Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 CTST Bài 4 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn phương án thích hợp

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?

    Hướng dẫn:

    Dựa vào đồ thị có dạng đồ thị của hàm số bậc 3 có hệ số a < 0 nên đáp án y = - x^{3} + 3x^{2} - 1 đúng.

  • Câu 2: Thông hiểu
    Tính tổng các phần tử tập S

    Cho hàm số y = \frac{x}{x - 1}\ \
(C) và đường thẳng \ d:y = - x +
m. Gọi S là tập các số thực m để đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt A\ ,\ B sao cho tam giác OAB (O là gốc tọa độ) có bán kính đường tròn ngoại tiếp bằng 2\sqrt{2}. Tổng các phần tử của S bằng

    Hướng dẫn:

    Xét phương trình \frac{x}{x - 1} = - x +
m,\ \(điều kiện x eq
1).

    Phương trình tương đương x^{2} - mx + m =
0 (1).

    Đồ thị (C) và đường thẳng d cắt nhau tại hai điểm phân biệt AB khi và chỉ khi phương trình (1) có hai nghiệm phân biệt x eq 1 điều kiện cần và đủ là m < 0 \vee m > 4.

    Khi đó hai giao điểm là A(x_{1}; - x_{1}
+ m); B(x_{2}; - x_{2} +
m).

    Ta có \left\{ \begin{matrix}
OA = \sqrt{m^{2} - 2m};OB = \sqrt{m^{2} - 2m} \\
AB = \sqrt{2(m^{2} - 4m)};d(O,d) = \frac{|m|}{\sqrt{2}} \\
\end{matrix} ight.;.

    S_{\Delta OAB} = \frac{1}{2}.AB.d(O,d)=
\frac{1}{2}.\frac{|m|}{\sqrt{2}}.\sqrt{2(m^{2} - 4m)} =
\frac{OA.OB.AB}{4R}.

    Suy ra \frac{1}{2}.\frac{|m|}{\sqrt{2}}\sqrt{2(m^{2} -
4m)} = \frac{(m^{2} - 2m).\sqrt{2(m^{2} -
4m)}}{4.2\sqrt{2}}

    \Leftrightarrow m^{2} - 2m = 4|m|
\Leftrightarrow \left\lbrack \begin{matrix}
m = 0(l) \\
m = 6(n) \\
m = - 2(n) \\
\end{matrix} ight..

    Vậy tổng các phần từ của S bằng 4.

  • Câu 3: Thông hiểu
    Tìm điều kiện của tham số thỏa mãn yêu cầu

    Hàm số y = f(x) có đồ thị như sau:

    Tìm điều kiện của tham số m để phương trình f(x) = m1 nghiệm dương?

    Hướng dẫn:

    Để số nghiệm dương của phương trình đã cho bằng 1 thì đường thẳng y = m cắt đồ thị hàm số y = f(x) tại một điểm có hoành độ dương \Leftrightarrow \left\lbrack \begin{matrix}
m \leq 0 \\
m = 1 \\
\end{matrix} ight..

  • Câu 4: Vận dụng
    Chọn mệnh đề đúng

    Đường thẳng y = m^{2} cắt đồ thị hàm số y = x^{4} - x^{2} - 10 tại hai điểm phân biệt sao cho tam giác OAB vuông (với O là gốc tọa độ). Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Xét hàm số y = x^{4} - x^{2} -
10 ta có y' = 4x^{3} - 2x = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{\sqrt{2}}{2} \\x = - \dfrac{\sqrt{2}}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    m^{2} \geq 0;\forall m nên từ bảng biến thiên ta thấy đường thẳng y =
m^{2} luôn cắt đồ thị hàm số y =
x^{4} - x^{2} - 10 tại những cặp điểm đối xứng nhau qua trục tung.

    Giả sử A\left( x_{1};m^{2}
ight);B\left( - x_{1};m^{2} ight). Tam giác OAB vuông

    \Leftrightarrow
\overrightarrow{OA}.\overrightarrow{OB} = \overrightarrow{0}
\Leftrightarrow - {x_{1}}^{2} + m^{4} = 0 \Leftrightarrow x_{1} =
m^{2}

    Suy ra A\left( m^{2};m^{2}
ight)A\left( m^{2};m^{2}
ight) thuộc đồ thị hàm số nên

    m^{8} - m^{4} - 10 = m^{2}
\Leftrightarrow m^{2} = 2 \in (1;3)

  • Câu 5: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như hình vẽ bên dưới:

    a) Hàm số đồng biến trên khoảng ( -
1;1). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
1. Đúng||Sai

    c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;0brack bằng 1. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như hình vẽ bên dưới:

    a) Hàm số đồng biến trên khoảng ( -
1;1). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} = -
1. Đúng||Sai

    c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;0brack bằng 1. Sai||Đúng

    Theo hình vẽ, hàm số đồng biến trên khoảng ( - 1;\ 1) và đạt cực tiểu tại điểm x_{o} = - 1. giá trị không âm trên khoảng đó.

    Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1\ ;\ 0brack bằng - 1.

  • Câu 6: Thông hiểu
    Tính giá trị của hàm số tại một điểm

    Biết rằng đồ thị hàm số y = f(x) = ax^{4}
+ bx^{2} + c có hai điểm cực trị là A(0;2)B(2; - 14). Khi đó giá trị của hàm số y = f(x) tại x = 3 bằng:

    Hướng dẫn:

    Ta có: y = f(x) = ax^{4} + bx^{2} + c
\Rightarrow y' = 4ax^{3} + 2bx

    Đồ thị hàm số y = f(x) = ax^{4} + bx^{2}
+ c có hai điểm cực trị là A(0;2)B(2; - 14) nên ta có

    \left\{ \begin{matrix}
y(0) = 2 \\
y(2) = - 14 \\
y'(2) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 2 \\
16a + 4b + c = - 14 \\
32a + 4b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 2 \\
b = - 8 \\
a = 1 \\
\end{matrix} ight.

    Suy ra y = f(x) = x^{4} - 8x^{2} + 2
\Rightarrow f(3) = 11.

  • Câu 7: Thông hiểu
    Xác định hàm số theo yêu cầu

    Đường cong trong hình vẽ bên là đồ thị của hàm số nào sau đây?

    Hướng dẫn:

    Đồ thị đã cho có hình dạng của đồ thị hàm số bậc ba y = ax^{3} + bx^{2} + cx + d nên loại phương án y = x^{4} - x^{2} + 1y = - x^{2} + x - 1

    Dựa vào đồ thị, ta có \lim_{x ightarrow
+ \infty}y = + \infty \Rightarrow a > 0 nên loại phương án y = - x^{3} + 3x +
1.

    Vậy hàm số cần tìm là: y = x^{3} - 3x +
1

  • Câu 8: Thông hiểu
    Xác định số giao điểm

    Cho hàm số y = x^{4} - 3x^{2} có đồ thị (C). Số giao điểm của đồ thị (C) và đường thẳng y = 2

    Hướng dẫn:

    Số giao điểm của đồ thị (C) và đường thẳng y = 2 là số nghiệm của phương trình sau:

    x^{4} - 3x^{2} = 2 \Leftrightarrow x^{4}
- 3x^{2} - 2 = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} = \frac{3 + \sqrt{17}}{2} \\
x^{2} = \frac{3 - \sqrt{17}}{2} < 0 \\
\end{matrix} ight.\  \Leftrightarrow x = \pm \sqrt{\frac{3 +
\sqrt{17}}{2}}.

    Phương trình hoành độ giao điểm có 2 nghiệm nên số giao điểm của đồ thị (C) và đường thẳng là 2.

  • Câu 9: Nhận biết
    Chọn kết luận đúng

    Số giao điểm của hai đồ thị hàm số y =
f(x)y = g(x) bằng số nghiệm phân biệt của phương trình nào sau đây?

    Hướng dẫn:

    Hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) hay f(x) - g(x) = 0.

  • Câu 10: Nhận biết
    Chọn phương án thích hợp

    Biết rằng đường thẳng y = 4x + 5 cắt đồ thị hàm số y = x^{3} + 2x +
1 tại điểm duy nhất; kí hiệu (x_0;y_0) là tọa độ của điểm đó. Tìm y_0.

    Hướng dẫn:

    Phương trình hoành độ giao điểm là x^{3}
+ 2x + 1 = 4x + 5

    \Leftrightarrow x^{3} - 2x - 4 = 0 \Leftrightarrow x = 2

    Với x = 2 \Rightarrow y =
13.

    Vậy y_{0} = 13

  • Câu 11: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{2}{3}x^{3} - mx^{2}
- 2\left( 3m^{2} - 1 \right)x + \frac{2}{3} (m là tham số) (1) .

    a) Khi m = 1 thì hàm số có 2 điểm cực trị. Đúng||Sai

    b) Khi m = 1 thì hàm số nghịch biến trên khoảng ( - 1;2). Sai||Đúng

    c) Hàm số (1) có hai điểm cực trị \Leftrightarrow \left\lbrack \begin{matrix}
m > 2\sqrt{13} \\
m < - 2\sqrt{13}
\end{matrix} \right.. Sai||Đúng

    d) Co đúng một giá trị của tham số m để hàm số (1) có 2 điểm cực trị x_{1}, x_{2} sao cho x_{1}x_{2} + 2\left( x_{1} + x_{2} \right) =
1. Khi đó giá trị biểu thức S =
a^{2} + b^{2} = 13. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{2}{3}x^{3} - mx^{2}
- 2\left( 3m^{2} - 1 \right)x + \frac{2}{3} (m là tham số) (1) .

    a) Khi m = 1 thì hàm số có 2 điểm cực trị. Đúng||Sai

    b) Khi m = 1 thì hàm số nghịch biến trên khoảng ( - 1;2). Sai||Đúng

    c) Hàm số (1) có hai điểm cực trị \Leftrightarrow \left\lbrack \begin{matrix}
m > 2\sqrt{13} \\
m < - 2\sqrt{13}
\end{matrix} \right.. Sai||Đúng

    d) Co đúng một giá trị của tham số m để hàm số (1) có 2 điểm cực trị x_{1}, x_{2} sao cho x_{1}x_{2} + 2\left( x_{1} + x_{2} \right) =
1. Khi đó giá trị biểu thức S =
a^{2} + b^{2} = 13. Đúng||Sai

    c) Tập xác định: D\mathbb{=
R}.

    Đạo hàm y' = 2x^{2} - 2mx - 6m^{2} +
2.. Hàm số có hai điểm cực trị

    \Leftrightarrow \Delta' > 0
\Leftrightarrow m^{2} - 2\left( - 6m^{2} + 2 \right) > 0
\Leftrightarrow 13m^{2} - 4 > 0 \Leftrightarrow \left\lbrack
\begin{matrix}
m > \frac{2\sqrt{13}}{13} \\
m < - \frac{2\sqrt{13}}{13}
\end{matrix} \right.

    d) Theo định lý Viet thì \left\{
\begin{matrix}
x_{1} + x_{2} = m \\
x_{1}x_{2} = - 3m^{2} + 1
\end{matrix} \right.

    Ta có x_{1}x_{2} + 2\left( x_{1} + x_{2}\right) = 1 \Leftrightarrow - 3m^{2} + 1 + 2m = 1

    \Leftrightarrow 3m^{2}- 2m = 0 \Leftrightarrow \left\lbrack \begin{matrix}m = 0 \\m = \frac{2}{3}\end{matrix} \right.

    Chỉ có giá trị m = \frac{2}{3} thỏa mãn điều kiện, khi đó S = a^{2} + b^{2}
= 2^{2} + 3^{2} = 13.

  • Câu 12: Nhận biết
    Chọn đáp án đúng

    Đồ thị hàm số nào sau đây cắt trục tung tại điểm có tung độ âm?

    Hướng dẫn:

    Trục tung có phương trình x = 0, ta thay x = 0 lần lượt vào các phương án thì chỉ có phương án y = \frac{x -
1}{x + 2} cho ta y = - \frac{1}{2}
< 0.

  • Câu 13: Thông hiểu
    Chọn hàm số tương ứng đồ thị

    Đường cong ở hình bên là đồ thị của hàm số y = \frac{ax + b}{cx + d} với a,b,c,dlà các số thực. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Ta có :

    Dựa vào hình dáng của đồ thị ta được:

    + Điều kiện x eq 1

    + Đây là đồ thị của hàm nghịch biến

    Từ đó ta được y' < 0,\forall x
eq 1.

  • Câu 14: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ - 1
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Hàm số không có giá trị lớn nhất vì \lim_{x ightarrow - 1^{-}}y = + \infty nên khẳng định “Giá trị lớn nhất của hàm số là 2” sai.

    Phương trình f(x) = m có 3 nghiệm thực phân biệt khi và chỉ khi 1 <
m < 2 nên khẳng định “Phương trình f(x) = m3 nghiệm thực phân biệt khi và chỉ khi m \in (1;2)” đúng.

    Hàm số đồng biến trên các khoảng ( -
\infty;1)( - 1;1) nên khẳng định “Hàm số đồng biến trên một khoảng duy nhất là ( - \infty;1)” sai.

    Đồ thị hàm số có hai đường tiệm cận là x
= - 1;y = 1\lim_{x ightarrow
\pm \infty}y = 1;\lim_{x ightarrow - 1^{- 1}}y = + \infty nên khẳng định “Đồ thị hàm số có ba đường tiệm cận” sai.

    Vậy khẳng định đúng cần tìm là “Phương trình f(x) = m3 nghiệm thực phân biệt khi và chỉ khi m \in (1;2).”

  • Câu 15: Thông hiểu
    Xác định số giao điểm theo yêu cầu

    Số giao điểm của đồ thị hàm số y = -
x^{3} + 3x với trục hoành là

    Hướng dẫn:

    Xét phương trình hoành dộ giao điểm -
x^{3} + 3x = 0

    \Leftrightarrow x( - x^{2} + 3) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm \sqrt{3} \\
\end{matrix} ight..

    Vậy có 3 giao điểm.

  • Câu 16: Thông hiểu
    Định điều kiện tham số m

    Cho hàm số y = x^{4} - (3m + 2)x^{2} +
3m có đồ thị \left( C_{m}
ight). Xác định tất cả các giá trị thực của tham số m để \left(
C_{m} ight) cắt đường thẳng y = -
1 tại bốn điểm phân biệt?

    Hướng dẫn:

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    x^{4} - (3m + 2)x^{2} + 3m = -
1

    \Leftrightarrow x^{4} - (3m + 2)x^{2} +
3m + 1 = 0

    \Leftrightarrow \left( x^{2} - 1
ight)^{2} - 3m\left( x^{2} - 1 ight) = 0

    \Leftrightarrow \left( x^{2} - 1
ight)\left( x^{2} - 3m - 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 3m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x^{2} = 3m + 1 \\
\end{matrix} ight.

    Đồ thị \left( C_{m} ight) cắt y = - 1 tại bốn điểm phân biệt khi và chỉ khi x^{2} = 3m + 1 có hai nghiệm phân biệt khác \pm 1

    Khi đó ta có: \left\{ \begin{matrix}3m + 1 > 0 \\3m + 1 eq 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{1}{3} \\m eq 0 \\\end{matrix} ight..

  • Câu 17: Thông hiểu
    Khẳng định nào dưới đây sai

    Cho đồ thị hàm số có đồ thị hàm số là đường cong trong hình vẽ:

    Khẳng định nào dưới đây sai

    Khẳng định nào dưới đây sai?

    Hướng dẫn:

    Quan sát đồ thị hàm số ta có:

    Đáp án A sai vì hàm số không nghịch biến trên \left( {4; + \infty } ight)

    Đáp án B sai vì hàm số chỉ đạt cực tiểu tại x = 2

    Đáp án C sai vì trên đoạn [0; 2] hàm số vừa có khoảng đồng biến, vừa có khoảng nghịch biến.

    Đáp án D đúng vì \mathop {\min y}\limits_{\left[ {0;2} ight]}  + \mathop {\max y}\limits_{\left[ {0;2} ight]}  =  - 2 + 2 = 0

  • Câu 18: Vận dụng
    Tính giá trị của biểu thức M

    Cho hàm số y = \frac{{ax + b}}{{cx + 1}}\left( C ight) có bảng biến thiên như hình vẽ:

    Tính giá trị của biểu thức M

    Biết (C) cắt các trục tọa độ tại các điểm A, B thỏa mãn {S_{OAB}} = 4. Tính giá trị của biểu thức M = ab + 2c?

    Hướng dẫn:

    Do đồ thi hàm số có tiệm cận đứng x = -1 và tiệm cận ngang là y = 2

    => Hàm số có dạng y = \frac{{2x + b}}{{x + 1}}

    => \left\{ {\begin{array}{*{20}{c}}  {\left( C ight) \cap Ox = A\left( {\frac{{ - b}}{2};0} ight)} \\   {\left( C ight) \cap Oy = B\left( {0;b} ight)} \end{array}} ight. \Rightarrow {S_{OAB}} = \frac{{{b^2}}}{2} = 4 \Rightarrow b =  \pm 4

    Ta có:

    \begin{matrix}  y' = \dfrac{{2 - b}}{{{{\left( {x + 1} ight)}^2}}} < 0 \Rightarrow b = 4 \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2} \\   {b = 4} \\   {c = 1} \end{array} \Rightarrow M = ab + 2c = 10} ight. \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu
    Xác định m thỏa mãn yêu cầu

    Cho hàm số f(x) = ax^{3} + bx^{2} + cx +
d;(a eq 0) có đồ thị như hình vẽ:

    Tập hợp các giá trị của tham số m để phương trình f(x + m) = m có đúng ba nghiệm phân biệt là:

    Hướng dẫn:

    Đồ thị hàm số f(x + m) = m có được bằng cách tịnh tiến đồ thị hàm số y =
f(x) sang trái hoặc sang phải theo phương song song với trục hoành |m| đơn vị.

    Suy ra phương trình f(x + m) = m có đúng ba nghiệm phân biệt khi và chỉ khi m
\in ( - 2;2).

  • Câu 20: Thông hiểu
    Chọn đáp án chính xác

    Cho hàm số y = x^{3} - 3x^{2} + mx +
1 có đồ thị (C) và đường thẳng d:y = 2x + 1. Có bao nhiêu giá trị nguyên dương của tham số m để đồ thị (C) cắt đường thẳng d tại ba điểm phân biệt?

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    x^{3} - 3x^{2} + mx + 1 = 2x +
1

    \Leftrightarrow x^{3} + 3x^{2} + (m -
2)x = 0

    \Leftrightarrow x\left( x^{2} - 3x + m -
2 ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 3x + m - 2 = 0 \\
\end{matrix} ight.

    Đặt f(x) = x^{2} - 3x + m -
2

    Để đồ thị (C) cắt đường thẳng d tại ba điểm phân biệt thì phương trình x^{3} - 3x^{2} + (m - 2)x = 0 phải có 3 nghiệm phân biệt, khi đó f(x) =
0 phải có hai nghiệm phân biệt khác 0.

    Do đó \left\{ \begin{gathered}
  f\left( 0 ight) e 0 \hfill \\
  \Delta  > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m - 2 e 0 \hfill \\
  9 - 4\left( {m - 2} ight) > 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}
  m e 2 \hfill \\
   - 4m >  - 17 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m e 2 \hfill \\
  m < \frac{{17}}{4} \hfill \\ 
\end{gathered}  ight.

    Do m nguyên dương nên m \in \left\{ 1;3;4 ight\}.

    Vậy số giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán bằng 3.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo