Biết là một nguyên hàm của hàm số
trên khoảng
. Gọi
là một nguyên hàm của
thỏa mãn
. Giá trị của
bằng:
Ta có:
Do đó
Suy ra
Nên
Vậy
Từ đó
Vậy
Biết là một nguyên hàm của hàm số
trên khoảng
. Gọi
là một nguyên hàm của
thỏa mãn
. Giá trị của
bằng:
Ta có:
Do đó
Suy ra
Nên
Vậy
Từ đó
Vậy
Họ nguyên hàm của hàm số là
Phân tích
Ta có:
Khi đó , đồng nhất hệ số thì ta được
Giải chi tiết
Ta có
Đáp số bài tập kiểm tra khả năng vận dụng:
Tìm nguyên hàm .
Đặt
Khi đó
Theo phương pháp đổi biến số , nguyên hàm của
là:
Ta có:
.
Đặt .
.
Cho hàm số có đạo hàm với mọi
và
. Giá trị của
bằng:
Ta có:
Với phương pháp đổi biến số , nguyên hàm
bằng:
Ta biến đổi: .
Đặt .
.
Cho hàm số thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Lấy nguyên hàm hai vế ta được:
. Theo bài ra ta có:
Suy ra
Vậy
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:
Cho . Hỏi
là nguyên hàm của hàm số nào dưới đây?
Để tìm là nguyên hàm của hàm số nào trong số 4 hàm số trên, ta sẽ đi đạo hàm
từ đó suy ra
.
Ta có
.
Biết là nguyên hàm của hàm số
. Hỏi đồ thị của hàm số
có bao nhiêu điểm cực trị?
Vì là nguyên hàm của hàm số
nên suy ra
Ta có:
Xét hàm số trên
, ta có:
suy ra hàm số
đồng biến trên
.
Vậy phương trình có nhiều nhất một nghiệm trên
(2)
Mặt khác ta có hàm số liên tục trên
và
nên
.
Suy ra tồn tại sao cho
(3)
Từ (1); (2); (3) suy ra phương trình có nghiệm duy nhất
.
Đồng thời vì là nghiệm bội lẻ nên
đổi dấu qua
Vậy đồ thị hàm số có một điểm cực trị.
Nguyên hàm của là:
Ta đặt:
.
.
Xét .
Đặt .
.
.
Họ nguyên hàm của hàm số là:
Ta có:
Biết luôn có hai số để
là một nguyên hàm của hàm số
và thỏa mãn
. Khẳng định nào sau đây là đúng và đầy đủ nhất?
Do . Vì luôn có hai số
để
là một nguyên hàm của hàm số
nên
không phải là hàm hằng.
Từ giả thiết
Lấy nguyên hàm hai vế với vi phân ta được:
với C là hằng số.
TH1: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
TH2: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
Vậy khẳng định đúng và đầy đủ nhất là .
Tìm nguyên hàm của hàm số
Ta có
Nguyên hàm của hàm số là
Đặt thì
.
Khi đó
.
Thay ta được
Biết là một nguyên hàm của hàm số
trên khoảng
. Giá trị của biểu thức T = a + b + c bằng
Nguyên hàm của là:
Ta biến đổi:
.
Đặt.
.
.
Cho hàm số có một nguyên hàm là
thỏa mãn
. Giá trị của
bằng:
Ta có:
Lại có
Do đó:
Tìm ?
Ta có :
Đặt
Cho là một nguyên hàm của hàm số và
. Tính
Sử dụng tích phân từng phần
Cách 1:
Đặt
Khi đó
=>
Mặt khác
=> C = 0
=>
=>
Cách 2: . Sử dụng máy tính cầm tay để tính.
Cho . Một nguyên hàm
của
thỏa
là:
Ta có:
Khi đó mặt khác
Vậy đáp án cần tìm là:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: