Trong không gian với hệ tọa độ , cho vectơ
và điểm
. Tọa độ điểm
thỏa mãn
là:
Gọi tọa độ điểm là
, ta có:
.
Ta có:
.
Vậy .
Trong không gian với hệ tọa độ , cho vectơ
và điểm
. Tọa độ điểm
thỏa mãn
là:
Gọi tọa độ điểm là
, ta có:
.
Ta có:
.
Vậy .
Trong không gian , mặt phẳng
đi qua điểm nào sau đây?
Xét điểm ta có:
đúng nên
.
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Trong không gian hệ trục tọa độ , cho các điểm
. Tìm tọa độ điểm
sao cho tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian hệ trục tọa độ , cho lăng trụ tam giác
có tọa độ các điểm
. Xác định tọa độ điểm
?
Hình vẽ minh họa
Gọi tọa độ điểm
Vì là hình lăng trụ nên
Vậy tọa độ .
Trong không gian với hệ trục tọa độ , cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Trong không gian , cho các điểm
. Xác định tọa độ điểm
sao cho tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian với hệ tọa độ , cho điểm
thỏa
và
. Tọa độ của vectơ
là
Ta có:
Suy ra
Trong không gian , cho điểm
thỏa mãn
. Khi điểm
thì giá trị
bằng?
Ta có:
Vậy
Trong không gian , tọa độ hình chiếu của
lên
là
Tọa độ hình chiếu của lên
là
.
Trong không gian , cho điểm
. Trong các phát biểu sau, phát biểu nào sai?
+) Ta có khoảng cách từ đến mặt phẳng tọa độ
bằng
nên “Khoảng cách từ
đến mặt phẳng tọa độ
bằng
đúng.
+) Khoảng cách từ đến trục
bằng
nên “Khoảng cách từ
đến trục
bằng
” đúng.
+) Tọa độ hình chiếu vuông góc của điểm lên mặt phẳng
là
.
Suy ra tọa độ điểm đối xứng với
qua mặt phẳng
là
nên “Tọa độ điểm
đối xứng với
qua mặt phẳng
là
” sai.
+) Tọa độ hình chiếu vuông góc của điểm lên trục
là
.
Suy ra tọa độ điểm đối xứng với
qua trục
là
nên “Tọa độ điểm
đối xứng với
qua trục
là
” đúng.
Trong không gian hệ trục tọa độ , cho lăng trụ tam giác
có tọa độ các điểm
. Xác định tọa độ điểm
?
Hình vẽ minh họa
Gọi tọa độ điểm
Vì là hình lăng trụ nên
Vậy tọa độ
Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là m, chiều rộng là
m và chiều cao là
m. Một chiếc đèn được treo tại chính giữa trần nhà của phòng học. Xét hệ trục toạ độ
có gốc
trùng với một góc phòng và mặt phẳng
trùng với mặt sàn, đơn vị đo được lấy theo mét. Hãy tìm toạ độ của điểm treo đèn

Gọi toạ độ các điểm như hình vẽ dưới đây:

Gọi là trung điểm của
,
là hình chiếu của
lên mặt phẳng trần nhà suy ra
là điểm treo đèn.
Khi đó
Vậy toạ độ của điểm treo đèn là
Trong không gian với hệ trục tọa độ , cho
, khi đó tọa độ điểm
là:
Gọi ta có:
khi đó
nên tọa độ điểm cần tìm là
.
Trong không gian tọa độ Oxyz, cho ba vectơ . Gọi
là vectơ thoả mãn:
. Tọa độ của vectơ
là:
Áp dụng công thức tính tích vô hướng của hai vectơ để lập hệ phương trình.
Đặt .
Ta có:
Vậy .
Trong không gian , điểm nào sau đây nằm trên mặt phẳng tọa độ
?
Điểm thuộc có
. Vậy điểm cần tìm được là:
.
Trong không gian hệ trục tọa độ , cho hình hộp
. Biết
. Tọa độ điểm
là:
Hình vẽ minh họa
Ta có:
Tìm tọa độ véctơ biết rằng
và
.
Ta có .
Cho. Tọa độ của
là:
Ta có:
Trong không gian với hệ tọa độ , cho hình hộp
với
. Tìm tọa độ điểm
.
Gọi là điểm cần tìm.
Gọi và
lần lượt là trung điểm
và
và
.
Ta có: .
Vậy .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: