Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Dựa vào đồ thị có dạng đồ thị của hàm số bậc 3 có hệ số nên đáp án
đúng.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Dựa vào đồ thị có dạng đồ thị của hàm số bậc 3 có hệ số nên đáp án
đúng.
Cho hàm số và đường thẳng
. Gọi
là tập các số thực
để đường thẳng
cắt đồ thị
tại hai điểm phân biệt
sao cho tam giác
(
là gốc tọa độ) có bán kính đường tròn ngoại tiếp bằng
. Tổng các phần tử của
bằng
Xét phương trình (điều kiện
).
Phương trình tương đương
.
Đồ thị và đường thẳng
cắt nhau tại hai điểm phân biệt
và
khi và chỉ khi phương trình
có hai nghiệm phân biệt
điều kiện cần và đủ là
.
Khi đó hai giao điểm là ;
.
Ta có ;.
.
Suy ra
.
Vậy tổng các phần từ của bằng
.
Hàm số có đồ thị như sau:
Tìm điều kiện của tham số để phương trình
có
nghiệm dương?
Để số nghiệm dương của phương trình đã cho bằng 1 thì đường thẳng cắt đồ thị hàm số
tại một điểm có hoành độ dương
.
Đường thẳng cắt đồ thị hàm số
tại hai điểm phân biệt sao cho tam giác
vuông (với
là gốc tọa độ). Mệnh đề nào sau đây đúng?
Xét hàm số ta có
Ta có bảng biến thiên như sau:
Vì nên từ bảng biến thiên ta thấy đường thẳng
luôn cắt đồ thị hàm số
tại những cặp điểm đối xứng nhau qua trục tung.
Giả sử . Tam giác OAB vuông
Suy ra vì
thuộc đồ thị hàm số nên
Cho hàm số có đạo hàm trên
và đồ thị như hình vẽ bên dưới:
a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Sai||Đúng
Cho hàm số có đạo hàm trên
và đồ thị như hình vẽ bên dưới:
a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt. Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Sai||Đúng
Theo hình vẽ, hàm số đồng biến trên khoảng và đạt cực tiểu tại điểm
. giá trị không âm trên khoảng đó.
Giá trị lớn nhất của hàm số trên đoạn bằng
.
Biết rằng đồ thị hàm số có hai điểm cực trị là
và
. Khi đó giá trị của hàm số
tại
bằng:
Ta có:
Đồ thị hàm số có hai điểm cực trị là
và
nên ta có
Suy ra .
Đường cong trong hình vẽ bên là đồ thị của hàm số nào sau đây?
Đồ thị đã cho có hình dạng của đồ thị hàm số bậc ba nên loại phương án
và
Dựa vào đồ thị, ta có nên loại phương án
.
Vậy hàm số cần tìm là:
Cho hàm số có đồ thị
. Số giao điểm của đồ thị
và đường thẳng
là
Số giao điểm của đồ thị và đường thẳng
là số nghiệm của phương trình sau:
.
Phương trình hoành độ giao điểm có 2 nghiệm nên số giao điểm của đồ thị và đường thẳng là 2.
Số giao điểm của hai đồ thị hàm số và
bằng số nghiệm phân biệt của phương trình nào sau đây?
Hoành độ giao điểm là nghiệm của phương trình hay
.
Biết rằng đường thẳng cắt đồ thị hàm số
tại điểm duy nhất; kí hiệu
là tọa độ của điểm đó. Tìm
.
Phương trình hoành độ giao điểm là
Với .
Vậy
Cho hàm số (
là tham số) (1) .
a) Khi thì hàm số có 2 điểm cực trị. Đúng||Sai
b) Khi thì hàm số nghịch biến trên khoảng
. Sai||Đúng
c) Hàm số (1) có hai điểm cực trị . Sai||Đúng
d) Co đúng một giá trị của tham số để hàm số (1) có 2 điểm cực trị
,
sao cho
. Khi đó giá trị biểu thức
. Đúng||Sai
Cho hàm số (
là tham số) (1) .
a) Khi thì hàm số có 2 điểm cực trị. Đúng||Sai
b) Khi thì hàm số nghịch biến trên khoảng
. Sai||Đúng
c) Hàm số (1) có hai điểm cực trị . Sai||Đúng
d) Co đúng một giá trị của tham số để hàm số (1) có 2 điểm cực trị
,
sao cho
. Khi đó giá trị biểu thức
. Đúng||Sai
c) Tập xác định: .
Đạo hàm .. Hàm số có hai điểm cực trị
d) Theo định lý Viet thì
Ta có
Chỉ có giá trị thỏa mãn điều kiện, khi đó
.
Đồ thị hàm số nào sau đây cắt trục tung tại điểm có tung độ âm?
Trục tung có phương trình , ta thay
lần lượt vào các phương án thì chỉ có phương án
cho ta
.
Đường cong ở hình bên là đồ thị của hàm số với
là các số thực. Mệnh đề nào dưới đây đúng?
Ta có :
Dựa vào hình dáng của đồ thị ta được:
+ Điều kiện
+ Đây là đồ thị của hàm nghịch biến
Từ đó ta được
Cho hàm số xác định trên
liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:
Khẳng định nào dưới đây đúng?
Hàm số không có giá trị lớn nhất vì nên khẳng định “Giá trị lớn nhất của hàm số là
” sai.
Phương trình có 3 nghiệm thực phân biệt khi và chỉ khi
nên khẳng định “Phương trình
có
nghiệm thực phân biệt khi và chỉ khi
” đúng.
Hàm số đồng biến trên các khoảng và
nên khẳng định “Hàm số đồng biến trên một khoảng duy nhất là
” sai.
Đồ thị hàm số có hai đường tiệm cận là vì
nên khẳng định “Đồ thị hàm số có ba đường tiệm cận” sai.
Vậy khẳng định đúng cần tìm là “Phương trình có
nghiệm thực phân biệt khi và chỉ khi
.”
Số giao điểm của đồ thị hàm số với trục hoành là
Xét phương trình hoành dộ giao điểm
.
Vậy có 3 giao điểm.
Cho hàm số có đồ thị
. Xác định tất cả các giá trị thực của tham số
để
cắt đường thẳng
tại bốn điểm phân biệt?
Phương trình hoành độ giao điểm là nghiệm của phương trình:
Đồ thị cắt
tại bốn điểm phân biệt khi và chỉ khi
có hai nghiệm phân biệt khác
Khi đó ta có: .
Cho đồ thị hàm số có đồ thị hàm số là đường cong trong hình vẽ:

Khẳng định nào dưới đây sai?
Quan sát đồ thị hàm số ta có:
Đáp án A sai vì hàm số không nghịch biến trên
Đáp án B sai vì hàm số chỉ đạt cực tiểu tại x = 2
Đáp án C sai vì trên đoạn [0; 2] hàm số vừa có khoảng đồng biến, vừa có khoảng nghịch biến.
Đáp án D đúng vì
Cho hàm số có bảng biến thiên như hình vẽ:

Biết (C) cắt các trục tọa độ tại các điểm A, B thỏa mãn . Tính giá trị của biểu thức
?
Do đồ thi hàm số có tiệm cận đứng x = -1 và tiệm cận ngang là y = 2
=> Hàm số có dạng
=>
Ta có:
Cho hàm số có đồ thị như hình vẽ:
Tập hợp các giá trị của tham số để phương trình
có đúng ba nghiệm phân biệt là:
Đồ thị hàm số có được bằng cách tịnh tiến đồ thị hàm số
sang trái hoặc sang phải theo phương song song với trục hoành
đơn vị.
Suy ra phương trình có đúng ba nghiệm phân biệt khi và chỉ khi
.
Cho hàm số có đồ thị
và đường thẳng
. Có bao nhiêu giá trị nguyên dương của tham số
để đồ thị
cắt đường thẳng
tại ba điểm phân biệt?
Phương trình hoành độ giao điểm
Đặt
Để đồ thị (C) cắt đường thẳng d tại ba điểm phân biệt thì phương trình phải có 3 nghiệm phân biệt, khi đó
phải có hai nghiệm phân biệt khác
.
Do đó
Do nguyên dương nên
.
Vậy số giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán bằng 3.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: