Trong không gian , cho điểm
thỏa
và
. Tọa độ của véctơ
là
Ta có:
Trong không gian , cho điểm
thỏa
và
. Tọa độ của véctơ
là
Ta có:
Trong không gian tọa độ , hình chiếu vuông góc của điểm
trên trục
có tọa độ là:
Hình chiếu vuông góc của điểm trên trục
là điểm có tọa độ
.
Tứ giác là hình bình hành biết tọa độ các điểm
. Tìm tọa độ điểm
?
Giả sử điểm khi đó
ta có là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian tọa độ cho điểm
. Hình chiếu vuông góc của điểm
trên mặt phẳng
là:
Hình chiếu vuông góc của điểm trên mặt phẳng
là điểm có tọa độ
.
Trong không gian điểm
thuộc trục
và cách đều hai điểm
và
là
Ta có:
cách đều hai điểm
khi
Trong không gian , cho
, tọa độ điểm
đối xứng với điểm
qua trục
là
Gọi là điểm đối xứng với điểm A qua trục
.
Điểm đối xứng với điểm
qua trục
nên
.
Do đó .
Trong không gian với hệ tọa độ , cho hai vectơ
và
. Tìm tọa độ của vectơ
.
Ta có:
Không gian với trục hệ tọa độ , cho
Tọa độ của vectơ
là:
Theo bài ra ta có:
Vậy
Trong không gian hệ trục tọa độ , cho hình hộp
. Biết
. Tọa độ điểm
là:
Hình vẽ minh họa
Ta có:
Trong không gian với hệ trục tọa độ , cho ba điểm
. Điểm
là đỉnh thứ tư của hình bình hành
. Khi đó giá trị biểu thức
có giá trị bằng bao nhiêu?
Gọi tọa độ điểm
Ta có:
Ta có: là hình bình hành
suy ra điểm
Khi đó .
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Trong không gian , điểm nào sau đây thuộc trục
?
Điểm thuộc trục Oy có dạng . Vậy điểm cần tìm là:
.
Trong không gian , cho điểm
. Trong các phát biểu sau, phát biểu nào sai?
+) Ta có khoảng cách từ đến mặt phẳng tọa độ
bằng
nên “Khoảng cách từ
đến mặt phẳng tọa độ
bằng
đúng.
+) Khoảng cách từ đến trục
bằng
nên “Khoảng cách từ
đến trục
bằng
” đúng.
+) Tọa độ hình chiếu vuông góc của điểm lên mặt phẳng
là
.
Suy ra tọa độ điểm đối xứng với
qua mặt phẳng
là
nên “Tọa độ điểm
đối xứng với
qua mặt phẳng
là
” sai.
+) Tọa độ hình chiếu vuông góc của điểm lên trục
là
.
Suy ra tọa độ điểm đối xứng với
qua trục
là
nên “Tọa độ điểm
đối xứng với
qua trục
là
” đúng.
Trong không gian , cho điểm
. Hình chiếu vuông góc của
trên mặt phẳng
là điểm
. Khi đó giá trị
bằng:
Hình chiếu vuông góc của trên mặt phẳng
là
Suy ra .
Trong không gian hệ trục tọa độ , cho các điểm
. Tìm tọa độ điểm
để tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Trong không gian , cho
. Tọa độ điểm
là:
Ta có:
Trong không gian , cho vectơ
. Tọa độ điểm
là:
Ta có:
Trong không gian với hệ trục tọa độ , cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của là
. Đúng||Sai
b) . Đúng||Sai
c) Góc giữa hai đường thẳng và
bằng
. Đúng||Sai
d) Điểm nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian với hệ trục tọa độ , cho ba điểm
. Xét tính đúng sai của các khẳng định sau:
a) Tọa độ trung điểm của là
. Đúng||Sai
b) . Đúng||Sai
c) Góc giữa hai đường thẳng và
bằng
. Đúng||Sai
d) Điểm nằm trên mặt phẳng
thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Đúng: Gọi là trung điểm
.
Ta có
b) Đúng: Ta có .
c) Đúng: Ta có .
Suy ra .
d) Sai: Gọi thỏa mãn
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
suy ra
.
Suy ra .
Vậy .
ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm
là tâm của nguồn phát âm với bán kính
. Để kiểm tra một điểm ở vị trí
có nhận được cường độ âm phát ra tại
hay không người ta sẽ tính khoảng cách giữa hai vị trí
và
. Hỏi khoảng cách giữa hai vị trí
và
là bao nhiêu mét?
Đáp án: 14 (m)
ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm
là tâm của nguồn phát âm với bán kính
. Để kiểm tra một điểm ở vị trí
có nhận được cường độ âm phát ra tại
hay không người ta sẽ tính khoảng cách giữa hai vị trí
và
. Hỏi khoảng cách giữa hai vị trí
và
là bao nhiêu mét?
Đáp án: 14 (m)
Ta có
(m).
Đáp số 14(m).
Trong không gian tọa độ Oxyz, cho ba vectơ . Gọi
là vectơ thoả mãn:
. Tọa độ của vectơ
là:
Áp dụng công thức tính tích vô hướng của hai vectơ để lập hệ phương trình.
Đặt .
Ta có:
Vậy .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: