Trong không gian , cho điểm
thỏa
và
. Tọa độ của véctơ
là
Ta có:
Trong không gian , cho điểm
thỏa
và
. Tọa độ của véctơ
là
Ta có:
Trong không gian hệ trục tọa độ , cho lăng trụ tam giác
có tọa độ các điểm
. Xác định tọa độ điểm
?
Hình vẽ minh họa
Gọi tọa độ điểm
Vì là hình lăng trụ nên
Vậy tọa độ .
Tìm để góc giữa hai vectơ
là góc nhọn.
Để
.
Kết hợp điều kiện
Tìm tọa độ véctơ biết rằng
và
.
Ta có .
Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.
Tính quãng đường máy bay bay được.
Từ đó suy ra toạ độ.
Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:
Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).
Trong không gian với hệ trục tọa độ , cho
, khi đó tọa độ điểm
là:
Gọi ta có:
khi đó
nên tọa độ điểm cần tìm là
.
Trong không gian , cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.
Trong không gian với hệ trục tọa độ , cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có:
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Trong không gian với hệ trục tọa độ , cho ba điểm
. Tìm tọa độ điểm
sao cho tứ giác
là hình bình hành.
Hình vẽ minh họa
Ta có ;
nên
không cùng phương hay
không thẳng hàng.
Gọi
.
Lúc đó, là hình bình hành khi và chỉ khi
Vậy tọa độ điểm cần tìm là:
Trong không gian , cho hai điểm
và
. Các khẳng định sau đúng hay sai?
a) . Đúng||Sai
b) . Sai||Đúng
c) . Sai||Đúng
d) Tứ giác là hình bình hành khi
. Đúng||Sai
Trong không gian , cho hai điểm
và
. Các khẳng định sau đúng hay sai?
a) . Đúng||Sai
b) . Sai||Đúng
c) . Sai||Đúng
d) Tứ giác là hình bình hành khi
. Đúng||Sai
a) Đúng
.
b) Sai
.
c) Sai
.
d) Đúng
Ta có: ,
là hình bình hành
Trong không gian , cho điểm
. Hình chiếu vuông góc của
trên mặt phẳng
là điểm
. Khi đó giá trị
bằng:
Hình chiếu vuông góc của trên mặt phẳng
là
Suy ra .
Trong không gian , mặt phẳng
đi qua điểm nào sau đây?
Xét điểm ta có:
đúng nên
.
Nếu một vật có khối lượng thì lực hấp dẫn
của trái đất tác dụng lên vật được xác định theo công thức
, trong đó
là gia tốc rơi tự do có độ lớn
. Độ lớn của lực Trái Đất tác dụng lên một quả lê có khối lượng
là
Đổi
Độ lớn của lực hấp dẫn của trái đất tác dụng lên quả lê là:
Trong không gian , cho vectơ
. Tọa độ điểm
là:
Ta có:
Trong không gian hệ trục tọa độ , cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Trong không gian , cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Trong không gian , cho điểm
thỏa mãn
. Khi điểm
thì giá trị
bằng?
Ta có:
Vậy
Tứ giác là hình bình hành biết tọa độ các điểm
. Tìm tọa độ điểm
?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian , cho
. Gọi
là hình chiếu của
trên mặt phẳng
. Khi tứ giác
là hình bình hành thì giá trị
bằng?
là hình chiếu của
trên mặt phẳng
.
là hình bình hành
.
Vậy .
Trong không gian hệ trục tọa độ cho điểm
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu đối xứng với
qua mặt phẳng
thì
.
Nếu đối xứng với
qua trục
thì
.
Nếu đối xứng với
qua gốc tọa độ thì
.
Vậy mệnh đề đúng là: “Nếu đối xứng với
qua mặt phẳng
thì
”.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: