Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:
Mốt của mẫu số liệu trên là
Mốt chứa trong nhóm
.
Do đó:
;
.
Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:
Mốt của mẫu số liệu trên là
Mốt chứa trong nhóm
.
Do đó:
;
.
Thống kê điểm kiểm tra môn Toán giữa kì I của bốn lớp 12 của một trường THPT cho bởi bảng sau:
|
Điểm |
|||||
|
Lớp 12B1 |
7 | 3 | 15 | 12 | 4 |
|
Lớp 12B2 |
5 | 9 | 12 | 11 | 3 |
|
Lớp 12B3 |
10 | 10 | 9 | 6 | 1 |
|
Lớp 12B4 |
14 | 3 | 15 | 9 | 1 |
Nhà trường muốn đánh giá mức độ “học đều” môn Toán của các lớp. Nếu xét theo khoảng tứ phân vị thì điểm kiểm tra môn Toán giữa kì I của lớp nào đồng đều nhất?
Lớp 12B1:
,
.
.
Lớp 12B2:
,
.
.
Lớp 12B3:
,
.
.
Lớp 12B4:
,
.
.
Ta thấy khoảng tứ phân vị của lớp 12B1 nhỏ nhất nên nếu xét theo khoảng tứ phân vị thì điểm kiểm tra môn Toán giữa kì I của lớp 12B1 đồng đều nhất.
Số đặc trưng nào không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng?
Số đặc trưng không sử dụng thông tin của nhóm số liệu đầu tiên và nhóm số liệu cuối cùng là khoảng tứ phân vị.
Điều tra cân nặng của 50 bé trai 6 tháng tuổi, người ta được kết quả ở bảng sau. Khoảng biến thiên của mẫu số liệu ghép nhóm là bao nhiêu?
|
Nhóm |
[80;100) |
[100;120) |
[120;140) |
[140;160) |
[160;180) |
[180;200) |
|
|
Tần số |
3 |
5 |
6 |
8 |
6 |
2 |
n = 30 |
Khoảng biến thiên của mẫu số liệu ghép nhóm là:
200 – 80 = 120
Điều tra về khối lượng củ khoai tây (đơn vị: gam) thu hoạch tại nông trường, ta có kết quả sau:
|
Nhóm |
Tần số |
Tần số tích lũy |
| 4 | 4 | |
| 6 | 10 | |
| 3 | 13 | |
| 4 | 17 | |
| 3 | 20 | |
| 7 | 27 | |
| n = 27 |
Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là
Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là , đầu mút phải của nhóm 6 là
. Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là:
(gam)
Số phần tử của mẫu là
Ta có: mà
. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng
. Xét nhóm 2 là nhóm
có
;
;
và nhóm 1 là nhóm
có
.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(gam)
Ta có: mà
. Suy ra nhóm 6 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng
.
Xét nhóm 6 là nhóm có
;
;
và nhóm 5 là nhóm
có
.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(gam)
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:
(gam)
Thống kê chiều cao của một số cây bạch đàn giống 1 tháng tuổi của 4 nông trường được cho bởi bảng sau:
|
Chiều cao (cm) |
|||||
|
Nông trường A |
5 | 8 | 16 | 8 | 3 |
|
Nông trường B |
5 | 10 | 8 | 9 | 6 |
|
Nông trường C |
13 | 9 | 9 | 3 | 9 |
|
Nông trường D |
3 | 12 | 8 | 12 | 4 |
Nếu xét theo khoảng tứ phân vị thì cây bạch đàn giống 1 tháng tuổi ở nông trường nào có chiều cao đồng đều nhất?
Nông trường A:
.
,
.
Nông trường B:
.
,
.
Nông trường C:
.
,
.
Nông trường D:
.
,
.
Ta thấy khoảng tứ phân vị của nông trường A là nhỏ nhất nên nếu xét theo khoảng tứ phân vị thì cây bạch đàn giống 1 tháng tuổi ở nông trường A có chiều cao đồng đều nhất.
Cho bảng thống kê chiều cao (đơn vị: cm) của học sinh lớp 12A và lớp 12B như sau:
Chiều cao | [155; 160) | [160; 165) | [165; 170) | [170; 175) | [175; 180) | [180; 185) |
12A | 2 | 7 | 12 | 3 | 0 | 1 |
12B | 5 | 9 | 8 | 2 | 1 | 0 |
Em có nhận xét gì về độ phân tán của nửa giữa số liệu chiều cao của học sinh lớp 12A so với lớp 12B?
Cho bảng thống kê chiều cao (đơn vị: cm) của học sinh lớp 12A và lớp 12B như sau:
Chiều cao | [155; 160) | [160; 165) | [165; 170) | [170; 175) | [175; 180) | [180; 185) |
12A | 2 | 7 | 12 | 3 | 0 | 1 |
12B | 5 | 9 | 8 | 2 | 1 | 0 |
Em có nhận xét gì về độ phân tán của nửa giữa số liệu chiều cao của học sinh lớp 12A so với lớp 12B?
Dưới đây là thống kê thời gian 100 lần đi làm bằng xe bus từ nhà đến trường của bạn Lan:
|
Thời gian (phút) |
[15; 81) |
[18; 21) |
[21; 24) |
[24; 27) |
[27; 30) |
[30; 33) |
|
Số lượt |
22 |
38 |
27 |
8 |
4 |
1 |
Giá trị nào sau đây là giá trị ngoại lệ của mẫu số liệu?
Ta có:
|
Thời gian (phút) |
[15; 81) |
[18; 21) |
[21; 24) |
[24; 27) |
[27; 30) |
[30; 33) |
|
Số lượt |
22 |
38 |
27 |
8 |
4 |
1 |
|
Tần số tích lũy |
22 |
60 |
87 |
95 |
99 |
100 |
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ nhất là [18; 21)
Do đó:
Khi đó tứ phân vị thứ nhất là:
=> Nhóm chứa tứ phân vị thứ ba là [21; 24)
Do đó:
Khi đó tứ phân vị thứ ba là:
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
Trong một lần duy nhất Lan đi hết 29 phút, thời gian đi của Lan thuộc nhóm [30; 33)
Vì nên thời gian của lần Lan đi hết 29 phút là giá trị ngoại lệ của mẫu số liệu ghép nhóm.
Bạn Chi rất thích nhảy hiện đại. Thời gian tập nhảy mỗi ngày trong thời gian gần đây của bạn Chi được thống kê lại ở bảng sau:
![]()
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là
Cỡ mẫu
Gọi là mẫu số liệu gốc về thời gian tập nhảy mỗi ngày của bạn Chi được xếp theo thứ tự không giảm.
Ta có:
Tứ phân vị thứ nhất của mẫu số liệu gốc là . Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
Tứ phân vị thứ ba của mẫu số liệu gốc là . Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
Bốn bạn Ánh, Ba, Châu, Dũng cùng là thành viên của một câu lạc bộ rubik. Trong một lần luyện tập rubik với nhau, mỗi bạn đã cùng giải rubik 30 lần liên tiếp và thống kê kết quả lại ở bảng sau:

Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì bạn nào có tốc độ giải rubik đồng đều nhất?
Bạn Ánh:
,
.
Bạn Ba:
,
.
Bạn Châu:
,
.
Bạn Dũng:
,
.
Ta thấy khoảng tứ phân vị ở mẫu số liệu của bạn Dũng nhỏ nhất nên nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì bạn Dũng có tốc độ giải rubik đồng đều nhất.
Bạn Linh thống kê chiều cao (đơn vị: cm) của các bạn học sinh nữ lớp và lớp
ở bảng sau:
|
Chiều cao (cm) |
||||||
|
Số học sinh nữ lớp 12 A |
2 |
7 |
12 |
3 |
0 |
1 |
|
Số học sinh nữ lớp 12 B |
0 |
9 |
8 |
2 |
1 |
5 |
Gọi ;
lần lượt là khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp
và
. Tìm
;
.
Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp là:
(cm).
Trong mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp , khoảng đầu tiên chứa dữ liệu là [155; 160) và khoảng cuối cùng chứa dữ liệu là [175; 180).
Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp là:
(cm).
Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

a) Giá trị đại điện cho mỗi nhóm và bảng tần số ghép nhóm của mẫu số liệu trên là:

Đúng||Sai
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường A là 2,275. Đúng||Sai
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường B là 1.526. Sai||Đúng
d) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường A có điểm trung bình đồng đều hơn trường B. Sai||Đúng
Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

a) Giá trị đại điện cho mỗi nhóm và bảng tần số ghép nhóm của mẫu số liệu trên là:

Đúng||Sai
b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường A là 2,275. Đúng||Sai
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường B là 1.526. Sai||Đúng
d) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường A có điểm trung bình đồng đều hơn trường B. Sai||Đúng
A.B.C.D.ĐÚNGĐÚNGSAISAI
a) Giá trị đại diện của nhóm [5; 6) là 5,5.
Giá trị đại diện của nhóm [6; 7) là 6,5.
Giá trị đại diện của nhóm [7; 8) là 7,5.
Giá trị đại diện của nhóm [8; 9) là 8,5.
Giá trị đại diện của nhóm [9; 10) là 9,5.
Từ biểu đồ, ta có bảng tần số ghép nhóm sau:

b) Xét mẫu số liệu của trường A:
Cỡ mẫu nA = 4 + 5 + 3 + 4 + 2 = 18.
Gọi là mẫu số liệu gốc về điểm trung bình năm học của học sinh trường A được xếp theo thứ tự không giảm.
Ta có
[5; 6),
[6; 7),
[7; 8),
[8; 9),
[9; 10).
Tứ phân vị thứ nhất của mẫu số liệu gốc là [6; 7). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
Tứ phân vị thứ ba của mẫu số liệu gốc là [8; 9). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: ∆Q = Q3 – Q1 = 8,375 – 6,1 = 2,275.
Xét mẫu số liệu của trường B:
Cỡ mẫu nB = 2 + 5 + 4 + 3 + 1 = 15.
Gọi là mẫu số liệu gốc về điểm trung bình năm học của học sinh trường B được xếp theo thứ tự không giảm.
Ta có
[5; 6),
[6; 7),
[7; 8),
[8; 9),
[9; 10).
Tứ phân vị thứ nhất của mẫu số liệu gốc là [6; 7). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
Tứ phân vị thứ ba của mẫu số liệu gốc là [8; 9). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
d) Vì ∆Q = 2,275 > ∆'Q ≈ 1,73 nên nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường B có điểm trung bình đồng đều hơn.
Một người thống kê lại thời gian (đơn vị: giây) thực hiện các cuộc gọi điện thoại của người đó trong một tuần ở bảng sau.
|
Thời gian |
[0; 60) |
[60; 120) |
[120; 180) |
[180; 240) |
[240; 300) |
[300; 360) |
|
Số cuộc gọi |
8 |
10 |
7 |
5 |
2 |
1 |
Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này?
Cỡ mẫu
Suy ra tứ phân vị thứ nhất của mẫu số liệu gốc là:
Mà
Suy ra tứ phân vị thứ ba của mẫu số liệu gốc là:
Mà
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
Thống kê thu nhập theo tháng của một số nhân viên trong phòng A (đơn vị: triệu đồng) được cho trong bảng sau:
|
Thu nhập |
[3; 5) |
[5; 7) |
[7; 9) |
[9; 11) |
|
Số nhân viên |
5 |
10 |
5 |
2 |
Xét tính đúng, sai các mệnh đề sau:
(a) Cỡ mẫu là n = 22. Đúng||Sai
(b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là . Sai|| Đúng
(c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là . Sai|| Đúng
(d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: . Sai|| Đúng
Thống kê thu nhập theo tháng của một số nhân viên trong phòng A (đơn vị: triệu đồng) được cho trong bảng sau:
|
Thu nhập |
[3; 5) |
[5; 7) |
[7; 9) |
[9; 11) |
|
Số nhân viên |
5 |
10 |
5 |
2 |
Xét tính đúng, sai các mệnh đề sau:
(a) Cỡ mẫu là n = 22. Đúng||Sai
(b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là . Sai|| Đúng
(c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là . Sai|| Đúng
(d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: . Sai|| Đúng
Ta có:
|
Thu nhập |
[3; 5) |
[5; 7) |
[7; 9) |
[9; 11) |
|
Số nhân viên |
5 |
10 |
5 |
2 |
|
Tần số tích lũy |
5 |
15 |
20 |
22 |
(a) Cỡ mẫu là n = 22
Chọn ĐÚNG.
(b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là .
Ta có:
Ta có:
=> Nhóm chứa là [5; 7)
Khi đó ta tìm được các giá trị:
Chọn SAI
(c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm là .
Ta có:
=> Nhóm chứa là [7; 9)
Khi đó ta tìm được các giá trị:
.
Chọn SAI
(d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: .
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là
Chọn SAI
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
|
Tốc độ |
Tần số |
|
40 ≤ x < 50 |
4 |
|
50 ≤ x < 60 |
5 |
|
60 ≤ x < 70 |
7 |
|
70 ≤ x < 80 |
4 |
Xác định khoảng biến thiên của mẫu số liệu đã cho?
Ta có:
Khoảng biến thiên của mẫu số liệu ghép nhóm là
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: