Trong không gian , cho bốn điểm
. Mặt phẳng
chứa
và song song với
có phương trình là:
Ta có .
Mặt phẳng (P) đi qua , nhận
là vectơ pháp tuyến, có phương trình là
(Thỏa mãn song song CD nên thỏa mãn đề bài).
Trong không gian , cho bốn điểm
. Mặt phẳng
chứa
và song song với
có phương trình là:
Ta có .
Mặt phẳng (P) đi qua , nhận
là vectơ pháp tuyến, có phương trình là
(Thỏa mãn song song CD nên thỏa mãn đề bài).
Trong không gian , cho mặt phẳng
và
. Tìm tham số m để hai mặt phẳng
và
vuông góc với nhau?
Ta có:
Để hai mặt phẳng và
vuông góc với nhau thì
Cho hai mặt phẳng và
. Tìm tham số
để hai mặt phẳng
và
vuông góc với nhau.
Đáp án: 4
Cho hai mặt phẳng và
. Tìm tham số
để hai mặt phẳng
và
vuông góc với nhau.
Đáp án: 4
Ta có:
Để hai mặt phẳng và
vuông góc với nhau thì
.
Trong không gian với hệ toạ độ , cho mặt phẳng
. Tìm khẳng định sai trong các mệnh đề sau:
Khẳng định sai: “ khi và chỉ khi
song song với mặt phẳng
.”
Trong không gian , mặt phẳng
. Một véc tơ pháp tuyến của
có tọa độ là?
Mặt phẳng có VTPT là:
Trong không gian với hệ tọa độ , cho hai mặt phẳng
và
. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?
Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).
.
Trong không gian cho hai điểm
và
là mặt phẳng trung trực của đoạn thẳng
. Vectơ nào sau đây là một vectơ pháp tuyến của
?
Do là mặt phẳng trung trực của đoạn thẳng
nên
nhận
làm vectơ pháp tuyến.
Suy ra cũng là vectơ pháp tuyến của (α).
Trong không gian với hệ toạ độ . Mặt phẳng (P) đi qua các điểm
,
,
có phương trình là:
Phương pháp tự luận
Theo công thức phương trình mặt chắn ta có:
.
Vậy .
Phương pháp trắc nghiệm
Nhập phương trình mặt phẳng (P) vào máy tính, sau đó dùng hàm CALC và nhập tọa độ của các điểm vào. Nếu tất cả các điểm đều cho kết quả bằng 0 thì đó đó là mặt phẳng cần tìm. Chỉ cần 1 điểm làm cho phương trình khác 0 đều loại.
Trong không gian với hệ toạ độ , cho mặt phẳng (P) có phương trình
. Mặt phẳng (P) có một vectơ pháp tuyến là:
Mặt phẳng (P): có một vectơ pháp tuyến
Trong không gian với hệ toạ độ , cho mặt phẳng
. Tìm khẳng định đúng trong các mệnh đề sau:
Khẳng định đúng là: “”
Trong không gian với hệ tọa độ cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các trục tọa độ tại
sao cho
là trực tâm tam giác
. Hãy viết trình mặt phẳng
.
Hình vẽ minh họa
Ta có:
Chứng minh tương tự BC ⊥ OH.
Do đó
Suy ra .
Trong không gian với hệ toạ độ , cho mặt phẳng
. Vectơ nào là vectơ pháp tuyến của mặt phẳng
?
Vectơ nào là vectơ pháp tuyến của mặt phẳng có tọa độ là
hoặc
.
Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Vậy khẳng định sai là: .
Trong không gian , tìm phương trình mặt phẳng
cắt ba trục
lần lượt tại ba điểm
?
Phương trình mặt phẳng :
Trong không gian , mặt phẳng
đi qua điểm
, đồng thời vuông góc với giá của vectơ
có phương trình là:
Mặt phẳng nhận vectơ
làm vectơ pháp tuyến và đi qua điểm
nên có phương trình là
.
Trong không gian với hệ tọa độ , cho hai mặt phẳng
. Chọn khẳng định đúng.
Hai mặt phẳng có vectơ pháp tuyến lần lượt là
Ta có
⇒ .
Trong không gian với hệ tọa độ , cho ba điểm
. Mặt phẳng
đi qua ba điểm
có phương trình tổng quát
. Biết
, tìm giá trị của
?
Do nên mặt phẳng
có phương trình
Do đi qua các điểm
nên ta có hệ:
Vậy .
Trong không gian , cho ba điểm
. Phương trình nào dưới đây là phương trình mặt phẳng
?
Phương trình đoạn chắn của mặt phẳng là:
Trong không gian với hệ trục tọa độ , khoảng cách từ
đến mặt phẳng
là
Khoảng cách từ điểm đến mặt phẳng
là:
Trong không gian với hệ tọa độ , cho
. Viết phương trình mặt phẳng trung trực của
.
Mặt phẳng trung trực nhận
làm vectơ pháp tuyến và đi qua trung điểm
của
nên ta có phương trình mặt phẳng
là:
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: