Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Bài 1 Nguyên Hàm CTST (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn đáp án đúng

    Biết xe^{x} là một nguyên hàm của hàm số f( - x) trên khoảng ( - \infty; + \infty). Gọi F(x) là một nguyên hàm của f'(x)e^{x} thỏa mãn F(0) = 1. Giá trị của F( - 1) bằng:

    Hướng dẫn:

    Ta có: f( - x) = \left( xe^{x}
ight)' = e^{x} + xe^{x};\forall x \in ( - \infty; +
\infty)

    Do đó f( - x) = e^{- ( - x)} - ( - x)e^{-
( - x)};\forall x \in ( - \infty; + \infty)

    Suy ra f(x) = e^{- x}(1 - x);\forall x
\in ( - \infty; + \infty)

    Nên f'(x) = \left\lbrack e^{- x}(1 -
x) ightbrack' = e^{- x}(x - 2)

    \Rightarrow f'(x)e^{x} = e^{- x}(x -
2)e^{x} = x - 2

    Vậy F(x) = \int_{}^{}{(x - 2)dx} =
\frac{1}{2}(x - 2)^{2} + C

    Từ đó F(0) = \frac{1}{2}(0 - 2)^{2} + C =
C + 2

    F(0) = 1 \Rightarrow C = -
1

    Vậy F(x) = \frac{1}{2}(x - 2)^{2} - 1
\Rightarrow F( - 1) = \frac{1}{2}( - 1 - 2)^{2} - 1 =
\frac{7}{2}

  • Câu 2: Vận dụng
    Tìm họ nguyên hàm của hàm số

    Họ nguyên hàm của hàm số f(x) = \frac{4x
- 3}{x^{2} - 3x + 2}

    Hướng dẫn:

    Phân tích

    Ta có:

    \frac{4x - 3}{x^{2} - 3x + 2} =\frac{4x - 3}{(x - 2)(x - 1)}

    =
\frac{A}{x - 1} + \frac{B}{x - 2} = \frac{Ax - 2A + Bx - B}{(x - 1)(x -
2)}

    Khi đó (A + B)x - 2A - B = 4x -
3, đồng nhất hệ số thì ta được

    \left\{ \begin{matrix}
A + B = 4 \\
2A + B = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = - 1 \\
B = 5 \\
\end{matrix} ight.

    Giải chi tiết

    Ta có \int_{}^{}{\frac{4x - 3}{x^{2} - 3x
+ 2}dx}= \int_{}^{}{\left( \frac{- 1}{x - 1} + \frac{5}{x - 2} ight)dx}

    = - \ln|x - 1| + 5.ln|x - 2| + C

    = 4.ln|x - 2| + \ln\left| \frac{x - 2}{x
- 1} ight| + C= 4.ln|x - 2| - \ln\left| \frac{x - 1}{x - 2} ight| +
C

    Đáp số bài tập kiểm tra khả năng vận dụng:

    \int_{}^{}{\frac{x^{2} + 2x - 1}{2x^{3}
+ 3x^{2} - 2x}dx }= \frac{1}{2}.\ln|x| + \frac{1}{10}.\ln|2x - 1| -
\frac{1}{10}.\ln|x + 2| + C

  • Câu 3: Vận dụng
    Tính nguyên hàm của I

    Tìm nguyên hàm I = \int_{}^{}{x\ln(2x -
1)dx}.

    Hướng dẫn:

    Đặt u = \ln(2x - 1) \Rightarrow du =
\frac{2}{2x - 1}dx;dv = xdx \Rightarrow v = \frac{x^{2}}{2}

    Khi đó

    \int_{}^{}{x\ln(2x - 1)dx} =\frac{x^{2}}{2}.\ln(2x - 1) - \int_{}^{}{\frac{x^{2}}{2}.\frac{2}{2x -
1}}dx

    = \frac{x^{2}}{2}.\ln|2x - 1| -
\int_{}^{}{\frac{x^{2}}{2x - 1}dx}

    = \frac{x^{2}}{2}.\ln|2x - 1| -
\int_{}^{}{\left( \frac{x}{2} + \frac{1}{4} + \frac{1}{4(2x - 1)}
ight)dx}

    = \frac{x^{2}}{2}.\ln|2x - 1| - \left(
\frac{x^{2}}{4} + \frac{x}{4} + \frac{1}{8}.\ln\left| (2x - 1) ight|
ight) + C

    = \frac{4x^{2} - 1}{8}.\ln|2x - 1| -
\frac{x(x + 1)}{4} + C

  • Câu 4: Vận dụng
    Chọn đáp án đúng

    Theo phương pháp đổi biến số (x
\rightarrow t), nguyên hàm của I =
\int_{}^{}\frac{2sinx + 2cosx}{\sqrt[3]{1 - sin2x}}dx là:

    Hướng dẫn:

    Ta có:

    I = \int_{}^{}\frac{2sinx +
2cosx}{\sqrt[3]{1 - sin2x}}dx = \int_{}^{}\frac{2\left( \sin x + \cos x
\right)}{\sqrt[3]{\left( \sin x - \cos x \right)^{2}}}dx.

    Đặt t = \sin x - \cos x \Rightarrow dt =
\left( \sin x + \cos x \right)dx.

    \Rightarrow I =
\int_{}^{}\frac{2}{\sqrt[3]{t^{2}}}dt = 2.\frac{1}{1 + \left( -
\frac{2}{3} \right)}t^{\frac{1}{3}} + C = 6\sqrt[3]{t} + C.

  • Câu 5: Thông hiểu
    Tính giá trị biểu thức

    Cho hàm số f(x) có đạo hàm với mọi x\mathbb{\in R}f'(x) = 2x + 1. Giá trị của f(2) - f(1) bằng:

    Hướng dẫn:

    Ta có:

    f'(x) = 2x + 1 \Rightarrow\int_{}^{}{f'(x)dx = \int_{}^{}{(2x + 1)dx}}

    = x^{2} + x + C \Rightarrow \existsC_{1}\mathbb{\in R}:f(x) = x^{2} + x + C

    \Rightarrow f(2) - f(1) = 2^{2} + 2 +C_{1} - \left( 1^{2} + 1 + C_{1} ight) = 4

  • Câu 6: Vận dụng
    Chọn đáp án đúng

    Với phương pháp đổi biến số (x
\rightarrow t), nguyên hàm I =
\int_{}^{}{\frac{1}{\sqrt{- x^{2} + 2x + 3}}dx} bằng:

    Hướng dẫn:

    Ta biến đổi: I =
\int_{}^{}{\frac{1}{\sqrt{4 - (x - 1)^{2}}}dx}.

    Đặt x - 1 = 2sint,t \in \left\lbrack -
\frac{\pi}{2},\frac{\pi}{2} \right\rbrack \Rightarrow dx =
2costdt.

    \Rightarrow I = \int_{}^{}{dt = t +
C}.

  • Câu 7: Vận dụng
    Viết phương trình tiếp tuyến

    Cho hàm số y = f(x) thỏa mãn f'(x).f^{2}(x) = x^{2}f(2) = 2. Phương trình tiếp tuyến của đồ thị hàm số g(x) = f(x) + x^{2} tại điểm có hoành độ bằng 3 là:

    Hướng dẫn:

    Ta có: f'(x).f^{2}(x) =
x^{2}

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{f'(x).f^{2}(x)dx} =
\int_{}^{}{x^{2}dx}

    \Leftrightarrow
\int_{}^{}{f^{2}(x)df(x)} = \frac{x^{3}}{3} + C

    \Leftrightarrow \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} + C. Theo bài ra ta có: f(2) = 2 \Rightarrow \frac{f^{3}(2)}{3} =
\frac{2^{3}}{3} + C \Rightarrow C = 0

    Suy ra \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} \Leftrightarrow f(x) = x

    Vậy g(x) = x^{2} + x \Rightarrow
g'(x) = 2x + 1

    Ta có: g'(3) = 7;g(3) =
12

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:

    y = g'(3)(x - 3) + g(3)

    \Leftrightarrow y = 7(x - 3) + 12
\Leftrightarrow y = 7x - 9

  • Câu 8: Vận dụng
    Xác định hàm số

    Cho F(x) = \ln\left( \ln\left( \ln x
\right) \right). Hỏi F(x) là nguyên hàm của hàm số nào dưới đây?

    Hướng dẫn:

    Để tìm F(x) là nguyên hàm của hàm số nào trong số 4 hàm số trên, ta sẽ đi đạo hàm F(x) từ đó suy ra f(x).

    Ta có

    F'(x) = \left\lbrack \ln\left(
\ln\left( \ln x ight) ight) ightbrack'

    = \frac{1}{\ln\left( \ln x ight)}.\left\lbrack
\ln\left( \ln x ight) ightbrack' = \frac{1}{\ln\left( \ln x ight)}.\frac{1}{\ln
x}\left( \ln x ight)'

    = \frac{1}{\ln\left( \ln x
ight)}.\frac{1}{\ln x}.\frac{1}{x} = \frac{1}{x.\ln x.\ln\left( \ln x
ight)} = f(x).

  • Câu 9: Vận dụng
    Xác định số cực trị của đồ thị hàm số

    Biết F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}}. Hỏi đồ thị của hàm số y = F(x) có bao nhiêu điểm cực trị?

    Hướng dẫn:

    F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}} nên suy ra F'(x) = f(x) = \frac{x - \cos
x}{x^{2}}

    Ta có: F'(x) = 0 \Leftrightarrow
\frac{x - \cos x}{x^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x - \cos x = 0 \\
x \in \lbrack - 1;1brack\backslash\left\{ 0 ight\} \\
\end{matrix} ight.\ (1)

    Xét hàm số g(x) = x - \cos x trên \lbrack - 1;1brack, ta có: g'(x) = 1 + \sin x \geq 0;\forall x \in
\lbrack - 1;1brack suy ra hàm số g(x) đồng biến trên \lbrack - 1;1brack.

    Vậy phương trình g(x) = x - \cos x = 0 có nhiều nhất một nghiệm trên \lbrack -
1;1brack (2)

    Mặt khác ta có hàm số g(x) = x - \cos
x liên tục trên (0;1)\left\{ \begin{matrix}
g(0) = 0 - cos0 = - 1 < 0 \\
g(1) = 1 - cos1 > 0 \\
\end{matrix} ight. nên g(0)g(1)
< 0.

    Suy ra tồn tại x_{0} \in
(0;1) sao cho g\left( x_{0} ight)
= 0 (3)

    Từ (1); (2); (3) suy ra phương trình F'(x) = 0 có nghiệm duy nhất x_{0} eq 0.

    Đồng thời vì x_{0} là nghiệm bội lẻ nên F'(x) đổi dấu qua x = x_{0}

    Vậy đồ thị hàm số y = F(x) có một điểm cực trị.

  • Câu 10: Vận dụng
    Xác định nguyên hàm I

    Nguyên hàm của I = \int_{}^{}{x\sin
xcos^{2}x}dx là:

    Hướng dẫn:

    Ta đặt:

    \left\{ \begin{matrix}u = x \\du = \sin xcos^{2}x \\\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}du = dx \\u = - cos^{3}xdx \\\end{matrix} \right..

    \Rightarrow I = \int_{}^{}{x\sin
xcos^{2}x}dx = - xcos^{3}x +
\underset{I_{1}}{\overset{\int_{}^{}{cos^{3}xdx}}{︸}} +
C_{1}.

    Xét I_{1} = \int_{}^{}{cos^{3}x}dx =
\int_{}^{}{\cos x\left( 1 - sin^{2}x \right)dx}.

    Đặt t = \sin x \Rightarrow dt = \cos
xdx.

    \Rightarrow I_{1} = \int_{}^{}{\left( 1 -
t^{2} \right)dt = t - \frac{1}{3}t^{3} + C_{2}}.

    \Rightarrow I = - xcos^{3}x + I_{1} = -
xcos^{3}x + t - \frac{1}{3}t^{3} + C.

  • Câu 11: Thông hiểu
    Tìm họ nguyên hàm của hàm số f(x)

    Họ nguyên hàm của hàm số f(x) =
\frac{\sin x}{\cos x - 3} là:

    Hướng dẫn:

    Ta có:

    \int_{}^{}{\frac{\sin x}{\cos x - 3}dx =
\int_{}^{}{\frac{- d\left( \cos x - 3 \right)}{\cos x - 3} = - \ln\left|
\cos x - 3 \right| + C}}

  • Câu 12: Vận dụng cao
    Xác định khẳng định chính xác nhất

    Biết luôn có hai số a;b để F(x) = \frac{ax + b}{x + 4};(4a - b eq
0) là một nguyên hàm của hàm số f(x) và thỏa mãn 2f^{2}(x) = \left\lbrack F(x) - 1
ightbrack.f'(x). Khẳng định nào sau đây là đúng và đầy đủ nhất?

    Hướng dẫn:

    Do 4a - b eq 0 \Rightarrow F(x) eq
C;\forall x\mathbb{\in R}. Vì luôn có hai số a;b để F(x) =
\frac{ax + b}{x + 4};(4a - b eq 0) là một nguyên hàm của hàm số f(x) nên f(x) không phải là hàm hằng.

    Từ giả thiết 2f^{2}(x) = \left\lbrack
F(x) - 1 ightbrack.f'(x) \Leftrightarrow \frac{2f(x)}{F(x) - 1}
= \frac{f'(x)}{f(x)}

    Lấy nguyên hàm hai vế với vi phân dx ta được:

    \int_{}^{}{\frac{2f(x)}{F(x) - 1}dx} =\int_{}^{}{\frac{f'(x)}{f(x)}dx}\Leftrightarrow 2\ln\left| F(x) - 1ight| = \ln\left| f(x) ight| + C với C là hằng số.

    \Leftrightarrow 2ln\left| F(x) - 1
ight| + \ln e^{C} = \ln\left| f(x) ight|

    \Leftrightarrow \left| f(x) ight| =
e^{C}.\left\lbrack F(x) - 1 ightbrack^{2} = e^{C}.\left( \frac{(a -
1)x + b - 4}{x + 4} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}f(x) = e^{C}.\left\lbrack \dfrac{(a - 1)x + b - 4}{x + 4}ightbrack^{2} \\f(x) = - e^{C}.\left\lbrack \dfrac{(a - 1)x + b - 4}{x + 4}ightbrack^{2} \\\end{matrix} ight.

    TH1: f(x) = e^{C}.\left\lbrack \frac{(a -
1)x + b - 4}{x + 4} ightbrack^{2} ta có: F'(x) = f(x) \Rightarrow f(x) = \frac{4a -
b}{(x + 4)^{2}}

    Đồng nhất hệ số ta có:

    e^{C}.\left\lbrack (a - 1)x + b - 4
ightbrack^{2} = 4a - b;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}a = 1 \\e^{C}.(b - 4)^{2} = 4 - b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 1 \\\left\lbrack \begin{matrix}b = 4 \\b = \dfrac{4e^{C} - 1}{e^{C}} \\\end{matrix} ight.\  \\\end{matrix} ight.

    Loại b = 4 do điều kiện 4a - b eq 0. Do đó (a;b) = \left( 1;\frac{4e^{C} - 1}{e^{C}}
ight)

    TH2: f(x) = - e^{C}.\left\lbrack \frac{(a
- 1)x + b - 4}{x + 4} ightbrack^{2} ta có: F'(x) = f(x) \Rightarrow f(x) = \frac{4a -
b}{(x + 4)^{2}}

    Đồng nhất hệ số ta có:

    - e^{C}.\left\lbrack (a - 1)x + b - 4
ightbrack^{2} = 4a - b;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}a = 1 \\- e^{C}.(b - 4)^{2} = 4 - b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 1 \\\left\lbrack \begin{matrix}b = 4 \\b = \dfrac{4e^{C} + 1}{e^{C}} \\\end{matrix} ight.\  \\\end{matrix} ight.

    Loại b = 4 do điều kiện 4a - b eq 0. Do đó (a;b) = \left( 1;\frac{4e^{C} + 1}{e^{C}}
ight)

    Vậy khẳng định đúng và đầy đủ nhất là a =
1;b\mathbb{= R}\backslash\left\{ 4 ight\}.

  • Câu 13: Vận dụng
    Tính nguyên hàm của hàm số

    Tìm nguyên hàm F(x) của hàm số f(x) = \frac{x^{2} + x - 1}{\sqrt{x^{2} -
1}}.e^{x}

    Hướng dẫn:

    Ta có

    f(x) = \frac{x^{2} + x - 1}{\sqrt{x^{2} -
1}}.e^{x} = \frac{\left( x^{2} - 1 ight) + x}{\sqrt{x^{2} -
1}}.e^{x}

    = \left\lbrack \frac{x}{\sqrt{x^{2} - 1}}
+ \sqrt{x^{2} - 1} ightbrack e^{x}= \left\lbrack \left( \sqrt{x^{2}
- 1} ight)' + \sqrt{x^{2} - 1} ightbrack e^{x}

    \Rightarrow F(x) = \sqrt{x^{2} - 1}.e^{x}
+ C

  • Câu 14: Vận dụng
    Chọn đáp án đúng

    Nguyên hàm của hàm số f(x) = \dfrac{x}{(1+ x)^{5}} là

    Hướng dẫn:

    Đặt u = x + 1 thì u' = 1.

    Khi đó

    \int_{}^{}{\frac{x}{(1 + x)^{5}}dx
= \int_{}^{}{\frac{u - 1}{u^{5}}du}}

    = \int_{}^{}{\left( \frac{1}{u} - \frac{1}{u^{5}}
ight)du = \int_{}^{}{u^{- 4}du - \int_{}^{}{u^{- 5}du}}}

    = - \frac{1}{3}.\frac{1}{u^{3}} +
\frac{1}{4}.\frac{1}{u^{4}} + C.

    Thay u = x + 1 ta được \int_{}^{}{\frac{x}{(x + 1)^{5}}dx = \frac{1}{4(x
+ 1)^{4}} - \frac{1}{3(x + 1)^{3}} + C}

  • Câu 15: Vận dụng cao
    Giá trị của biểu thức T

    Biết F\left( x ight) = \left( {a{x^2} + bx + c} ight)\sqrt {2x - 3} là một nguyên hàm của hàm số f\left( x ight) = \frac{{20{x^2} - 30x + 11}}{{\sqrt {2x - 3} }} trên khoảng \left( {\frac{3}{2}; + \infty } ight). Giá trị của biểu thức T = a + b + c bằng

    Hướng dẫn:

     \begin{matrix}  f\left( x ight) = F'\left( x ight)\left[ {\left( {a{x^{u2}} + bx + c} ight)\sqrt {2x - 3} } ight]' = \dfrac{{5a{x^2} + x\left( {3b - 6a} ight) + c - 3b}}{{\sqrt {2x - 3} }} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {5a = 20} \\   {3b - 6a =  - 30} \\   {c - 3b = 11} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 4} \\   {b =  - 2} \\   {c = 5} \end{array}} ight. \Rightarrow T = 7 \hfill \\ \end{matrix}

  • Câu 16: Vận dụng
    Xác định nguyên hàm của hàm số

    Nguyên hàm của I =
\int_{}^{}{xsin^{2}x}dx là:

    Hướng dẫn:

    Ta biến đổi:

    I = \int_{}^{}{xsin^{2}x}dx =
\int_{}^{}{x\left( \frac{1 - cos2x}{2} \right)dx}

    = \frac{1}{2}\int_{}^{}{xdx -
\frac{1}{2}\int_{}^{}{xcos2x}}dx = \frac{1}{4}x^{2} -
\frac{1}{2}\underset{I_{1}}{\overset{\int_{}^{}{xcos2xdx}}{︸}} +
C_{1}

    \mathbf{I}_{\mathbf{1}}\mathbf{=}\int_{}^{}{\mathbf{x}\mathbf{cos2}\mathbf{xdx}}.

    Đặt\left\{ \begin{matrix}
u = x \\
dv = cos2x \\
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
du = dx \\
v = \frac{1}{2}sin2x \\
\end{matrix} \right..

    \Rightarrow I_{1} = \int_{}^{}{xcos2xdx}
= \frac{1}{2}xsin2x - \frac{1}{2}\int_{}^{}{sin2xdx =} \frac{1}{2}xsin2x + \frac{1}{4}cos2x +
C.

    \Rightarrow I = \frac{1}{4}\left( x^{2} -
\frac{1}{2}cos2x - xsin2x \right) + C = \frac{1}{8}\left( 2x^{2} - 2xsin2x - cos2x
\right) + C

    = - \frac{1}{8}cos2x + \frac{1}{4}\left(
x^{2} + xsin2x \right) + C.

  • Câu 17: Thông hiểu
    Tính giá trị biểu thức

    Cho hàm số f(x) = \frac{1}{\sin
x} có một nguyên hàm là F(x) thỏa mãn F\left( \frac{\pi}{3} ight) = 0. Giá trị của e^{F\left( \frac{2\pi}{3}
ight)} bằng:

    Hướng dẫn:

    Ta có: F(x) = \int_{}^{}{\frac{1}{\sin x}dx} =\int_{}^{}{\frac{1}{2\sin\frac{x}{2}.\cos\frac{x}{2}}dx}

    = \int {\frac{1}{{2\tan \frac{x}{2}.{{\cos }^2}\frac{x}{2}}}dx}  = \int {\frac{1}{{\tan \frac{x}{2}}}d\left( {\tan \frac{x}{2}} ight)}= \ln \left| {\tan \frac{x}{2}} ight| + C

    Lại có F\left( \frac{\pi}{3} ight) = 0
\Leftrightarrow \ln\left| \tan\frac{\pi}{6} ight| + C = 0

    \Rightarrow C = - \ln\frac{\sqrt{3}}{3}= \ln\sqrt{3} = \frac{1}{2}\ln3

    Do đó: {e^{F\left( {\frac{{2\pi }}{3}} ight)}} = {e^{\ln \left| {\tan \frac{\pi }{3}} ight| + \frac{1}{2}\ln 3}} = {e^{\ln 3}} = 3

  • Câu 18: Vận dụng
    Chọn đáp án đúng

    Tìm H = \int_{}^{}\frac{x^{2}dx}{\left(
x\sin x + \cos x \right)^{2}}?

    Hướng dẫn:

    Ta có : H =
\int_{}^{}{\frac{x^{2}}{\left( x\sin x + \cos x \right)^{2}}dx =
\int_{}^{}{\frac{x\cos x}{\left( x\sin x + \cos x
\right)^{2}}.\frac{x}{\cos x}dx}}

    Đặt \left\{ \begin{matrix}u = \dfrac{x}{\cos x} \\dv = \dfrac{x\cos x}{\left( x\sin x + \cos x \right)^{2}}dx =\dfrac{d\left( x\sin x + \cos x \right)}{\left( x\sin x + \cos x\right)^{2}} \\\end{matrix} \right.

    \Rightarrow \left\{ \begin{matrix}du = \dfrac{x\sin x + \cos x}{cos^{2}x}dx \\v = - \dfrac{1}{x\sin x + \cos x} \\\end{matrix} \right.

    \Rightarrow H = - \frac{x}{\cos
x}.\frac{1}{xsinx + \cos x} +
\int_{}^{}{\frac{1}{cos^{2}x}dx}

    = \frac{- x}{\cos x\left( x\sin x + \cos
x \right)} + \tan x + C

  • Câu 19: Vận dụng
    Tính giá trị biểu thức

    Cho là một nguyên hàm của hàm số f\left( x ight) = \frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1}F\left( 1 ight) = \frac{1}{3}. Tính {\left[ {F\left( e ight)} ight]^2}

    Gợi ý:

     Sử dụng tích phân từng phần

    Hướng dẫn:

     Cách 1: \int {f\left( x ight)}  = \int {\frac{{\ln x}}{x}\sqrt {{{\ln }^2}x + 1} dx = \int {\sqrt {{{\ln }^2}x + 1} .} } \frac{{\ln x}}{x}dx

    Đặt \sqrt {{{\ln }^2}x + 1}  = t

    \begin{matrix}   \Rightarrow {\ln ^2}x + 1 = {t^2} \hfill \\   \Rightarrow 2\ln x.\dfrac{1}{x}dx = 2tdt \hfill \\   \Rightarrow \dfrac{{\ln x}}{x}dx = tdt \hfill \\ \end{matrix}

    Khi đó \int {f\left( x ight)}  = \int {t.t.dt}  = \int {{t^2}dt}  = \frac{{{t^3}}}{3} + C

    => F\left( x ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    Mặt khác F\left( 1 ight) = \frac{1}{3} \Leftrightarrow \frac{1}{3} = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}x + 1} } ight)^3} + C

    => C = 0

    => F\left( e ight) = \frac{1}{3}.{\left( {\sqrt {{{\ln }^2}e + 1} } ight)^3} = \frac{{2\sqrt 2 }}{3}

    => {\left[ {F\left( e ight)} ight]^2} = {\left( {\frac{{2\sqrt 2 }}{3}} ight)^2} = \frac{8}{9}

    Cách 2: F\left( e ight) - F\left( 1 ight) = \int\limits_1^e {\frac{{\ln x}}{x}.\sqrt {{{\ln }^2}x + 1} dx}. Sử dụng máy tính cầm tay để tính.

  • Câu 20: Thông hiểu
    Chọn đáp án đúng

    Cho f(x) = 1 + |x|. Một nguyên hàm F(x) của f(x) thỏa F(1) = 1 là:

    Hướng dẫn:

    Ta có: f(x) = 1 + |x| = \left\lbrack
\begin{matrix}
1 + x;x \geq 0 \\
1 - x;x < 0 \\
\end{matrix} \right.

    Khi đó \int_{}^{}{f(x)dx} = \left\lbrack
\begin{matrix}
x + \frac{x^{2}}{2} + C_{1};x \geq 0 \\
x - \frac{x^{2}}{2} + C_{2};x < 0 \\
\end{matrix} \right. mặt khác F(1) = 1

    \Leftrightarrow 1 + \frac{1^{2}}{2} +
C_{1} = 1(x = 1 > 0) \Leftrightarrow C_{1} = -
\frac{1}{2}

    Vậy đáp án cần tìm là: \left\{ \begin{gathered}
  x + \frac{{{x^2}}}{2} - \frac{1}{2}{\text{ khi  }}x \geqslant 0 \hfill \\
  x - \frac{{{x^2}}}{2} + {C_2}{\text{  khi  }}x < 0 \hfill \\ 
\end{gathered}  \right.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo