Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt phẳng CTST (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án thích hợp

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):2x - y + z - 1 = 0. Vectơ nào là vectơ pháp tuyến của mặt phẳng (P)?

    Hướng dẫn:

    Vectơ nào là vectơ pháp tuyến của mặt phẳng (P) có tọa độ là (2; - 1;1) hoặc ( - 2;1; - 1).

  • Câu 2: Nhận biết
    Viết phương trình mặt phẳng trung trực

    Trong không gian với hệ tọa độ Oxyz, cho M(1; - 1;2),N(3;1; - 4). Viết phương trình mặt phẳng trung trực của MN.

    Hướng dẫn:

    Mặt phẳng trung trực MN nhận \frac{1}{2}\overrightarrow{MN} = (1;1; -
3) làm vectơ pháp tuyến và đi qua trung điểm I(2;0; - 1) của MN nên ta có phương trình mặt phẳng MN là: x + y
- 3z - 5 = 0.

  • Câu 3: Nhận biết
    Tìm x

    Trong không gian Oxyz, cho \overrightarrow{a} = (1;2;1),\overrightarrow{b} =
(1;1;2),\overrightarrow{c} = (x;3x;x + 2). Nếu ba vectơ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đồng phẳng thì:

    Hướng dẫn:

    Ta có: \left\lbrack
\overrightarrow{a},\overrightarrow{b} ightbrack = (3; -
3;3)

    Ba vectơ \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} đồng phẳng

    \Leftrightarrow \left\lbrack
\overrightarrow{a},\overrightarrow{b} ightbrack.\overrightarrow{c} =
0

    \Leftrightarrow 3x - 3(3x) + 3(x + 2) =
0

    \Leftrightarrow x = 2

  • Câu 4: Nhận biết
    Viết PT mp đi qua 3 điểm

    Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm A\left( {\,2,\,\,0,\,\,3\,} ight);\,\,\,B\left( {\,4,\,\, - 3,\,\,2\,} ight);\,\,\,C\left( {\,0,\,\,2,\,\,5\,} ight)

    Hướng dẫn:

    Theo đề bài, ta có cặp vecto chỉ phương của \left( P ight):\overrightarrow {AB}  = \left( {2, - 3, - 1} ight);\overrightarrow {AC}  = \left( { - 2,2,2} ight)

    Từ đó, ta suy ra vecto pháp tuyến của (P) là tích có hướng của 2 VTCP của

    \left( P ight):\overrightarrow n  = \left( { - 4, - 2, - 2} ight) =  - 2\left( {2,1,1} ight)

    Mp (P) đi qua A (2,0,3) và nhận vecto có tọa độ (2,1,1) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x - 2} ight)2 + y.1 + \left( {z - 3} ight).1 = 0

    \Leftrightarrow 2x + y + z - 7 = 0

  • Câu 5: Nhận biết
    Xác định điều kiện tham số m

    Trong không gian Oxyz, cho hai mặt phẳng (P):2x + 4y + 3z - 5 = 0(Q):mx - ny - 6z + 2\  = \ 0. Giá trị của m, n sao cho (P)//(Q)

    Hướng dẫn:

    Ta có: (P) có vectơ chỉ phương \overrightarrow{u_{(P)}} = (2;4;3), (Q) có vectơ chỉ phương \overrightarrow{u_{(Q)}} = (m; - n; -
6)

    Để hai mặt phẳng song song thì \overrightarrow{u_{(P)}} =
k\overrightarrow{u_{(Q)}} \Leftrightarrow \left\{ \begin{matrix}
m = 2k \\
- n = 4k \\
- 6 = 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = - 2 \\
m = - 4 \\
n = 8 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: m = - 4;n =
8.

  • Câu 6: Thông hiểu
    Viết PT mặt phẳng song song với 1 vecto

    Cho hai điểmA\left( {1, - 4,5} ight),B\left( { - 2,3, - 4} ight) và vectơ \overrightarrow a  = \left( {2, - 3, - 1} ight). Mặt phẳng chứa hai điểm A, B và song song với vectơ \vec{a} có phương trình:

    Hướng dẫn:

    Theo đề bài, ta có: A\left( {1, - 4,5} ight);B\left( { - 2,3, - 4} ight)

    \Rightarrow \overrightarrow {AB}  = \left( { - 3,7, - 9} ight);\overrightarrow a  = \left( {2, - 3, - 1} ight)

    Như vậy, \vec{AB}\vec{a} sẽ là cặp vectơ chỉ phương của (\beta)

    \Rightarrow \left[ {\overrightarrow {AB} ,\overrightarrow a } ight] = \left( { - 34, - 21, - 5} ight) =\vec{n}

    Chọn \overrightarrow n  = \left( {34,21,5} ight) làm vectơ pháp tuyến của  (\beta)

    Phương trình mặt phẳng (\beta) có dạng 34x + 21y + 5z + D = 0

    Mặt khác, vì điểm A \in (\beta) nên thay tọa độ điểm A vào phương trình mặt phẳng (\beta)  được: 34 - 84 + 25 + D = 0 \Leftrightarrow D = 25

    Vậy (\beta) có phương trình là: 34x + 21y + 5z + 25 = 0

  • Câu 7: Nhận biết
    Chọn khẳng định đúng

    Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (\alpha):3x - z = 0. Tìm khẳng định đúng trong các mệnh đề sau:

    Hướng dẫn:

    Khẳng định đúng là: “(\alpha) \supset
Oy

  • Câu 8: Nhận biết
    Chọn khẳng định sai

    Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Ta có: \left| \left\lbrack
\overrightarrow{u};\overrightarrow{v} ightbrack ight| = \left|
\overrightarrow{u} ight|.\left| \overrightarrow{v} ight|.sin\left(
\overrightarrow{u};\overrightarrow{v} ight)

    Vậy khẳng định sai là: \left|\left\lbrack \overrightarrow{u};\overrightarrow{v} ightbrack ight|= \left| \overrightarrow{u} ight|.\left| \overrightarrow{v}ight|.\cos\left( \overrightarrow{u};\overrightarrow{v}ight).

  • Câu 9: Nhận biết
    Tìm khoảng cách từ A đến (Oxy)

    Trong không gian với hệ trục tọa độ Oxyz, khoảng cách từ A( - 2;1; - 6) đến mặt phẳng (Oxy)

    Hướng dẫn:

    Khoảng cách từ điểm A đến mặt phẳng (Oxy):z = 0 là:

    d\left( A;(Oxy) ight) = \frac{| -
6|}{\sqrt{1}} = 6

  • Câu 10: Nhận biết
    Chọn kết luận đúng

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y +
3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Chọn kết luận đúng?

    Hướng dẫn:

    Tọa độ điểm A là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x + 2y - z - 6 = 0 \\
2x - y + 3z + 13 = 0 \\
3x - 2y + 3z + 16 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A( - 1;2; - 3)

  • Câu 11: Nhận biết
    Giao điểm 3 mp

    Ba mặt phẳng x + 2y - z - 6 = 0,2x - y + 3z + 13 = 0,3x - 2y + 3z + 16 = 0 cắt nhau tại điểm A. Tọa độ của điểm A đó là:

    Hướng dẫn:

     Tọa độ giao điểm của ba mặt phẳng là nghiệm của hệ phương trình :

    \left\{ \begin{array}{l}x + 2y - z - 6 = 0\left( 1 ight)\\2x - y + 3z + 13 = 0\left( 2 ight)\\3x - 2y + 3z + 16 = 0\left( 3 ight)\end{array} ight.

    Giải (1),(2) tính x,y theo z được x =  - z - 4;y = z + 5.

    Thế vào phương trình (3) được z=-3 , từ đó có x =  - 1,y = 2

    Vậy  A(-1,2,-3).

  • Câu 12: Nhận biết
    Tính khoảng cách giữa hai mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (\alpha):x - 2y - 2z + 4 = 0(\beta): - x + 2y + 2z - 7 = 0. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?

    Hướng dẫn:

    Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).

    \Rightarrow d\left\lbrack
(\alpha);(\beta) ightbrack = d\left( A;(\beta) ight) = \frac{|4 -
7|}{\sqrt{1 + 4 + 4}} = 1.

  • Câu 13: Thông hiểu
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, cho điểm A(2; - 1; - 3) và mặt phẳng (P):3x - 2y + 4z - 5 = 0. Mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) có phương trình là:

    Hướng dẫn:

    Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là \overrightarrow{n} = (3; -
2;4)

    Phương trình mặt phẳng (Q) là:

    3(x - 2) - 2(y - 1) + 4(z - 3) =
0

    \Leftrightarrow 3x - 2y + 4z + 4 =
0

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(2; - 4;1) và chắn trên các trục tọa độ Ox,Oy,Oz theo ba đoạn có độ dài đại số lần lượt là a;b;c. Phương trình tổng quát của mặt phẳng (P) khi a;b;c theo thứ tự tạo thành một cấp số nhân có công bội bằng 2 là:

    Hướng dẫn:

    Do giả thiết suy ra \left\{
\begin{matrix}
a,b,c eq 0\  \\
b = 2a,c = 2b \\
\end{matrix} ight..

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c) khi đó phương trình mặt phẳng\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1.

    Do M thuộc (P) nên \frac{2}{a} -
\frac{4}{b} + \frac{1}{c} = 1 \Leftrightarrow \frac{2}{a} - \frac{4}{2a}
+ \frac{1}{4a} = 1 \Leftrightarrow a = \frac{1}{4}

    Suy ra b = \frac{1}{2};c = 1 do đó phương trình mặt phẳng (P):4x + 2y + z -
1 = 0.

  • Câu 15: Nhận biết
    Chọn đáp án chính xác

    Trong không gian với hệ trục toạ độ Oxyz. Biết A,B,C là số thực khác 0, mặt phẳng chứa trục Oz có phương trình là:

    Hướng dẫn:

    Trục Oz là giao tuyến của 2 mặt phẳng (Ozx),(Oyz) nên mặt phẳng chứa Oz thuộc chùm mặt phẳng tạo bởi 2 mặt (Ozx),(Oyz) \Rightarrow Ax + By =
0

    Vậy Ax + By = 0.

  • Câu 16: Nhận biết
    Xác định vectơ pháp tuyến của mặt phẳng

    Trong không gian Oxyz, mặt phẳng (P):2x - y + 3 = 0. Một véc tơ pháp tuyến của (P) có tọa độ là?

    Hướng dẫn:

    Mặt phẳng (P) có VTPT là: \overrightarrow{n} = (2; - 1;0)

  • Câu 17: Thông hiểu
    Viết PT mp vuông góc

    Cho tam giác ABC với A\left( {\,1,\,\, - 2,\,\,6\,} ight);\,\,B\left( {\,2,\,\,5,\,\,1} ight);\,\,C\left( {\, - 1,\,\,8,\,\,4} ight) .

    Viết phương trình tổng quát của mặt phẳng (P) vuông góc với mặt phẳng (ABC) song song đường cao AH của tam giác ABC.

    Hướng dẫn:

     Theo đề bài, ta có: \left( P ight) \bot \left( {ABC} ight) song song đường cao AH \Rightarrow \left( P ight) \bot \overrightarrow {BC}  = \left( { - 3,3,3} ight)

    \Rightarrow \left( P ight):\left( {x - 1} ight)\left( { - 3} ight) + \left( {y + 2} ight)3 + \left( {z - 6} ight)3 = 0

    \Leftrightarrow x - y - z + 3 = 0

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, gọi (P) là mặt phẳng chứa trục Ox và vuông góc với mặt phẳng (Q):x + y + z - 3 = 0. Phương trình mặt phẳng (P) là:

    Hướng dẫn:

    Ta có: (Q) có một vectơ pháp tuyến là \overrightarrow{n}(1;1;1).

    Từ giả thiết, ta suy ra (P) có một vectơ pháp tuyến là \left\lbrack
\overrightarrow{n};\overrightarrow{i} ightbrack = (0;1; -
1).

    Do (P) đi qua gốc tọa độ O nên phương trình của (P) là y - z = 0.

  • Câu 19: Nhận biết
    Chọn đáp án đúng

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):(m - 1)x + y - 2z + m
= 0(Q):2x - z + 3 = 0. Tìm m để (P) vuông góc với (Q)?

    Hướng dẫn:

    Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là (m - 1;1; -
2).(2;0; - 1) = 0 \Leftrightarrow m = 0.

  • Câu 20: Nhận biết
    Định phương trình mặt phẳng

    Trong không gian với hệ trục tọa độ Oxyz. Phương trình của mặt phẳng chứa trục Ox và qua điểm I(2; - 3;1) là:

    Hướng dẫn:

    Trục Ox đi qua A(1;0;0) và có \overrightarrow{i} = (1;0;0)

    Mặt phẳng đi qua I(2; - 3;1) và có vectơ pháp tuyến \overrightarrow{n} =
\left\lbrack \overrightarrow{i},\overrightarrow{AI} \right\rbrack =
(0;1;3) có phương trình y + 3z =
0.

    Vậy y + 3z = 0.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo