Đồ thị hàm số có bao nhiêu đường tiệm cận ngang?
Điều kiện xác định
Tập xác định
Vì hàm số không tồn tại khi và
nên đồ thị hàm số không có tiệm cận ngang.
Đồ thị hàm số có bao nhiêu đường tiệm cận ngang?
Điều kiện xác định
Tập xác định
Vì hàm số không tồn tại khi và
nên đồ thị hàm số không có tiệm cận ngang.
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số bằng:
Tập xác định
Đồ thị hàm số không có tiệm cận đứng.
Ta có: suy ra
là tiệm cận ngang của đồ thị hàm số.
Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho bằng 1.
Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số ?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Xét phương trình x + 1 = 0 => x = -1
Và => x = -1 là tiệm cận đứng của đồ thị hàm số.
Cho hàm số . Đồ thị hàm số có mấy đường tiệm cận?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Tập xác định:
Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.
=> y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.
Cho hàm số xác định và liên tục trên
có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Từ bảng biến thiên ta có:
suy ra đồ thị hàm số có tiệm cận ngang
suy ra đồ thị hàm số có tiệm cận đứng
Vậy khẳng định đúng: " Đồ thị hàm số có tiệm cận đứng và tiệm cận ngang
”.
Đồ thị hàm số có bao nhiêu đường tiệm cận?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Tập xác định:
Ta có: => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.
=> Đồ thị hàm số có hai tiệm cận đứng là x = 2 và x = =-2
Vậy đồ thị hàm số đã cho có 2 tiệm cận đứng là x = 2 và x = -2
Cho hàm số có đồ thị như hình vẽ. Phương trình đường tiệm cận xiên của đồ thị hàm số đã cho là:
Dựa vào đồ thị hàm số, ta thấy đường tiệm cận xiên của đồ thị hàm số đi qua 2 điểm và
nên đường tiệm cận xiên của đồ thị hàm số có phương trình
.
Cho đồ thị hàm số có đồ thị như hình sau:
Đồ thị hàm số trên có đường tiệm cận đứng là:
Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là .
Tiệm cận đứng của đồ thị hàm số là
Ta có và
nên đồ thị hàm số nhận đường thẳng
làm tiệm cận đứng.
Số tiệm cận của đồ thị hàm số là:
Ta có:
Suy ra là tiệm cận ngang.
suy ra
là tiệm cận đứng.
suy ra
là tiệm cận đứng.
Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.
Cho hàm số xác định và liên tục trên các khoảng
và
có bảng biến thiên như hình vẽ:
Mệnh đề nào sau đây đúng?
Vì nên
là tiệm cận ngang của đồ thị hàm số.
Vì nên
là tiệm cận đứng của đồ thị hàm số.
Đồ thị hàm số có bao nhiêu tiệm cận đứng và tiệm cận ngang?
Ta có: nên đường thẳng
là tiệm cận ngang của đồ thị hàm số.
nên đường thẳng
là tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có số tiệm cận đứng và tiệm cận ngang là 2.
Tiệm cận ngang của đồ thị hàm số là
Ta thấy
Do đó đồ thị hàm số có tiệm cận ngang là .
Cho hàm số có bảng biến thiên:
Số đường tiệm cận ngang của đồ thị hàm số là:
Ta có: nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang
.
Đồ thị của hàm số có bao nhiêu đường tiệm cận đứng?
Ta có:
Với thì
nên đồ thị hàm số có một tiệm cận đứng là
.
Cho hàm số có bảng biến thiên như sau
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Dựa vào bảng biến thiên của hàm số ta có:
là một tiệm cận ngang
là một tiệm cận đứng
Vậy đồ thị hàm số có tổng số đường tiệm cận là.
Cho hàm số với
là tham số. Tìm giá trị của
để đường tiệm cận ngang của đồ thị hàm số đi qua điểm
?
Ta có: suy ra
là tiệm cận ngang của đồ thị hàm số đã cho.
Do
Cho hàm số có
và
. Khẳng định nào sau đây là khẳng định đúng?
Theo định nghĩa về tiệm cận, ta có:
là TCN.
là TCN.
Đồ thị hàm số có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Ta có: => Đồ thị hàm số có tiệm cận đứng là x = -2
Ta có: => y = -3 là tiệm cận ngang của đồ thị hàm số.
Cho hàm số có bảng biến thiên như sau:
Đồ thị của hàm số đã cho có bao nhiêu tiệm cận?
Đồ thị của hàm số đã cho có đường tiệm cận.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: