Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tọa độ của vectơ trong không gian (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Xác định tính đúng sai của các nhận định

    Trong không gian Oxyz, cho hình bình hành OABC với A(1;\ 2;\ 3), B(5;\ 0;\  - 1), và C(a;b;c)

    a. Tọa độ điểm O(0;0;1).

    b. Tọa độ vectơ \overrightarrow{OA} =
(1;\ 2;\ 3).

    c. \overrightarrow{OB} =
5.\overrightarrow{i} - \overrightarrow{k}.

    d. Nếu OABC hình bình hành, thì a + b + c = 2.

    Đáp án là:

    Trong không gian Oxyz, cho hình bình hành OABC với A(1;\ 2;\ 3), B(5;\ 0;\  - 1), và C(a;b;c)

    a. Tọa độ điểm O(0;0;1).Sai

    b. Tọa độ vectơ \overrightarrow{OA} =
(1;\ 2;\ 3). Đúng

    c. \overrightarrow{OB} =
5.\overrightarrow{i} - \overrightarrow{k}. Đúng

    d. Nếu OABC hình bình hành, thì a + b + c = 2. Đúng

    (a) Tọa độ điểm O(0;0;1).

    Trong không gian Oxyz, gốc tọa độ O(0;0;0).

    » Chọn SAI.

    (b) Tọa độ vectơ \overrightarrow{OA} = (1;\ 2;\ 3).

    Điểm A(1;\ 2;\ 3), suy ra \overrightarrow{OA} = 1.\overrightarrow{i} +
2.\overrightarrow{j} + 3.\overrightarrow{k} = (1;\ 2;\ 3) .

    » Chọn ĐÚNG.

    (c) \overrightarrow{OB}
= 5.\overrightarrow{i} - \overrightarrow{k}.

    Ta có B(5;\ 0;\  - 1). Suy ra vectơ \overrightarrow{OB} =
5.\overrightarrow{i} - 1.\overrightarrow{k}.

    » Chọn ĐÚNG.

    (d) Nếu OABC hình bình hành, thì a + b + c =
2.

    Ta có \overrightarrow{OA} =
1.\overrightarrow{i} + 2.\overrightarrow{j} + 3.\overrightarrow{k} =
(1;\ 2;\ 3), C(a;b;c)

    \Rightarrow \overrightarrow{OC} =
a\overrightarrow{i} + b\overrightarrow{j} +
c\overrightarrow{k}\overrightarrow{CB} = \overrightarrow{OB} -
\overrightarrow{OC}

    = \left( 5.\overrightarrow{i} -1.\overrightarrow{k} \right) - \left( a.\overrightarrow{i} +b.\overrightarrow{j} + c.\overrightarrow{k} \right)= (5 - a;b; - 1 -c).

    OABC hình bình hành, thì \left\{ \begin{matrix}
5 - a = 1 \\
b = 2 \\
- 1 - c = 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 4 \\
b = 2 \\
c = - 4 \\
\end{matrix} \right.. Khi đó a +
b + c = 2.

    » Chọn ĐÚNG.

  • Câu 2: Thông hiểu
    Xác định tọa độ điểm

    Trong không gian Oxyz, cho \overrightarrow{OM} = 2\overrightarrow{i} +
\overrightarrow{k} - 3\overrightarrow{j}. Tọa độ điểm M là:

    Hướng dẫn:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{OM} =
2\overrightarrow{i} + \overrightarrow{k} - 3\overrightarrow{j} suy ra tọa độ M(2; - 3;1).

  • Câu 3: Thông hiểu
    Xác định tọa độ điểm D

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;0),B(1;1;0),C(0;1;1). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành?

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AD} =
\overrightarrow{BC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = - 1 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 1 \\
\end{matrix} ight.. Vậy tọa độ điểm D(0;0;1).

  • Câu 4: Thông hiểu
    Tìm tọa độ vecto

    Trong không gian với hệ tọa độ Oxyz, cho điểm A thỏa \overrightarrow{OA} = 2\overrightarrow{i} -
3\overrightarrow{j} + 4\overrightarrow{k}B(2;1;4). Tọa độ của vectơ \overrightarrow{BA}

    Hướng dẫn:

    Ta có:

    \overrightarrow{OA} =
2\overrightarrow{i} - 3\overrightarrow{j} + 4\overrightarrow{k}
\Rightarrow A(2; - 3;4)

    Suy ra \overrightarrow{BA} = (2 - 2; - 3
- 1;4 - 4) = (0; - 4;0) 

  • Câu 5: Thông hiểu
    Tìm tọa độ vecto

    Trong không gian Oxyz, cho điểm A thỏa \overrightarrow{AO} = 4\overrightarrow{k} -
2\overrightarrow{j}B(1;2; -
1). Tọa độ của véctơ \overrightarrow{AB}

    Hướng dẫn:

    Ta có: \overrightarrow{AO} =
4\overrightarrow{k} - 2\overrightarrow{j} \Rightarrow A(0;2; -
4)

    \Rightarrow \overrightarrow{AB} =
(1;0;3)

  • Câu 6: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho A(1;0;0),\ \ B(0;2;0);M(x - 1;2y - 2;7). Gọi M' là hình chiếu của M trên mặt phẳng (Oxy). Khi tứ giác OBM'A là hình bình hành thì giá trị x + y bằng?

    Hướng dẫn:

    M' là hình chiếu của M trên mặt phẳng (Oxy) \Rightarrow M'(x - 1;2y -
2;0).

    OBM'A là hình bình hành

    \Leftrightarrow \overrightarrow{OB} =
\overrightarrow{AM'} \Leftrightarrow \left\{ \begin{matrix}
0 = x - 2 \\
2 = 2y - 2 \\
0 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 2 \\
\end{matrix} \right..

    Vậy x + y = 4.

  • Câu 7: Thông hiểu
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 1; - 1;3), B(0;2;0) C(5; - 2;1). Điểm D(a;b;c) sao cho tứ giác ABCD là hình bình hành. Tính S = a + b + c?

    Đáp án:

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 1; - 1;3), B(0;2;0) C(5; - 2;1). Điểm D(a;b;c) sao cho tứ giác ABCD là hình bình hành. Tính S = a + b + c?

    Đáp án: 3

    Gọi D = (x;y;z) \Rightarrow \overrightarrow{DC} = (5 - x; - 2 -
y;1 - z)

    Ta có: \overrightarrow{AB} = (1;3; -
3)

    ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Rightarrow \left\{ \begin{matrix}
5 - x = 1 \\
- 2 - y = 3 \\
1 - z = - 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 5 \\
z = 4 \\
\end{matrix} ight.\  \Rightarrow D(4; - 5;4).

    Vậy S = a + b + c = 3.

  • Câu 8: Thông hiểu
    Xác định tọa độ điểm C

    Trong không gian Oxyz, cho hình bình hành hình bình hành. Biết các điểm A(1;0;1),B(2;1;2),D(1; - 1;1). Xác định tọa độ điểm C?

    Hướng dẫn:

    Giả sử điểm C(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{DC} =
\overrightarrow{AB}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = 1 \\
y + 1 = 1 \\
z - 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm C(2;0;2).

  • Câu 9: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2; - 1),B(2; - 1;3),C( - 2;3;3). Điểm M(a;b;c) là đỉnh thứ tư của hình bình hành ABCM. Khi đó giá trị biểu thức T = a + b - c có giá trị bằng bao nhiêu?

    Hướng dẫn:

    Gọi tọa độ điểm M(x;y;z)

    Ta có: ABCM là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{MC}

    \Leftrightarrow \left\{ \begin{matrix}
- 2 - x = 1 \\
3 - y = - 3 \\
3 - z = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 3 \\
y = 6 \\
z = - 1 \\
\end{matrix} ight. suy ra điểm M( - 3;6; - 1)

    Khi đó T = a + b - c = - 3 + 6 - ( - 1) =
4.

  • Câu 10: Thông hiểu
    Tìm tọa độ điểm D

    Trong không gian Oxyz, cho các điểm A(1;2; - 3),B(2;5;7),C( - 3;1;4). Xác định tọa độ điểm D sao cho tứ giác ABCD là hình bình hành?

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
1 = - 3 - x \\
3 = 1 - y \\
20 = 4 - z \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = - 2 \\
z = - 6 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4; - 2; - 6).

  • Câu 11: Nhận biết
    Tìm tọa độ vecto

    Trong không gian O xyz, cho A(2; - 1;0)B(1;1; - 3). Vectơ \overrightarrow{AB} có tọa độ là

    Hướng dẫn:

    Ta có:

    A(2; - 1;0)B(1;1; - 3) khi đó:

    \overrightarrow{AB} = (1 - 2;1 + 1; - 3
- 0) = ( - 1;2; - 3)

  • Câu 12: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian Oxyz, cho điểm A( - 3; - 1; - 1). Hình chiếu vuông góc của A trên mặt phẳng (Oyz) là điểm A'(x;y;z). Khi đó giá trị 2x + y + z bằng:

    Hướng dẫn:

    Hình chiếu vuông góc của A( - 3; - 1; -
1) trên mặt phẳng (Oyz)A'(0; - 1; - 1)

    Suy ra 2x + y + z = - 2.

  • Câu 13: Thông hiểu
    Ghi đáp án vào ô trống

    Tích tất cả giá trị của a để góc tạo bởi đường thẳng \left\{ \begin{matrix}
x = 4 + at \\
y = 7 - 2t \\
\end{matrix}(t\mathbb{\in R}) ight. và đường thẳng 3x + 4y - 2 = 0 bằng 45^{0} là:

    Đáp án:

    Đáp án là:

    Tích tất cả giá trị của a để góc tạo bởi đường thẳng \left\{ \begin{matrix}
x = 4 + at \\
y = 7 - 2t \\
\end{matrix}(t\mathbb{\in R}) ight. và đường thẳng 3x + 4y - 2 = 0 bằng 45^{0} là:

    Đáp án: -4||- 4

    Gọi \varphi là góc giữa hai đường thẳng đã cho.

    Đường thẳng \left\{ \begin{matrix}
x = 4 + at \\
y = 7 - 2t \\
\end{matrix}\ \ \ \ (t\mathbb{\in R}) ight. có vectơ chỉ phương là \overrightarrow{u} = (a; -
2).

    Đường thẳng 3x + 4y - 2 = 0 có vectơ chỉ phương là \overrightarrow{v} = (4;
- 3).

    Ta có:

    \cos\varphi =
|cos(\overrightarrow{u},\overrightarrow{v})|

    \Leftrightarrow cos45^{0} =
\frac{|\overrightarrow{u}.\overrightarrow{v}|}{|\overrightarrow{u}|.|\overrightarrow{v}|}

    \Leftrightarrow \frac{1}{\sqrt{2}} =
\frac{|4a + 6|}{5\sqrt{a^{2} + 4}}

    \Leftrightarrow 5\sqrt{a^{2} + 4} =
\sqrt{2}|4a + 6|

    \Leftrightarrow 25a^{2} + 100 = 32a^{2}
+ 96a + 72

    \Leftrightarrow 7a^{2} + 96a - 28 = 0\Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{2}{7} \\a = - 14 \\\end{matrix}. ight.

    Vậy tích tất cả các giá trị của tham số a bằng -4.

  • Câu 14: Thông hiểu
    Tìm tọa độ điểm D thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;3),B(2;3; - 4),C( - 3;1;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
- 3 - x = 1 \\
1 - y = 3 \\
2 - z = - 7 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = - 2 \\
z = 9 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4; - 2;9).

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, cho \overrightarrow{a} = - \overrightarrow{i} +
2\overrightarrow{j} - 3\overrightarrow{k}. Tọa độ vectơ \overrightarrow{a} là:

    Hướng dẫn:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{a} = -
\overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k} suy ra tọa độ vectơ \overrightarrow{a} = ( -
1;2; - 3).

  • Câu 16: Nhận biết
    Tìm tọa độ hình chiếu

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là:

    Hướng dẫn:

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là điểm có tọa độ (2;0;0).

  • Câu 17: Thông hiểu
    Tìm tọa độ điểm C

    Tứ giác MNPQ là hình bình hành biết tọa độ các điểm M(1;2;3),N(2; -
3;1),P(3;1;2). Tìm tọa độ điểm Q?

    Hướng dẫn:

    Giả sử điểm Q(x;y;z) khi đó \left\{ \begin{matrix}
\overrightarrow{QP} = (x - 3;y - 1;z - 2) \\
\overrightarrow{MN} = ( - 1;5;2) \\
\end{matrix} ight.

    ta có MNPQ là hình bình hành nên \overrightarrow{QP} =
\overrightarrow{MN}

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 = - 1 \\
y - 1 = 5 \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 6 \\
z = 4 \\
\end{matrix} ight.. Vậy tọa độ điểm Q(2;6;4).

  • Câu 18: Thông hiểu
    Tìm tọa độ điểm N

    Trong không gian với hệ tọa độ Oxyz, cho vectơ \overrightarrow{a} = \left( 2;\frac{1}{3}; - 5
\right) và điểm M(2;3;4). Tọa độ điểm N thỏa mãn \overrightarrow{MN} = \overrightarrow{a} là:

    Hướng dẫn:

    Gọi tọa độ điểm N\left( x_{N};y_{N};z_{N} \right), ta có: \overrightarrow{MN} = \left( x_{N} - 2;y_{N}
- 3;z_{N} - 4 \right).

    Ta có: \overrightarrow{MN} =
\overrightarrow{a} \Leftrightarrow \left\{ \begin{matrix}
x_{N} - 2 = 2 \\
y_{N} - 3 = \frac{1}{3} \\
z_{N} - 4 = - 5 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 2 + 2 \\
y_{N} = \frac{1}{3} + 3 \\
z_{N} = - 5 + 4 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 4 \\
y_{N} = \frac{10}{3} \\
z_{N} = - 1 \\
\end{matrix} \right..

    Vậy N\left( 4;\frac{10}{3}; - 1
\right).

  • Câu 19: Thông hiểu
    Chọn phương án đúng

    Trong không gian với hệ toạ độ Oxyz, cho A(1\ ;\ 1\ ;\ 2),\ B(2\ ;\  - 1\ ;\ 1),\ C(3\ ;\
2\ ;\  - 3). Tìm tọa độ điểm D để tứ giácABCD là hình bình hành.

    Hướng dẫn:

    Gọi tọa độ điểm D(x\ ;\ y\ ;\
z).

    Ta có: \overrightarrow{AD}\  = \ (x\  - \
1\ ;\ y\  - 1\ ;\ z\  - \ 2), \overrightarrow{BC}\  = \ (1\ ;\ 3\ ;\  -
4).

    Tứ giác ABCD là hình bình hành \Leftrightarrow \overrightarrow{AD} =
\overrightarrow{BC}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = 1 \\
y - 1 = 3 \\
z - 2 = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 4 \\
z = - 2 \\
\end{matrix} ight.

    Vậy D(2\ ;\ 4\ ;\  - 2).

  • Câu 20: Thông hiểu
    Tìm tọa độ biểu thức vectơ

    Cho\overrightarrow{AB} = (5; -
3;2),\overrightarrow{AC} = (4;2;1). Tọa độ của \overrightarrow{a} = 2\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} =
2\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}

    = \left( 2.5 + \frac{1}{2}.4;2.( - 3) +
\frac{1}{2}.2;2.2 + \frac{1}{2}.1 ight)

    = \left( 12; - 5;\frac{9}{2}
ight)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Chia sẻ, đánh giá bài viết
1
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo
Chia sẻ
Chia sẻ FacebookChia sẻ TwitterSao chép liên kếtQuét bằng QR Code
Mã QR Code
Đóng