Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?
![]() |
Ta có:
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0
Ta có: , nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có
Cho hàm số có đồ thị như hình vẽ. Mệnh đề nào dưới đây đúng?
![]() |
Ta có:
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương => d > 0
Ta có: , nhận thấy hoành độ hai điểm cực trị của đồ thị hàm số có
Với giá trị nào của tham số để đồ thị hàm số
đi qua điểm
?
Thay tọa độ điểm vào
ta được:
Vậy giá trị m cần tìm là .
Tìm số giao điểm của đồ thị hàm số và đường thẳng
?
Cách 1: Phương trình hoành độ giao điểm
Do nên
và
. Vì vậy
vô nghiệm
Như vậy phương trình vô nghiệm hay đồ thị hàm số
và đường thẳng
không có giao điểm nào.
Cách 2:
Phương trình hoành độ giao điểm . Ta có điều kiện xác định
Với điều kiện trên ta có
Xét hàm số . Ta có
;
Với ta có
. Với
ta có
Ta có Bảng biến thiên:
Số nghiệm của phương trình là số giao điểm của đồ thị
và trục hoành
.
Dựa vào BBT ta thấy phương trình vô nghiệm hay đồ thị hàm số
và đường thẳng
không có giao điểm nào.
Cho hai hàm số và
. Giá trị của tham số
để đồ thị của hai hàm số có
giao điểm phân biệt và
giao điểm đó nằm trên đường tròn bán kính bằng
thuộc vào khoảng nào dưới đây?
Giả sử là số thực thỏa mãn bài toán.
Phương trình hoành độ giao điểm giữa hai đồ thị là
Gọi là một trong
giao điểm. Ta có
.
Từ và
suy ra
Hay
.
Rút gọn ta được .
Đây là phương trình đường tròn khi .
Với điều kiện thì
thuộc đường tròn có bán kính
.
Theo đề bài .
Thử lại.
Với thì phương trình
có
nghiệm. Do đó,
không thỏa mãn.
Với thì phương trình
có
nghiệm và cũng thỏa mãn
.
Vậy giá trị cần tìm là
.
Cho hàm số là hàm phân thức bậc nhất chia bậc nhất và có đồ thị như hình Svẽ bên. Số nghiệm của phương trình
là
Số nghiệm của phương trình bằng số giao điểm của đồ thị hàm số
với đường thẳng
.
Dựa vào đồ thị hàm số suy ra số nghiệm của phương trình là 1.
Cho hàm số có đạo hàm trên
và đồ thị như Hình 3.

Xét tính đúng sai của các nhận định dưới đây:
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Sai||Đúng
c) Đạo hàm của hàm số nhận giá trị không dương trên khoảng . Sai||Đúng
d) Giá trị lớn nhất của hàm số trên đoạn bằng 1. Sai||Đúng
Cho hàm số có đạo hàm trên
và đồ thị như Hình 3.

Xét tính đúng sai của các nhận định dưới đây:
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Sai||Đúng
c) Đạo hàm của hàm số nhận giá trị không dương trên khoảng . Sai||Đúng
d) Giá trị lớn nhất của hàm số trên đoạn bằng 1. Sai||Đúng
Theo Hình 3, ta có:
a) Hàm số nghịch biến trên khoảng
b) Hàm số đạt cực tiểu tại điểm .
c) Vì hàm số đồng biến trên khoảng nên đạo hàm của hàm số nhận giá trị không âm trên khoảng đó và nghịch biến trên khoảng
nên đạo hàm của hàm số nhận giá trị không dương trên khoảng đó .
d) Giá trị lớn nhất của hàm số trên đoạn bằng 2 .
Đáp án: a) Đúng, b) Sai, c) Sai, d) Sai.
Tính tổng tất cả các giá trị của biết đồ thị hàm số
và đường thẳng
cắt nhau tại ba điểm phân biệt
,
,
sao cho diện tích tam giác
bằng
với
.
+) Gọi đồ thị hàm số là
và đồ thị hàm số
là
.
+) Phương trình hoành độ giao điểm của và
là
+) Gọi .
+) cắt
tại ba điểm phân biệt
phương trình
có ba nghiệm phân biệt
phương trình
có hai nghiệm phân biệt khác
+) là hoành độ điểm
, hoành độ điểm
,
là hai nghiệm
,
của phương trình
+)
(do
,
thuộc đường thẳng
+) Viết phương trình đường thẳng dưới dạng
, ta có
.
+)
(thỏa điều kiện
)
+) Vậy tổng tất cả các giá trị là
.
Cho đồ thị hàm số có đồ thị hàm số là đường cong trong hình vẽ:

Khẳng định nào dưới đây sai?
Quan sát đồ thị hàm số ta có:
Đáp án A sai vì hàm số không nghịch biến trên
Đáp án B sai vì hàm số chỉ đạt cực tiểu tại x = 2
Đáp án C sai vì trên đoạn [0; 2] hàm số vừa có khoảng đồng biến, vừa có khoảng nghịch biến.
Đáp án D đúng vì
Cho hình vẽ:

Đồ thị hàm số tương ứng với hàm số nào sau đây?
Đồ thị hàm số đi qua điểm (1; 3) chỉ có hàm số thỏa mãn.
Cho hàm số có đạo hàm trên
và đồ thị như Hình 3.

Các nhận định sau đúng hay sai?
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng . Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Sai||Đúng
Cho hàm số có đạo hàm trên
và đồ thị như Hình 3.

Các nhận định sau đúng hay sai?
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số đạt cực tiểu tại điểm . Đúng||Sai
c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng . Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn bằng
. Sai||Đúng
Theo Hình 3, hàm số nghịch biến trên khoảng và đạt cực tiểu tại điểm
.
Vì hàm số đồng biến trên khoảng nên đạo hàm của hàm số nhận giá trị không âm trên khoảng đó. Giá trị lớn nhất của hàm số trên đoạn
bằng
.
Đáp án: a) Đúng, b) Đúng, c) Đúng, d) Sai.
Cho hàm số liên tục trên
và có đồ thị trên đoạn
như hình vẽ bên dưới.

Xét tính đúng sai của các khẳng định dưới đây:
a) Hàm số có ba điểm cực trị trên đoạn . Sai||Đúng
b) Hàm số đồng biến trên khoảng Sai||Đúng
c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
bằng 1. Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn
bằng 1. Đúng||Sai
Cho hàm số liên tục trên
và có đồ thị trên đoạn
như hình vẽ bên dưới.

Xét tính đúng sai của các khẳng định dưới đây:
a) Hàm số có ba điểm cực trị trên đoạn . Sai||Đúng
b) Hàm số đồng biến trên khoảng Sai||Đúng
c) Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
bằng 1. Đúng||Sai
d) Giá trị lớn nhất của hàm số trên đoạn
bằng 1. Đúng||Sai
Hàm số có hai điểm cực trị trên đoạn .
Hàm số đồng biến trên khoảng
Trên đoạn hàm số
có GTLN là 3; GTNN là -2.
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số bằng 1.
Giá trị lớn nhất của hàm số trên đoạn
bằng 1.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Gọi là giao điểm của đường thẳng
và đường cong
. Khi đó hoành độ
của trung điểm
của đoạn
bằng bao nhiêu?
Pthdgd (*)
Khi đó .
Chú ý: có thể giải (*), tìm được
Cho hàm số có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
Ta có tọa độ giao điểm của đồ thị hàm số và trục hoành là .
Cho hàm số có đồ thị là đường cong trong hình bên. Số nghiệm thực của phương trình
là
Số nghiệm thực của phương trình bằng số giao điểm của đường thẳng
và có đồ thị hàm số
.
Ta thấy đường thẳng cắt đồ thị hàm số tại
điểm nên phương trình
có
nghiệm.
Cho hàm số xác định và liên tục trên
có đồ thị như hình vẽ
Các mệnh đề sau đây đúng hay sai?
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số có
. Đúng||Sai
c) Hàm số nghịch biến trên khoảng
. Sai||Đúng
d) Hàm số đồng biến trên
và
. Đúng||Sai
Cho hàm số xác định và liên tục trên
có đồ thị như hình vẽ
Các mệnh đề sau đây đúng hay sai?
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số có
. Đúng||Sai
c) Hàm số nghịch biến trên khoảng
. Sai||Đúng
d) Hàm số đồng biến trên
và
. Đúng||Sai
a) Từ đồ thị ta có hàm số nghịch biến trên khoảng suy ra mệnh đề đúng.
b) Từ đồ thị ta thấy hàm số đồng biến trên và
suy ra hàm số có
. Vậy mệnh đề đúng.
c) Ta có
Hàm số nghịch biến khi
suy ra mệnh đề sai.
d) Từ đồ thị hàm số ta có đồ thị của hàm số
như hình vẽ.
Từ đồ thị ta có hàm số đồng biến trên
và
suy ra mệnh đề đúng.
Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ. Tìm tất cả các giá trị của tham số m để phương trình
có đúng hai nghiệm phân biệt.

Để phương trình có hai nghiệm phân biệt thì
Cho hàm số bậc ba có đồ thị là đường cong trong hình bên.
Có bao nhiêu giá trị nguyên của tham số để phương trình
có ba nghiệm thực phân biệt?
Phương trình có ba nghiệm thực phân biệt .
Do nguyên nên
Vậy có 3 giá trị nguyên
Cho đồ thị hàm số như sau:
Hỏi phương trình có tối đa bao nhiêu nghiệm thực?
Phương trình là phương trình hoành độ giao điểm của đồ thị hàm số
và đường thẳng
Số giao điểm của hai đường bằng số nghiệm của phương trình .
Dựa vào đồ thị hàm số ta thấy đường thẳng cắt đồ thị tại nhiều nhất 5 điểm.
Vậy phương trình có tối đa 5 nghiệm.
Cho hàm số có đồ thị
. Có tất cả bao nhiêu đường thẳng cắt
tại hai điểm phân biệt mà hoành độ và tung độ của giao điểm này đều là các số nguyên?
Ta có:. Vì
có tọa độ nguyên khi
Các điểm thuộc có tọa độ nguyên thuộc tập
Mỗi cặp hai điểm thuộc tập B xác định một đường thẳng cắt tại hai điểm có tọa độ nguyên do đó số đường thẳng cần tìm là
(đường thẳng)
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Đây là đồ thị của hàm số bậc ba với hệ số nên chọn
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: