Cho hàm số
Khẳng định nào sau đây đúng?
Cho hàm số
Khẳng định nào sau đây đúng?
Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?
Xét hàm số có
Tập xác định
suy ra
là tiệm cận đứng của hàm số.
Đường thẳng là đường tiệm cận của đồ thị hàm số nào sau đây?
có
suy ra
là tiệm cận ngang của đồ thị hàm số. (Loại)
có
nên đồ thị hàm số không có tiệm cận ngang (loại)
có
suy ra
là tiệm cận ngang (Thỏa mãn).
Vậy đường thẳng là đường tiệm cận của đồ thị hàm số
.
Cho hàm số có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận đứng của đồ thị hàm số đã cho?
Đường tiệm cận đứng của hàm số là:
Cho hàm số có
và
Khẳng định nào sau đây là đúng?
Theo định nghĩa về tiệm cận, ta có:
là TCN.
không phải là TCĐ.
Cho hàm số có đồ thị như hình vẽ:
Tìm đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đó?
Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là và đường tiệm cận ngang là
Cho hàm số có
và
. Khi đó đồ thị có?
Do có
ra số nên là tiệm cận ngang.
có
ra số nên không là tiện cận đứng được.
Tìm số tiệm cận đứng của đồ thị hàm số .
Xét phương trình .
Ta có:
là TCĐ;
không là TCĐ.
Vậy đồ thị hàm số có duy nhất một tiệm cận đứng.

Đồ thị của hàm số nào trong bốn hàm số sau có đường tiệm ngang?
Ta có:
không có tiệm cận ngang vì
không có tiệm cận ngang vì
không có tiệm cận ngang vì
có tiệm cận ngang vì
Cho hàm số có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận ngang của đồ thị hàm số đã cho?
Từ đồ thị suy ra đồ thị hàm số đã cho có đường tiệm cận ngang là .

Tiệm cận đứng của hàm số là:
Cho đồ thị hàm số có đồ thị như hình sau:
Đồ thị hàm số trên có đường tiệm cận đứng là:
Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là .
Cho hàm số có bảng biến thiên như sau:
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Ta có:
nên hàm số có tiệm cận ngang là
và tiệm cận đứng là
.
Tiệm cận ngang của đồ thị hàm số là
Ta thấy
Do đó đồ thị hàm số có tiệm cận ngang là .
Có bao nhiêu giá trị nguyên dương của tham số để đồ thị hàm số
có ba đường tiệm cận?
Ta có: nên suy ra hàm số có 1 đường tiệm cận ngang là
Để đồ thị hàm số có 3 đường tiệm cận thì phải có 2 tiệm cận đứng hay phương trình có hai nghiệm phân biệt khác
Do m nguyên dương nên có 14 giá trị m thỏa mãn.
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây

Số đường tiệm cận của đồ thị hàm số y = f(x) là
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Dựa vào bảng biến thiên ta thấy
=> x = -2 là tiệm cận đúng của đồ thị hàm số
Ta cũng có = > y = 5 là tiệm cận ngang của đồ thị hàm số
Do đó đồ thị hàm số có 2 đường tiệm cận
Cho hàm số có đồ thị như hình vẽ dưới đây. Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số theo thứ tự là
Từ đồ thị của hàm số suy ra tiệm cận đứng và tiệm cận ngang là : x = 1 ; y = 1
Cho hàm số có bảng biến thiên như hình vẽ dưới đây.
Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận đứng?
Quan sát bảng biến thiên đã cho ta thấy:
Đồ thị hàm số có hai đường tiệm cận đứng là hai đường thẳng có phương trình: .
Cho hàm số y = f(x) có và
. Khẳng định nào sau đây là khẳng định đúng?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Ta có: => Đồ thị hàm số đã cho có TCĐ là x = 0
=> Đồ thị hàm số đã cho có TCĐ là x = 2
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: