Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tọa độ của vectơ trong không gian (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm tọa độ điểm B

    Trong không gian với hệ trục tọa độ Oxyz, cho  A(1;2; - 1);\overrightarrow{AB} =(1;3;1), khi đó tọa độ điểm B là:

    Hướng dẫn:

    Gọi B(x;y;z) ta có:

    A(1;2; - 1);\overrightarrow{AB} =(1;3;1) khi đó \left\{\begin{matrix}x - 1 = 1 \\y - 2 = 3 \\z + 1 = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = 5 \\z = 0 \\\end{matrix} ight. nên tọa độ điểm cần tìm là B(2;5;0).

  • Câu 2: Thông hiểu
    Tìm tọa độ vecto

    Trong không gian với hệ tọa độ Oxyz, cho điểm A thỏa \overrightarrow{OA} = 2\overrightarrow{i} -
3\overrightarrow{j} + 4\overrightarrow{k}B(2;1;4). Tọa độ của vectơ \overrightarrow{BA}

    Hướng dẫn:

    Ta có:

    \overrightarrow{OA} =
2\overrightarrow{i} - 3\overrightarrow{j} + 4\overrightarrow{k}
\Rightarrow A(2; - 3;4)

    Suy ra \overrightarrow{BA} = (2 - 2; - 3
- 1;4 - 4) = (0; - 4;0) 

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, mặt phẳng (\alpha):x - y + 2z - 3 = 0 đi qua điểm nào sau đây?

    Hướng dẫn:

    Xét điểm \left( 1;1;\frac{3}{2}
ight) ta có: 1 - 1 +
2.\frac{3}{2} - 3 = 0 đúng nên \left( 1;1;\frac{3}{2} ight) \in
(\alpha).

  • Câu 4: Thông hiểu
    Tìm tọa độ vectơ

    Tìm tọa độ véctơ \overrightarrow{u} biết rằng \overrightarrow{u} + \overrightarrow{a} =
\overrightarrow{0}\overrightarrow{a} = (1\ ;\  - 2\ ;\
1).

    Hướng dẫn:

    Ta có \overrightarrow{u} +
\overrightarrow{a} = \overrightarrow{0} \Leftrightarrow
\overrightarrow{u} = - \overrightarrow{a} = ( - 1 ; 2 ;  -1).

  • Câu 5: Thông hiểu
    Tìm tọa độ điểm Q

    Trong hệ trục tọa độ Oxyz, cho các điểm M(1; - 1;1)\ ,\ \ N(2;0; - 1)\ ,\ \
P( - 1;2;1). Xét điểm Q sao cho tứ giác MNPQ là một hình bình hành. Tọa độ Q

    Hướng dẫn:

    Gọi Q(x;y;z). Ta có \overrightarrow{MN} = (1;1; - 2)\ \ ,\ \ \ \
\overrightarrow{QP} = ( - 1 - x;2 - y;1 - z).

    Tứ giác MNPQ là một hình bình hành \Leftrightarrow \overrightarrow{MN} =
\overrightarrow{QP}

    \Leftrightarrow \left\{ \begin{matrix}
1 = - 1 - x \\
1 = 2 - y \\
- 2 = 1 - z \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = 1 \\
z = 3 \\
\end{matrix} ight.\ .

    Vậy, Q( - 2;1;3).

  • Câu 6: Thông hiểu
    Tìm tọa độ điểm D thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;1),B(2;1; - 2),C( - 1;3;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{BA} =
\overrightarrow{CD}

    \Leftrightarrow \left\{ \begin{matrix}
x + 1 = - 1 \\
y - 3 = - 1 \\
z - 2 = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = 2 \\
z = 5 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 2;2;5)

  • Câu 7: Thông hiểu
    Tìm tọa độ vecto

    Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \overrightarrow{u} = (2;0; - 3)\overrightarrow{v} = (0;2; - 1). Tìm tọa độ của vectơ \overrightarrow{a} =
\overrightarrow{u} + 2\overrightarrow{v}.

    Hướng dẫn:

    Ta có:

    \overrightarrow{a} = \overrightarrow{u}
+ 2\overrightarrow{v} = (2;0; - 3) + 2.(0;2; - 1)

    = (2 + 0;0 + 2.2; - 3 + 2.( - 1)) =
(2;4; - 5)

  • Câu 8: Vận dụng
    Xét tính đúng sai của mỗi khẳng định

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    a) Sai

    Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là ( -
1,5\ ;\  - 1\ ;\ 0,5).

    b) Đúng

    Chiếc khinh khí cầu thứ nhất có tọa độ là (2,5\ ;\ 1\ ;\ 0,7).

    Khoảng cách giữa hai chiếc khinh khí cầu là

    \sqrt{(2,5 + 1,5)^{2} + (1 + 1)^{2} +
(0,7 + 0,5)^{2}}

    = \frac{2\sqrt{134}}{5} \approx
4,6(km)

    c) Sai

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:

    \sqrt{2,5^{2} + 1^{2} + 0,7^{2}} =
\frac{3\sqrt{86}}{10} \approx 2,8(km)

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:

    \sqrt{( - 1,5)^{2} + ( - 1)^{2} +
0,5^{2}} = \frac{\sqrt{14}}{2} \approx 1,9(km)

    Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.

    d) Đúng

    Vị trí của chiếc flycam là

    \left( \frac{2,5 - 1,5}{2}\ ;\ \frac{1 -
1}{2}\ ;\ \frac{0,7 + 0,5}{2} ight) = (0,5\ ;\ 0\ ;\
0,6).

    Khoảng cách bay của flycam là:

    \sqrt{0,5^{2} + 0^{2} + 0,6^{2}} =
\frac{\sqrt{61}}{10} \approx 0,8(km)

    Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ (3\ ;\ 1\ ;\  - 1)

    \sqrt{3^{2} + 1^{2} + ( - 1)^{2}} =
\sqrt{11} \approx 3,3(km) > 0,8(km)

    Vậy flycam không đến được vị trí có tọa độ (3\ ;\ 1\ ;\  - 1).

  • Câu 9: Nhận biết
    Tìm tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm A(1;1; - 1)B(2;3;2). Vectơ \overrightarrow{AB} có tọa độ là:

    Hướng dẫn:

    Ta có:

    \overrightarrow{AB} = (2 - 1;3 - 1;2 +
1) = (1;2;3)

    Vậy đáp án đúng là: \overrightarrow{AB} =
(1;2;3).

  • Câu 10: Thông hiểu
    Tìm tọa độ điểm D thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(0; - 1;1),B( - 2;1; - 1),C( - 1;3;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{BA} =
\overrightarrow{CD}

    \Leftrightarrow \left\{ \begin{matrix}
x + 1 = 2 \\
y - 3 = - 2 \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 1 \\
z = 4 \\
\end{matrix} ight.. Vậy tọa độ điểm D(1;1;4)

  • Câu 11: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;3)B(5;0;1). Điểm M thỏa mãn MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB} có tọa độ là:

    Hướng dẫn:

    Từ giả thiết MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB} \Rightarrow \overrightarrow{MA} = -
4\frac{MB}{MA}.\overrightarrow{MB} nên ba điểm M;B;A thẳng hàng và A;B nằm khác phía so với điểm M do - 4\frac{MB}{MA} âm.

    Lại có MA.\overrightarrow{MA} = -
4MB.\overrightarrow{MB}

    \Rightarrow \left(
MA.\overrightarrow{MA} \right)^{2} = \left( 4MB.\overrightarrow{MB}
\right)^{2}

    \Rightarrow MA^{4} = 16MB^{4} \Rightarrow
MA = 2MB.

    \Rightarrow \overrightarrow{MA} = -
2\overrightarrow{MB}.

    Gọi tọa độ M(x;y;z), khi đó

    \left\{ \begin{matrix}
1 - x = - 2(5 - x) \\
2 - y = - 2(0 - y) \\
3 - z = - 2(1 - z) \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = \frac{11}{3} \\
y = \frac{2}{3} \\
z = \frac{5}{3} \\
\end{matrix} \right.

  • Câu 12: Thông hiểu
    Tìm tọa độ hình chiếu của điểm M

    Trong không gian Oxyz, cho điểm M( - 3;4;2), hình chiếu của điểm M trên mặt phẳng Oxz có tọa độ bằng

    Hướng dẫn:

    Hình chiếu của điểm M trên mặt phẳng Oxz có tọa độ bằng ( - 3;0;2)

  • Câu 13: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{a} = (2; - 3;3), \overrightarrow{b} = (0;2; - 1), \overrightarrow{c} = (3; - 1;5). Tìm tọa độ của vectơ \overrightarrow{u} =
2\overrightarrow{a} + 3\overrightarrow{b} -
2\overrightarrow{c}.

    Hướng dẫn:

    Ta có:

    2\overrightarrow{a} = (4; -
6;6)

    3\overrightarrow{b} = (0;6; -
3)

    - 2\overrightarrow{c} = ( - 6;2; -
10)

    \Rightarrow \overrightarrow{u} =
2\overrightarrow{a} + 3\overrightarrow{b} - 2\overrightarrow{c} = ( -
2;2; - 7).

  • Câu 14: Thông hiểu
    Xác định tọa độ điểm C

    Trong không gian Oxyz, cho hình bình hành hình bình hành. Biết các điểm A(1;0;1),B(2;1;2),D(1; - 1;1). Xác định tọa độ điểm C?

    Hướng dẫn:

    Giả sử điểm C(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{DC} =
\overrightarrow{AB}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = 1 \\
y + 1 = 1 \\
z - 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm C(2;0;2).

  • Câu 15: Thông hiểu
    Ghi đáp án vào ô trống

    Tích tất cả giá trị của a để góc tạo bởi đường thẳng \left\{ \begin{matrix}
x = 4 + at \\
y = 7 - 2t \\
\end{matrix}(t\mathbb{\in R}) ight. và đường thẳng 3x + 4y - 2 = 0 bằng 45^{0} là:

    Đáp án: -4||- 4

    Đáp án là:

    Tích tất cả giá trị của a để góc tạo bởi đường thẳng \left\{ \begin{matrix}
x = 4 + at \\
y = 7 - 2t \\
\end{matrix}(t\mathbb{\in R}) ight. và đường thẳng 3x + 4y - 2 = 0 bằng 45^{0} là:

    Đáp án: -4||- 4

    Gọi \varphi là góc giữa hai đường thẳng đã cho.

    Đường thẳng \left\{ \begin{matrix}
x = 4 + at \\
y = 7 - 2t \\
\end{matrix}\ \ \ \ (t\mathbb{\in R}) ight. có vectơ chỉ phương là \overrightarrow{u} = (a; -
2).

    Đường thẳng 3x + 4y - 2 = 0 có vectơ chỉ phương là \overrightarrow{v} = (4;
- 3).

    Ta có:

    \cos\varphi =
|cos(\overrightarrow{u},\overrightarrow{v})|

    \Leftrightarrow cos45^{0} =
\frac{|\overrightarrow{u}.\overrightarrow{v}|}{|\overrightarrow{u}|.|\overrightarrow{v}|}

    \Leftrightarrow \frac{1}{\sqrt{2}} =
\frac{|4a + 6|}{5\sqrt{a^{2} + 4}}

    \Leftrightarrow 5\sqrt{a^{2} + 4} =
\sqrt{2}|4a + 6|

    \Leftrightarrow 25a^{2} + 100 = 32a^{2}
+ 96a + 72

    \Leftrightarrow 7a^{2} + 96a - 28 = 0\Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{2}{7} \\a = - 14 \\\end{matrix}. ight.

    Vậy tích tất cả các giá trị của tham số a bằng -4.

  • Câu 16: Thông hiểu
    Tìm tọa độ điểm A

    Trong không gian Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} +
4\overrightarrow{j} - 5\overrightarrow{k}. Tọa độ điểm A là:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
3\overrightarrow{i} = (3;0;0) \\
4\overrightarrow{j} = (0;4;0) \\
5\overrightarrow{k} = (0;0;5) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{OA} =
3\overrightarrow{i} + 4\overrightarrow{j} - 5\overrightarrow{k}
\Rightarrow A(3;4; - 5)

  • Câu 17: Thông hiểu
    Tính độ lớn lực Trái Đất tác dụng lên vật

    Nếu một vật có khối lượng m(kg) thì lực hấp dẫn \overrightarrow{P}của trái đất tác dụng lên vật được xác định theo công thức \overrightarrow{p} = m\
\overrightarrow{g}, trong đó \overrightarrow{g} là gia tốc rơi tự do có độ lớn g = 9,8\left( m/s^{2}
\right). Độ lớn của lực Trái Đất tác dụng lên một quả lê có khối lượng 105g

    Hướng dẫn:

    Đổi 105g = 0,105kg

    Độ lớn của lực hấp dẫn của trái đất tác dụng lên quả lê là:

    \left| \overrightarrow{p} \right| = m\left|
\overrightarrow{g} \right| = 0,105.9,8 = 1,029N.

  • Câu 18: Thông hiểu
    Tìm tọa độ điểm D theo yêu cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểmA(1;2 ; - 1);B(2; - 1 ;3);C( - 3 ;5 ;1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có \overrightarrow{AB}(\ 1;\ \  - 3;\
\ 4); \overrightarrow{AC}(\  - 4;\
\ 3;\ \ 2)nên \overrightarrow{AB};\overrightarrow{AC} không cùng phương hay A,B,C không thẳng hàng.

    Gọi D(\ x;\ \ y;\ \ z) \Rightarrow \overrightarrow{DC}(\  - 3 - x;\ \ 5 - y;\ \ 1 -
z).

    Lúc đó, ABCD là hình bình hành khi và chỉ khi \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
1 = - 3 - x \\
- 3 = 5 - y \Leftrightarrow \\
4 = 1 - z \\
\end{matrix} ight.\ \left\{ \begin{matrix}
x = - 4 \\
y = 8 \\
z = - 3 \\
\end{matrix} ight.

    Vậy tọa độ điểm cần tìm là: D( - 4\ ;\ \
8\ ;\  - 3)

  • Câu 19: Nhận biết
    Tìm tọa độ hình chiếu của M trên Ox

    Trong không gian Oxyz, cho điểm M(1;2;3). Tìm tọa độ hình chiếu M lên trục Ox.

    Hướng dẫn:

    Tọa độ hình chiếu của điểm M trên trục Ox là (1;0;0)

  • Câu 20: Thông hiểu
    Tìm tọa độ điểm B

    Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' với A( - 2\ ;\ 1\ ;\ 3),C(2\ ;\ 3;\ 5),B'(2\ ;\ 4\
;\  - 1),D'(0\ ;\ 2\ ;1). Tìm tọa độ điểm B.

    Hướng dẫn:

    Gọi B(x\ ;\ y\ ;\ z) là điểm cần tìm.

    Gọi II' lần lượt là trung điểm ACB'D'

    \Rightarrow I(0\ ;\ 2\ ;\ 4)I'(1\ ;\ 3\ ;\ 0).

    \overrightarrow{I'I} = ( - 1\ ;\  -
1\ ;\ 4);\overrightarrow{B'B} = (x - 2\ ;\ y - 4\ ;\ z +
1)

    Ta có: \overrightarrow{B'B} =
\overrightarrow{I'I} \Leftrightarrow \left\{ \begin{matrix}
x - 2 = - 1 \\
y - 4 = - 1 \\
z + 1 = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 3 \\
z = 3 \\
\end{matrix} ight..

    Vậy B(1\ ;\ 3\ ;\ 3).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (75%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo