Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn kết luận đúng

    Thống kê chiều cao của một số cây bạch đàn giống 1 tháng tuổi của 4 nông trường được cho bởi bảng sau:

    Chiều cao (cm)

    \lbrack 5;7) \lbrack 7;9) \lbrack 9;11) \lbrack 11;13) \lbrack 13;15)

    Nông trường A

    5 8 16 8 3

    Nông trường B

    5 10 8 9 6

    Nông trường C

    13 9 9 3 9

    Nông trường D

    3 12 8 12 4

    Nếu xét theo khoảng tứ phân vị thì cây bạch đàn giống 1 tháng tuổi ở nông trường nào có chiều cao đồng đều nhất?

    Hướng dẫn:

    Nông trường A:

    n = 5 + 8 + 16 + 8 + 3 = 40.

    Q_{1} = 7 + \frac{\frac{40}{4} - 5}{8}
\cdot 2 = \frac{33}{4}, Q_{3} = 11
+ \frac{\frac{40 \cdot 3}{4} - (5 + 8 + 16)}{8} \cdot 2 =
\frac{45}{4}

    \Delta_{Q} = Q_{3} - Q_{1} =
3.

    Nông trường B:

    n = 5 + 10 + 8 + 9 + 6 = 38.

    Q_{1} = 7 + \frac{\frac{38}{4} - 5}{10}
\cdot 2 = \frac{79}{10}, Q_{3} = 11
+ \frac{\frac{38 \cdot 3}{4} - (5 + 10 + 8)}{9} \cdot 2 =
\frac{110}{9}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{389}{90}.

    Nông trường C:

    n = 13 + 9 + 9 + 3 + 9 = 43.

    Q_{1} = 5 + \frac{\frac{43}{4}}{13} \cdot
2 = \frac{173}{26}, Q_{3} = 11 +
\frac{\frac{43 \cdot 3}{4} - (13 + 9 + 9)}{3} \cdot 2 =
\frac{71}{6}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{202}{39}.

    Nông trường D:

    n = 3 + 12 + 8 + 12 + 4 =
39.

    Q_{1} = 7 + \frac{\frac{39}{4} - 3}{12}
\cdot 2 = \frac{65}{8}, Q_{3} = 11
+ \frac{\frac{39 \cdot 3}{4} - (3 + 12 + 8)}{12} \cdot 2 =
\frac{289}{24}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{47}{12}.

    Ta thấy khoảng tứ phân vị của nông trường A là nhỏ nhất nên nếu xét theo khoảng tứ phân vị thì cây bạch đàn giống 1 tháng tuổi ở nông trường A có chiều cao đồng đều nhất.

  • Câu 2: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Số tiền (đơn vị: nghìn đồng) của một số khách hàng mua sách ở một cửa hàng trong một ngày được ghi lại trong bảng sau:

    Giá tiền

    [40; 50)

    [50; 60)

    [60; 70)

    Số khách hàng mua

    2

    6

    4

    Xác định khoảng tứ phân vị của mẫu số liệu ghép nhóm?

    Hướng dẫn:

    Ta có:

    Giá tiền

    [40; 50)

    [50; 60)

    [60; 70)

    Số khách hàng mua

    2

    6

    4

    Tần số tích lũy

    2

    8

    12

    Cỡ mẫu N = 12

    Ta có: \frac{N}{4} = 3

    => Nhóm chứa Q_{1} là [50; 60)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 50;m = 2;f = 6;c = 60 -
50 = 10

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 50 + \frac{3 - 2}{6}.10 =\frac{155}{3}

    Ta có: \frac{3N}{4} = 9

    => Nhóm chứa Q_{3} là [60; 70)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 60;m = 8;f = 4;c = 70 -
60 = 10

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 60 + \frac{9 - 8}{4}.10 =\frac{125}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta Q = Q_{3} - Q_{1} =
\frac{65}{6}

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Thời gian hoàn thành bài kiểm tra môn Toán của các bạn trong lớp 12C được cho trong bảng sau:

    Thời gian (phút)

    [25;30)

    [30;35)

    [35;40)

    [40;45)

    Số học sinh

    8

    16

    4

    2

    Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc là bao nhiêu?

    Hướng dẫn:

    Nếu biết học sinh hoàn thành bài kiểm tra sớm nhất mất 27 phút và muộn nhất mất 43 phút thì khoảng biến thiên của mẫu số liệu gốc là 43 – 27 = 16.

  • Câu 4: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Xác định khoảng biến thiên của mẫu số liệu ghép nhóm sau đây:

    Thời gian (s)

    Số vận động viên (người)

    (50,5; 55,5]

    2

    (55,5; 60,5]

    7

    (60,5; 65,5]

    8

    (65,5; 70,5]

    4

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R = 70,5 - 50,5 = 20

  • Câu 5: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Kết quả đo chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được cho ở bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

     Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên.

    Hướng dẫn:

    Cỡ mẫu n = 100.

    Gọi x_{1};x_{2};...;x_{100} là mẫu số liệu gốc về chiều cao của 100 cây keo 3 năm tuổi tại một nông trường được xếp theo thứ tự không giảm.

    Ta có

    x_{1};...;x_{5} \in [8,4; 8,6),

    x_{6};...;x_{17} \in [8,6; 8,8),

    x_{18};...;x_{42} \in [8,8; 9,0),

    x_{43};...;x_{86} \in [9,0; 9,2),

    x_{87};...;x_{100} \in [9,2; 9,4).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{x_{25} + x_{26}}{2} \in [8,8; 9,0). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 8,8 + \frac{\frac{100}{4} - (5 +
12)}{25}(9,0 - 8,8) = 8,864

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{x_{75} + x_{76}}{2} \in [9,0; 9,2).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 20 + \frac{\frac{3.100}{4} - (5
+ 12 + 25)}{44}(9,2 - 9,0) = 9,15

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{Q} = Q_{3} - Q_{1} = 9,15 -
8,864 = 0,286

  • Câu 6: Vận dụng
    Xác định tính đúng sai của các nhận định

    Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn.

    Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn. (ảnh 1)

    a) Khoảng biến thiên của mẫu số liệu trên là 20. Sai||Đúng

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trạm quan trắc ở Nha Trang bằng 45. Sai||Đúng

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trạm quan trắc ở Quy Nhơn bằng 39. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn Nha Trang. Đúng||Sai

    Đáp án là:

    Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn.

    Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn. (ảnh 1)

    a) Khoảng biến thiên của mẫu số liệu trên là 20. Sai||Đúng

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trạm quan trắc ở Nha Trang bằng 45. Sai||Đúng

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trạm quan trắc ở Quy Nhơn bằng 39. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn Nha Trang. Đúng||Sai

    A.

    B.

    C.

    D.

    SAI

    SAI

    SAI

    ĐÚNG

    a) Khoảng biến thiên của mẫu số liệu trên là : 310 - 130 = 180.

    b) Xét mẫu số liệu của trạm quan trắc ở Nha Trang:

    Gọi x_{1};...;x_{20}là mẫu số liệu gốc về tổng số giờ nắng trong tháng 6 của các năm 2022 đến 2021 tại trạm quan trắc đặt ở Nha Trang được xếp theo thứ tự không giảm.

    Ta có

    x_{1} \in [130; 160),

    x_{2} \in [160; 190),

    x_{3} \in [190; 220),

    x_{4};...;x_{11} \in  [220; 250),

    x_{12};...; x_{18} \in [250; 280),

    x_{19};x_{20} \in [280; 310).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{x_{5} + x_{6}}{2} \in [220; 250). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: 

    Q_{1} = 220 + \frac{\frac{20}{4} - (1 + 1 +
1)}{8}(250 - 220) = 227,5

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{x_{15} + x_{16}}{2} \in [250; 280).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 250 + \frac{\frac{3.20}{4} - (1 + 1 + 1 +
8)}{7}(280 - 250) = \frac{1870}{7}

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{Q} = Q_{3} - Q_{1} = \frac{1870}{7} -
227,5 \approx 39,64

    c) Xét mẫu số liệu của trạm quan trắc ở Quy Nhơn:

    Gọi y_{1};...;y_{20}là mẫu số liệu gốc về tổng số giờ nắng trong tháng 6 của các năm 2022 đến 2021 tại trạm quan trắc đặt ở Quy Nhơn được xếp theo thứ tự không giảm.

    Ta có

    y_{1} \in [160; 190),

    y_{2};y_{3} \in [190; 220),

    y_{4};...;y_{7} \in [220; 250),

    y_{8};...;y_{17} \in [250; 280),

    y_{18};...;y_{20} \in [280; 310).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{y_{5} + y_{6}}{2} \in [220; 250). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{1}' = 200 + \frac{\frac{20}{4} - (1 +
2)}{4}(250 - 200) = 235

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{y_{15} + y_{16}}{2} \in [250; 280). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: Q_{1}' = 250 + \frac{\frac{3.20}{4} - (1 + 2 +
4)}{10}(280 - 250) = 274

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: ∆'Q = Q'3 – Q'1 = 274 – 235 = 39.

    d) Vì ∆Q ≈ 39,64 > ∆'Q = 39 nên nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn Nha Trang.

  • Câu 7: Thông hiểu
    Xác định trung vị của mẫu số liệu ghép nhóm

    Cho mẫu số liệu ghép nhóm của chiều cao của cây cao su trong một nông trường

    Trung vị của mẫu số liệu ghép nhóm trên là:

    Hướng dẫn:

    Ta có: n = 55 + 78 + 120 + 45 + 11 =
309

    Nhóm chứa trung vị: Q_{2} = x_{155} \in
\lbrack 18;22)

    Trung vị của mẫu số liệu ghép nhóm là:

    Q_{2} = 18 + (22 -18).\dfrac{\dfrac{309.2}{4} - 55 - 78}{120} = \dfrac{1123}{60}

  • Câu 8: Vận dụng
    Xét tính đúng sai của các khẳng định

    Khảo sát thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 của trường trung học phổ thông X, thu được mẫu số liệu ghép nhóm sau:

    s

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 phút. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 65 phút. Đúng||Sai

    d) Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 phân tán hơn so với lớp 12A2. Sai||Đúng

    Đáp án là:

    Khảo sát thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 của trường trung học phổ thông X, thu được mẫu số liệu ghép nhóm sau:

    s

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 phút. Đúng||Sai

    b) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 65 phút. Đúng||Sai

    d) Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 phân tán hơn so với lớp 12A2. Sai||Đúng

    a) Đúng

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là 180 - 0 = 180 (phút).

    b) Đúng

    Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là 240 - 60 = 180(phút).

    Nên khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và 12A2 bằng nhau.

    c) Đúng

    Xét mẫu số liệu ghép nhóm của lớp 12A1:

    Cỡ mẫu là: n = 5 + 20 + 15 =
40

    Gọi x_{1},\ ...,x_{40} là thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{x_{10} + x_{11}}{2}.

    Do x_{10}x_{11} đều thuộc nhóm \lbrack 120;180) nên nhóm này chứa Q_{1}.

    Q_{1} = 120 + \frac{\frac{40}{4} -
5}{20}.60 = 135

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{x_{30} + x_{31}}{2}.

    Do x_{30}x_{31} đều thuộc nhóm \lbrack 180;240) nên nhóm này chứa Q_{3}.

    Q_{3} = 180 + \frac{\frac{3.40}{4} -
25}{15}.60 = 200

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A1 là:

    \Delta Q = Q_{3} - Q_{1} = 200 - 135 =
65 phút.

    d) Sai

    Xét mẫu số liệu ghép nhóm của lớp 12A2:

    Cỡ mẫu là: n = 9 + 12 + 18 =
39

    Gọi y_{1},...,y_{39} là thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu gốc là y_{ 10}.

    Do y_{10} thuộc nhóm \lbrack 60;120) nên nhóm này chứa Q_{1}.

    Q_{1} = 60 + \frac{\frac{39}{4} -
9}{12}.60 = 63,75

    Tứ phân vị thứ ba của mẫu số liệu gốc là y_{30}.

    Do y_{30} thuộc nhóm \lbrack 120;180) nên nhóm này chứa Q_{3}.

    Q_{3} = 120 + \frac{\frac{3.39}{4} -
21}{18}.60 = 147,5

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 là:

    \Delta Q = Q_{3} - Q_{1} = 147,5 - 63,75
= 83,75

    Dựa vào khoảng tứ phân vị thì thời gian dành cho việc tự học ở nhà mỗi ngày của học sinh lớp 12A2 phân tán hơn so với lớp 12A1.

  • Câu 9: Thông hiểu
    Xác định khoảng tứ phân vị của mẫu số liệu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Khi đó khoảng tứ phân vị \Delta_{Q} là:

    Hướng dẫn:

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{N}{4} =
10,5

    => Nhóm chứa Q_{1} là [20; 40)

    (Vì 10,5 nằm giữa hai tần số tích lũy 5 và 14)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 9;c = 40 -
20 = 20

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \dfrac{10,5 - 5}{9}.20 =\dfrac{290}{9}

    Cỡ mẫu N = 42 \Rightarrow \frac{3N}{4} =
31,5

    => Nhóm chứa Q_{3} là [60; 80)

    (Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 60;m = 26,f = 10;c = 80
- 60 = 20

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 60 + \dfrac{31,5 - 26}{10}.20 =71.

    Vậy khoảng tứ phân vị của mẫu số liệu đã cho là:

    \Delta_{Q} = Q_{3} - Q_{1} = 71 -
\frac{290}{9} = \frac{349}{9}.

  • Câu 10: Vận dụng
    Tìm giá trị ngoại lệ

    Kết quả đo chiều cao của 100 cây thực nghiệm 2 năm tuổi được cho trong bảng sau:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tìm giá trị ngoại lệ của mẫu số liệu?

    Hướng dẫn:

    Ta có:

    Chiều cao (m)

    [8,4; 8,6)

    [8,6; 8,8)

    [8,8; 9,0)

    [9,0; 9,2)

    [9,2; 9,4)

    Số cây

    5

    12

    25

    44

    14

    Tần số tích lũy

    5

    17

    42

    86

    100

    N = 100 \Rightarrow \frac{N}{4} =
25 => Nhóm chứa tứ phân vị thứ nhất là: [8,8; 9,0)

    \Rightarrow \left\{ \begin{matrix}l = 8,8,\dfrac{N}{4} = 25,m = 17,f = 25 \\c = 9,0 - 8,8 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\frac{\dfrac{N}{4} - m}{f}.c \Rightarrow Q_{1} = 8,8 + \frac{25 -17}{25}.0,2 = \frac{1108}{125}

    \frac{3N}{4} = 75 => Nhóm chứa tứ phân vị thứ ba là: [9,0; 9,2)

    \Rightarrow \left\{ \begin{matrix}l = 9,0,\dfrac{3N}{4} = 75,m = 42,f = 44 \\c = 9,2 - 9,0 = 0,2 \\\end{matrix} ight.

    \Rightarrow Q_{3} = l +\frac{\dfrac{3N}{4} - m}{f}.c \Rightarrow Q_{3} = 9,0 + \frac{75 -42}{44}.0,2 = \frac{183}{20}

    Suy ra khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = 0,286.

    Giá trị x trong mẫu số liệu là giá trị ngoại lệ nếu \left\lbrack \begin{matrix}
x < Q_{1} - 1,5\Delta_{Q} \\
x > Q_{3} + 1,5\Delta_{Q} \\
\end{matrix} ight.

    Ta có: x < Q_{1} - 1,5\Delta_{Q} =
8,435

    Vậy giá trị ngoại lệ cần tìm là 8,4.

  • Câu 11: Thông hiểu
    Xác định tính đúng sai của các nhận định

    Thời gian (phút) truy cập Internet mỗi buổi tối của một số học sinh được cho ở bảng sau:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a. Khoảng biến thiên của mẫu số liệu là 15. Đúng||Sai

    b. Nhóm chứa tứ phân vị thứ ba là \lbrack
15,5;18,5). Sai||Đúng

    c. Tứ phân vị thứ nhất là Q_{1} =
15. Đúng||Sai

    d. Khoảng tứ phân vị của mẫu số liệu ghép nhóm bé hơn 6. Đúng||Sai

    Đáp án là:

    Thời gian (phút) truy cập Internet mỗi buổi tối của một số học sinh được cho ở bảng sau:

    Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

    a. Khoảng biến thiên của mẫu số liệu là 15. Đúng||Sai

    b. Nhóm chứa tứ phân vị thứ ba là \lbrack
15,5;18,5). Sai||Đúng

    c. Tứ phân vị thứ nhất là Q_{1} =
15. Đúng||Sai

    d. Khoảng tứ phân vị của mẫu số liệu ghép nhóm bé hơn 6. Đúng||Sai

    a. Khoảng biến thiên của mẫu số liệu là 15.

    R = a_{6} - a_{1} = 24,5 - 9,5 =
15 .

    Mệnh đề đúng.

    b. Nhóm chứa tứ phân vị thứ ba là \lbrack
15,5;18,5).

    Cỡ mẫu n = 4 + 12 + 14 + 23 + 3 =
56.

    Tứ phân vị thứ nhất Q_{1}\frac{x_{14} + x_{15}}{2} nên nhóm chứa tứ phân vị thứ nhất là \lbrack
12,5;15,5).

    Mệnh đề sai.

    c. Tứ phân vị thứ nhất là Q_{1} =
15.

    Q_{1} = 12,5 + \frac{\frac{56 }{4} -4}{12}.3 = 15.

    Mệnh đề đúng.

    d. Khoảng tứ phân vị của mẫu số liệu ghép nhóm bé hơn 6.

    Tứ phân vị thứ ba Q_{3}\frac{x_{42} + x_{43}}{2} nên nhóm chứa tứ phân vị thứ ba là \lbrack
18,5;21,5).

    Q_{3} = 18,5 + \frac{\frac{3.56}{4} -
30}{23}.3 = \frac{923}{46}.

    Vậy khoảng tứ phân vị là \Delta_{Q} =
Q_{3} - Q_{1} = \frac{233}{46} < 6.

    Mệnh đề đúng.

  • Câu 12: Vận dụng
    Chọn kết luận đúng nhất

    Thống kê điểm kiểm tra môn Toán giữa kì I của bốn lớp 12 của một trường THPT cho bởi bảng sau:

    Điểm

    \lbrack 5;6) \lbrack 6;7) \lbrack 7;8) \lbrack 8;9) \lbrack 9;10\rbrack

    Lớp 12B1

    7 3 15 12 4

    Lớp 12B2

    5 9 12 11 3

    Lớp 12B3

    10 10 9 6 1

    Lớp 12B4

    14 3 15 9 1

    Nhà trường muốn đánh giá mức độ “học đều” môn Toán của các lớp. Nếu xét theo khoảng tứ phân vị thì điểm kiểm tra môn Toán giữa kì I của lớp nào đồng đều nhất?

    Hướng dẫn:

    Lớp 12B1:

    n = 7 + 3 + 15 + 12 + 4 =
41

    Q_{1} = 7 + \frac{\frac{41}{4} - (7 +
3)}{15} \cdot 1 = \frac{421}{60}, Q_{3} = 8 + \frac{\frac{41 \cdot 3}{4} - (7 + 3 +
15)}{12} \cdot 1 = \frac{407}{48}.

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{117}{80}.

    Lớp 12B2:

    n = 5 + 9 + 12 + 11 + 3 =
40

    Q_{1} = 6 + \frac{\frac{40}{4} - 5}{9}
\cdot 1 = \frac{59}{9}, Q_{3} = 8 +
\frac{\frac{40 \cdot 3}{4} - (5 + 9 + 12)}{11} \cdot 1 =
\frac{92}{11}.

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{179}{99}.

    Lớp 12B3:

    n = 10 + 10 + 9 + 6 + 1 =
36

    Q_{1} = 5 + \frac{\frac{36}{4}}{10} \cdot
1 = \frac{59}{10}, Q_{3} = 7 +
\frac{\frac{36 \cdot 3}{4} - (10 + 10)}{9} \cdot 1 =
\frac{70}{9}.

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{169}{90}.

    Lớp 12B4:

    n = 14 + 3 + 15 + 9 + 1 =
42

    Q_{1} = 5 + \frac{\frac{42}{4}}{14} \cdot
1 = \frac{23}{4}, Q_{3} = 7 +
\frac{\frac{42 \cdot 3}{4} - (14 + 3)}{15} \cdot 1 =
\frac{239}{30}.

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{133}{60}.

    Ta thấy khoảng tứ phân vị của lớp 12B1 nhỏ nhất nên nếu xét theo khoảng tứ phân vị thì điểm kiểm tra môn Toán giữa kì I của lớp 12B1 đồng đều nhất.

  • Câu 13: Vận dụng
    Chọn kết luận đúng

    Bốn bạn Ánh, Ba, Châu, Dũng cùng là thành viên của một câu lạc bộ rubik. Trong một lần luyện tập rubik với nhau, mỗi bạn đã cùng giải rubik 30 lần liên tiếp và thống kê kết quả lại ở bảng sau:

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì bạn nào có tốc độ giải rubik đồng đều nhất?

    Hướng dẫn:

    Bạn Ánh:

    Q_{1} = 8 + \frac{\frac{30}{4} - 1}{8}
\cdot 2 = \frac{77}{8}, Q_{3} = 14
+ \frac{\frac{30 \cdot 3}{4} - (1 + 8 + 5 + 7)}{9} \cdot 2 =
\frac{43}{3}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{113}{24}.

    Bạn Ba:

    Q_{1} = 8 + \frac{\frac{30}{4} - 4}{8}
\cdot 2 = \frac{71}{8}, Q_{3} = 12
+ \frac{\frac{30 \cdot 3}{4} - (4 + 8 + 5)}{6} \cdot 2 =
\frac{83}{6}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{119}{24}.

    Bạn Châu:

    Q_{1} = 10 + \frac{\frac{30}{4} - (5 +
1)}{6} \cdot 2 = \frac{21}{2}, Q_{3} = 14 + \frac{\frac{30 \cdot 3}{4} - (5 + 1 +
6 + 5)}{13} \cdot 2 = \frac{193}{13}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{113}{26}.

    Bạn Dũng:

    Q_{1} = 8 + \frac{\frac{30}{4} - 2}{6}
\cdot 2 = \frac{59}{6}, Q_{3} = 14
+ \frac{\frac{30 \cdot 3}{4} - (2 + 6 + 6 + 8)}{8} \cdot 2 =
\frac{113}{8}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{103}{24}.

    Ta thấy khoảng tứ phân vị ở mẫu số liệu của bạn Dũng nhỏ nhất nên nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì bạn Dũng có tốc độ giải rubik đồng đều nhất.

  • Câu 14: Vận dụng
    Chọn đáp án đúng

    Điều tra về khối lượng \mathbf{27} củ khoai tây (đơn vị: gam) thu hoạch tại nông trường, ta có kết quả sau:

    Nhóm

    Tần số

    Tần số tích lũy

    \lbrack 74;\ \ 80) 4 4
    \lbrack 80;\ \ 86) 6 10
    \lbrack 86;\ \ 92) 3 13
    \lbrack 98;\ \ 104) 4 17
    \lbrack 92;\ \ 98) 3 20
    \lbrack 104;\ \ 110) 7 27
    n = 27

    Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a_{1} = 74, đầu mút phải của nhóm 6 là a_{7} = 110. Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là: R =
a_{7} - a_{1} = 110 - 74 = 36(gam)

    Số phần tử của mẫu là n = 27

    Ta có: \frac{n}{4} = \frac{27}{4} =
6,754 < 6,75 <
10. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 6,75. Xét nhóm 2 là nhóm \lbrack 80;\ \ 86)s = 80; h =
6; n_{2} = 6 và nhóm 1 là nhóm \lbrack 74;\ \ 80)cf_{1} = 4.

    Áp dụng công thức, ta có tứ phân vị thứ nhất là:

    Q_{1} = 80 + \left( \frac{6,75 - 4}{6}
\right).6 = 82,75(gam)

    Ta có: \frac{3n}{4} = \frac{3.27}{4} =
20,2520 < 20,25 <
27. Suy ra nhóm 6 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 20,25.

    Xét nhóm 6 là nhóm \lbrack 104;\ \
109)t = 104; l = 6; n_{6}
= 7 và nhóm 5 là nhóm \lbrack 98;\
\ 104)cf_{5} = 20.

    Áp dụng công thức, ta có tứ phân vị thứ ba là:

    Q_{3} = 104 + \left( \frac{20,25 - 20}{7}
\right).6 = \frac{1459}{14} \approx 104,2(gam)

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

    \Delta_{Q} = Q_{3} - Q_{1} \approx 104,2
- 82,75 = 21,45 (gam)

  • Câu 15: Nhận biết
    Chọn đáp án thích hợp

    Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:

    Tuổi thọ

    \lbrack 14;\ \ 15) \lbrack 15;\ \ 16) \lbrack 16;\ \ 17) \lbrack 17;\ \ 18) \lbrack 18;\ \ 19)

    Số con hổ

    1 3 8 6 2

    Số đặc trưng nào không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng?

    Hướng dẫn:

    Đáp án đúng là Khoảng tứ phân vị.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Vận dụng (47%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo