Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 4 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm hàm số theo yêu cầu

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Đây là đồ thị của hàm số bậc ba với hệ số a > 0 nên chọn y = x^{3} - 3x.

  • Câu 2: Thông hiểu
    Tìm tất cả các giá trị nguyên của m

    Có bao nhiêu giá trị nguyên của tham số m để phương trình x^{4} - 3x^{2} + m = 0 có 4 nghiệm thực phân biệt?

    Hướng dẫn:

    Đặt t = x^{2};(t \geq 0). Ta được phương trình 3t^{2} - 3t + m =
0(*)

    Phương trình đã cho có 4 nghiệm thực phân biệt khi và chỉ khi phương trình có 2 nghiệm dương phân biệt \Leftrightarrow \left\{ \begin{matrix}
\Delta > 0 \\
S > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
9 - 4m > 0 \\
3 > 0 \\
m > 0 \\
\end{matrix} ight.\  \Leftrightarrow 0 < m <
\frac{9}{4}

    Do m\mathbb{\in Z \Rightarrow}m \in
\left\{ 1;2 ight\}

    Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 3: Thông hiểu
    Tìm m để phương trình có ba nghiệm thực

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

    Có bao nhiêu giá trị nguyên của tham số m để phương trình f(x) = m có ba nghiệm thực phân biệt?

    Hướng dẫn:

    Phương trình có ba nghiệm thực phân biệt \Leftrightarrow - 3 < m < 1.

    Do m nguyên nên m \in \left\{ - 2; - 1;0 ight\}

    Vậy có 3 giá trị nguyên m

  • Câu 4: Thông hiểu
    Tính tổng các giá trị tham số m

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng các giá trị nguyên của tham số m để đường thẳng y = m cắt đồ thị hàm số tại ba điểm phân biệt bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa

    Đường thẳng y = m cắt đồ thị hàm số tại ba điểm phân biệt \Leftrightarrow - 4
< m < 2

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 3; - 2; - 1;0;1 ight\}

    Vậy tổng tất cả các giá trị nguyên của tham số m thỏa mãn yêu cầu bằng -5.

  • Câu 5: Nhận biết
    Chọn kết luận đúng

    Số giao điểm của hai đồ thị hàm số y =
f(x)y = g(x) bằng số nghiệm phân biệt của phương trình nào sau đây?

    Hướng dẫn:

    Hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) hay f(x) - g(x) = 0.

  • Câu 6: Vận dụng
    Xác định tính đúng sai của từng phương án

    Một bể bơi chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.

    a) Sau t phút khối lượng muối trong bể là 750t (gam). Đúng||Sai

    b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t) = \frac{30t}{200 - t} . Sai||Đúng

    c) Xem y = f(t) là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) , tiệm cận ngang của đồ thị hàm số đó có phương trình là y = 30 . Đúng||Sai

    d) Khi t ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Đúng||Sai

    Đáp án là:

    Một bể bơi chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.

    a) Sau t phút khối lượng muối trong bể là 750t (gam). Đúng||Sai

    b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t) = \frac{30t}{200 - t} . Sai||Đúng

    c) Xem y = f(t) là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) , tiệm cận ngang của đồ thị hàm số đó có phương trình là y = 30 . Đúng||Sai

    d) Khi t ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Đúng||Sai

    Sau t phút, khối lượng muối trong bể là 25.30.t = 750t (gam)

    Thể tích của lượng nước trong bể là 5000
+ 25t (lít).

    Vậy nồng độ muối sau t phút là: f(t) = \frac{750t}{5000 + 25t} =
\frac{30t}{200 + t} (gam/lít).

    Ta có \lim_{t ightarrow + \infty}f(t) =
\lim_{t ightarrow + \infty}\frac{30t}{200 + t} = \lim_{x ightarrow +
\infty}\left( 30 - \frac{6000}{200 + t} ight) = 30

    Vậy đường thẳng y = 30 là tiệm cận ngang của đồ thị hàm số f(t):

    Ta có đồ thị hàm số y = f(t) nhận đường thẳng y = 30 làm đường tiệm cận ngang, tức là khi t càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít).

    Lúc đó, nồng độ muối trong bể sẽ gần như bằng nồng độ nước muối bơm vào bể.

    a) Đúng. b) Sai. c) Đúng. d) Đúng.

  • Câu 7: Thông hiểu
    Xét sự đúng sai của các nhận định

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như Hình 3.

    Xét tính đúng sai của các nhận định dưới đây:

    a) Hàm số nghịch biến trên khoảng ( -
\infty;0). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
2. Sai||Đúng

    c) Đạo hàm của hàm số nhận giá trị không dương trên khoảng ( - 1;1). Sai||Đúng

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0;3\rbrack bằng 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như Hình 3.

    Xét tính đúng sai của các nhận định dưới đây:

    a) Hàm số nghịch biến trên khoảng ( -
\infty;0). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
2. Sai||Đúng

    c) Đạo hàm của hàm số nhận giá trị không dương trên khoảng ( - 1;1). Sai||Đúng

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0;3\rbrack bằng 1. Sai||Đúng

    Theo Hình 3, ta có:

    a) Hàm số nghịch biến trên khoảng ( -
\infty;0)

    b) Hàm số đạt cực tiểu tại điểm x_{0} =
0.

    c) Vì hàm số đồng biến trên khoảng (0;1) nên đạo hàm của hàm số nhận giá trị không âm trên khoảng đó và nghịch biến trên khoảng ( - 1;0) nên đạo hàm của hàm số nhận giá trị không dương trên khoảng đó .

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack 0;3\rbrack bằng 2 .

    Đáp án: a) Đúng, b) Sai, c) Sai, d) Sai.

  • Câu 8: Thông hiểu
    Tìm m thỏa mãn yêu cầu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1
ight\}, liên tục trên các khoảng xác định và có bảng biến thiên như sau:

    Tìm tập hợp các giá trị của tham số m để phương trình f(x) = m có ba nghiệm phân biệt?

    Hướng dẫn:

    Số nghiệm của phương trình f(x) =
m là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

    Dựa vào bảng biến thiên ta suy ra để phương trình đã cho có ba nghiệm phân biệt thì - 4 < m <
2.

  • Câu 9: Thông hiểu
    Tìm điều kiện của m để hàm số có ba nghiệm

    Hàm số y = f(x) có bảng biến thiên như sau:

    Phương trình f(x) = m có ba nghiệm thực phân biệt khi và chỉ khi:

    Hướng dẫn:

    Số nghiệm của phương trình f(x) =
m bằng số giao điểm của hai đồ thị hàm số \left\{ \begin{matrix}
y = f(x) \\
y = m \\
\end{matrix} ight..

    Dựa vào bảng biến thiên ta có phương trình f(x) = m có ba nghiệm thực phân biệt khi và chỉ khi - 2 < m < 2.

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các mệnh đề

    Cho hàm số y = \frac{2x - 1}{x -
1}. Xét tính đúng sai của các nhận định dưới đây?

    a) Đạo hàm của hàm số đã cho là y' =
\frac{- 1}{(x - 1)^{2}}. Đúng||Sai

    b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi x \neq 1. Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở Hình 4.

    Sai||Đúng

    Đáp án là:

    Cho hàm số y = \frac{2x - 1}{x -
1}. Xét tính đúng sai của các nhận định dưới đây?

    a) Đạo hàm của hàm số đã cho là y' =
\frac{- 1}{(x - 1)^{2}}. Đúng||Sai

    b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi x \neq 1. Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho là:

    Sai||Đúng

    d) Đồ thị hàm số đã cho như ở Hình 4.

    Sai||Đúng

    a) Ta có: y' = \frac{2( - 1) - ( -
1).1}{(x - 1)^{2}} = - \frac{1}{(x - 1)^{2}} mệnh đề đúng

    Đạo hàm của hàm số đã cho là y' =
\frac{- 1}{(x - 1)^{2}}.

    b) y' = \frac{2( - 1) - ( - 1).1}{(x
- 1)^{2}} = - \frac{1}{(x - 1)^{2}} < 0,\forall x \neq 1 mệnh đề đúng

    Đạo hàm của hàm số đã cho nhận giá trị âm với mọi x \neq 1.

    c) Bảng biến thiên của hàm số đã cho như hình dưới là sai vì hàm số không xác định tại x =
1

    d) Đồ thị hàm số đã cho như ở Hình 4. Mệnh đề đúng

    a) Đúng, b) Đúng, c) Sai, d) Đúng.

  • Câu 11: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có đồ thị như hình vẽ

    Các mệnh đề sau đây đúng hay sai?

    a) Hàm số nghịch biến trên khoảng ( -
1;1). Đúng||Sai

    b) Hàm số có f'(x) > 0 \forall x \in ( - \infty; - 1) \cup (1; +
\infty). Đúng||Sai

    c) Hàm số g(x) = f(x) + 1 nghịch biến trên khoảng (0;2). Sai||Đúng

    d) Hàm số y = f\left( |x|
ight) đồng biến trên ( -
1;0) (1; + \infty). Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có đồ thị như hình vẽ

    Các mệnh đề sau đây đúng hay sai?

    a) Hàm số nghịch biến trên khoảng ( -
1;1). Đúng||Sai

    b) Hàm số có f'(x) > 0 \forall x \in ( - \infty; - 1) \cup (1; +
\infty). Đúng||Sai

    c) Hàm số g(x) = f(x) + 1 nghịch biến trên khoảng (0;2). Sai||Đúng

    d) Hàm số y = f\left( |x|
ight) đồng biến trên ( -
1;0) (1; + \infty). Đúng||Sai

    a) Từ đồ thị ta có hàm số nghịch biến trên khoảng ( - 1;1) suy ra mệnh đề đúng.

    b) Từ đồ thị ta thấy hàm số đồng biến trên ( - \infty; - 1)(1; + \infty) suy ra hàm số có f'(x) > 0 \forall x \in ( - \infty; - 1) \cup (1; +
\infty). Vậy mệnh đề đúng.

    c) Ta có g'(x) = \left\lbrack f(x) +
1 ightbrack^{'} = f'(x)

    Hàm số g(x) nghịch biến khi g'(x) < 0 \Leftrightarrow f'(x)
< 0 \Leftrightarrow x \in ( - 1;1) suy ra mệnh đề sai.

    d) Từ đồ thị hàm số y = f(x) ta có đồ thị của hàm số y = f\left( |x|
ight) như hình vẽ.

    Từ đồ thị ta có hàm số y = f\left( |x|
ight) đồng biến trên ( -
1;0)(1; + \infty) suy ra mệnh đề đúng.

  • Câu 12: Nhận biết
    Tìm hàm số

    Cho bảng biến thiên như hình vẽ:

    Tìm hàm số

    Bảng biến thiên trên là của hàm số nào?

    Hướng dẫn:

    Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2

    => Loại đáp án C và D

    Quan sát bảng biến thiên

    => Loại đáp án B

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) là hàm phân thức bậc nhất chia bậc nhất và có đồ thị như hình Svẽ bên. Số nghiệm của phương trình f(x) = 2024

    Hướng dẫn:

    Số nghiệm của phương trình f(x) =
2024 bằng số giao điểm của đồ thị hàm số y = f(x)với đường thẳng y = 2024.

    Dựa vào đồ thị hàm số y = f(x) suy ra số nghiệm của phương trình là 1.

  • Câu 14: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    a) Hàm số y = f(x) có hai điểm cực trị là x = 0x = 2. Đúng||Sai

    b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng

    c) Hàm số nghịch biến trên khoảng ( -
2;0). Sai||Đúng

    d) c = 2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = x^{3} + ax^{2} + bx
+ c có đồ thị như Hình 2.

    a) Hàm số y = f(x) có hai điểm cực trị là x = 0x = 2. Đúng||Sai

    b) Giá trị lớn nhất của hàm số trên R là 2. Sai||Đúng

    c) Hàm số nghịch biến trên khoảng ( -
2;0). Sai||Đúng

    d) c = 2. Đúng||Sai

     

    Dựa vào đồ thị ta thấy hàm số y =
f(x) có hai điểm cực trị là x =
0x = 2.

    Giá trị lớn nhất của hàm số trên R không tồn tại.

    Dựa vào đồ thị ta thấy hàm số nghịch biến trên khoảng ( - 2;0)

    Dựa vào đồ thị ta có f(0) = 2
\Rightarrow c = 2

  • Câu 15: Vận dụng
    Chọn đáp án đúng

    Tính tổng tất cả các giá trị của m biết đồ thị hàm số y = x^{3} + 2mx^{2} + (m + 3)x + 4 và đường thẳng y = x + 4 cắt nhau tại ba điểm phân biệt A(0\ ;\ 4), B, C sao cho diện tích tam giác IBC bằng 8\sqrt{2} với I(1\ ;\ 3).

    Hướng dẫn:

    +) Gọi đồ thị hàm số y = x^{3} + 2mx^{2}
+ (m + 3)x + 4\left( C_{m}
ight) và đồ thị hàm số y = x +
4(d).

    +) Phương trình hoành độ giao điểm của \left( C_{m} ight)(d)

    x^{3} + 2mx^{2} + (m + 3)x + 4 = x + 4

    \Leftrightarrow x^{3} + 2mx^{2} + (m + 2)x = 0\ (*)\Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x^{2} + 2mx + m + 2 = 0 \\
\end{matrix} ight.

    +) Gọi g(x) = x^{2} + 2mx + m +
2.

    +) (d) cắt \left( C_{m} ight) tại ba điểm phân biệt \Leftrightarrow phương trình (*) có ba nghiệm phân biệt

    \Leftrightarrow phương trình g(x) = 0 có hai nghiệm phân biệt khác 0

    \Leftrightarrow \left\{ \begin{matrix}
{\Delta'}_{g} > 0 \\
g(0) eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - m - 2 > 0 \\
m + 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m < - 1 \\
m > 2 \\
\end{matrix} ight.\ \  \\
m eq - 2 \\
\end{matrix} ight.\ \ \ \ (a)

    +)x = 0 là hoành độ điểm A, hoành độ điểm B, C là hai nghiệm x_{1}, x_{2} của phương trình g(x) = 0

    +) BC^{2} = \left( x_{2} - x_{1}
ight)^{2} + \left\lbrack \left( x_{2} + 4 ight) - \left( x_{1} + 4
ight) ightbrack^{2}

    = 2\left( x_{2} - x_{1}
ight)^{2} (do B, C thuộc đường thẳng (d)

    = 2\left\lbrack \left( x_{2} + x_{1}
ight)^{2} - 4x_{1}x_{2} ightbrack = 8\left( m^{2} - m - 2
ight)

    +) Viết phương trình đường thẳng (d) dưới dạng x - y + 4 = 0, ta có

    d\left( I,(d) ight) = \frac{|1 - 3 +
4|}{\sqrt{2}} = \sqrt{2}.

    +) S_{IBC} = 8\sqrt{2} \Leftrightarrow
\frac{1}{2}BC.d\left( I,(d) ight) = 8\sqrt{2}

    \Leftrightarrow
\frac{1}{4}BC^{2}.\left\lbrack d\left( I,(d) ight) ightbrack^{2} =
128

    \Leftrightarrow \frac{1}{4}8\left( m^{2}
- m - 2 ight).2 = 128

    \Leftrightarrow m^{2} - m - 34 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = \frac{1 + \sqrt{137}}{2} \\
m = \frac{1 - \sqrt{137}}{2} \\
\end{matrix} ight. (thỏa điều kiện (a))

    +) Vậy tổng tất cả các giá trị m1.

  • Câu 16: Thông hiểu
    Chọn khẳng định đúng

    Cho đồ thị hàm số có đồ thị như hình vẽ:

    Chọn khẳng định đúng

    Chọn khẳng định đúng?

    Hướng dẫn:

    Đồ thị hàm số có tiệm cận đứng là: x = \frac{{ - d}}{c} và tiệm cận ngang là y = \frac{a}{c} ta có:

    => \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{ - d}}{c} > 0} \\   {\dfrac{a}{c} > 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {cd < 0} \\   {ac > 0} \end{array}} ight.

    Đồ thị hàm số cắt Ox tại \left( {\frac{{ - b}}{a};0} ight), cắt Oy tại \left( {0;\frac{b}{d}} ight)

    => \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{ - b}}{a} > 0} \\   {\dfrac{b}{d} > 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {ab < 0} \\   {bd > 0} \end{array}} ight.

    Với a > 0 \Rightarrow b < 0;c > 0;d < 0

    Với a < 0 \Rightarrow b > 0;c < 0;d > 0

  • Câu 17: Nhận biết
    Hàm số y = f(x) là hàm số nào?

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ dưới đây

    Hàm số y = f(x) là hàm số nào

    Hàm số y = f(x) là hàm số nào trong các hàm số sau:

    Hướng dẫn:

     Dựa vào bảng biến thiên ta thấy:

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và C

    Mặt khác hàm số đạt cực trị tại x = 0 và x = 2

    => Loại đáp án D

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Số giao điểm của đồ thị hàm số y = -
x^{2} + 3x và đồ thị hàm số y =
x^{3} - x^{2}

    Hướng dẫn:

    Phương trình hoành độ giao điểm của hai đồ thị là x^{3} - x^{2} = - x^{2} + 3x

    \Leftrightarrow x^{3} - 3x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm \sqrt{3} \\
\end{matrix} ight.

    Vậy có tất cả 3 giao điểm cần tìm.

  • Câu 19: Thông hiểu
    Tìm tất cả đường thẳng thỏa mãn yêu cầu

    Cho hàm số y = \frac{3x - 2}{x} có đồ thị (C). Có tất cả bao nhiêu đường thẳng cắt (C) tại hai điểm phân biệt mà hoành độ và tung độ của giao điểm này đều là các số nguyên?

    Hướng dẫn:

    Ta có:y = 3 - \frac{2}{x}. Vì M \in (C) có tọa độ nguyên khi x \in U(2) \Rightarrow x \in \left\{ - 2; -
1;1;2 ight\}

    Các điểm thuộc (C) có tọa độ nguyên thuộc tập B = \left\{ ( -
1;5),(1;1),(2;2),( - 2;4) ight\}

    Mỗi cặp hai điểm thuộc tập B xác định một đường thẳng cắt (C) tại hai điểm có tọa độ nguyên do đó số đường thẳng cần tìm là C_{4}^{2} =
6 (đường thẳng)

  • Câu 20: Thông hiểu
    Xác định hàm phân thức

    Tìm hàm số tương ứng với đồ thị được cho trong hình vẽ sau?

    Hướng dẫn:

    Dựa vào đồ thị đã cho trong hình vẽ ta thấy đường tiệm cận ngang của đồ thị là y = - 1 và đường tiệm cận đứng của đồ thị là x = - 1.

    Đồ thị hàm số đi qua điểm (1;1) nên hàm số cần tìm là y = \frac{- x + 1}{x +
1}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo