Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 3 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tìm tổng các đường tiệm cận theo yêu cầu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy

    Tiệm cận ngang là y = 3

    Tiệm cận đứng là x = -1 và x = 1

    Vậy tổng các đường tiệm cận cần tìm bằng 3.

  • Câu 2: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) xác định và liên tục trên các khoảng ( -
\infty;0)(0; + \infty) có bảng biến thiên như hình vẽ:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    \lim_{x ightarrow - \infty}y =
2 nên y = 2 là tiệm cận ngang của đồ thị hàm số.

    {\left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) =  - \infty  \hfill \\ 
\end{gathered}  ight.} nên x = 0 là tiệm cận đứng của đồ thị hàm số.

  • Câu 3: Nhận biết
    Tìm số tiệm cận đứng của đồ thị hàm số

    Đồ thị của hàm số y = \frac{x^{2} - 1}{3
- 2x - 5x^{2}} có bao nhiêu đường tiệm cận đứng?

    Hướng dẫn:

    Ta có: 5x^{2} - 2x + 3 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = \dfrac{3}{5} \\\end{matrix} ight.

    Với x = - 1 thì x^{2} - 1 = 0 nên đồ thị hàm số có một tiệm cận đứng là x =
\frac{3}{5}.

  • Câu 4: Nhận biết
    Tìm tổng các đường tiệm cận

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow - \infty}f(x) =
2;\lim_{x ightarrow 0^{+}}f(x) = + \infty nên hàm số có tiệm cận ngang là y = 2 và tiệm cận đứng là x = 0.

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = \frac{ax + b}{cx + d};(ad
- bc eq 0;ac eq 0) có đồ thị như hình vẽ:

    Tìm đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đó?

    Hướng dẫn:

    Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là x = 1 và đường tiệm cận ngang là y = 1

  • Câu 6: Nhận biết
    Xác định tiệm cận ngang

    Tìm tiệm cận ngang của đồ thị hàm số y =
\frac{x}{x^{2} - 1}?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{x}{x^{2} - 1} = 0

    Do đó tiệm cận ngang của đồ thị hàm số y
= \frac{x}{x^{2} - 1}y =
0.

  • Câu 7: Nhận biết
    Tìm khẳng định đúng

    Cho hàm số y = f(x)\lim_{x ightarrow - \infty}f(x) = - 1\lim_{x ightarrow 1^{+}}f(x) = +
\infty. Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Theo định nghĩa về tiệm cận, ta có:

    \lim_{x ightarrow - \infty}f(x) = - 1\
\ \overset{}{ightarrow}\ \ y = - 1 là TCN.

    \lim_{x ightarrow \ 1^{+}}f(x) = +
\infty\ \ \overset{}{ightarrow}\ \ x = 1 là TCĐ.

  • Câu 8: Nhận biết
    Tổng số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{{1 - 3x}}{{x + 2}} có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Ta có: \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} \frac{{1 - 3x}}{{x + 2}} =  + \infty ;\mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \frac{{1 - 3x}}{{x + 2}} =  - \infty => Đồ thị hàm số có tiệm cận đứng là x = -2

    Ta có: \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{1 - 3x}}{{x + 2}} =  - 3 => y = -3 là tiệm cận ngang của đồ thị hàm số.

  • Câu 9: Thông hiểu
    Chọn câu đúng

    Chọn khẳng định đúng trong các khẳng định sau:

    Hướng dẫn:

    “Đồ thị hàm số y = f(x) có tiệm cận ngang y = 1 khi và chỉ khi \lim_{x ightarrow + \infty}f(x) =
1\lim_{x ightarrow -
\infty}f(x) = 1“ sai vì chỉ cần một trong hai giới hạn \lim_{x ightarrow - \infty}f(x) = 1 hoặc \lim_{x ightarrow + \infty}f(x) =
1 tồn tại thì đã suy ra được tiệm cận ngang là y = 1.

    “Nếu hàm số y = f(x) không xác định tại x_{0} thì đồ thị hàm số y = f(x) có tiệm cận đứng x = x_{0}“ sai, ví dụ hàm số y = \sqrt{x^{3} - 1} không xác định tại x = - 2 nhưng \lim_{x ightarrow \ ( - 2)^{-}}f(x)\lim_{x ightarrow \ ( -
2)^{+}}f(x) không tiến đến vô cùng nên x = - 2 không phải là tiệm cận đứng của đồ thị hàm số.

    “Đồ thị hàm số y = f(x) có tiệm cận đứng x = 2 khi và chỉ khi \lim_{x ightarrow 2^{+}}f(x) = + \infty\lim_{x ightarrow 2^{-}}f(x) = +
\infty“ sai vì chỉ cần tồn tại một trong bốn giới hạn sau:

    \lim_{x ightarrow 2^{-}}f(x) = -
\infty,\lim_{x ightarrow 2^{-}}f(x) = + \infty,\lim_{x ightarrow \
2^{+}}f(x) = - \infty,\lim_{x ightarrow \ 2^{+}}f(x) = +
\infty.

    “Đồ thị hàm số y = f(x) bất kì có nhiều nhất hai đường tiệm cận ngang.“ đúng vì chỉ có hai giới hạn \lim_{x ightarrow - \infty}f(x),\ \
\lim_{x ightarrow + \infty}f(x).

  • Câu 10: Nhận biết
    Chọn đáp án đúng:

    Cho hàm số  y = \frac{\sqrt{5}x-2 }{x+1}

    Khẳng định nào sau đây đúng?

  • Câu 11: Nhận biết
    Đồ thị hàm số có đường tiệm cận ngang

    Cho hàm số f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang

    Đồ thị hàm số có đường tiệm cận ngang là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có \mathop {\lim }\limits_{x \to \infty } f\left( x ight) = 2

    => Đồ thị hàm số đường tiệm cận ngang là y = 2

  • Câu 12: Nhận biết
    Tính diện tích theo yêu cầu

    Các đường tiệm cận của đồ thị hàm số y =
\frac{2x + 1}{x - 3} tạo với hai trục tọa độ diện tích bằng bao nhiêu?

    Hướng dẫn:

    Ta có: Đồ thị hàm số y = \frac{2x + 1}{x
- 3} có đường tiệm cận đứng là x =
3 và đường tiệm cận ngang là y =
2

    Hai đường tiệm cận tạo với hai trục tọa độ một hình chữ nhật có chiều dài và chiều rộng lần lượt là 3;2 nên diện tích của hình chữ nhật là S = 2.3 =
6.

  • Câu 13: Thông hiểu
    Tính tổng đường tiệm cận ngang và tiệm cận đứng

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x - 3}{\sqrt{9 - x^{2}}} là:

    Hướng dẫn:

    Tập xác định D = ( - 3;3) suy ra đồ thị hàm số không có tiệm cận ngang.

    \lim_{x ightarrow 3^{-}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow 3^{-}}\frac{x - 3}{\sqrt{(3 -
x)(3 + x)}} = \lim_{x ightarrow 3^{-}}\frac{- \sqrt{3 - x}}{\sqrt{3 +
x}} = 0

    Suy ra x = 3 không là đường tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow - 3^{+}}\frac{x -
3}{\sqrt{9 - x^{2}}} = \lim_{x ightarrow - 3^{+}}\frac{x - 3}{\sqrt{(3
- x)(3 + x)}} = \lim_{x ightarrow - 3^{+}}\frac{- \sqrt{3 -
x}}{\sqrt{3 + x}} = - \infty

    Suy ra x = - 3 là đường tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số có 1 đường tiệm cận.

  • Câu 14: Nhận biết
    Tìm tọa độ điểm A

    Hai đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{2x - 5}{4 - x} cắt nhau tại điểm M. Xác định tọa độ điểm M?

    Hướng dẫn:

    Đồ thị hàm số y = \frac{2x - 5}{4 -
x} có đường tiệm cận đứng x =
4 và đường tiệm cận ngang y = -
2. Do đó giao điểm của hai đường tiệm cận là M(4; - 2).

  • Câu 15: Nhận biết
    Tìm tâm đối xứng của đồ thị hàm số

    Xác định tâm đối xứng của đồ thị hàm số y
= \frac{2x + 1}{x - 3}?

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{xightarrow + \infty}\dfrac{2x + 1}{x - 3} = \lim_{x ightarrow +\infty}\dfrac{2 + \dfrac{1}{x}}{1 - \dfrac{3}{x}} = 2 suy ra tiệm cận ngang là y = 2

    \lim_{x ightarrow 3^{+}}y = \lim_{x
ightarrow 3^{+}}\frac{2x + 1}{x - 3} = + \infty suy ra tiệm cận đứng là x = 3

    Tâm đối xứng của đồ thị hàm số là A(3;2).

  • Câu 16: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận ngang là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có: \lim_{x
ightarrow \pm \infty}f(x) = 2 nên đồ thị hàm số có đường tiệm cận ngang là y =  2.

  • Câu 17: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x)\lim_{x ightarrow + \infty}f(x) = 0\lim_{x ightarrow - \infty}f(x) = +
\infty. Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Ta có \lim_{x ightarrow + \infty}f(x) =
0\overset{}{ightarrow}y = 0 là tiệm cận ngang.

    Đáp án “Đồ thị hàm số nằm phía trên trục hoành.“ sai vì chọn hàm y = \left\{ \begin{matrix}
\left( \dfrac{1}{2} ight)^{x} & ;x \leq - 1 \\
- \left( \dfrac{1}{2} ight)^{x} & ;x \geq 1 \\
\end{matrix} ight..

    Vậy ta chỉ có đáp án “Đồ thị hàm số có một tiệm cận ngang là trục hoành” đúng.

  • Câu 18: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}\backslash\left\{ -
1 ight\} có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta có:

    \lim_{x ightarrow + \infty}y = -
2 suy ra đồ thị hàm số có tiệm cận ngang y = - 2

    \lim_{x ightarrow ( - 1)^{+}}y = +
\infty suy ra đồ thị hàm số có tiệm cận đứng x = - 1

    Vậy khẳng định đúng: " Đồ thị hàm số có tiệm cận đứng x = - 1 và tiệm cận ngang y = - 2”.

  • Câu 19: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow - \infty}f(x) =
0 nên đường thẳng y = 0 là đường tiệm cận ngang của đồ thị hàm số y =
f(x).

    \lim_{x ightarrow + \infty}f(x) = -
\infty nên đồ thị hàm số y =
f(x) không có tiệm cận ngang khi x
ightarrow + \infty.

    \lim_{x ightarrow - 2^{+}}f(x) = +
\infty, \lim_{x ightarrow -
2^{-}}f(x) = - \infty nên đường thẳng x = - 2 là đường tiệm cận đứng của đồ thị hàm số y = f(x).

    \lim_{x ightarrow 2^{+}}f(x) = +
\infty, \lim_{x ightarrow
2^{-}}f(x) = - \infty nên đường thẳng x = 2 là đường tiệm cận đứng của đồ thị hàm số y = f(x).

    Vậy tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là 3 tiệm cận.

  • Câu 20: Nhận biết
    Tìm tiệm cận đứng

    Tiệm cận đứng của đồ thị hàm số y =\frac{2x - 2}{x + 1} là

    Hướng dẫn:

    Ta có \lim_{x ightarrow - 1^{+}}y =\lim_{x ightarrow - 1^{+}}\frac{2x - 2}{x + 1} = - \infty và \lim_{x ightarrow - 1^{-}}y = \lim_{x
ightarrow - 1^{-}}\frac{2x - 2}{x + 1} = + \infty nên đường thẳng x = - 1 là tiệm cận đứng của đồ thị hàm số.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (85%):
    2/3
  • Thông hiểu (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo