Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 4 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định hàm số trùng phương

    Cho đồ thị:

    Xác định hàm số tương ứng với đồ thị hàm số đã cho?

    Hướng dẫn:

    Nhận diện đồ thị hàm số bậc 4 trùng phương có a < 0

    Đồ thị hàm số đi qua điểm (0; -
1) nên loại hàm số y = - x^{4} +
2x^{2} - 3.

    Đồ thị hàm số có các cực trị là (1;0),( -
1;0) nên hàm số cần tìm là y = -
x^{4} + 2x^{2} - 1.

  • Câu 2: Thông hiểu
    Chọn mệnh đề đúng

    Đường cong ở hình bên là đồ thị của hàm số y = ax^{4} + bx^{2} + c, với a;b;c là các số thực. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Dựa vào hình dáng của đồ thị hàm số y =
ax^{4} + bx^{2} + c ta thấy đây là đồ thị của hàm số bậc bốn trùng phương có 3 điểm cực trị nên phương trình y' = 0 có ba nghiệm thực phân biệt.

  • Câu 3: Vận dụng
    Ghi đáp án vào ô trống

    Trong hệ trục toạ độ (Oxy), cho đồ thị hàm số (C):y = \frac{x^{2} + x + 1}{x
+ 1} với x > - 1 mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm I( - 1; - 1), biết hoành độ điểm M thuộc đồ thị (C) mà tại đó thuyền thu được sóng tốt nhất là x_{0} = \frac{1}{\sqrt[n]{a}} -
b (loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức P = a.n + b ?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong hệ trục toạ độ (Oxy), cho đồ thị hàm số (C):y = \frac{x^{2} + x + 1}{x
+ 1} với x > - 1 mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm I( - 1; - 1), biết hoành độ điểm M thuộc đồ thị (C) mà tại đó thuyền thu được sóng tốt nhất là x_{0} = \frac{1}{\sqrt[n]{a}} -
b (loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức P = a.n + b ?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Thông hiểu
    Định m để phương trình có ba nghiệm

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Hỏi có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) - m + 2 = 0 có đúng ba nghiệm phân biệt?

    Hướng dẫn:

    Ta có:

    2f(x) - m + 2 = 0 \Leftrightarrow 2f(x)
= m - 2 \Leftrightarrow f(x) = \frac{m - 2}{2}

    Để phương trình có ba nghiệm phân biệt

    \Leftrightarrow \left\lbrack\begin{matrix}f(x) = - 1 \\f(x) = \dfrac{3}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\dfrac{m - 2}{2} = - 1 \\\dfrac{m - 2}{2} = \dfrac{3}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m = 0 \\m = 5 \\\end{matrix} ight.

    Vậy có đúng một giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 5: Thông hiểu
    Chọn dáp án đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn f( - 1) = 5,f( - 3) = 0 và có bảng xét dấu đạo hàm như sau:

    Số giá trị nguyên dương của tham số m để phương trình 3f(2 - x) + \sqrt{x^{2} + 4} - x = m có nghiệm trong khoảng (3;5)

    Hướng dẫn:

    Đặt g(x) = 3f(2 - x) + \sqrt{x^{2} + 4} -
x với x \in (3;5).

    Ta có: g'(x) = - 3f'(2 - x) +
\frac{x}{\sqrt{x^{2} + 4}} - 1.

    Với x \in (3;5):

    Ta có: 2 - x \in ( - 3; - 1) nên f'(2 - x) > 0 suy ra - 3f'(2 - x) < 0.

    Ta có: \frac{x}{\sqrt{x^{2} + 4}} <
\frac{x}{x} = 1

    Suy ra g'(x) = - 3f'(2 - x) +
\frac{x}{\sqrt{x^{2} + 4}} - 1 < 0,\forall x \in (3;5) nên hàm số nghịch biến trên (3;5).

    Suy ra \min_{(3;5)}g(x) = g(5) = 3f( - 3)
+ \sqrt{5^{2} + 4} - 5 = \sqrt{29} - 5;

    \max_{(3;5)}g(x) = g(3) = 3f( - 1) +
\sqrt{3^{2} + 4} - 3 = 12 + \sqrt{13}.

    Để phương trình 3f(2 - x) + \sqrt{x^{2} +
4} - x = m có nghiệm thì \sqrt{29}
- 5 \leq m \leq 12 + \sqrt{13}m nguyên dương nên m \in \left\{ 1,2,...,15 ight\} tức là có 15 giá trị.

  • Câu 6: Thông hiểu
    Chọn phương án thích hợp

    Số giao điểm của đồ thị hàm số y = x^{3}
+ 3x^{2} và đồ thị hàm số y =
3x^{2} + 3x

    Hướng dẫn:

    Phương trình hoành độ giao điểm của hai đồ thị đã cho là:

    x^{3} + 3x^{2} = 3x^{2} + 3x
\Leftrightarrow x^{3} - 3x = 0

    \Leftrightarrow x\left( x^{2} - 3 ight)
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \sqrt{3} \\
x = - \sqrt{3} \\
\end{matrix} ight..

    Hai đồ thị đã cho cắt nhau tại 3 điểm.

  • Câu 7: Vận dụng
    Tìm m tham số m thỏa mãn yêu cầu

    Tất cả giá trị của tham số m để đồ thị hàm số y = x^{3} + \left( m^{2} - 2
\right)x + 2m^{2} + 4 cắt các trục tọa độ Ox,Oylần lượt tại A,Bsao cho diện tích tam giác OAB bằng 8 là

    Hướng dẫn:

    Giao điểm của đồ thị hàm số đã cho với trục tung là B\left( 0\ ;\ 2m^{2} + 4 ight)

    Phương trình hoành độ giao điểm của đồ thị đã cho với trục hoành là:

    x^{3} + \left( m^{2} - 2 ight)x +
2m^{2} + 4 = 0\Leftrightarrow (x + 2)\left( x^{2} - 2x + m^{2} + 2
ight) = 0

    \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
(x - 1)^{2} + m^{2} + 1 = 0\ \ \ \ (vn) \\
\end{matrix} ight.

    Giao điểm của đồ thị đã cho với trục hoành là A( - 2;0).

    Diện tích tam giác ABC là:

    S = \frac{1}{2}OA.OB = \frac{1}{2}.2.\left( 2m^{2}
+ 4 ight) = 8 \Rightarrow m = \pm \sqrt{2}.

  • Câu 8: Thông hiểu
    Tìm m để phương trình có hai nghiệm

    Quan sát đồ thị hàm số y =
f(x):

    Số giá trị nguyên của tham số m để phương trình f(x) + m - 2020 = 0 có hai nghiệm phân là:

    Hướng dẫn:

    Ta có:

    f(x) + m - 2020 = 0 \Leftrightarrow f(x)
= 2020 - m

    Để phương trình có hai nghiệm \Leftrightarrow \left\lbrack \begin{matrix}
2020 - m = - 4 \\
2020 - m > - 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 2020 \\
m < 2023 \\
\end{matrix} ight.

    m\mathbb{\in Z} nên có tất cả 2023 giá trị của tham số m thỏa mãn yêu cầu để bài.

  • Câu 9: Thông hiểu
    Tìm hàm số thỏa mãn đồ thị đã cho

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong dưới đây?

    Hướng dẫn:

    Từ hình dạng của đồ thị ta loại phương án y = x^{3} - 3x^{2}y = - x^{3} + 3x^{2}

    Nhận thấy\lim_{x ightarrow \pm
\infty}f(x) = - \infty suy ra hệ số của x^{4} âm nên chọn phương ány = - x^{4} +
2x^{2}.

  • Câu 10: Nhận biết
    Đường cong trong hình bên là đồ thị của hàm số nào?

    Trắc nghiệm Toán 12 bài 4

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Tìm giá trị của tham số m để đồ thị hàm số y = x^{4} - (3 - m)x^{2} -
7 đi qua điểm A( -
2;1)?

    Hướng dẫn:

    Đồ thị hàm số đi qua điểm A( -
2;1) nên ta có:

    1 = ( - 2)^{4} - (3 - m)( - 2)^{2} - 7
\Leftrightarrow m = 1

  • Câu 12: Thông hiểu
    Xác định m thỏa mãn yêu cầu

    Cho hàm số f(x) = ax^{3} + bx^{2} + cx +
d;(a eq 0) có đồ thị như hình vẽ:

    Tập hợp các giá trị của tham số m để phương trình f(x + m) = m có đúng ba nghiệm phân biệt là:

    Hướng dẫn:

    Đồ thị hàm số f(x + m) = m có được bằng cách tịnh tiến đồ thị hàm số y =
f(x) sang trái hoặc sang phải theo phương song song với trục hoành |m| đơn vị.

    Suy ra phương trình f(x + m) = m có đúng ba nghiệm phân biệt khi và chỉ khi m
\in ( - 2;2).

  • Câu 13: Thông hiểu
    Chọn khẳng định đúng

    Cho đồ thị hàm số có đồ thị như hình vẽ:

    Chọn khẳng định đúng

    Chọn khẳng định đúng?

    Hướng dẫn:

    Đồ thị hàm số có tiệm cận đứng là: x = \frac{{ - d}}{c} và tiệm cận ngang là y = \frac{a}{c} ta có:

    => \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{ - d}}{c} > 0} \\   {\dfrac{a}{c} > 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {cd < 0} \\   {ac > 0} \end{array}} ight.

    Đồ thị hàm số cắt Ox tại \left( {\frac{{ - b}}{a};0} ight), cắt Oy tại \left( {0;\frac{b}{d}} ight)

    => \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{ - b}}{a} > 0} \\   {\dfrac{b}{d} > 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {ab < 0} \\   {bd > 0} \end{array}} ight.

    Với a > 0 \Rightarrow b < 0;c > 0;d < 0

    Với a < 0 \Rightarrow b > 0;c < 0;d > 0

  • Câu 14: Thông hiểu
    Tìm các giá trị nguyên của tham số m

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = x^{3} - 12x + 1 - m cắt trục hoành tại ba điểm phân biệt?

    Hướng dẫn:

    Phương trình hoành độ giao điểm của đồ thị hàm số x^{3} - 12x + 1 - m = 0

    Ta cps: x^{3} - 12x + 1 - m = 0
\Leftrightarrow x^{3} - 12x + 1 = m(*)

    Đặt \left\{ \begin{matrix}
y = x^{3} - 12x + 1 \\
y = m \\
\end{matrix} ight.. Khi đó số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số y =
x^{3} - 12x + 1 và đường thẳng y =
m.

    Khảo sát sự biến thiên của hàm số y =
x^{3} - 12x + 1 ta có:

    y' = 3x^{2} - 12 \Rightarrow y'
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Với - 15 < m < 17 thì phương trình (*) có ba nghiệm phân biệt. Mặt khác do m nguyên nên m \in \left\{ - 14;...;16 ight\}.

    Vậy có 31 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 15: Nhận biết
    Chọn đáp án chính xác

    Đồ thị sau đây là của hàm số nào?

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là y = 2 và tiệm cận đứng của đồ thị hàm số x = - 1.

    Đồ thị hàm số cắt trục tung tại điểm A(0;1)

    Vậy hàm số cần tìm là y = \frac{2x + 1}{x
+ 1}.

  • Câu 16: Nhận biết
    Chọn phương án thích hợp

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

    Số nghiệm thực của phương trình f(x) =
1

    Hướng dẫn:

    Từ đồ thị hàm số ta có số nghiệm thực của phương trình f(x) = 13.

  • Câu 17: Thông hiểu
    Tìm tất cả đường thẳng thỏa mãn yêu cầu

    Cho hàm số y = \frac{3x - 2}{x} có đồ thị (C). Có tất cả bao nhiêu đường thẳng cắt (C) tại hai điểm phân biệt mà hoành độ và tung độ của giao điểm này đều là các số nguyên?

    Hướng dẫn:

    Ta có:y = 3 - \frac{2}{x}. Vì M \in (C) có tọa độ nguyên khi x \in U(2) \Rightarrow x \in \left\{ - 2; -
1;1;2 ight\}

    Các điểm thuộc (C) có tọa độ nguyên thuộc tập B = \left\{ ( -
1;5),(1;1),(2;2),( - 2;4) ight\}

    Mỗi cặp hai điểm thuộc tập B xác định một đường thẳng cắt (C) tại hai điểm có tọa độ nguyên do đó số đường thẳng cần tìm là C_{4}^{2} =
6 (đường thẳng)

  • Câu 18: Thông hiểu
    Xét sự đúng sai của các nhận định

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như Hình 3.

    Xét tính đúng sai của các nhận định dưới đây:

    a) Hàm số nghịch biến trên khoảng ( -
\infty;0). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
2. Sai||Đúng

    c) Đạo hàm của hàm số nhận giá trị không dương trên khoảng ( - 1;1). Sai||Đúng

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0;3\rbrack bằng 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như Hình 3.

    Xét tính đúng sai của các nhận định dưới đây:

    a) Hàm số nghịch biến trên khoảng ( -
\infty;0). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
2. Sai||Đúng

    c) Đạo hàm của hàm số nhận giá trị không dương trên khoảng ( - 1;1). Sai||Đúng

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0;3\rbrack bằng 1. Sai||Đúng

    Theo Hình 3, ta có:

    a) Hàm số nghịch biến trên khoảng ( -
\infty;0)

    b) Hàm số đạt cực tiểu tại điểm x_{0} =
0.

    c) Vì hàm số đồng biến trên khoảng (0;1) nên đạo hàm của hàm số nhận giá trị không âm trên khoảng đó và nghịch biến trên khoảng ( - 1;0) nên đạo hàm của hàm số nhận giá trị không dương trên khoảng đó .

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0;3\rbrack bằng 2 .

    Đáp án: a) Đúng, b) Sai, c) Sai, d) Sai.

  • Câu 19: Thông hiểu
    Xét đúng sai của các khẳng định

    Cho hàm số y = x + \frac{4}{x}. Các nhận định dưới đây đúng hay sai?

    a) Đạo hàm của hàm số đã cho là y' =
1 + \frac{4}{x^{2}}. Sai||Đúng

    b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0) \cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2)
\cup (2;\  + \infty). Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở hình 4:

    .

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = x + \frac{4}{x}. Các nhận định dưới đây đúng hay sai?

    a) Đạo hàm của hàm số đã cho là y' =
1 + \frac{4}{x^{2}}. Sai||Đúng

    b) Đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0) \cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2)
\cup (2;\  + \infty). Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở hình 4:

    .

    Đúng||Sai

    a) Đạo hàm của hàm số đã cho là y' =
1 - \frac{4}{x^{2}} nên mệnh đề sai.

    b) y' = 1 - \frac{4}{x^{2}} > 0
\Leftrightarrow \left\lbrack \begin{matrix}
x > 2 \\
x < - 2
\end{matrix} \right.\ ,x \neq 0 nên đạo hàm của hàm số đã cho nhận giá trị âm trên các khoảng ( - 2;\ 0)
\cup (0;\ 2) và nhận giá trị dương trên các khoảng ( - \infty;\  - 2) \cup (2;\  +
\infty).

    c) Bảng biến thiên của hàm số đã cho là:

    Mệnh đề sai vì thấy y( - 2) = - 4 \neq
4

    d) Đồ thị hàm số đã cho như ở hình 4, mệnh đề đúng

    .

    Đáp án: a) Sai b) Đúng c) Sai d) Đúng.

  • Câu 20: Thông hiểu
    Chọn hàm số thích hợp

    Đường cong ở hình bên là đồ thị của hàm số y = \frac{ax + b}{cx + d} với a,b,c,d là các số thực. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Dựa vào đồ thị ta nhận thấy tiệm cận đứng bằng 2, hàm số nghịch biến vậy chọn B

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo