Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt phẳng CTST (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Viết phương trình mặt phẳng

    Trong không gian Oxyz, cho hai điểm A(0;1;1)B(1;2;3). Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

    Hướng dẫn:

    Mặt phẳng (P) có một véctơ pháp tuyến \overrightarrow{n} =
\overrightarrow{AB} = (1;1;2)

    Phương trình mặt phẳng (P) là: x + y - 1 + 2(z - 1) = 0 hay (P):x + y + 2z - 3 = 0.

  • Câu 2: Nhận biết
    Chọn khẳng định sai

    Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Ta có: \left| \left\lbrack
\overrightarrow{u};\overrightarrow{v} ightbrack ight| = \left|
\overrightarrow{u} ight|.\left| \overrightarrow{v} ight|.sin\left(
\overrightarrow{u};\overrightarrow{v} ight)

    Vậy khẳng định sai là: \left|\left\lbrack \overrightarrow{u};\overrightarrow{v} ightbrack ight|= \left| \overrightarrow{u} ight|.\left| \overrightarrow{v}ight|.\cos\left( \overrightarrow{u};\overrightarrow{v}ight).

  • Câu 3: Nhận biết
    Tìm điểm thuộc mặt phẳng

    Trong không gian với hệ toạ độ Oxyz. Điểm nào sau đây thuộc mặt phẳng (P) - 2x + y - 5 = 0

    Hướng dẫn:

    Phương pháp tự luận

    Thay tọa độ các điểm vào phương trình mặt phẳng, nếu điểm nào làm cho vế trái bằng 0 thì đó là điểm thuộc mặt phẳng.

    Phương pháp trắc nghiệm

    Nhập phương trình mặt phẳng (P) vào máy tính dạng sau: - 2X + Y + 0A - 5 = 0, sau đó dùng hàm CALC và nhập tọa độ (x;y;z)của các điểm vào. Nếu bằng 0 thì điểm đó thuộc mặt phẳng.

  • Câu 4: Nhận biết
    Tìm vectơ pháp tuyến

    Trong không gian Oxyz cho hai điểm A(2;0; - 1),B(1;1;0)(\alpha) là mặt phẳng trung trực của đoạn thẳng AB. Vectơ nào sau đây là một vectơ pháp tuyến của (\alpha)?

    Hướng dẫn:

    Do (\alpha) là mặt phẳng trung trực của đoạn thẳng AB nên (\alpha) nhận \overrightarrow{AB} = ( - 1;1;1) làm vectơ pháp tuyến.

    Suy ra \overrightarrow{n}(1; - 1; - 1) =
- \overrightarrow{AB} cũng là vectơ pháp tuyến của (α).

  • Câu 5: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, mặt phẳng chứa trục Ox và đi qua điểm A(1;1; - 1) có phương trình là:

    Hướng dẫn:

    Mặt phẳng chứa trục Ox có dạng By + Cz = 0;\left( B^{2} + C^{2} eq 0
ight)

    Mặt phẳng đi qua điểm A(1;1; -
1) nên B - C = 0 \Leftrightarrow B
= C

    Do đó chọn B = C = 1 suy ra phương trình mặt phẳng cần tìm là y + z =
0.

  • Câu 6: Nhận biết
    Định phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz. Phương trình của mặt phẳng chứa trục Ox và qua điểm I(2; - 3;1) là:

    Hướng dẫn:

    Trục Ox đi qua A(1;0;0) và có \overrightarrow{i} = (1;0;0)

    Mặt phẳng đi qua I(2; - 3;1) và có vectơ pháp tuyến \overrightarrow{n} =
\left\lbrack \overrightarrow{i},\overrightarrow{AI} \right\rbrack =
(0;1;3) có phương trình y + 3z =
0.

    Vậy y + 3z = 0.

  • Câu 7: Thông hiểu
    Định phương trình mặt phẳng thỏa mãn yêu cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD có các đỉnh A(1;2;1), B(
- 2;1;3), C(2; - 1;3)D(0;3;1). Phương trình mặt phẳng (\alpha) đi qua A,B đồng thời cách đều C,D

    Hướng dẫn:

    Trường hợp 1:CD \parallel
(P)

    \overrightarrow{n_{P}} =
\overrightarrow{AB} \land \overrightarrow{CD} = ( - 6; - 10; - 14) = -
2(3;5;7) \Rightarrow (P):3x + 5y + 7z - 20 = 0

    Trường hợp 2:(P) đi qua trung điểm I(1;1;2) của CD

    \overrightarrow{n_{P}} =
\overrightarrow{AB} \land \overrightarrow{AI} = (1;3;3) \Rightarrow
(P):x + 3y + 3z - 10 = 0.

  • Câu 8: Thông hiểu
    Tính giá trị biểu thức S

    Trong không gian với hệ toạ độ Oxyz, mặt phẳng (P):ax + by + cz - 27 = 0 đi qua hai điểm A(3;2;1),B( - 3;5;2) và vuông góc với mặt phẳng (Q):3x + y + z + 4 =
0. Tính tổng S = a + b +
c.

    Hướng dẫn:

    Từ giả thiết ta có hệ phương trình:

    \left\{ \begin{matrix}
3a + 2b + c - 27 = 0 \\
- 3a + 5b + 2c - 27 = 0 \\
3a + b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 6 \\
b = 27 \\
c = - 45 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = -
12

  • Câu 9: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là:

    Hướng dẫn:

    Trong không gian Oxyz, phương trình của mặt phẳng (Oxy) là: z = 0

  • Câu 10: Thông hiểu
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua M(
- 1;2;4) và chứa trục Oy có phương trình là:

    Hướng dẫn:

    Ta có: (P) có cặp véc-tơ chỉ phương \overrightarrow{v_{Oy}} =
(0;1;0),\overrightarrow{OM} = ( - 1;2;4)

    Khi đó véc-tơ pháp tuyến của (P) là \overrightarrow{n_{P}} = ( - 4;0; - 1), ta chọn \overrightarrow{n_{P}} =
(4;0;1).

    Mặt phẳng (P) đi qua M( - 1;2;4) và có véc-tơ pháp tuyến \overrightarrow{n_{P}} = (4;0;1) nên có phương trình 4(x + 1) + (z - 4) = 0 hay 4x + z = 0.

  • Câu 11: Nhận biết
    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian Oxyz, tính khoảng cách từ điểm M(1;2; - 3) đến mặt phẳng (P):x + 2y - 2z - 2 =
0?

    Hướng dẫn:

    Khoảng cách từ điểm M đến mặt phẳng (P):x + 2y - 2z - 2 = 0 là:

    d\left( M;(P) ight) = \frac{\left| 1 +
2.2 - 2( - 3) - 2 ight|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
3

  • Câu 12: Thông hiểu
    Ghi đáp án vào ô trống

    Trong không gian với hệ toạ độ Oxyz, cho hai điểm A( - 1;2;4),B(0;1;5). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ B đến (P) là lớn nhất. Khi đó, khoảng cách d từ O đến mặt phẳng (P) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ toạ độ Oxyz, cho hai điểm A( - 1;2;4),B(0;1;5). Gọi (P) là mặt phẳng đi qua A sao cho khoảng cách từ B đến (P) là lớn nhất. Khi đó, khoảng cách d từ O đến mặt phẳng (P) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng đi qua ba điểm A(1;1;4),B(2;7;9)C(0;9;13).

    Hướng dẫn:

    Ta có: \overrightarrow{AB} =
(1;6;5),\overrightarrow{AC} = ( - 1;8;9)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (14; - 14;14) =
14(1; - 1;1)

    Mặt phẳng (ABC) đi qua điểm A(1;1;4) và nhận \overrightarrow{n} = (1; - 1;1) làm vectơ pháp tuyến có phương trình là:

    x - 1 - (y - 1) + z - 4 = 0

    \Leftrightarrow x - y + z - 4 =
0

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz cho A(2;0;0),B(0; - 2;0),C(0;0; - 1). Viết phương trình mặt phẳng (ABC)?

    Hướng dẫn:

    Phương trình mặt phẳng (ABC)\frac{x}{2} + \frac{y}{- 2} + \frac{z}{-
1} = 1

  • Câu 15: Nhận biết
    Tìm câu sai

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm M(2; - 1;3) và các mặt phẳng: (\alpha):x - 2 = 0, (\beta):y + 1 = 0, (\gamma):z - 3 = 0. Tìm khẳng định sai.

    Hướng dẫn:

    Câu sai là: “(\alpha)//Ox

  • Câu 16: Nhận biết
    Mp qua 3 điểm

    Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:

    Hướng dẫn:

     Theo đề bài, ta có được các vecto sau:

    \begin{array}{l}\overrightarrow {AB}  = \left( {1, - 1, - 3} ight),\overrightarrow {AC}  = \left( { - 1,1,0} ight);\\ \Rightarrow \left[ {\overrightarrow {AB,} \overrightarrow {AC} } ight] = \left( {3,3,0} ight) = 3(1,1,0) = 3\overrightarrow n \end{array}

    Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của \vec{AB}\vec{AC} .

    Chọn \overrightarrow n  = \left( {1,1,0} ight) làm một vectơ pháp tuyến.

    Phương trình mp (ABC)có dạng x+y+D=0

    (ABC) là mp qua A  \Leftrightarrow 3 - 1 + D = 0 \Leftrightarrow D =  - 2

    Vậy phương trình (ABC): x + y -2=0.

  • Câu 17: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian Oxyz, đường thẳng d:\frac{x + 3}{1} = \frac{y - 1}{- 1}
= \frac{z - 5}{2} có một vectơ chỉ phương là:

    Hướng dẫn:

    Đường thẳng (P) có một vectơ chỉ phương là: \overrightarrow{u_{4}} = ( - 1;\
1;\  - 2)

  • Câu 18: Nhận biết
    Viết phương trình mặt phẳng (ABC)

    Trong không gian với hệ toạ độ Oxyz, cho A(a;0;0), B(0;b;0), C(0;0;c), (abc \neq 0). Khi đó phương trình mặt phẳng (ABC) là:

    Hướng dẫn:

    Phương trình mặt phẳng (ABC) cần tìm là: \frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1.

  • Câu 19: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm A(1;1; - 1). Phương trình mặt phẳng (P) đi qua A và chứa trục Ox là:

    Hướng dẫn:

    Mặt phẳng (P) có VTPT \overrightarrow{n}(0;1;1) và đi qua điểm A(1;1; - 1).

    Suy ra phương trình (P):y + z =
0.

  • Câu 20: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz. Mặt phẳng (P) là - x + 3z - 2 = 0 có phương trình song song với:

    Hướng dẫn:

    Mặt phẳng (P) là - x + 3z - 2 =
0 có phương trình song song với trục Oy.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo