Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tọa độ của vectơ trong không gian (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xét tính đúng sai của mỗi kết luận

    Trong không gian Oxyz, cho hai điểm A( - 1;3;0)B(2;0; - 3). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} = ( -
1;3;0). Đúng||Sai

    b) \overrightarrow{OB} =
\overrightarrow{2i} - 3\overrightarrow{j}. Sai||Đúng

    c) \overrightarrow{AB} = ( -
3;3;3). Sai||Đúng

    d) Tứ giác OABC là hình bình hành khi \overrightarrow{OC} =
3\overrightarrow{i} - 3\overrightarrow{j} -
3\overrightarrow{k}. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hai điểm A( - 1;3;0)B(2;0; - 3). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} = ( -
1;3;0). Đúng||Sai

    b) \overrightarrow{OB} =
\overrightarrow{2i} - 3\overrightarrow{j}. Sai||Đúng

    c) \overrightarrow{AB} = ( -
3;3;3). Sai||Đúng

    d) Tứ giác OABC là hình bình hành khi \overrightarrow{OC} =
3\overrightarrow{i} - 3\overrightarrow{j} -
3\overrightarrow{k}. Đúng||Sai

    a) Đúng

    \overrightarrow{OA} = ( -
1;3;0).

    b) Sai

    \overrightarrow{OB} = \overrightarrow{2i}
- 3\overrightarrow{k}.

    c) Sai

    \overrightarrow{AB} = \left( x_{B} -
x_{A}^{};y_{B} - y_{A};z_{B} - z_{A} ight) = (3; - 3; -
3).

    d) Đúng

    Ta có: \overrightarrow{AB} = (3; - 3; -
3),

    OABC là hình bình hành

    \Leftrightarrow \overrightarrow{OC} =
\overrightarrow{AB} \Leftrightarrow \left\{ \begin{matrix}
x_{C} = 3 \\
y_{C} = - 3 \\
z_{C} = - 3 \\
\end{matrix} ight.\  \Rightarrow C(3; - 3; - 3)

  • Câu 2: Thông hiểu
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho \overrightarrow{a} = (2; - 2;1)\ \overrightarrow{b} = (x - 1)\overrightarrow{i} +
\left( x^{2} - 3 \right)\overrightarrow{j} +
y\overrightarrow{j}. Khi \overrightarrow{a} = \overrightarrow{b} thì giá trị x - y bằng?

    Hướng dẫn:

    Ta có: \ \overrightarrow{b} = (x -1)\overrightarrow{i} + \left( x^{2} - 3 \right)\overrightarrow{j} +y\overrightarrow{j}\Rightarrow \overrightarrow{b} = \left( x - 1;x^{2}- 3;y \right).

    \overrightarrow{a} = \overrightarrow{b}
\Leftrightarrow \left\{ \begin{matrix}
x + 1 = 2 \\
x^{2} - 3 = - 2 \\
y = 1 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
x = 1;x = - 1 \\
y = 1 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
\end{matrix} \right..

    Vậy x - y = 0.

  • Câu 3: Thông hiểu
    Tìm tọa độ điểm C

    Tứ giác MNPQ là hình bình hành biết tọa độ các điểm M(1;2;3),N(2; -
3;1),P(3;1;2). Tìm tọa độ điểm Q?

    Hướng dẫn:

    Giả sử điểm Q(x;y;z) khi đó \left\{ \begin{matrix}
\overrightarrow{QP} = (x - 3;y - 1;z - 2) \\
\overrightarrow{MN} = ( - 1;5;2) \\
\end{matrix} ight.

    ta có MNPQ là hình bình hành nên \overrightarrow{QP} =
\overrightarrow{MN}

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 = - 1 \\
y - 1 = 5 \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 6 \\
z = 4 \\
\end{matrix} ight.. Vậy tọa độ điểm Q(2;6;4).

  • Câu 4: Thông hiểu
    Tìm tọa độ điểm C

    Trong không gian Oxyz, cho hai điểm A( - 2\ ;\ 4\ ;\ 1)B(4\ ;\ 5\ ;\ 2). Điểm C thỏa mãn \overrightarrow{OC} = \overrightarrow{BA} có tọa độ là

    Hướng dẫn:

    Gọi C(x\ ;\ y\ ;\ z).

    Ta có \overrightarrow{OC} = (x\ ;\ y\ ;\
z), \overrightarrow{BA} = ( - 6\
;\  - 1\ ;\  - 1).

    Khi đó \overrightarrow{OC} =
\overrightarrow{BA} \Leftrightarrow \left\{ \begin{matrix}
x = - 6 \\
y = - 1 \\
x = - 1 \\
\end{matrix} ight..

    Vậy C( - 6\ ;\  - \ 1\ ; - \
1).

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, điểm nào sau đây nằm trên mặt phẳng tọa độ (Oyz)?

    Hướng dẫn:

    Điểm thuộc (Oyz)x = 0. Vậy điểm cần tìm được là: N(0;4; - 1).

  • Câu 6: Thông hiểu
    Xác định tọa độ điểm

    Trong không gian Oxyz, cho \overrightarrow{OM} = 2\overrightarrow{i} +
\overrightarrow{k} - 3\overrightarrow{j}. Tọa độ điểm M là:

    Hướng dẫn:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{OM} =
2\overrightarrow{i} + \overrightarrow{k} - 3\overrightarrow{j} suy ra tọa độ M(2; - 3;1).

  • Câu 7: Nhận biết
    Tìm tọa độ hình chiếu điểm M

    Trong không gian Oxyz, tọa độ hình chiếu của M( - 2;1;4) lên Oyz

    Hướng dẫn:

    Tọa độ hình chiếu của M( -
2;1;4) lên Oyz(0;1;4).

  • Câu 8: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho A(1;0;0),\ \ B(0;2;0);M(x - 1;2y - 2;7). Gọi M' là hình chiếu của M trên mặt phẳng (Oxy). Khi tứ giác OBM'A là hình bình hành thì giá trị x + y bằng?

    Hướng dẫn:

    M' là hình chiếu của M trên mặt phẳng (Oxy) \Rightarrow M'(x - 1;2y -
2;0).

    OBM'A là hình bình hành

    \Leftrightarrow \overrightarrow{OB} =
\overrightarrow{AM'} \Leftrightarrow \left\{ \begin{matrix}
0 = x - 2 \\
2 = 2y - 2 \\
0 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 2 \\
\end{matrix} \right..

    Vậy x + y = 4.

  • Câu 9: Thông hiểu
    Tìm tọa độ biểu thức vectơ

    Cho\overrightarrow{AB} = (5; -
3;2),\overrightarrow{AC} = (4;2;1). Tọa độ của \overrightarrow{a} = 2\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} =
2\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}

    = \left( 2.5 + \frac{1}{2}.4;2.( - 3) +
\frac{1}{2}.2;2.2 + \frac{1}{2}.1 ight)

    = \left( 12; - 5;\frac{9}{2}
ight)

  • Câu 10: Thông hiểu
    Ghi đáp án đúng vào ô trống

    ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm I(3;4;5)là tâm của nguồn phát âm với bán kính 10\ m. Để kiểm tra một điểm ở vị trí\ M(7;10;17) có nhận được cường độ âm phát ra tại I hay không người ta sẽ tính khoảng cách giữa hai vị trí IM. Hỏi khoảng cách giữa hai vị trí IMlà bao nhiêu mét?

    Đáp án: 14 (m)

    Đáp án là:

    ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ Oxyz (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm I(3;4;5)là tâm của nguồn phát âm với bán kính 10\ m. Để kiểm tra một điểm ở vị trí\ M(7;10;17) có nhận được cường độ âm phát ra tại I hay không người ta sẽ tính khoảng cách giữa hai vị trí IM. Hỏi khoảng cách giữa hai vị trí IMlà bao nhiêu mét?

    Đáp án: 14 (m)

    Ta có

    IM = \sqrt{(7 - 3)^{2} + (10 - 4)^{2} +
(17 - 5)^{2}}

    = \sqrt{4^{2} + 6^{2} + 12^{2}} =
\sqrt{196} = 14 (m).

    Đáp số 14(m).

  • Câu 11: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyzcho hình hộp chữ nhật OABC.EFGH có các cạnh OA = 5, OC = 8, OE =
7 (xem hình vẽ dưới đây). Tọa độ H(x;y;z). Tính giá trị biểu thức P = 50x + 75y + 1000z

    Hướng dẫn:

    Ta có H \in (yOz) và hình chiếu của H lên Oy trùng với C nên H(0;\
8;\ 7).

    P = 50x + 75y + 1000z = 50.0 + 75.8 +
1000.7 = 7600.

  • Câu 12: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A( - 2;3;1),B(4;2; - 1),C(5; - 2;0). Điểm D(a;b;c) là đỉnh thứ tư của hình bình hành ABCD. Khi đó giá trị biểu thức H = 2a + b + c có giá trị bằng bao nhiêu?

    Hướng dẫn:

    Gọi tọa độ điểm D(a;b;c)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (6; - 1; - 2) \\
\overrightarrow{DC} = (5 - a; - 2 - b; - c) \\
\end{matrix} ight.

    Ta có: ABCM là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
5 - a = 6 \\
- 2 - b = - 1 \\
- c = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
c = 2 \\
\end{matrix} ight. suy ra điểm D( - 1; - 1;2)

    Khi đó H = 2a + b + c = 2.( - 1) - 1 + 2
= - 1.

  • Câu 13: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2; - 1),B(2; - 1;3),C( - 2;3;3). Điểm M(a;b;c) là đỉnh thứ tư của hình bình hành ABCM. Khi đó giá trị biểu thức T = a + b - c có giá trị bằng bao nhiêu?

    Hướng dẫn:

    Gọi tọa độ điểm M(x;y;z)

    Ta có: ABCM là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{MC}

    \Leftrightarrow \left\{ \begin{matrix}
- 2 - x = 1 \\
3 - y = - 3 \\
3 - z = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 3 \\
y = 6 \\
z = - 1 \\
\end{matrix} ight. suy ra điểm M( - 3;6; - 1)

    Khi đó T = a + b - c = - 3 + 6 - ( - 1) =
4.

  • Câu 14: Thông hiểu
    Tìm tọa độ điểm D thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(0; - 1;1),B( - 2;1; - 1),C( - 1;3;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{BA} =
\overrightarrow{CD}

    \Leftrightarrow \left\{ \begin{matrix}
x + 1 = 2 \\
y - 3 = - 2 \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 4 \\
\end{matrix} ight.. Vậy tọa độ điểm D(1;1;4)

  • Câu 15: Thông hiểu
    Tìm tọa độ điểm D thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A( - 2;3;1),B(3;0; - 1),C(6;5;0). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
6 - x = 3 + 2 \\
5 - y = 0 - 3 \\
- z = - 1 - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 8 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm D(1;8;2).

  • Câu 16: Thông hiểu
    Tìm tọa độ điểm B

    Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' với A( - 2\ ;\ 1\ ;\ 3),C(2\ ;\ 3;\ 5),B'(2\ ;\ 4\
;\  - 1),D'(0\ ;\ 2\ ;1). Tìm tọa độ điểm B.

    Hướng dẫn:

    Gọi B(x\ ;\ y\ ;\ z) là điểm cần tìm.

    Gọi II' lần lượt là trung điểm ACB'D'

    \Rightarrow I(0\ ;\ 2\ ;\ 4)I'(1\ ;\ 3\ ;\ 0).

    \overrightarrow{I'I} = ( - 1\ ;\  -
1\ ;\ 4);\overrightarrow{B'B} = (x - 2\ ;\ y - 4\ ;\ z +
1)

    Ta có: \overrightarrow{B'B} =
\overrightarrow{I'I} \Leftrightarrow \left\{ \begin{matrix}
x - 2 = - 1 \\
y - 4 = - 1 \\
z + 1 = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 3 \\
z = 3 \\
\end{matrix} ight..

    Vậy B(1\ ;\ 3\ ;\ 3).

  • Câu 17: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm M(0;3; - 2)N(2; - 1;0). Vectơ \overrightarrow{MN} có tọa độ là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{MN} = (2 - 0; - 1 - 3;0
+ 2) = (2; - 4;2)

    Vậy đáp án đúng là: \overrightarrow{MN} =
(2; - 4;2).

  • Câu 18: Thông hiểu
    Chọn mệnh đề đúng

    Trong không gian hệ trục tọa độ Oxyz cho điểm M(x;y;z). Trong các mệnh đề sau, mệnh đề nào đúng?

    Hướng dẫn:

    Nếu M' đối xứng với M qua mặt phẳng (Oxz) thì M'(x; - y;z).

    Nếu M' đối xứng với M qua trục Oy thì M'( - x;y; - z).

    Nếu M' đối xứng với M qua gốc tọa độ thì M'( - x; - y; - z).

    Vậy mệnh đề đúng là: “Nếu M' đối xứng với M qua mặt phẳng (Oxy) thì M'(x;y; - z)”.

  • Câu 19: Thông hiểu
    Chọn khẳng định đúng

    Trong không gian Oxyz, cho vectơ \overrightarrow{OA} = \overrightarrow{i} -
2\overrightarrow{k}. Tọa độ điểm A là:

    Hướng dẫn:

    Ta có: \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{k} \Leftrightarrow A(0;1; -
2)

  • Câu 20: Thông hiểu
    Tìm tọa độ điểm P

    Trong không gian Oxyz, cho hai điểm M(2;1;2), N(4; 2; 1), tọa độ điểm P thuộc trục Oz sao cho M;N; Pthẳng hàng là

    Hướng dẫn:

    Vì điểm Pthuộc trục Oz nên P có tọa độ P(0;0;z).

    Ta có \overrightarrow{MN}(2;1; -
1); \overrightarrow{NP}( - 4; - 2;z
- 1)

    M;\ N;\ P thẳng hàng\Leftrightarrow\overrightarrow{MN};\overrightarrow{NP} cùng phương

    \Leftrightarrow \frac{- 4}{2} = \frac{-
2}{1} = \frac{z - 1}{- 1} \Leftrightarrow z - 1 = 2 \Leftrightarrow z =
3

    Vậy điểm P(0;0;3).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo