

Tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình?
Ta có: nên tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình
.
Cho hàm số có đồ thị như sau:
Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là:
Dựa vào đồ thị hàm số ta thấy đồ thị đã cho có đường tiệm cận đứng là và đường tiệm cận ngang là
.
Cho hàm số . Trong các khẳng định sau, khẳng định nào là khẳng định đúng?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Điều kiện
Từ điều kiện ta có:
Đồ thị hàm số không có tiệm cận đứng
Mặt khác
=> y = 0 là tiệm cận ngang của đồ thị hàm số
Không tồn tại
Vậy đồ thị hàm số không có tiệm cận đứng và có đúng một tiệm cận ngang
Cho hàm số có bảng biến thiên như sau:
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
Ta có và
nên đồ thị hàm số có 2 tiệm cận ngang là các đường thẳng có phương trình
và
Và nên hàm số có 1 tiệm cận đứng là đường thẳng có phương trình
Đồ thị hàm số có bao nhiêu tiệm cận đứng và tiệm cận ngang?
Ta có: nên đường thẳng
là tiệm cận ngang của đồ thị hàm số.
nên đường thẳng
là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có số tiệm cận đứng và tiệm cận ngang là 2.
Cho hàm số có bảng biến thiên:
Số đường tiệm cận ngang của đồ thị hàm số là:
Ta có: nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang
.
Cho hàm số có
và
. Khẳng định nào sau đây là khẳng định đúng?
Theo định nghĩa về tiệm cận, ta có:
là TCN.
là TCĐ.
Cho hàm số có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận đứng của đồ thị hàm số đã cho?
Đường tiệm cận đứng của hàm số là:
Tâm đối xứng của đồ thị hàm số là điểm nào sau đây?
Đồ thị hàm số có tiệm cận đứng
, tiệm cận ngang
Suy ra tâm đối xứng là .
Cho đồ thị hàm số như sau:
Đồ thị hàm số đã cho có phương trình tiệm cận đứng và tiệm cận ngang lần lượt là:
Dựa vào đồ thị hàm số ta thấy phương trình tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là .
Tiệm cận đứng của đồ thị hàm số là
Ta có và
nên đường thẳng
là tiệm cận đứng của đồ thị hàm số.
Cho hàm số có đồ thị như hình vẽ bên. Tiệm cận ngang của đồ thị hàm số là:
Dựa vào đồ thị ta thấy đồ thị có tiệm cận ngang là
Đồ thị hàm số có bao nhiêu đường tiệm cận?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Tập xác định:
Ta có: => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.
=> Đồ thị hàm số có hai tiệm cận đứng là x = 2 và x = =-2
Vậy đồ thị hàm số đã cho có 2 tiệm cận đứng là x = 2 và x = -2
Cho hàm số có bảng biến thiên như sau:
Đồ thị hàm số trên có tiệm cận ngang là:
Dựa vào bảng biến thiên ta có:
Suy ra tiệm cận ngang của đồ thị hàm số là .
Cho hàm số có bảng biến thiên như sau:
Đồ thị hàm số có đường tiệm cận ngang là:
Dựa vào bảng biến thiên ta có: nên đồ thị hàm số có đường tiệm cận ngang là
.
Đường thẳng nào sau đây là tiệm cận ngang của đồ thị hàm số ?
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình
.
Cho hàm số có bảng biến thiên như sau:
Có bao nhiêu khẳng định sai trong các khẳng định dưới đây?
(i) Đồ thị hàm số có ba đường tiệm cận.
(ii) Hàm số có cực tiểu tại .
(iii) Hàm số nghịch biến trên mỗi khoảng .
(iv) Hàm số xác định trên .
Do nên đồ thị hàm số có hai đường tiệm cận ngang;
nên đồ thị hàm số có một tiệm cận đứng. Do đó đồ thị hàm số có ba đường tiệm cận nên (i) đúng.
Hàm số có cực tiểu tại đúng nên (ii) đúng.
Hàm số nghịch biến trên nên (iii) sai.
Hàm số không xác định tại nên (iv) sai.
Vậy có 2 khẳng định sai.
Tiệm cận ngang của đồ thị hàm số là:
Ta có : và
nên
là tiệm cận ngang của đồ thị hàm số.
Chọn khẳng định đúng trong các khẳng định sau:
“Đồ thị hàm số có tiệm cận ngang
khi và chỉ khi
và
“ sai vì chỉ cần một trong hai giới hạn
hoặc
tồn tại thì đã suy ra được tiệm cận ngang là
.
“Nếu hàm số không xác định tại
thì đồ thị hàm số
có tiệm cận đứng
“ sai, ví dụ hàm số
không xác định tại
nhưng
và
không tiến đến vô cùng nên
không phải là tiệm cận đứng của đồ thị hàm số.
“Đồ thị hàm số có tiệm cận đứng
khi và chỉ khi
và
“ sai vì chỉ cần tồn tại một trong bốn giới hạn sau:
.
“Đồ thị hàm số bất kì có nhiều nhất hai đường tiệm cận ngang.“ đúng vì chỉ có hai giới hạn
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: