Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 3 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm số đường tiệm cận tối đa của đồ thị hàm số

    Cho hàm số y = \frac{mx + n}{ax^{2} + bx
+ c} (với m,n,a,b,c\mathbb{\in
R}). Hỏi đồ thị hàm số có tối đa bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

    Hướng dẫn:

    Ta có:

    Phương trình ax^{2} + bx + c = 0 có tối đa 2 nghiệm

    Nên đồ thị hàm số có nhiều nhất hai đường tiệm cận đứng.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{mx + n}}{{a{x^2} + bx + c}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \frac{{mx + n}}{{a{x^2} + bx + c}} = 0 \hfill \\ 
\end{gathered}  ight. nên y =
0 là đường tiệm cận ngang.

    Vậy đồ thị hàm số có nhiều nhất 3 đường tiệm cận ngang và tiệm cận đứng.

  • Câu 2: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = \frac{ax^{2} + bx + c}{mx
+ n},(am eq 0) có đồ thị như hình vẽ. Phương trình đường tiệm cận xiên của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Dựa vào đồ thị hàm số, ta thấy đường tiệm cận xiên của đồ thị hàm số đi qua 2 điểm (1;1)( - 1; - 1) nên đường tiệm cận xiên của đồ thị hàm số có phương trình y =
x.

  • Câu 3: Nhận biết
    Số TCĐ và TCN của đồ thị hàm số là:

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số TCĐ và TCN của đồ thị hàm số là

    Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

    Gợi ý:

    Đường thẳng x = x0 là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to {x_0}^ + } f\left( x ight) =  \pm \infty ;\mathop {\lim }\limits_{x \to {x_0}^ - } f\left( x ight) =  \pm \infty

    Đường thẳng y = y0 là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:

    \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = {y_0};\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = {y_0}

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có:

    \mathop {\lim }\limits_{x \to  - \infty } y = 0 => y = 0 là một tiệm cận ngang

    \mathop {\lim }\limits_{x \to  + \infty } y = 5 => y = 5 là một tiệm cận ngang

    \mathop {\lim }\limits_{x \to {1^ - }} y =  - \infty => x = 1 là một tiệm cận đứng

    Vậy đồ thị hàm số có tổng số đường tiệm cận là 3 đường

  • Câu 4: Thông hiểu
    Xác định số tiệm cận của đồ thị hàm số

    Hỏi đồ thị của hàm số y = \frac{|x +
1|}{\sqrt{x^{2} + 3} - 2} có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;1 ight\}

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{|x + 1|}{\sqrt{x^{2} + 3} - 2} = 1 nên đồ thị hàm số có tiệm cận ngang là y = 1

    y = \frac{{\left| {x + 1} ight|}}{{\sqrt {{x^2} + 3}  - 2}} = \frac{{\left| {x + 1} ight|.\left( {\sqrt {{x^2} + 3}  + 2} ight)}}{{{x^2} - 1}}= \left\{ \begin{gathered}
  \frac{{\sqrt {{x^2} + 3}  + 2}}{{x - 1}};x \geqslant  - 1 \hfill \\
   - \frac{{\sqrt {{x^2} + 3}  + 2}}{{x - 1}};x <  - 1 \hfill \\ 
\end{gathered}  ight.

    \lim_{x ightarrow 1^{+}}y = +
\infty;\lim_{x ightarrow 1^{-}}y = + \infty nên đồ thị hàm số có tiệm cận đứng là x = 1

    Vậy đồ thị hàm số có 2 đường tiệm cận.

  • Câu 5: Nhận biết
    Cho bảng biến thiên sau:

    Toán 12 Kết nối tri thức bài 3

    Tiệm cận đứng của hàm số là:

  • Câu 6: Nhận biết
    Xác định tất cả các khẳng định sai

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Có bao nhiêu khẳng định sai trong các khẳng định dưới đây?

    (i) Đồ thị hàm số có ba đường tiệm cận.

    (ii) Hàm số có cực tiểu tại x =
2.

    (iii) Hàm số nghịch biến trên mỗi khoảng ( - \infty; - 1);(1; + \infty).

    (iv) Hàm số xác định trên \mathbb{R}.

    Hướng dẫn:

    Do \lim_{x ightarrow - \infty}f(x) = -
1;\lim_{x ightarrow + \infty}f(x) = 2 nên đồ thị hàm số có hai đường tiệm cận ngang; \lim_{x
ightarrow 1^{\pm}}f(x) = \pm \infty nên đồ thị hàm số có một tiệm cận đứng. Do đó đồ thị hàm số có ba đường tiệm cận nên (i) đúng.

    Hàm số có cực tiểu tại x = 2 đúng nên (ii) đúng.

    Hàm số nghịch biến trên ( - \infty; -
1);(1;2) nên (iii) sai.

    Hàm số không xác định tại x = 1 nên (iv) sai.

    Vậy có 2 khẳng định sai.

  • Câu 7: Nhận biết
    Xác định các đường tiệm cận của hàm số

    Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây. Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số theo thứ tự là

    Hướng dẫn:

    Từ đồ thị của hàm số suy ra tiệm cận đứng và tiệm cận ngang là : x = 1 ; y = 1

  • Câu 8: Nhận biết
    Tìm khẳng định đúng

    Cho hàm số y = f(x)\lim_{x ightarrow - \infty}f(x) = - 1\lim_{x ightarrow 1^{+}}f(x) = +
\infty. Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Theo định nghĩa về tiệm cận, ta có:

    \lim_{x ightarrow - \infty}f(x) = - 1\
\ \overset{}{ightarrow}\ \ y = - 1 là TCN.

    \lim_{x ightarrow \ 1^{+}}f(x) = +
\infty\ \ \overset{}{ightarrow}\ \ x = 1 là TCĐ.

  • Câu 9: Nhận biết
    Tìm số đường tiệm cận

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị của hàm số đã cho có bao nhiêu tiệm cận?

    Hướng dẫn:

    Đồ thị của hàm số đã cho có 2 đường tiệm cận.

  • Câu 10: Nhận biết
    Tính diện tích theo yêu cầu

    Các đường tiệm cận của đồ thị hàm số y =
\frac{2x + 1}{x - 3} tạo với hai trục tọa độ diện tích bằng bao nhiêu?

    Hướng dẫn:

    Ta có: Đồ thị hàm số y = \frac{2x + 1}{x
- 3} có đường tiệm cận đứng là x =
3 và đường tiệm cận ngang là y =
2

    Hai đường tiệm cận tạo với hai trục tọa độ một hình chữ nhật có chiều dài và chiều rộng lần lượt là 3;2 nên diện tích của hình chữ nhật là S = 2.3 =
6.

  • Câu 11: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x)\lim_{x ightarrow + \infty}f(x) = 0\lim_{x ightarrow - \infty}f(x) = +
\infty. Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

    Ta có \lim_{x ightarrow + \infty}f(x) =
0\overset{}{ightarrow}y = 0 là tiệm cận ngang.

    Đáp án “Đồ thị hàm số nằm phía trên trục hoành.“ sai vì chọn hàm y = \left\{ \begin{matrix}
\left( \dfrac{1}{2} ight)^{x} & ;x \leq - 1 \\
- \left( \dfrac{1}{2} ight)^{x} & ;x \geq 1 \\
\end{matrix} ight..

    Vậy ta chỉ có đáp án “Đồ thị hàm số có một tiệm cận ngang là trục hoành” đúng.

  • Câu 12: Thông hiểu
    Xác định số tiệm cận của đồ thị hàm số

    Đồ thị hàm số y = \frac{\sqrt{x^{2} + 2x
+ 1}}{x^{2} - 1} có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Ta có y = \frac{\sqrt{x^{2} + 2x +
1}}{x^{2} - 1} = \frac{|x + 1|}{x^{2} - 1} = \left\{ \begin{gathered}
  \frac{1}{{x - 1}}{\text{   }}khi{\text{ }}x >  - 1,x e 1 \hfill \\
   - \frac{1}{{x - 1}}{\text{ }}khi{\text{ }}x <  - 1 \hfill \\ 
\end{gathered}  ight.

    Dễ thấy đồ thị hàm số có tiệm cận đứng x
= 1.

    \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{\sqrt{x^{2} + 2x + 1}}{x^{2} - 1} =
0 ightarrow y = 0 là TCN.

    Vậy đồ thị hàm số có đúng hai tiệm cận.

  • Câu 13: Nhận biết
    Chọn đáp án chính xác

    Tìm tất cả các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{\sqrt{9x^{2} + 6x + 4}}{x +
2}?

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow - 2^{+}}y = +
\infty suy ra x = - 2 là tiệm cận ngang của hàm số.

    \lim_{x ightarrow + \infty}y =
3;\lim_{x ightarrow - \infty}y = - 3 suy ra y = 3;y = - 3 là hai tiệm cận ngang của hàm số.

  • Câu 14: Nhận biết
    Xác định số đường tiệm cận ngang

    Số đường tiệm cận ngang của đồ thị hàm số y = \frac{x}{\sqrt{x^{2} + 1}} bằng:

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\left( \frac{x}{\sqrt{x^{2} + 1}} ight) =
1 suy ra y = 1 là một tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\left( \frac{x}{\sqrt{x^{2} + 1}} ight) = -
1 suy ra y = - 1 là một tiệm cận ngang của đồ thị hàm số.

    Vậy tổng số đường tiệm cận ngang của đồ thị hàm số đã cho bằng 2.

  • Câu 15: Nhận biết
    Xác định đường tiệm cận đứng của đồ thị hàm số

    Đường tiệm cận đứng của đồ thị hàm số y =
\frac{x - 1}{x^{2} + x}

    Hướng dẫn:

    Ta có: D\mathbb{= R}\backslash\left\{ -
1;0 ight\}

    \lim_{x ightarrow 0^{+}}\left( \frac{x
- 1}{x^{2} + x} ight) = - \infty\lim_{x ightarrow - 1^{+}}\left( \frac{x -
1}{x^{2} + x} ight) = + \infty

    Do đó đồ thị hàm số có hai đường tiệm cận đứng x = 0;x = - 1

  • Câu 16: Nhận biết
    Chọn đáp án đúng

    Đường tiệm cận ngang của đồ thị hàm số y
= \frac{- x - 1}{x + 3} cắt đường thẳng y = 2021x tại điểm có tung độ bằng:

    Hướng dẫn:

    Do \lim_{x ightarrow + \infty}\frac{- x- 1}{x + 3} = \lim_{x ightarrow + \infty}\dfrac{- 1 - \dfrac{1}{x}}{1 +\dfrac{3}{x}} = - 1\lim_{xightarrow - \infty}\frac{- x - 1}{x + 3} = \lim_{x ightarrow -\infty}\dfrac{- 1 - \dfrac{1}{x}}{1 + \dfrac{3}{x}} = - 1 nên đồ thị hàm số có đường tiệm cận ngang là y = -
1.

    Xét phương trình có hoành độ giao điểm 2021x = - 1 \Leftrightarrow x = \frac{-
1}{2021}

    Vậy tung độ giao điểm là y = -
1.

  • Câu 17: Nhận biết
    Tìm tiệm cận ngang của đồ thị hàm số

    Đường tiệm cận ngang của đồ thị hàm số y
= \frac{x + 1}{x^{2} - 4} có phương trình là:

    Hướng dẫn:

    Ta có: \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{x + 1}{x^{2} - 4} = 0

    Vậy đường thẳng y = 0 là tiệm cận ngang của đồ thị hàm số.

  • Câu 18: Nhận biết
    Xác định các tiệm cận ngang

    Đồ thị hàm số y = \frac{\sqrt{10000 -
x^{2}}}{x - 2} có bao nhiêu đường tiệm cận ngang?

    Hướng dẫn:

    Điều kiện xác định \left\{ \begin{matrix}
10000 - x^{2} \geq 0 \\
x - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 100 \leq x \leq 100 \\
x eq 2 \\
\end{matrix} ight.

    Tập xác định \lbrack -
100;100brack\backslash\left\{ 2 ight\}

    Vì hàm số không tồn tại khi x ightarrow
- \inftyx ightarrow +
\infty nên đồ thị hàm số không có tiệm cận ngang.

  • Câu 19: Nhận biết
    Chọn đáp án đúng

    Tiệm cận ngang của đồ thị hàm số AC là:

    Hướng dẫn:

    Ta có : \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow + \infty}\frac{3x + 1}{x - 1} = 3\lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\frac{3x + 1}{x - 1} = 3 nên y = 3 là tiệm cận ngang của đồ thị hàm số.

  • Câu 20: Nhận biết
    Chọn khẳng định đúng

    Cho đồ thị hàm số y = f(x) như hình bên. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Khẳng định đúng: “Đồ thị hàm số có tiệm cận đứng x = 0, tiệm cận ngang y = 1”.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (85%):
    2/3
  • Thông hiểu (15%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo