA} = \pm 2\overrightarrow{OB}
\Rightarrow x_{1} = \pm 2kx_{2}

    TH1: x_{1} = 2kx_{2} \Rightarrow \left\{
\begin{matrix}
8{x_{2}}^{3} + 4{x_{2}}^{2} - 4 = 2kx_{2} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    \Rightarrow 6{x_{2}}^{3} + 2{x_{2}}^{2}
+ 4 = 0 \Rightarrow x_{2} = - 1

    Khi đó A( - 2; - 8),B( - 1; -
4).

    TH2: x_{1} = - 2kx_{2} \Rightarrow
\left\{ \begin{matrix}
- 8{x_{2}}^{3} + 4{x_{2}}^{2} - 4 = - 2kx_{2} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    \Rightarrow - 6{x_{2}}^{3} +
6{x_{2}}^{2} - 12 = 0 \Rightarrow x_{2} = - 1

    Khi đó A(2;8),B( - 1; - 4).

    Vậy có 2 cặp A; B thỏa mãn.

  • Câu 4: Thông hiểu
    Tính tổng các phần tử tập S

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ bên dưới. Gọi S là tập hợp tất cả giá trị nguyên của tham số m để phương trình f\left( \sin x \right) - m +
2 = 2sinx có nghiệm thuộc khoảng (0;\pi). Tổng các phần tử của S bằng

    Hướng dẫn:

    Đặt t = \sin x, với \ \ x \in (0;\pi) \Rightarrow t \in
(0;1brack.

    Ta được phương trình: f(t) - 2t = m - 2
\Leftrightarrow f(t) = 2t + m - 2 (1)

    Số nghiệm của phương trình bằng số giao điểm của đồ thị hàm số y = f(t) và đường thẳng y = 2t + m - 2\ \ \ \ (r).

    Gọi (p):y = 2x + 1 song song với đường thẳng (\Delta):y = 2t và đi qua điểm A(0;1).

    Gọi q:y = 2x - 3 song song với đường thẳng (\Delta):y = 2t và đi qua điểm B(1; - 1).

    Để phương trình f\left( \sin x ight) -
m + 2 = 2sinx có nghiệm thuộc khoảng (0;\pi) thì phương trình (1) phải có nghiệm t \in (0;1brack, suy ra đường thẳng r nằm trong miền nằm giữa hai đường thẳng qp( có thể trùng lên q và bỏ p)

    \Rightarrow - 3 \leq m - 2 < 1
\Leftrightarrow - 1 \leq m < 3 \Rightarrow m \in \left\{ - 1;0;1;2
ight\} \Rightarrow S = \left\{ - 1;0;1;2 ight\}.

    Do đó tổng các phần tử là: - 1 + 0 + 1 +
2 = 2.

  • Câu 5: Thông hiểu
    Xác định số giao điểm

    Số giao điểm của đường cong y = x^{3} -
2x^{2} + 2x + 1 và đường thẳng y =
1 - x

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm

    x^{3} - 2x^{2} + 2x + 1 = 1 -
x

    \Leftrightarrow x^{3} - 2x^{2} + 3x =
0

    \Leftrightarrow x\left( x^{2} - 2x + 3
ight) = 0 \Leftrightarrow x = 0

    Vậy số giao điểm của đường cong y = x^{3} -
2x^{2} + 2x + 1 và đường thẳng y =
1 - x là 1.

  • Câu 6: Vận dụng
    Tính giá trị biểu thức

    Cho hàm số và có bảng biến thiên như hình vẽ.

    Tính giá trị biểu thức

    Tính T = ab + bc + 2ca

    Hướng dẫn:

    Ta có: 

    \begin{matrix}  y' = 4a{x^3} + 2bx \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 0 ight) = 3} \\   {y\left( 1 ight) = 2} \\   {y'\left( 1 ight) = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a + b + c = 2} \\   {4a + 2b = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a = 1} \\   {b =  - 2} \end{array}} ight. \Rightarrow T =  - 2 \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu
    Chọn mệnh đề đúng

    Đường cong ở hình bên là đồ thị của hàm số y = ax^{4} + bx^{2} + c, với a;b;c là các số thực. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Dựa vào hình dáng của đồ thị hàm số y =
ax^{4} + bx^{2} + c ta thấy đây là đồ thị của hàm số bậc bốn trùng phương có 3 điểm cực trị nên phương trình y' = 0 có ba nghiệm thực phân biệt.

  • Câu 8: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số bậc bốn y = f(x) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực của phương trình f(x) = - \frac{3}{2}

    Hướng dẫn:

    Từ đồ thị ta f(x) = -
\frac{3}{2}4 nghiệm phân biệt

  • Câu 9: Nhận biết
    Tìm m nguyên thỏa mãn yêu cầu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt?

    Hướng dẫn:

    Ta có: 2f(x) + 3m = 0 \Leftrightarrow
f(x) = \frac{- 3m}{2}

    Để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt thì - \frac{3m}{2} =
- 3 \Leftrightarrow m = 2

    Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.

  • Câu 10: Thông hiểu
    Chọn đáp án thích hợp

    Cho hàm số bậc bốn y = f(x) có đồ thị là đường cong trong hình bên dưới.

    Có bao nhiêu giá trị nguyên của tham số m sao cho ứng với mỗi m, phương trình 2f(x) = m có 4 nghiệm thực phân biệt?

    Hướng dẫn:

    Ta có 2f(x) = m \Leftrightarrow f(x) =
\frac{m}{2}.

    Dựa vào đồ thị, phương trình trên có 4 nghiệm thực phân biệt khi và chỉ khi

    - 4 < \frac{m}{2} < 5
\Leftrightarrow - 8 < m < 10.

    Suy ra, các giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán là:

    - 7\ ;\  - 6\ ;\ \ldots\ ;\  - 1\ ;\ 0\ ;\ 1\ ;\
\ldots\ ;\ 9.

    Có tất cả 17 số m thỏa mãn.

  • Câu 11: Thông hiểu
    Khẳng định nào sau đây là sai

    Cho hàm số có bảng biến thiên như hình vẽ:

    Khẳng định nào sau đây là sai

    Khẳng định nào sau đây là sai?

    Hướng dẫn:

    Dựa vào bảng biến thiên suy ra hàm số đã cho có hai điểm cực đại và một điểm cực tiểu

    Giá trị lớn nhất của hàm số trên tập số thực bằng 4

    Hàm số có ba cực trị nên ab < 0 mà c = 0 => ab\left( {c + 1} ight) < 0

  • Câu 12: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Hãy phương trình 2\left| f(x) ight| - 1
= 0 có bao nhiêu nghiệm thuộc khoảng (0; + \infty)?

    Hướng dẫn:

    Ta có: 2\left| f(x) ight| - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}f(x) = \dfrac{1}{2} \\f(x) = - \dfrac{1}{2} \\\end{matrix} ight.

    Từ đồ thị hàm số ta thấy đường thẳng y =
\frac{1}{2} cắt đồ thị tại hai điểm phân biệt, đường thẳng y = - \frac{1}{2} cắt đồ thị tại 4 điểm phân biệt do đó phương trình f(x) =
\frac{1}{2} có hai nghiệm phân biệt và phương trình f(x) = - \frac{1}{2} có 4 nghiệm phân biệt

    Vậy phương trình 2\left| f(x) ight| - 1
= 0 có tất cả 6 nghiệm thực phân biệt.

  • Câu 13: Thông hiểu
    Tìm các giá trị nguyên của tham số m

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = x^{3} - 12x + 1 - m cắt trục hoành tại ba điểm phân biệt?

    Hướng dẫn:

    Phương trình hoành độ giao điểm của đồ thị hàm số x^{3} - 12x + 1 - m = 0

    Ta cps: x^{3} - 12x + 1 - m = 0
\Leftrightarrow x^{3} - 12x + 1 = m(*)

    Đặt \left\{ \begin{matrix}
y = x^{3} - 12x + 1 \\
y = m \\
\end{matrix} ight.. Khi đó số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số y =
x^{3} - 12x + 1 và đường thẳng y =
m.

    Khảo sát sự biến thiên của hàm số y =
x^{3} - 12x + 1 ta có:

    y' = 3x^{2} - 12 \Rightarrow y'
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Với - 15 < m < 17 thì phương trình (*) có ba nghiệm phân biệt. Mặt khác do m nguyên nên m \in \left\{ - 14;...;16 ight\}.

    Vậy có 31 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 14: Thông hiểu
    Tìm tất cả đường thẳng thỏa mãn yêu cầu

    Cho hàm số y = \frac{3x - 2}{x} có đồ thị (C). Có tất cả bao nhiêu đường thẳng cắt (C) tại hai điểm phân biệt mà hoành độ và tung độ của giao điểm này đều là các số nguyên?

    Hướng dẫn:

    Ta có:y = 3 - \frac{2}{x}. Vì M \in (C) có tọa độ nguyên khi x \in U(2) \Rightarrow x \in \left\{ - 2; -
1;1;2 ight\}

    Các điểm thuộc (C) có tọa độ nguyên thuộc tập B = \left\{ ( -
1;5),(1;1),(2;2),( - 2;4) ight\}

    Mỗi cặp hai điểm thuộc tập B xác định một đường thẳng cắt (C) tại hai điểm có tọa độ nguyên do đó số đường thẳng cần tìm là C_{4}^{2} =
6 (đường thẳng)

  • Câu 15: Nhận biết
    Chọn hàm số thích hợp

    Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?

    Hướng dẫn:

    Đường cong trong hình vẽ là đồ thị hàm số y = ax^{3} + bx^{2} + cx + d với a > 0 nên đồ thị đã cho là đồ thị của hàm số y = x^{3} - 3x - 1.

  • Câu 16: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hàm số y = x^{3} - 3x^{2} +
2. Xét tính đúng sai của nhận định dưới đây:

    a) Đạo hàm của hàm số đã cho là y' =
3x^{2} - 6x. Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (0;2) và nghịch biến trên các khoảng ( - \infty;0) \cup (2; + \infty). Sai||Đúng

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở Hình 4.

    Sai||Đúng

    Đáp án là:

    Cho hàm số y = x^{3} - 3x^{2} +
2. Xét tính đúng sai của nhận định dưới đây:

    a) Đạo hàm của hàm số đã cho là y' =
3x^{2} - 6x. Đúng||Sai

    b) Hàm số đã cho đồng biến trên khoảng (0;2) và nghịch biến trên các khoảng ( - \infty;0) \cup (2; + \infty). Sai||Đúng

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở Hình 4.

    Sai||Đúng

    Câu 2

    a)

    b)

    c)

    d)

    ý

    Đúng

    Sai

    Sai

    Sai

    Ta có: y' = 3x^{2} - 6x, y' = 0 \Leftrightarrow x = 0 hoặc x = 2.

    Bảng biến thiên của hàm số đã cho là:

    Hàm số đồng biến trên các khoảng ( -
\infty;0)(2; +
\infty), hàm số nghịch biến trên khoảng (0;2).

    Đồ thị hàm số đã cho là:

    Ảnh có chứa biểu đồ, hàng, Sơ đồMô tả được tạo tự động

  • Câu 17: Thông hiểu
    Tìm hàm số tương ứng với đồ thị

    Đường con trong hình vẽ bên là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Vì từ đồ thị ta suy ra đồ thị của hàm phân thức có tiệm cận đứng và ngang x = 1;y = 1

  • Câu 18: Thông hiểu
    Tìm hàm số tương ứng với đồ thị

    Cho hình vẽ:

    Đồ thị được cho trong hình vẽ là đồ thị của hàm số nào trong các hàm số sau?

    Hướng dẫn:

    Từ đồ thị ta thấy đây là hàm số bậc 4 trùng phương có hệ số a > 0

    Mặt khác hàm số đạt cực tiểu tại x = 1;x= - 1 và giá trị cực tiểu y(1) = y(- 1) = - 2 nên hàm số cần tìm là y= x^{4} - 2x^{2} - 1.

  • Câu 19: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số bậc bốn y = f(x) có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình f(x) = \frac{1}{2}

    Hướng dẫn:

    Số nghiệm thực của phương trình f(x) =
\frac{1}{2} chính là số giao điểm của đồ thị hàm số f(x) với đường thẳng y = \frac{1}{2}

    Dựa vào hình trên ta thấy đồ thị hàm số f(x) với đường thẳng y = \frac{1}{2} có 2 giao điểm.

    Vậy phương trình f(x) =
\frac{1}{2} có hai nghiệm.

  • Câu 20: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) là hàm phân thức bậc nhất chia bậc nhất và có đồ thị như hình Svẽ bên. Số nghiệm của phương trình f(x) = 2024

    Hướng dẫn:

    Số nghiệm của phương trình f(x) =
2024 bằng số giao điểm của đồ thị hàm số y = f(x)với đường thẳng y = 2024.

    Dựa vào đồ thị hàm số y = f(x) suy ra số nghiệm của phương trình là 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo