Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng biến thiên của mẫu số liệu ghép nhóm?

    Hướng dẫn:

    Ta có:

    Tổng lượng mưa (mm)

    [140; 240)

    [240; 340)

    [340; 440)

    [440; 540)

    Số năm

    3

    7

    7

    3

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = 400.

  • Câu 2: Thông hiểu
    Tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Mỗi ngày bác Hương đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bác Hương trong 20 ngày được thống kê lại ở bảng sau:

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là

    Hướng dẫn:

    Cỡ mẫu

    n = 20

    Gọi x_{1};x_{2};\ldots;x_{20} là mẫu số liệu gốc về quãng đường đi bộ mỗi ngày của bác Hương trong 20 ngày được xếp theo thứ tự không giảm.

    Ta có: x_{1};\ldots;x_{3} \in \lbrack2,7;3,0);x_{4};\ldots;x_{9} \in \lbrack 3,0;3,3);x_{10};\ldots;x_{14}\in \lbrack 3,3;3,6);;x_{15};\ldots;x_{18} \in \lbrack3,6;3,9);x_{19};x_{20} \in \lbrack 3,9;4,2).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là \frac{1}{2}\left( x_{5} + x_{6} \right) \in
\lbrack 3,0;3,3).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{1} = 3,0 + \frac{\frac{20}{4} - 3}{6}(3,3 -
3,0) = 3,1

    Tứ phân vị thứ ba của mẫu số liệu gốc là \frac{1}{2}\left( x_{15} + x_{16} \right) \in
\lbrack 3,6;3,9).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 3,6 + \frac{\frac{3.20}{4} - (3
+ 6 + 5)}{4}(3,9 - 3,6) = 3,675

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

    \Delta_{Q} = Q_{3} - Q_{1} =
0,575

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Dũng là một học sinh rất giỏi chơi rubik, bạn có thể giải nhiều loại khối rubik khác nhau. Trong một lần tập luyện giải khối rubik, bạn Dũng đã tự thống kê lại thời gian giải rubik trong 25 lần liên tiếp ở bảng sau:

    Thời gian giải rubik (giây)

    \lbrack 8;10) \lbrack 10 ; 12) \lbrack 12;14) \lbrack 14;16) \lbrack 16;18)

    Số lần

    4 6 8 4 3

    Khoảng biến thiên của mẫu số liệu ghép nhóm nhận giá trị nào trong các giá trị sau đây?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu ghép nhóm là R=18-8=10.

  • Câu 4: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu ghép nhóm

    Khi thống kê chiều cao (đơn vị: centimét) của học sinh lớp 12A, người ta thu được mẫu số liệu ghép nhóm như bảng số liệu. Khoảng biến thiên của mẫu số liệu ghép nhóm đó bằng:

    Ảnh có chứa văn bản, Phông chữ, số, ảnh chụp màn hìnhMô tả được tạo tự động

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm ta có đầu mút trái của nhóm 1 là a_{1} = 155, đầu mút phải của nhóm 5 là a_{5} = 180.

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = a_{5} -
a_{1} = 180 - 155 = 25

  • Câu 5: Vận dụng
    Ghi đáp án vào ô trống

    Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:

    101

    79

    79

    78

    75

    73

    68

    67

    67

    63

    63

    61

    60

    59

    57

    55

    55

    50

    47

    42

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:

    101

    79

    79

    78

    75

    73

    68

    67

    67

    63

    63

    61

    60

    59

    57

    55

    55

    50

    47

    42

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Thông hiểu
    Tìm khoảng biến thiên của mẫu số liệu

    Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:

    160

    161

    161

    162

    162

    162

    163

    163

    163

    164

    164

    164

    164

    165

    165

    165

    165

    165

    166

    166

    166

    166

    167

    167

    168

    168

    168

    168

    169

    169

    170

    171

    171

    172

    172

    174

    Chuyển mẫu dữ liệu trên sang mẫu dữ liệu ghép nhóm gồm 4 nhóm số liệu theo các nửa khoảng có độ dài bằng nhau. Khi đó khoảng biến thiên của mẫu số liệu sau khi ghép nhóm là:

    Hướng dẫn:

    Khoảng biến thiên là 174 - 160 =
14

    Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4.

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.

    Khi đó ta có các nhóm là: \lbrack
160;164),\lbrack 164;168),\lbrack 168;172),\lbrack 172;176)

    Vậy bảng dữ liệu ghép nhóm đúng là:

    Vậy khoảng biến thiên của mẫu số liệu sau khi ghép nhóm là R = 176 - 160 = 16.

  • Câu 7: Vận dụng
    Xét tính đúng sai của các khẳng định

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    Đáp án là:

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    a) Đúng. Khoảng biến thiên:

    R_{12A} = R_{12B} = 10 - 0 =
10.

    b) Lớp 12A:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (1 +
5)}{20}.(6 - 4) = 4,4.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (1 +
5 + 20)}{8}.(8 - 6) = 7.

    \Rightarrow \Delta Q_{12A} = Q_{3} -
Q_{1} = 2,6.

    c) Lớp 12B:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (2 +
3)}{10}.(6 - 4) = 5.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (2 +
3 + 10)}{18}.(8 - 6) = \frac{23}{3}.

    \Rightarrow \Delta Q_{12B} = Q_{3} -
Q_{1} = 2,67.

    d) Ta có \Delta Q_{12A} < \Delta
Q_{12B} \Rightarrow Lớp 12A sẽ đồng đều hơn so với lớp 12B.

  • Câu 8: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm

    An tìm hiểu hàm lượng chất béo (đơn vị: g) có trong 100 g mỗi loại thực phẩm. Sau khi thu thập dữ liệu về 60 loại thực phẩm, An lập được bảng thống kê:

    Hàm lượng chất béo (g)

    \lbrack 2;6) \lbrack 6;10) \lbrack 10;14) \lbrack 14;18) \lbrack 18;22) \lbrack 22;26)

    Tần số

    2

    6

    10

    13

    16

    13

    Tính khoảng tứ phân vị của mẫu số liệu?

    Hướng dẫn:

    Ta có:

    Hàm lượng chất béo (g)

    \lbrack 2;6) \lbrack 6;10) \lbrack 10;14) \lbrack 14;18) \lbrack 18;22) \lbrack 22;26)

    Tần số

    2

    6

    10

    13

    16

    13

    Tần số tích lũy

    2 8 18 31 47 60

    Trung vị thứ nhất và thứ ba:

    Q_{1} = 10 + \frac{15 - 8}{10}.4 =
12,8

    Q_{3} = 18 + \frac{45 - 31}{16}.4 =
21,5

    Khoảng tứ phân vị của mẫu số liệu là

    \Delta_{Q} = Q_{3} - \ Q_{1} = 21,5 - 12,8 =
8,7

  • Câu 9: Vận dụng
    Ghi đáp án vào ô trống

    Bảng tần số ghép nhóm dưới đây thể hiện kết quả điều tra về tuổi thọ trung bình:

    Độ tuổi

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    [70; 75)

    [75; 80)

    [80; 85)

    [85; 90)

    Nam

    4

    7

    4

    6

    15

    12

    2

    0

    Nữ

    3

    4

    5

    3

    7

    14

    13

    1

    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm có tuổi thọ trung bình đồng đều nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bảng tần số ghép nhóm dưới đây thể hiện kết quả điều tra về tuổi thọ trung bình:

    Độ tuổi

    [50; 55)

    [55; 60)

    [60; 65)

    [65; 70)

    [70; 75)

    [75; 80)

    [80; 85)

    [85; 90)

    Nam

    4

    7

    4

    6

    15

    12

    2

    0

    Nữ

    3

    4

    5

    3

    7

    14

    13

    1

    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm có tuổi thọ trung bình đồng đều nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Vận dụng
    Xác định tính đúng sai của các nhận định

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B. (ảnh 1)

    a) Giá trị đại điện cho mỗi nhóm và bảng tần số ghép nhóm của mẫu số liệu trên là:

    Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường A là 2,275. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường B là 1.526. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường A có điểm trung bình đồng đều hơn trường B. Sai||Đúng

    Đáp án là:

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B.

    Biểu đồ sau mô tả kết quả điều tra về điểm trung bình năm học của học sinh hai trường A và B. (ảnh 1)

    a) Giá trị đại điện cho mỗi nhóm và bảng tần số ghép nhóm của mẫu số liệu trên là:

    Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường A là 2,275. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm của trường B là 1.526. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường A có điểm trung bình đồng đều hơn trường B. Sai||Đúng

    A.B.C.D.ĐÚNGĐÚNGSAISAI

    a) Giá trị đại diện của nhóm [5; 6) là 5,5.

    Giá trị đại diện của nhóm [6; 7) là 6,5.

    Giá trị đại diện của nhóm [7; 8) là 7,5.

    Giá trị đại diện của nhóm [8; 9) là 8,5.

    Giá trị đại diện của nhóm [9; 10) là 9,5.

    Từ biểu đồ, ta có bảng tần số ghép nhóm sau:

    b) Xét mẫu số liệu của trường A:

    Cỡ mẫu nA = 4 + 5 + 3 + 4 + 2 = 18.

    Gọi x_{1};...;x_{18}là mẫu số liệu gốc về điểm trung bình năm học của học sinh trường A được xếp theo thứ tự không giảm.

    Ta có

    x_{1};...;x_{4} \in [5; 6),

    x_{5};...;x_{9} \in [6; 7),

    x_{10};...;x_{12} \in [7; 8),

    x_{13};...;x_{16} \in [8; 9),

    x_{17};x_{18} \in [9; 10).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{5} \in [6; 7). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{1} = 6
+ \frac{\frac{18}{4} - 4}{5}(7 - 6) = 6,1

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{14} \in [8; 9). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: Q_{3} = 8 +
\frac{\frac{3.18}{4} - (4 + 5 + 3)}{4}(9 - 8) = 8,375

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: ∆Q = Q3 – Q1 = 8,375 – 6,1 = 2,275.

    Xét mẫu số liệu của trường B:

    Cỡ mẫu nB = 2 + 5 + 4 + 3 + 1 = 15.

    Gọi y_{1};...;y_{20}là mẫu số liệu gốc về điểm trung bình năm học của học sinh trường B được xếp theo thứ tự không giảm.

    Ta có

    y_{1};y_{2} \in [5; 6),

    y_{3};...;y_{7} \in [6; 7),

    y_{8};...;y_{11} \in [7; 8),

     y_{12};...;y_{14} \in [8; 9),

    y_{15} \in [9; 10).

    Tứ phân vị thứ nhất của mẫu số liệu gốc là y_{4} \in [6; 7). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: Q_{\
_{1}}' = 6 + \frac{\frac{15}{4} - 2}{5}(7 - 6) = 6,35

    Tứ phân vị thứ ba của mẫu số liệu gốc là y_{12} \in [8; 9). Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:  Q_{\
_{3}}' = 8 + \frac{\frac{3.15}{4} - (2 + 5 + 4)}{3}(9 - 8) =
\frac{97}{12}

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{\ _{Q}}' = Q_{\ _{3}}' - Q_{\
_{1}}' = \frac{97}{12} - 6,35 \approx 1,73

    d) Vì ∆Q = 2,275 > ∆'Q ≈ 1,73 nên nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh trường B có điểm trung bình đồng đều hơn.

  • Câu 11: Vận dụng
    Chọn đáp án đúng

    Cho biểu đồ thống kê thời gian tập thể dục buổi sáng của hai người A và B

    Gọi khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A và B lần lượt là \Delta_{Q_{A}};\Delta_{Q_{B}}. Chọn kết luận đúng?

    Hướng dẫn:

    Ta có:

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    A

    5

    12

    8

    3

    2

    Tần số tích lũy

    5

    17

    25

    28

    30

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 12;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +
\frac{\frac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 5}{12}.5 =
\frac{505}{24}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 17,f = 8;c =
5

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 25 + \frac{22,5 - 17}{8}.5 =
\frac{455}{16}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của A là:

    \Delta_{Q_{A}} = Q_{3} - Q_{1} =
\frac{355}{48} \approx 7,4.

    Đối tượng

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    B

    0

    25

    5

    0

    0

    Tần số tích lũy

    0

    25

    30

    0

    0

    Cỡ mẫu N = 30 \Rightarrow \frac{N}{4} =
7,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \frac{7,5 - 0}{25}.5 =\frac{43}{2}

    Cỡ mẫu \frac{3N}{4} = 22,5

    => Nhóm chứa Q_{1} là: [20; 25)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 0,f = 25;c = 25 -
20 = 5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 20 + \dfrac{22,5 - 0}{25}.5 =\dfrac{49}{2}.

    Vậy khoảng tứ phân vị của mẫu số liệu về thời gian tập thể dục của B là:

    \Delta_{Q_{B}} = Q_{3} - Q_{1} =
3.

    Vậy kết luận đúng là: \Delta_{Q_{A}} >
\Delta_{Q_{B}}.

  • Câu 12: Vận dụng
    Chọn kết luận đúng

    Bốn bạn Ánh, Ba, Châu, Dũng cùng là thành viên của một câu lạc bộ rubik. Trong một lần luyện tập rubik với nhau, mỗi bạn đã cùng giải rubik 30 lần liên tiếp và thống kê kết quả lại ở bảng sau:

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì bạn nào có tốc độ giải rubik đồng đều nhất?

    Hướng dẫn:

    Bạn Ánh:

    Q_{1} = 8 + \frac{\frac{30}{4} - 1}{8}
\cdot 2 = \frac{77}{8}, Q_{3} = 14
+ \frac{\frac{30 \cdot 3}{4} - (1 + 8 + 5 + 7)}{9} \cdot 2 =
\frac{43}{3}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{113}{24}.

    Bạn Ba:

    Q_{1} = 8 + \frac{\frac{30}{4} - 4}{8}
\cdot 2 = \frac{71}{8}, Q_{3} = 12
+ \frac{\frac{30 \cdot 3}{4} - (4 + 8 + 5)}{6} \cdot 2 =
\frac{83}{6}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{119}{24}.

    Bạn Châu:

    Q_{1} = 10 + \frac{\frac{30}{4} - (5 +
1)}{6} \cdot 2 = \frac{21}{2}, Q_{3} = 14 + \frac{\frac{30 \cdot 3}{4} - (5 + 1 +
6 + 5)}{13} \cdot 2 = \frac{193}{13}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{113}{26}.

    Bạn Dũng:

    Q_{1} = 8 + \frac{\frac{30}{4} - 2}{6}
\cdot 2 = \frac{59}{6}, Q_{3} = 14
+ \frac{\frac{30 \cdot 3}{4} - (2 + 6 + 6 + 8)}{8} \cdot 2 =
\frac{113}{8}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{103}{24}.

    Ta thấy khoảng tứ phân vị ở mẫu số liệu của bạn Dũng nhỏ nhất nên nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì bạn Dũng có tốc độ giải rubik đồng đều nhất.

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu

    Kiểm tra điện lượng của một số viên pin tiểu do một hãng sản xuất thu được kết quả sau.

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [0,1; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm này? (Làm tròn các kết quả đến hàng phần trăm)

    Hướng dẫn:

    Ta có:

    Điện lượng (nghìn mAh)

    [0,9; 0,95)

    [0,95; 1,0)

    [1,0; 1,05)

    [1,05; 1,1)

    [1,1; 1,15)

    Số viên pin

    10

    20

    35

    15

    5

    Tần số tích lũy

    10

    30

    65

    80

    85

    Cỡ mẫu N = 85

    \frac{N}{4} = \frac{85}{4}

    => Nhóm chứa Q_{1} là [0,95; 1,0)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 0,95;m = 10,f = 20;c = 1
- 0,95 = 0,05

    \Rightarrow {Q_1} = l + \dfrac{{\dfrac{N}{4} - m}}{f}.c = 0,95 + \dfrac{{\dfrac{{85}}{4} - 10}}{{20}}.0,05 \approx 0,98

    \frac{3N}{4} = \frac{3.85}{4} =
\frac{255}{4}

    => Nhóm chứa Q_{3} là [1,0; 1,05)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 1,0;m = 30,f = 35;c =
1,05 - 1,0 = 0,05

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 1,0 + \dfrac{\dfrac{255}{4} - 30}{35}.0,05\approx 1,05.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là \Delta_{Q} = Q_{3} - Q_{1} \approx
0,07

  • Câu 15: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Dưới đây là bảng thống kê số giờ tự học ở nhà trong 3 ngày nghỉ của học sinh lớp 12 như sau:

    Giờ

    [1; 2)

    [2; 3)

    [3; 4)

    [4; 5)

    [5; 6)

    Số học sinh

    8

    10

    12

    9

    3

    Xét tính đúng sai của các khẳng định sau:

    a) Tứ phân vị thứ nhất của mẫu số liệu bằng 2,25 (giờ). Đúng||Sai

    b) Tứ phân vị thứ hai của mẫu số liệu lớn hơn 4 (giờ). Sai||Đúng

    c) Tứ phân vị thứ ba của mẫu số liệu bằng \frac{25}{6}. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu là số nguyên. Sai||Đúng

    Đáp án là:

    Dưới đây là bảng thống kê số giờ tự học ở nhà trong 3 ngày nghỉ của học sinh lớp 12 như sau:

    Giờ

    [1; 2)

    [2; 3)

    [3; 4)

    [4; 5)

    [5; 6)

    Số học sinh

    8

    10

    12

    9

    3

    Xét tính đúng sai của các khẳng định sau:

    a) Tứ phân vị thứ nhất của mẫu số liệu bằng 2,25 (giờ). Đúng||Sai

    b) Tứ phân vị thứ hai của mẫu số liệu lớn hơn 4 (giờ). Sai||Đúng

    c) Tứ phân vị thứ ba của mẫu số liệu bằng \frac{25}{6}. Đúng||Sai

    d) Khoảng tứ phân vị của mẫu số liệu là số nguyên. Sai||Đúng

    Ta có

    Giờ

    [1; 2)

    [2; 3)

    [3; 4)

    [4; 5)

    [5; 6)

    Số học sinh

    8

    10

    12

    9

    3

    Tần số tích lũy

    8

    18

    30

    39

    42

    a) Đúng: Ta có số phần tử của mẫu là: n =
42 \Rightarrow \frac{n}{4} = 10,5

    Suy ra nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10,5.

    Xét nhóm 2 là nhóm [2;3) có s = 2;h =
1;n_{2} = 10 và nhóm 1 là nhóm [1; 2) có cf_{1} = 8

    Áp dụng công thức tứ phân vị thứ nhất của mẫu số liệu có:

    Q_{1} = 2 + \frac{10,5 - 8}{10}.1 =
2,25(giờ)

    b) Sai: Ta có số phần tử của mẫu là n =
42 \Rightarrow \frac{n}{2} = 21

    cf_{2} = 18 < 21 < cf_{3} =
30 suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 21.

    Xét nhóm 3 là nhóm [3; 4) có r = 3;d =
1;n_{3} = 12 và nhóm 2 là nhóm [2;3) có cf_{2} = 18.

    Áp dụng công thức ta có trung vị của mẫu số liệu là:

    M_{e} = 3 + \frac{21 - 18}{12}.1 =
3,25(giờ)

    Vậy tứ phân vị thứ 2 là Q_{2} = M_{e} =
3,25

    c) Đúng: Ta có số phần tử của mẫu là: \frac{3n}{4} = 31,5

    Suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 31,5.

    Xét nhóm 4 là nhóm [4;5) có t = 4;l =
1;n_{4} = 9 và nhóm 3 là nhóm [3; 4) có cf_{3} = 30.

    Áp dụng công thức tứ phân vị thứ ba của mẫu số liệu có:

    Q_{3} = 4 + \frac{31,5 - 30}{9}.1 =
\frac{25}{6}(giờ)

    d) Sai: Khoảng tứ phân vị của mẫu số liệu bằng \Delta Q = Q_{3} - Q_{1} =
\frac{23}{12}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Vận dụng (47%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo