Xác định tâm đối xứng của đồ thị hàm số ?
Ta có:
suy ra tiệm cận ngang là
suy ra tiệm cận đứng là
Tâm đối xứng của đồ thị hàm số là .
Xác định tâm đối xứng của đồ thị hàm số ?
Ta có:
suy ra tiệm cận ngang là
suy ra tiệm cận đứng là
Tâm đối xứng của đồ thị hàm số là .
Tiệm cận đứng của đồ thị hàm số là
Ta có và
nên đồ thị hàm số nhận đường thẳng
làm tiệm cận đứng.
Một đường tiệm cận đứng của đồ thị hàm số là:
Ta có:
Vậy một đường tiệm cận đứng của đồ thị hàm số là .
Cho hàm số có bảng biến thiên như sau:
Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:
Dựa vào bảng biến thiên ta thấy
Tiệm cận ngang là y = 3
Tiệm cận đứng là x = -1 và x = 1
Vậy tổng các đường tiệm cận cần tìm bằng 3.
Cho hàm số có
và
. Khẳng định nào sau đây là khẳng định đúng?
Theo định nghĩa về tiệm cận, ta có:
là TCN.
là TCN.
Đồ thị hàm số có bao nhiêu đường tiệm cận đứng?
Tập xác định
Phương trình
Do đó không tồn tại các giới hạn . Vì vậy đồ thị hàm số không có đường tiệm cận đứng.
Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số .
Ta có .
Vậy đường tiệm cận ngang của đồ thị hàm số là .
Cho hàm số có bảng biến thiên như sau
Tổng số đường tiệm cận ngang và đường tiệm cận đứng của đồ thị hàm số đã cho là
Từ bảng biến thiên ta có:
nên đường thẳng
là đường tiệm cận đứng của đồ thị hàm số
nên đường thẳng
và
là các đường tiệm cận ngang của đồ thị hàm số
Tổng số đường tiệm cận ngang và đường tiệm cận đứng của đồ thị hàm số đã cho là 3
Tiệm cận đứng của đồ thị hàm số là
Tập xác định .
Ta có , suy ra đồ thị có tiệm cận đứng là
.
Cho hàm số có tập xác định là
, liên tục trên các khoảng của tập
và có
Khẳng định nào sau đây là khẳng định đúng?
Câu đúng cần tìm là:
Đồ thị hàm số có đúng bốn TCĐ là các đường thẳng và
Tiệm cận đứng của đồ thị hàm số là đường thẳng
Ta có nên đồ thị hàm số có tiệm cận đứng là
.
Cho hàm số xác định và liên tục trên các khoảng
và
có bảng biến thiên như hình vẽ:
Chọn khẳng định đúng trong các khẳng định sau.
Vì nên đồ thị hàm số có đúng một đường tiệm cận đứng.
Vậy khẳng định đúng là “Đồ thị hàm số có đúng một đường tiệm cận đứng.”
Đồ thị hàm số có bao nhiêu đường tiệm cận?
Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Tập xác định:
Ta có: => y = 1 và y = -1 là hai tiệm cận ngang của đồ thị hàm số.
=> Đồ thị hàm số có hai tiệm cận đứng là x = 2 và x = =-2
Vậy đồ thị hàm số đã cho có 2 tiệm cận đứng là x = 2 và x = -2
Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?
Xét hàm số có
Tập xác định
suy ra
là tiệm cận đứng của hàm số.
Đồ thị hàm số có đường tiệm cận ngang là
Ta có:
Suy ra tiệm cận ngang là .
Đồ thị hàm số nào sau đây không có tiệm cận ngang?
Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Ta có:
Vậy đồ thị hàm số không có tiệm cận ngang.
Cho hàm số xác định và liên tục trên
có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Từ bảng biến thiên ta có:
suy ra đồ thị hàm số có tiệm cận ngang
suy ra đồ thị hàm số có tiệm cận đứng
Vậy khẳng định đúng: " Đồ thị hàm số có tiệm cận đứng và tiệm cận ngang
”.
Cho hàm số có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận?
Dựa vào bảng biến thiên ta có:
, suy ra đường thẳng
là tiệm cận đứng của đồ thị hàm số.
, suy ra đường thẳng
là tiệm cận đứng của đồ thị hàm số.
, suy ra đường thẳng
là tiệm cận ngang của đồ thị hàm số.
Vậy đồ thị hàm số có 3 đường tiệm cận.
Đồ thị hàm số có đường tiệm cận ngang qua điểm
khi:
Để đồ thị hàm số có đường tiệm cận ngang là
Đường tiệm cận ngang đi qua nên ta có:
Vậy đáp án đúng là .
Hai đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số cắt nhau tại điểm
. Xác định tọa độ điểm
?
Đồ thị hàm số có đường tiệm cận đứng
và đường tiệm cận ngang
. Do đó giao điểm của hai đường tiệm cận là
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: