Cho ba vectơ không đồng phẳng. Trong các khẳng định sau, khẳng định nào sai?
Các vectơ đồng phẳng
Mà :
(hệ vô nghiệm)
Vậy không tồn tại hai số
Cho ba vectơ không đồng phẳng. Trong các khẳng định sau, khẳng định nào sai?
Các vectơ đồng phẳng
Mà :
(hệ vô nghiệm)
Vậy không tồn tại hai số
Cho tứ diện có
và
. Gọi
và
lần lượt là trung điểm của
và
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Xét tam giác có
là trung điểm đoạn
.
Ta có:
Vì tam giác có
và
Nên tam giác đều. Suy ra:
Tương tự ta có tam giác đều nên
.
Xét .
Suy ra . Hay góc giữa cặp vectơ
và
bằng
.
Cho tam giác có ba góc đều là góc nhọn. Gọi
là trọng tâm tam giác
,
là chân đường cao hạ từ
xuống cạnh
thỏa mãn:
. Điểm
đi động trên
sao cho
(Trong đó
là phân số tối giản,
). Tính giá trị biểu thức
khi độ dài véc tơ
đạt giá trị nhỏ nhất.
Đáp án: 9
Cho tam giác có ba góc đều là góc nhọn. Gọi
là trọng tâm tam giác
,
là chân đường cao hạ từ
xuống cạnh
thỏa mãn:
. Điểm
đi động trên
sao cho
(Trong đó
là phân số tối giản,
). Tính giá trị biểu thức
khi độ dài véc tơ
đạt giá trị nhỏ nhất.
Đáp án: 9
Hình vẽ minh họa
Gọi là trung điểm của
,
là điểm đối xứng của
qua
.
Khi đó tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên
là hình bình hành.
.
+ Dựng .
Ta có: .
Do đó nhỏ nhất khi
.
+ Ta có: .
+ Gọi là hình chiếu vuông góc của
lên
.
Ta có:
.
+ Do //
(vì cùng vuông góc với
).
Nên và
đồng dạng
.
+ có
là trung điểm
và
//
(do cùng vuông góc với
).
là đường trung bình.
Khi đó, là trung điểm
hay
.
Vậy .
Cho hình lập phương có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn:
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Cho hình lập phương có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn:
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Một em nhỏ cân nặng trượt trên cầu trượt dài
(như trong hình dưới đây). Biết rằng, cầu trượt có góc nghiêng so với phương nằm ngang là
. Trong các khẳng định sau, có bao nhiêu khẳng định đúng?
+ Với gia tốc rơi tự do có độ lớn là
thì độ lớn của trọng lực
tác dụng lên em nhỏ có độ lớn là
.
+ Góc giữa độ dịch chuyển so với trọng lực
là
.
+ Công sinh bởi một lực
có độ dịch chuyển
được tính bởi công thức
thì công sinh bởi trọng lực
khi em nhỏ trượt hết chiều dài cầu trượt là
.

» Với gia tốc rơi tự do có độ lớn là
thì độ lớn của trọng lực
tác dụng lên em nhỏ có độ lớn là
.
» Em nhỏ trượt từ điểm tới điểm
nên khi đó góc giữa độ dịch chuyển
so với trọng lực
là
.
» Ta có độ lớn của trọng lực tác dụng lên em nhỏ có độ lớn là
nên công sinh bởi trọng lực
khi em nhỏ trượt hết chiều dài cầu trượt là
.
Cho hình lập phương có cạnh
. Gọi
là trung điểm
. Giá trị
là:
Hình vẽ minh họa
Ta có:
Cho hình hộp có các cạnh đều bằng
và các góc
. Tính góc giữa các cặp đường thẳng
với
;
với
.
Hình vẽ minh họa

Đặt
Ta có nên
.
Để ý rằng ,
.
Từ đó
Ta có , từ đó tính được:
.
Cho hình lăng trụ tam giác đều có
và. Góc giữa hai đường thẳng
và
bằng
Hình vẽ minh họa
Ta có
.
Suy ra .
Cho tứ diện . Lấy các điểm
lần lượt thuộc
sao cho
. Hãy xác định
để
đồng phẳng.
Hình vẽ minh họa

Cách 1.
Ta có
.
Lại có do đó
.
Vậy nếu đồng phẳng thì
hay
.
Cách 2. Đặt thì không khó khăn ta có các biểu diễn
,
,
Các điểm đồng phẳng khi và chỉ khi các vec tơ
đồng phẳng
Do các vec tơ không đồng phẳng nên điều này tương đương với
Gọi lần lượt là trung điểm của các cạnh
và
của tứ diện
. Gọi
là trung điểm đoạn
và
là 1 điểm bất kỳ trong không gian. Tìm giá trị của
thích hợp điền vào đẳng thức vectơ:
.
Ta có ,
nên
Vậy
Cho tứ diện có
và
. Gọi
lần lượt là trung điểm của
. Hãy xác định góc giữa các cặp vectơ
và
?
Hình vẽ minh họa
Xét tam giác ICD có I là trung điểm đoạn CD
Tam giác ABC có và
suy ra tam giác
đều suy ra
Tương tự ta cũng có tam giác ABD đều nên
Ta có:
Cho hình hộp . Chọn khẳng định đúng?
Hình vẽ minh họa

lần lượt là trung điểm của
.
Ta có
đồng phẳng.
Trong không gian , cho hai vectơ
và
tạo với nhau một góc
và
,
. Tính
Ta có:
.
Suy ra .
Cho hình hộp đứng , trong đó mặt đáy là hình bình hành với
. Biết độ dài các cạnh
và
. Tính
.

Theo quy tắc hình hộp, ta có ,
Vậy
Với
Trong đó:
Do tổng hai góc kề của một hình bình hành là nên ta có góc
Áp dụng định lý cosin trong tam giác , ta có:
.
Vậy .
Cho hình chóp có
. Một mặt phẳng
luôn đi qua trọng tâm của tam giác
, cắt các cạnh
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Gọi là trọng tâm của tam giác
. Ta có
.
Mà đồng phẳng nên
Theo BĐT Cauchy schwarz:
Ta có
.
Đẳng thức xảy ra khi
kết hợp với
ta được;
.
Vậy GTNN của là
.
Cho tam giác . Lấy điểm
nằm ngoài mặt phẳng
. Trên đoạn
lấy điểm
sao cho
và trên đoạn
lấy điểm
sao cho
. Biết biểu diễn
là duy nhất. Tính giá trị biểu thức
?
Hình vẽ minh họa
Theo giả thiết ta có: ;
Lấy điểm P trên cạnh AC sao cho . Khi đó:
Cho hình hộp và các điểm
xác định bởi
. Hãy tính
theo
để ba điểm
thẳng hàng.
Hình vẽ minh họa

Đặt .
Từ giả thiết ta có :
Từ đó ta có
.
Ba điểm thẳng hàng khi và chỉ khi tồn tại
sao cho
.
Thay các vectơ vào
và lưu ý
không đồng phẳng ta tính được
.
Cho tứ diện có
đôi một vuông góc.
là một điểm bất kì thuộc miền trong tam giác
. Tìm giá trị nhỏ nhất của biểu thức
?
Đặt . Khi đó
với
là ba số có tổng bằng 1.
Ta có:
Tương tự ta được
Do đó
Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa
Do đó
Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.
Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.
Trong không gian cho điểm và bốn điểm
,
,
,
không thẳng hàng. Điều kiện cần và đủ để
,
,
,
tạo thành hình bình hành là
Hình vẽ minh họa
Trước hết, điều kiện cần và đủ để là hình bình hành là:
.
Với mọi điểm bất kì khác
,
,
,
, ta có:
.
Theo định luật Newton: Gia tốc của một vật có cùng hướng với lực tác dụng lên vật. Độ lớn của gia tốc tỉ lệ thuận với độ lớn của lực và tỉ lệ nghịch với khối lượng của vật:
, trong đó
là vectơ gia tốc
,
là vectơ lực
tác dụng lên vật,
là khối lượng của vật. Muốn truyền cho quả bóng có khối lượng
một gia tốc
thì cần một lực đá có độ lớn là bao nhiêu?

Ta có .
Vậy muốn truyền cho quả bóng có khối lượng một gia tốc
thì cần một lực đá có độ lớn là
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: