Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 3 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định các tiệm cận ngang

    Đồ thị hàm số y = \frac{\sqrt{10000 -
x^{2}}}{x - 2} có bao nhiêu đường tiệm cận ngang?

    Hướng dẫn:

    Điều kiện xác định \left\{ \begin{matrix}
10000 - x^{2} \geq 0 \\
x - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 100 \leq x \leq 100 \\
x eq 2 \\
\end{matrix} ight.

    Tập xác định \lbrack -
100;100brack\backslash\left\{ 2 ight\}

    Vì hàm số không tồn tại khi x ightarrow
- \inftyx ightarrow +
\infty nên đồ thị hàm số không có tiệm cận ngang.

  • Câu 2: Nhận biết
    Tìm tổng số đường tiệm cận

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x + 4} bằng:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x
+ 4} không có tiệm cận đứng.

    Ta có: \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x + 1}{x^{2} - 3x + 4}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{\dfrac{1}{x} +\dfrac{1}{x^{2}}}{1 - \dfrac{3}{x} + \dfrac{4}{x^{2}}} ight) = 0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số.

    Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho bằng 1.

  • Câu 3: Nhận biết
    Tiệm cận đứng của đồ thị hàm số

    Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số y = \frac{{2x + 1}}{{x + 1}}?

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Hướng dẫn:

    Xét phương trình x + 1 = 0 => x = -1

    \mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x ight) =  + \infty => x = -1 là tiệm cận đứng của đồ thị hàm số.

  • Câu 4: Nhận biết
    Số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = \frac{{\sqrt {{x^2} - 4} }}{{x - 1}}. Đồ thị hàm số có mấy đường tiệm cận?

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Tập xác định: D = \left( { - \infty ;2} ight] \cup \left[ {2; + \infty } ight)

    Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.

    \begin{matrix}  \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\sqrt {{x^2} - 4} }}{{x - 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|\sqrt {1 - \dfrac{4}{{{x^2}}}} }}{{x\left( {1 - \dfrac{1}{x}} ight)}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{\left| x ight|}}{x} \hfill \\   = \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y = 1} \\   {\mathop {\lim }\limits_{x \to  - \infty } y =  - 1} \end{array}} ight. \hfill \\ \end{matrix}

    => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.

  • Câu 5: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}\backslash\left\{ -
1 ight\} có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta có:

    \lim_{x ightarrow + \infty}y = -
2 suy ra đồ thị hàm số có tiệm cận ngang y = - 2

    \lim_{x ightarrow ( - 1)^{+}}y = +
\infty suy ra đồ thị hàm số có tiệm cận đứng x = - 1

    Vậy khẳng định đúng: " Đồ thị hàm số có tiệm cận đứng x = - 1 và tiệm cận ngang y = - 2”.

  • Câu 6: Nhận biết
    Xác định tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{{x + 4}}{{\sqrt {{x^2} - 4} }} có bao nhiêu đường tiệm cận?

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Tập xác định: D = \mathbb{R}\backslash \left\{ { \pm 2} ight\}

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x + 4}}{{\sqrt {{x^2} - 4} }} = 1} \\   {\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x + 4}}{{\sqrt {{x^2} - 4} }} =  - 1} \end{array}} ight. => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.

    => Đồ thị hàm số có hai tiệm cận đứng là x = 2 và x = =-2

    Vậy đồ thị hàm số đã cho có 2 tiệm cận đứng là x = 2 và x = -2

  • Câu 7: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = \frac{ax^{2} + bx + c}{mx
+ n},(am eq 0) có đồ thị như hình vẽ. Phương trình đường tiệm cận xiên của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Dựa vào đồ thị hàm số, ta thấy đường tiệm cận xiên của đồ thị hàm số đi qua 2 điểm (1;1)( - 1; - 1) nên đường tiệm cận xiên của đồ thị hàm số có phương trình y =
x.

  • Câu 8: Nhận biết
    Chọn đáp án đúng

    Cho đồ thị hàm số y = f(x) có đồ thị như hình sau:

    Đồ thị hàm số trên có đường tiệm cận đứng là:

    Hướng dẫn:

    Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là x = - 1.

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Tiệm cận đứng của đồ thị hàm số y =
\frac{x + 1}{x + 3}

    Hướng dẫn:

    Ta có \lim_{x ightarrow - 3^{+}}y = -\infty\lim_{x ightarrow -3^{-}}y = + \infty nên đồ thị hàm số nhận đường thẳng x = - 3 làm tiệm cận đứng.

  • Câu 10: Thông hiểu
    Xác định số tiệm cận của đồ thị hàm số

    Số tiệm cận của đồ thị hàm số y =
\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} - 1} là:

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{xightarrow + \infty}\dfrac{\left( 2x^{2} - x ight)\sqrt{1 +\dfrac{1}{x^{2}}}}{x^{2} - 1}= \lim_{x ightarrow + \infty}\dfrac{\left(2 - \dfrac{1}{x} ight)\sqrt{1 + \dfrac{1}{x^{2}}}}{1 - \dfrac{1}{x^{2}}}= 2

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{\left( - 2x^{2} + x ight)\sqrt{1 +
\frac{1}{x^{2}}}}{x^{2} - 1} = \lim_{x ightarrow - \infty}\frac{\left(
- 2 + \frac{1}{x} ight)\sqrt{1 + \frac{1}{x^{2}}}}{1 -
\frac{1}{x^{2}}} = - 2

    Suy ra y = \pm 2 là tiệm cận ngang.

    \lim_{x ightarrow 1^{\pm}}y = \lim_{x
ightarrow 1^{\pm}}\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} - 1} = \pm
\infty suy ra x = 1 là tiệm cận đứng.

    \lim_{x ightarrow ( - 1)^{\pm}}y =
\lim_{x ightarrow ( - 1)^{\pm}}\frac{(2x - 1)\sqrt{x^{2} + 1}}{x^{2} -
1} = \pm \infty suy ra x = -
1 là tiệm cận đứng.

    Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.

  • Câu 11: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) xác định và liên tục trên các khoảng ( -
\infty;0)(0; + \infty) có bảng biến thiên như hình vẽ:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    \lim_{x ightarrow - \infty}y =
2 nên y = 2 là tiệm cận ngang của đồ thị hàm số.

    {\left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) =  - \infty  \hfill \\ 
\end{gathered}  ight.} nên x = 0 là tiệm cận đứng của đồ thị hàm số.

  • Câu 12: Nhận biết
    Tìm số tiệm cận đứng và tiệm cận ngang

    Đồ thị hàm số y = \frac{x - 3}{6 -
3x} có bao nhiêu tiệm cận đứng và tiệm cận ngang?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{x - 3}{6 - 3x} = -
\frac{1}{3} nên đường thẳng y = -
\frac{1}{3} là tiệm cận ngang của đồ thị hàm số.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{x - 3}}{{6 - 3x}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{x - 3}}{{6 - 3x}} =  - \infty  \hfill \\ 
\end{gathered}  ight. nên đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số có số tiệm cận đứng và tiệm cận ngang là 2.

  • Câu 13: Nhận biết
    Xác định tiệm cận ngang của đồ thị hàm số

    Tiệm cận ngang của đồ thị hàm số y =
\frac{x - 2}{x + 1}

    Hướng dẫn:

    Ta thấy \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } \frac{{x - 2}}{{x + 1}} = 1 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \frac{{x - 2}}{{x + 1}} = 1 \hfill \\ 
\end{gathered}  ight.

    Do đó đồ thị hàm số có tiệm cận ngang là y = 1.

  • Câu 14: Nhận biết
    Tìm số đường tiệm cận ngang

    Cho hàm số y = f(x) có bảng biến thiên:

    Số đường tiệm cận ngang của đồ thị hàm số y = f(x) là:

    Hướng dẫn:

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = 5 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y =  - 3 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang y = - 3;y = 5.

  • Câu 15: Nhận biết
    Tìm số tiệm cận đứng của đồ thị hàm số

    Đồ thị của hàm số y = \frac{x^{2} - 1}{3
- 2x - 5x^{2}} có bao nhiêu đường tiệm cận đứng?

    Hướng dẫn:

    Ta có: 5x^{2} - 2x + 3 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 1 \\x = \dfrac{3}{5} \\\end{matrix} ight.

    Với x = - 1 thì x^{2} - 1 = 0 nên đồ thị hàm số có một tiệm cận đứng là x =
\frac{3}{5}.

  • Câu 16: Thông hiểu
    Định tổng số đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

    Hướng dẫn:

    Dựa vào bảng biến thiên của hàm số ta có:

    \underset{\mathbf{x ightarrow \pm
\infty}}{\mathbf{\lim}}\mathbf{f}\mathbf{(}\mathbf{x}\mathbf{)}\mathbf{=}\mathbf{2}\mathbf{\Rightarrow
y =}\mathbf{2}là một tiệm cận ngang

    \underset{\mathbf{x
ightarrow}\mathbf{1}^{\mathbf{+}}}{\mathbf{\lim}}\mathbf{f}\mathbf{(}\mathbf{x}\mathbf{)}\mathbf{=
- \infty \Rightarrow x =}\mathbf{1}là một tiệm cận đứng

    Vậy đồ thị hàm số có tổng số đường tiệm cận là2.

  • Câu 17: Thông hiểu
    Tìm m thỏa mãn yêu cầu bài toán

    Cho hàm số y = \frac{(2m + 1)x^{2} +
3}{\sqrt{x^{4} + 1}} với m là tham số. Tìm giá trị của m để đường tiệm cận ngang của đồ thị hàm số đi qua điểm A(1; - 3)?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow - \infty}y = 2m + 1 suy ra d:y = 2m + 1 là tiệm cận ngang của đồ thị hàm số đã cho.

    Do A(1; - 3) \in d \Leftrightarrow 2m + 1
= - 3 \Leftrightarrow m = - 2

  • Câu 18: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x)\lim_{x ightarrow + \infty}f(x) = 1\lim_{x ightarrow - \infty}f(x) = -
1. Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Theo định nghĩa về tiệm cận, ta có:

    \lim_{x ightarrow + \infty}f(x) =
1\overset{}{ightarrow}y = 1 là TCN.

    \lim_{x ightarrow - \infty}f(x) = -
1\overset{}{ightarrow}y = - 1 là TCN.

  • Câu 19: Nhận biết
    Tổng số đường tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{{1 - 3x}}{{x + 2}} có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Ta có: \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} \frac{{1 - 3x}}{{x + 2}} =  + \infty ;\mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \frac{{1 - 3x}}{{x + 2}} =  - \infty => Đồ thị hàm số có tiệm cận đứng là x = -2

    Ta có: \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{1 - 3x}}{{x + 2}} =  - 3 => y = -3 là tiệm cận ngang của đồ thị hàm số.

  • Câu 20: Nhận biết
    Tìm số đường tiệm cận

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị của hàm số đã cho có bao nhiêu tiệm cận?

    Hướng dẫn:

    Đồ thị của hàm số đã cho có 2 đường tiệm cận.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (85%):
    2/3
  • Thông hiểu (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo