

Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?
Xét hàm số có
Tập xác định
suy ra
là tiệm cận đứng của hàm số.
Tâm đối xứng của đồ thị hàm số là điểm nào sau đây?
Đồ thị hàm số có tiệm cận đứng
, tiệm cận ngang
Suy ra tâm đối xứng là .
Cho hàm số có bảng biến thiên như sau:
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Ta có:
nên hàm số có tiệm cận ngang là
và tiệm cận đứng là
.
Đồ thị hàm số nào sau đây không có tiệm cận ngang?
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Ta có:
Vậy đồ thị hàm số không có tiệm cận ngang.
Tiệm cận ngang của đồ thị hàm số là:
Ta có .
Suy ra đồ thị hàm số có tiệmcận ngang là .
Đồ thị hàm số có tiệm cận ngang là:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Tập xác định
Ta có:
Vì nên đồ thị hàm số có đường tiệm cận ngang là y = 2.
Các đường tiệm cận của đồ thị hàm số tạo với hai trục tọa độ diện tích bằng bao nhiêu?
Ta có: Đồ thị hàm số có đường tiệm cận đứng là
và đường tiệm cận ngang là
Hai đường tiệm cận tạo với hai trục tọa độ một hình chữ nhật có chiều dài và chiều rộng lần lượt là nên diện tích của hình chữ nhật là
.
Đồ thị hàm số có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Ta có: => Đồ thị hàm số có tiệm cận đứng là x = -2
Ta có: => y = -3 là tiệm cận ngang của đồ thị hàm số.
Đường tiệm cận đứng của đồ thị hàm số
Ta có:
và
Do đó đồ thị hàm số có hai đường tiệm cận đứng
Đường tiệm cận ngang của đồ thị hàm số có phương trình là:
Ta có:
Vậy đường thẳng là tiệm cận ngang của đồ thị hàm số.
Cho hàm số có đồ thị như hình vẽ:
Tìm đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đó?
Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là và đường tiệm cận ngang là
Cho đồ thị hàm số như sau:
Đồ thị hàm số đã cho có phương trình tiệm cận đứng và tiệm cận ngang lần lượt là:
Dựa vào đồ thị hàm số ta thấy phương trình tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là .
Cho hàm số có
và
. Khẳng định nào sau đây là khẳng định đúng?
Theo định nghĩa về tiệm cận, ta có:
là TCN.
là TCĐ.
Đồ thị hàm số có bao nhiêu đường tiệm cận đứng?
Ta có:
suy ra
là đường tiệm cận đứng của đồ thị hàm số.
suy ra
là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có 2 đường tiệm cận đứng.
Cho hàm số . Gọi
lần lượt là số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số. Mệnh đề nào sau đây là đúng?
Để căn thức có nghĩa khi
Xét
Do đó tập xác định của hàm số:
Ta có
là TCĐ;
không là TCĐ;
là TCN;
là TCN.
Vậy
Cho hàm số . Đồ thị hàm số có mấy đường tiệm cận?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Tập xác định:
Ta thấy rằng x = 1 không thuộc D => Đồ thị hàm số không có tiệm cận đứng.
=> y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.
Cho hàm số xác định trên
và có bảng biến thiên như sau:
Xét tính đúng sai của các khẳng định sau.
a) Hàm số không có điểm cực trị. Đúng||Sai
b) . Sai||Đúng
c) Đồ thị hàm số có đúng 1 tiệm cận ngang. Đúng||Sai
d) Đồ thị hàm số có đúng 1 tiệm cận đứng. Sai||Đúng
Cho hàm số xác định trên
và có bảng biến thiên như sau:
Xét tính đúng sai của các khẳng định sau.
a) Hàm số không có điểm cực trị. Đúng||Sai
b) . Sai||Đúng
c) Đồ thị hàm số có đúng 1 tiệm cận ngang. Đúng||Sai
d) Đồ thị hàm số có đúng 1 tiệm cận đứng. Sai||Đúng
Dựa vào bảng biến thiên ta thấy
a) Hàm số không có điểm cực trị.
b) lim .
c) . Suy ra đồ thị có đúng 1 đường tiệm cận ngang là
.
d) và
nên đồ thị hàm số có đúng 2 đường tiệm cận đứng
.
Cho hàm số xác định và liên tục trên các khoảng
và
có bảng biến thiên như hình vẽ:
Mệnh đề nào sau đây đúng?
Vì nên
là tiệm cận ngang của đồ thị hàm số.
Vì nên
là tiệm cận đứng của đồ thị hàm số.
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây

Số đường tiệm cận của đồ thị hàm số y = f(x) là
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Dựa vào bảng biến thiên ta thấy
=> x = -2 là tiệm cận đúng của đồ thị hàm số
Ta cũng có = > y = 5 là tiệm cận ngang của đồ thị hàm số
Do đó đồ thị hàm số có 2 đường tiệm cận
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: