Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Cánh Diều Bài 1 (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả điều tra thu nhập (triệu đồng/năm) năm 2023 của một số hộ gia đình tại địa phương được ghi lại trong bảng sau:

    Tổng thu nhập

    [200; 250)

    [250; 300)

    [300; 350)

    [350; 400)

    [400; 450)

    Số hộ gia đình

    24

    62

    34

    21

    9

    Một doanh nghiệp địa phương muốn hướng dịch vụ của mình đến các gia đình có mức thu nhập ở tầm trung, tức là 50% các hộ gia đình có mức thu nhập ở chính giữa so với tất cả các hộ gia đình của địa phương. Hỏi doanh nghiệp cần hướng đến các gia đình có mức thu nhập trong khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho mẫu số liệu ghép nhóm dưới đây:

    Nhóm

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Tần số

    2

    6

    8

    9

    3

    2

    Xét tính đúng sai của các khẳng định sau?

    a) Khoảng biến thiên của mẫu số liệu R = 5. Đúng||Sai

    b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm bằng Q_{1} = 57,26. Sai||Đúng

    c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm bằng Q_{3} = 56,35. Sai||Đúng

    d) Khoảng tứ phân vị của mẫu số liệu \Delta Q = 2,34. Đúng||Sai

    Đáp án là:

    Cho mẫu số liệu ghép nhóm dưới đây:

    Nhóm

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    Tần số

    2

    6

    8

    9

    3

    2

    Xét tính đúng sai của các khẳng định sau?

    a) Khoảng biến thiên của mẫu số liệu R = 5. Đúng||Sai

    b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm bằng Q_{1} = 57,26. Sai||Đúng

    c) Tứ phân vị thứ ba của mẫu số liệu ghép nhóm bằng Q_{3} = 56,35. Sai||Đúng

    d) Khoảng tứ phân vị của mẫu số liệu \Delta Q = 2,34. Đúng||Sai

    a) Đúng: Từ mẫu số liệu bảng trên ta có khoảng biến thiên của mẫu số liệu R = 5

    Ta có: n = 260 \Rightarrow \frac{n}{4} =
65

    ⇒ Suy ra nhóm chứa tứ phân vị thứ nhất là nhóm [55; 56).

    b) Sai: Áp dụng công thức:

    Q_{1} = u_{m} + \dfrac{\dfrac{in}{4} -C}{n_{m}}.\left( u_{m + 1} - u_{m} ight)

    \Rightarrow Q_{1} = a_{2} +
\frac{\frac{n}{4} - m_{1}}{m_{2}}.\left( a_{3} - a_{2}
ight)

    = 55 + \frac{65 - 52}{58}.1 =
55,22

    c) Sai: Ta có \frac{3n}{4} = 195 suy ra nhóm chứa tứ phân vị thứ ba là nhóm [57;58).

    \Rightarrow Q_{3} = a_{4} +
\frac{\frac{3n}{4} - \left( m_{1} + m_{2} + m_{3} ight)}{m_{4}}.\left(
a_{5} - a_{4} ight)

    = 57 + \frac{195 - 167}{50}.(58 - 57) =
57,56

    d) Đúng: Suy ra khoảng tứ phân vị của mẫu số liệu trên là \Delta Q = Q_{3} - Q_{1} = 2,34.

  • Câu 3: Vận dụng
    Xét tính đúng sai của các khẳng định

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    Đáp án là:

    Bảng dưới đây thống kê điểm thi học kỳ I môn tiếng Anh của học sinh hai lớp 12A và 12B năm học 2023-2024.

    Điểm thi

    [0; 2)

    [2; 4)

    [4; 6)

    [6; 8)

    [8; 10)

    Số học sinh lớp 12A

    1

    5

    20

    8

    6

    Số học sinh lớp 12B

    2

    3

    10

    18

    7

    Xét tính đúng sai của các kết luận sau?

    a) Khoảng biến thiên của mẫu số liệu ghép nhóm của mỗi lớp là bằng nhau. Đúng||Sai

    b) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12A bằng 2,6. Đúng||Sai

    c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm lớp 12B bằng 2,57. Sai||Đúng

    d) Nếu so sánh theo khoảng tứ phân vị thì điểm thi môn tiếng Anh của lớp 12B đồng đều hơn so với lớp 12A. Sai||Đúng

    a) Đúng. Khoảng biến thiên:

    R_{12A} = R_{12B} = 10 - 0 =
10.

    b) Lớp 12A:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (1 +
5)}{20}.(6 - 4) = 4,4.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (1 +
5 + 20)}{8}.(8 - 6) = 7.

    \Rightarrow \Delta Q_{12A} = Q_{3} -
Q_{1} = 2,6.

    c) Lớp 12B:

    Ta có

    Q_{1} = 4 + \frac{\frac{1}{4}.40 - (2 +
3)}{10}.(6 - 4) = 5.

    Q_{3} = 6 + \frac{\frac{3}{4}.40 - (2 +
3 + 10)}{18}.(8 - 6) = \frac{23}{3}.

    \Rightarrow \Delta Q_{12B} = Q_{3} -
Q_{1} = 2,67.

    d) Ta có \Delta Q_{12A} < \Delta
Q_{12B} \Rightarrow Lớp 12A sẽ đồng đều hơn so với lớp 12B.

  • Câu 4: Vận dụng
    Chọn kết luận đúng

    Thống kê chiều cao của một số cây bạch đàn giống 1 tháng tuổi của 4 nông trường được cho bởi bảng sau:

    Chiều cao (cm)

    \lbrack 5;7) \lbrack 7;9) \lbrack 9;11) \lbrack 11;13) \lbrack 13;15)

    Nông trường A

    5 8 16 8 3

    Nông trường B

    5 10 8 9 6

    Nông trường C

    13 9 9 3 9

    Nông trường D

    3 12 8 12 4

    Nếu xét theo khoảng tứ phân vị thì cây bạch đàn giống 1 tháng tuổi ở nông trường nào có chiều cao đồng đều nhất?

    Hướng dẫn:

    Nông trường A:

    n = 5 + 8 + 16 + 8 + 3 = 40.

    Q_{1} = 7 + \frac{\frac{40}{4} - 5}{8}
\cdot 2 = \frac{33}{4}, Q_{3} = 11
+ \frac{\frac{40 \cdot 3}{4} - (5 + 8 + 16)}{8} \cdot 2 =
\frac{45}{4}

    \Delta_{Q} = Q_{3} - Q_{1} =
3.

    Nông trường B:

    n = 5 + 10 + 8 + 9 + 6 = 38.

    Q_{1} = 7 + \frac{\frac{38}{4} - 5}{10}
\cdot 2 = \frac{79}{10}, Q_{3} = 11
+ \frac{\frac{38 \cdot 3}{4} - (5 + 10 + 8)}{9} \cdot 2 =
\frac{110}{9}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{389}{90}.

    Nông trường C:

    n = 13 + 9 + 9 + 3 + 9 = 43.

    Q_{1} = 5 + \frac{\frac{43}{4}}{13} \cdot
2 = \frac{173}{26}, Q_{3} = 11 +
\frac{\frac{43 \cdot 3}{4} - (13 + 9 + 9)}{3} \cdot 2 =
\frac{71}{6}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{202}{39}.

    Nông trường D:

    n = 3 + 12 + 8 + 12 + 4 =
39.

    Q_{1} = 7 + \frac{\frac{39}{4} - 3}{12}
\cdot 2 = \frac{65}{8}, Q_{3} = 11
+ \frac{\frac{39 \cdot 3}{4} - (3 + 12 + 8)}{12} \cdot 2 =
\frac{289}{24}

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{47}{12}.

    Ta thấy khoảng tứ phân vị của nông trường A là nhỏ nhất nên nếu xét theo khoảng tứ phân vị thì cây bạch đàn giống 1 tháng tuổi ở nông trường A có chiều cao đồng đều nhất.

  • Câu 5: Vận dụng
    Tìm giá trị ngoại lệ của mẫu số liệu

    Dưới đây là thống kê thời gian 100 lần đi làm bằng xe bus từ nhà đến trường của bạn Lan:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Giá trị nào sau đây là giá trị ngoại lệ của mẫu số liệu?

    Hướng dẫn:

    Ta có:

    Thời gian (phút)

    [15; 81)

    [18; 21)

    [21; 24)

    [24; 27)

    [27; 30)

    [30; 33)

    Số lượt

    22

    38

    27

    8

    4

    1

    Tần số tích lũy

    22

    60

    87

    95

    99

    100

    Cỡ mẫu N = 100 \Rightarrow \frac{N}{4} =
25

    => Nhóm chứa tứ phân vị thứ nhất là [18; 21)

    Do đó: l = 18;m = 22,f = 38;c = 21 - 18 =
3

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 18 + \frac{25 - 22}{38}.3 =\frac{693}{38}

    N = 100 \Rightarrow \frac{3N}{4} =
75

    => Nhóm chứa tứ phân vị thứ ba là [21; 24)

    Do đó: l = 21;m = 60,f = 27;c =
3

    Khi đó tứ phân vị thứ ba là:

    \Rightarrow Q_{3} = l +
\frac{\frac{3N}{4} - m}{f}.c = 21 + \frac{75 - 60}{27}.3 =
\frac{68}{3}

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q} = Q_{3} - Q_{1} \approx
4,43

    Trong một lần duy nhất Lan đi hết 29 phút, thời gian đi của Lan thuộc nhóm [30; 33)

    Q_{3} + 1,5\Delta Q = \frac{6683}{228}
< 30 nên thời gian của lần Lan đi hết 29 phút là giá trị ngoại lệ của mẫu số liệu ghép nhóm.

  • Câu 6: Thông hiểu
    Tìm tứ phân vị thứ nhất của mẫu số liệu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính giá trị Q_{1} của mẫu dữ liệu ghép nhóm trên?

    Hướng dẫn:

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =
5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

    Do đó: l = 7;m = 2,f = 7;c = 9 - 7 =
2

    Khi đó tứ phân vị thứ nhất là:

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 7 + \dfrac{5 - 2}{7}.2 =\dfrac{55}{7}

  • Câu 7: Vận dụng
    Ghi đáp án vào ô trống

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Đáp án là:

    Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h ).

    49

    42

    51

    55

    45

    60

    53

    55

    44

    65

    52

    62

    41

    44

    57

    56

    68

    48

    46

    53

    63

    49

    54

    61

    59

    57

    47

    50

    60

    62

    48

    52

    58

    47

    60

    55

    45

    47

    48

    61

    Sau khi ghép nhóm mẫu số liệu trên thành sáu nhóm ứng với sáu nửa khoảng:

    \lbrack 40;45),\lbrack 45;50),\lbrack
50;55),\lbrack 55;60),\lbrack 60;65),\lbrack 65;70)thì trung vị của mẫu số liệu ghép nhóm nhận được bằng \frac{a}{b}(\ km/h) (\frac{a}{b} là phân số tối giản). Khi đó giá trị của a bằng bao nhiêu?

    Đáp án: 375

    Lập mẫu số liệu ghép nhóm bao gồm cả tần số tích luỹ nhu ở Báng 8 .

    Số phần tử của mẫu là n = 40. Ta có: \frac{n}{2} = \frac{40}{2} = 2015 < 20 < 22. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 20 . Xét nhóm 3 có r = 50;d = 5;n_{3} = 7 và nhóm 2 có

    Nhóm

    Tần sồ

    Tần số tích luỹ

    \lbrack 40;45)

    4

    4

    \lbrack 45;50)

    11

    15

    \lbrack 50;55)

    7

    22

    \lbrack 55;60)

    8

    30

    \lbrack 60;65)

    8

    38

    \lbrack 65;70)

    2

    2

     

    n = 40

     

    cf_{2} = 15.

    Trung vị của mẫu số liệu ghép nhóm đó là:

    M_{e} = 50 + \left( \frac{20 - 15}{7}
ight) \cdot 5 = \frac{375}{7}(\ km/h).

    Suy ra a = 375.

  • Câu 8: Thông hiểu
    Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm

    Bạn An rất thích chạy bộ. Thời gian chạy bộ mỗi ngày trong thời gian gần đây của bạn An được thống kê lại ở bảng sau:

    Thời gian (phút)

    [20; 25)

    [25; 30)

    [30; 35)

    [35; 40)

    [40; 45)

    Số ngày

    6

    6

    4

    1

    1

    Hãy tính khoảng tứ phân vị của mẫu số liệu ghép nhóm trong bảng trên.

    Hướng dẫn:

    Cỡ mẫu n = 18.

    Gọi x_{1};x_{2};...;x_{18} là mẫu số liệu gốc gồm thời gian của 18 ngày chạy bộ của bạn An được sắp xếp theo thứ tự không giảm.

    Ta có: x_{1},...,x_{6} \in \lbrack20;25);\ \ x_{7},...,x_{12} \in \lbrack 25;30);\ \ x_{13},...,x_{16} \in\lbrack 30;35);\ \ x_{17} \in \lbrack 35;40);\ \ x_{18} \in \lbrack40;45)

    Tứ phân vị thứ nhất của mẫu số liệu gốc là x_{5} \in \lbrack 20;25).

    Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

    Q_{1} = 20 + \frac{\frac{18}{4} - 0}{6}\cdot (25 - 20) = 23,75.

    Tứ phân vị thứ ba của mẫu số liệu gốc là x_{14} \in \lbrack 30;35).

    Do đó, tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

    Q_{3} = 30 + \frac{\frac{3 \cdot 18}{4} -(6 + 6)}{4} \cdot (35 - 30) = 31,875.

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \Delta_{Q}=31,875-23,75=8,125.

  • Câu 9: Vận dụng
    Chọn đáp án đúng

    Điều tra về khối lượng \mathbf{27} củ khoai tây (đơn vị: gam) thu hoạch tại nông trường, ta có kết quả sau:

    Nhóm

    Tần số

    Tần số tích lũy

    \lbrack 74;\ \ 80) 4 4
    \lbrack 80;\ \ 86) 6 10
    \lbrack 86;\ \ 92) 3 13
    \lbrack 98;\ \ 104) 4 17
    \lbrack 92;\ \ 98) 3 20
    \lbrack 104;\ \ 110) 7 27
    n = 27

    Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là

    Hướng dẫn:

    Trong mẫu số liệu ghép nhóm trên, ta có: đầu mút trái của nhóm 1 là a_{1} = 74, đầu mút phải của nhóm 6 là a_{7} = 110. Vậy khoảng biến thiên của mẫu số liệu ghép nhóm đó là: R =
a_{7} - a_{1} = 110 - 74 = 36(gam)

    Số phần tử của mẫu là n = 27

    Ta có: \frac{n}{4} = \frac{27}{4} =
6,754 < 6,75 <
10. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 6,75. Xét nhóm 2 là nhóm \lbrack 80;\ \ 86)s = 80; h =
6; n_{2} = 6 và nhóm 1 là nhóm \lbrack 74;\ \ 80)cf_{1} = 4.

    Áp dụng công thức, ta có tứ phân vị thứ nhất là:

    Q_{1} = 80 + \left( \frac{6,75 - 4}{6}
\right).6 = 82,75(gam)

    Ta có: \frac{3n}{4} = \frac{3.27}{4} =
20,2520 < 20,25 <
27. Suy ra nhóm 6 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 20,25.

    Xét nhóm 6 là nhóm \lbrack 104;\ \
109)t = 104; l = 6; n_{6}
= 7 và nhóm 5 là nhóm \lbrack 98;\
\ 104)cf_{5} = 20.

    Áp dụng công thức, ta có tứ phân vị thứ ba là:

    Q_{3} = 104 + \left( \frac{20,25 - 20}{7}
\right).6 = \frac{1459}{14} \approx 104,2(gam)

    Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

    \Delta_{Q} = Q_{3} - Q_{1} \approx 104,2
- 82,75 = 21,45 (gam)

  • Câu 10: Thông hiểu
    Tìm khoảng chứa tứ phân vị thứ nhất

    Đo cân nặng của 40 học sinh lớp 12A9 ta được bảng số liệu như sau:

    Khối lượng (kg)

    [40;45)

    [45;50)

    [50;55)

    [55;60)

    [60;65)

    [65;70)

    [70;75)

    [75;80]

    Số học sinh

    4

    13

    7

    5

    6

    2

    1

    2

    Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm thuộc khoảng nào sau đây?

    Hướng dẫn:

    Gọi x_{1};x_{2};\ldots;x_{40} là mẫu số liệu gốc về cân nặng của 40 học sinh lớp 12A9 được xếp theo thứ tự tăng dần.

    Tứ phân vị thứ nhất của mẫu số liệu x_{1};x_{2};...;x_{40}x_{10} \in \lbrack 45;50)

  • Câu 11: Thông hiểu
    Chọn đáp án đúng

    Cho bảng thống kê số lượt vi phạm giao thông trong 20 ngày của người dân một địa phương được thống kê như sau:

    101

    79

    79

    78

    75

    73

    68

    67

    67

    63

    63

    61

    60

    59

    57

    55

    55

    50

    47

    42

    Hãy tìm khoảng biến thiên của mẫu số liệu ghép nhóm có độ dài bằng nhau với nhóm đầu tiên là [40; 50)?

    Hướng dẫn:

    Bảng số liệu ghép nhóm:

    Số lỗi

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    [80; 90)

    [90; 100)

    [100; 110)

    Tần số

    2

    5

    7

    5

    0

    0

    1

    Vậy R = 110 – 40 = 70

  • Câu 12: Nhận biết
    Xác định khoảng biến thiên của mẫu số liệu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Tìm khoảng biến thiên của mẫu số liệu đã cho?

    Hướng dẫn:

    Khoảng biến thiên của mẫu số liệu bằng R
= 100 - 0 = 100.

  • Câu 13: Vận dụng
    Chọn kết luận đúng nhất

    Thống kê điểm kiểm tra môn Toán giữa kì I của bốn lớp 12 của một trường THPT cho bởi bảng sau:

    Điểm

    \lbrack 5;6) \lbrack 6;7) \lbrack 7;8) \lbrack 8;9) \lbrack 9;10\rbrack

    Lớp 12B1

    7 3 15 12 4

    Lớp 12B2

    5 9 12 11 3

    Lớp 12B3

    10 10 9 6 1

    Lớp 12B4

    14 3 15 9 1

    Nhà trường muốn đánh giá mức độ “học đều” môn Toán của các lớp. Nếu xét theo khoảng tứ phân vị thì điểm kiểm tra môn Toán giữa kì I của lớp nào đồng đều nhất?

    Hướng dẫn:

    Lớp 12B1:

    n = 7 + 3 + 15 + 12 + 4 =
41

    Q_{1} = 7 + \frac{\frac{41}{4} - (7 +
3)}{15} \cdot 1 = \frac{421}{60}, Q_{3} = 8 + \frac{\frac{41 \cdot 3}{4} - (7 + 3 +
15)}{12} \cdot 1 = \frac{407}{48}.

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{117}{80}.

    Lớp 12B2:

    n = 5 + 9 + 12 + 11 + 3 =
40

    Q_{1} = 6 + \frac{\frac{40}{4} - 5}{9}
\cdot 1 = \frac{59}{9}, Q_{3} = 8 +
\frac{\frac{40 \cdot 3}{4} - (5 + 9 + 12)}{11} \cdot 1 =
\frac{92}{11}.

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{179}{99}.

    Lớp 12B3:

    n = 10 + 10 + 9 + 6 + 1 =
36

    Q_{1} = 5 + \frac{\frac{36}{4}}{10} \cdot
1 = \frac{59}{10}, Q_{3} = 7 +
\frac{\frac{36 \cdot 3}{4} - (10 + 10)}{9} \cdot 1 =
\frac{70}{9}.

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{169}{90}.

    Lớp 12B4:

    n = 14 + 3 + 15 + 9 + 1 =
42

    Q_{1} = 5 + \frac{\frac{42}{4}}{14} \cdot
1 = \frac{23}{4}, Q_{3} = 7 +
\frac{\frac{42 \cdot 3}{4} - (14 + 3)}{15} \cdot 1 =
\frac{239}{30}.

    \Delta_{Q} = Q_{3} - Q_{1} =
\frac{133}{60}.

    Ta thấy khoảng tứ phân vị của lớp 12B1 nhỏ nhất nên nếu xét theo khoảng tứ phân vị thì điểm kiểm tra môn Toán giữa kì I của lớp 12B1 đồng đều nhất.

  • Câu 14: Nhận biết
    Chọn kết luận đúng

    Xét mẫu số liệu ghép nhóm có tứ phân vị thứ nhất, tứ phân vị thứ hai, tứ phân vị thứ ba lần lượt là Q_{1}; Q_{2}; Q_{3}. Khoảng tứ phân vị của mẫu số liệu ghép nhóm đó bằng

    Hướng dẫn:

    Khoảng tứ phân vị của mẫu số liệu ghép nhóm là Q_{3} - Q_{1}.

  • Câu 15: Nhận biết
    Tìm khoảng biến thiên của mẫu số liệu

    Cho bảng thống kê lượng mưa (đơn vị: mm) đo được vào tháng 6 từ năm 2023 đến 2024 tại khu vực A:

    341,4

    187,1

    242,2

    522,9

    251,4

    432,2

    200,7

    388,6

    258,4

    288,5

    298,1

    413,5

    413,5

    332

    421

    475

    400

    305

    520

    147

    Chia mẫu số liệu thành 4 nhóm với nhóm đầu tiên [140; 240). Tìm khoảng biến thiên của mẫu số liệu ghép nhóm?

    Hướng dẫn:

    Ta có:

    Tổng lượng mưa (mm)

    [140; 240)

    [240; 340)

    [340; 440)

    [440; 540)

    Số năm

    3

    7

    7

    3

    Vậy khoảng biến thiên của mẫu số liệu ghép nhóm là R = 400.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Vận dụng (47%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo