Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Vectơ và các phép toán trong không gian (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Xác định tính đúng sai của từng phương án

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết rằng cạnh AB = a, AD = 2a, cạnh bên SA = 2a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:

    a) Hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, cùng hướng. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{SC};\overrightarrow{AC} bằng 60^{0}. Sai||Đúng

    c) Tích vô hướng của \overrightarrow{AM};\overrightarrow{AB} bằng \frac{a^{2}}{2}. Đúng||Sai

    d) Độ dài vectơ \overrightarrow{AM} -
\overrightarrow{AN}\frac{a\sqrt{3}}{2}. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết rằng cạnh AB = a, AD = 2a, cạnh bên SA = 2a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:

    a) Hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, cùng hướng. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{SC};\overrightarrow{AC} bằng 60^{0}. Sai||Đúng

    c) Tích vô hướng của \overrightarrow{AM};\overrightarrow{AB} bằng \frac{a^{2}}{2}. Đúng||Sai

    d) Độ dài vectơ \overrightarrow{AM} -
\overrightarrow{AN}\frac{a\sqrt{3}}{2}. Sai||Đúng

     

    a) Sai

     

    Ta thấy ABCD là hình chữ nhật nên AB//CD

    Suy ra hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, ngược hướng.

    b) Sai

    Ta có ABCD là hình chữ nhật nên AC =
\sqrt{AB^{2} + AD^{2}} = a\sqrt{5}

    Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.

    Suy ra \tan\widehat{SAC} = \frac{SA}{SC}
= \frac{2a}{a\sqrt{5}} \Rightarrow \widehat{SAC} \approx
41^{0}48'

    Ta có: \left(
\overrightarrow{SC};\overrightarrow{AC} ight) = \left(
\overrightarrow{CS};\overrightarrow{CA} ight) = \widehat{SAC} \approx
41^{0}48'

    c) Đúng

    Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.

    Suy ra SB = \sqrt{SA^{2} +
AB^{2}} = a\sqrt{5}

    Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:

    AM = \frac{1}{2}SB =
\frac{a\sqrt{5}}{2}

    Lại có M là trung điểm của SB nên MB =
\frac{1}{2}SB = \frac{a\sqrt{5}}{2}

    Ta tính được \cos MAB = \frac{MA^{2} +
AB^{2} - MB^{2}}{2MA.AB} = \frac{\sqrt{5}}{5}

    \left(
\overrightarrow{AM};\overrightarrow{AB} ight) =
\widehat{MAB}

    \Rightarrow
\overrightarrow{AM}.\overrightarrow{AB} = \left| \overrightarrow{AM}
ight|.\left| \overrightarrow{AB} ight|.cos\left(
\overrightarrow{AM};\overrightarrow{AB} ight) =
\frac{a\sqrt{5}}{2}.a.\frac{\sqrt{5}}{5} = \frac{a^{2}}{2}

    d) Sai

    Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD

    Do đó MN = \frac{1}{2}BD = \sqrt{AB^{2} +
AD^{2}} = \frac{a\sqrt{5}}{2}

    Suy ra \left| \overrightarrow{AM} -
\overrightarrow{AN} ight| = \left| \overrightarrow{MN} ight| =
\frac{a\sqrt{5}}{2}

  • Câu 2: Vận dụng
    Xác định số khẳng định đúng

    Một em nhỏ cân nặng m = 25(kg) trượt trên cầu trượt dài 3,5(m) (như trong hình dưới đây). Biết rằng, cầu trượt có góc nghiêng so với phương nằm ngang là 30{^\circ}. Trong các khẳng định sau, có bao nhiêu khẳng định đúng?

    + Với gia tốc rơi tự do \overrightarrow{g} có độ lớn là g = 9,8\left( m/s^{2} \right) thì độ lớn của trọng lực \overrightarrow{P} =
m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là 245(N).

    + Góc giữa độ dịch chuyển \overrightarrow{d} so với trọng lực \overrightarrow{P}30{^\circ}.

    + Công A(J) sinh bởi một lực \overrightarrow{F} có độ dịch chuyển \overrightarrow{d} được tính bởi công thức A = \left| \overrightarrow{F}
\right|.\left| \overrightarrow{d} \right|.cos\left(
\overrightarrow{F};\overrightarrow{d} \right) thì công sinh bởi trọng lực \overrightarrow{P} khi em nhỏ trượt hết chiều dài cầu trượt là 428,75(J).

    A drawing of a child on a slideDescription automatically generated

    Hướng dẫn:

    » Với gia tốc rơi tự do \overrightarrow{g} có độ lớn là g = 9,8\left( m/s^{2} \right) thì độ lớn của trọng lực \overrightarrow{P} =
m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là \left| \overrightarrow{P} \right| = m\left|
\overrightarrow{g} \right| = 25.9,8 = 245(N).

    » Em nhỏ trượt từ điểm A tới điểm B nên khi đó góc giữa độ dịch chuyển \overrightarrow{d} so với trọng lực \overrightarrow{P}\left( \overrightarrow{d,}\overrightarrow{P}
\right) = \left( \overrightarrow{AB,}\overrightarrow{P} \right) =
60{^\circ}.

    » Ta có độ lớn của trọng lực \overrightarrow{P} = m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là \left|
\overrightarrow{P} \right| = m\left| \overrightarrow{g} \right| = 25.9,8
= 245(N) nên công sinh bởi trọng lực \overrightarrow{P} khi em nhỏ trượt hết chiều dài cầu trượt là A = \left|
\overrightarrow{P} \right|.\left| \overrightarrow{d} \right|.cos\left(
\overrightarrow{P,}\overrightarrow{d} \right) = 245.3,5.cos60{^\circ} =
428,75(J).

  • Câu 3: Vận dụng cao
    Tính x; y theo k để ba điểm thẳng hàng

    Cho hình hộp ABCD.A'B'C'D' và các điểm M,N,P xác định bởi

    \overrightarrow{MA} =
k\overrightarrow{MB'}(k \neq 0),\overrightarrow{NB} =
x\overrightarrow{NC'},\overrightarrow{PC} =
y\overrightarrow{PD'}. Hãy tính x,y theo k để ba điểm M,N,P thẳng hàng.

    Hướng dẫn:

    Hình vẽ minh họa

    Đặt \overrightarrow{AD} =
\overrightarrow{a},\overrightarrow{AB} =
\overrightarrow{b},\overrightarrow{AA'} =
\overrightarrow{c}.

    Từ giả thiết ta có :

    \overrightarrow{AM} = \frac{k}{k -
1}\left( \overrightarrow{b} + \overrightarrow{c} \right)\ \ \
(1)

    \overrightarrow{AN} = \overrightarrow{b}+ \frac{x}{x - 1}\left( \overrightarrow{a} + \overrightarrow{c} \right) (2)

    \overrightarrow{AP} = \overrightarrow{a} + \overrightarrow{b} +\frac{y}{y - 1}\left( \overrightarrow{c} - \overrightarrow{b}\right)(3)

    Từ đó ta có

    \overrightarrow{MN} =\overrightarrow{AN} - \overrightarrow{AM}= \frac{x}{x -1}\overrightarrow{a} - \frac{1}{k - 1}\overrightarrow{b} + \left(\frac{x}{x - 1} - \frac{k}{k - 1} \right)\overrightarrow{c}

    + \left( \frac{x}{x - 1} - \frac{y}{y -
1} \right)\overrightarrow{c}.

    \overrightarrow{MP} =\overrightarrow{AP} - \overrightarrow{AM}= \overrightarrow{a} -(\frac{y}{y - 1} + \frac{1}{k - 1})\overrightarrow{b} + \left(\frac{y}{y - 1} - \frac{k}{k - 1} \right)\overrightarrow{c}

    Ba điểm M,N,P thẳng hàng khi và chỉ khi tồn tại \lambda sao cho \overrightarrow{MN} =
\lambda\overrightarrow{MP}\ \ (*).

    Thay các vectơ \overrightarrow{MN},\overrightarrow{MP} vào (*) và lưu ý \overrightarrow{a},\overrightarrow{b},\overrightarrow{c} không đồng phẳng ta tính được x = \frac{1 +
k}{1 - k},y = - \frac{1}{k}.

  • Câu 4: Vận dụng
    Chọn khẳng định sai

    Cho ba vectơ \overrightarrow{a},\overrightarrow{b}\overrightarrow{,c} không đồng phẳng. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Các vectơ \overrightarrow{x},\overrightarrow{y},\overrightarrow{z} đồng phẳng\Leftrightarrow \exists
m,n:\overrightarrow{x} = m\overrightarrow{y} +
n\overrightarrow{z}

    Mà : \overrightarrow{x} =
m\overrightarrow{y} + n\overrightarrow{z}

    \Leftrightarrow \overrightarrow{a} -2\overrightarrow{b} + 4\overrightarrow{c}= m\left( 3\overrightarrow{a}- 3\overrightarrow{b} + 2\overrightarrow{c} \right) + n\left(2\overrightarrow{a} - 3\overrightarrow{b} - 3\overrightarrow{c}\right)

    \Leftrightarrow \left\{
\begin{matrix}
3m + 2n = 1 \\
- 3m - 3n = - 2 \\
2m - 3n = 4 \\
\end{matrix} \right. (hệ vô nghiệm)

    Vậy không tồn tại hai số m,n:\overrightarrow{x} = m\overrightarrow{y} +
n\overrightarrow{z}

  • Câu 5: Thông hiểu
    Xác định khẳng định sai

    Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng nhau.

    Hướng dẫn:

    Ta có: \overrightarrow{BB'}.\overrightarrow{BD} =
\overrightarrow{BB'}.\left( \overrightarrow{BA} +
\overrightarrow{BC} ight) =
\overrightarrow{BB'}.\overrightarrow{BA} +
\overrightarrow{BB'}.\overrightarrow{BC}

    = BB'.BA\left(
\cos\widehat{B'BA} + cos\widehat{B'BC} ight)

    AA'B'BABCD là hai hình thoi bằng nhau nên

    + \widehat{B'BA} = \widehat{B'BC}
\Rightarrow \overrightarrow{BB'}.\overrightarrow{BD} eq 0 suy ra BB' không vuông góc với BD

    + \widehat{B'BA} + \widehat{B'BC}= 180^{0}\Rightarrow \cos\widehat{B'BA} = - \cos\widehat{B'BC}\Rightarrow \overrightarrow{BB'}.\overrightarrow{BD} = 0 suy ra BB'\bot BD

    Nên đáp án BB'\bot BD có thể sai vì chưa có điều kiện của góc \widehat{B'BA}\widehat{B'BC}

  • Câu 6: Vận dụng
    Xác định giá trị thực của k

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MNP là một điểm bất kì trong không gian. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{PI} =
k.\left( \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}
+ \overrightarrow{PD} ight)?

    Hướng dẫn:

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của các cạnh AC;BD nên ta có: \left\{ \begin{matrix}
\overrightarrow{IA} + \overrightarrow{IC} = 2\overrightarrow{IM} \\
\overrightarrow{IB} + \overrightarrow{ID} = 2\overrightarrow{IN} \\
\end{matrix} ight..

    Mặt khác \overrightarrow{IM} +
\overrightarrow{IN} = \overrightarrow{0} (vì I là trung điểm của MN) suy ra \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} =
\overrightarrow{0}

    Theo bài ra ta có:

    \overrightarrow{PA} +
\overrightarrow{PB} + \overrightarrow{PC} +
\overrightarrow{PD}

    = 4\overrightarrow{PI} +
\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} +
\overrightarrow{ID} = 4\overrightarrow{PI}

    \Rightarrow 4k = 1 \Rightarrow k =
\frac{1}{4}

  • Câu 7: Vận dụng cao
    Tìm giá trị nhỏ nhất của biểu thức

    Cho hình chóp S.ABCSA = a,SB = b,SC = c. Một mặt phẳng (\alpha) luôn đi qua trọng tâm của tam giác ABC, cắt các cạnh SA,SB,SC lần lượt tại A',B',C'. Tìm giá trị nhỏ nhất của \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}}.

    Hướng dẫn:

    Gọi G là trọng tâm của tam giác ABC. Ta có 3\overrightarrow{SG} = \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC}

    =
\frac{SA}{SA'}\overrightarrow{SA'} +
\frac{SB}{SB'}\overrightarrow{SB'} +
\frac{SC}{SC'}\overrightarrow{SC'}.

    G,A',B',C' đồng phẳng nên \frac{SA}{SA'} +\frac{SB}{SB'} + \frac{SC}{SC'} = 3\Leftrightarrow\frac{a}{SA'} + \frac{b}{SB'} + \frac{c}{SC'} =3

    Theo BĐT Cauchy schwarz:

    Ta có \left( \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}} \right)\left( a^{2} +
b^{2} + c^{2} \right) \geq \left( \frac{a}{SA'} + \frac{b}{SB'}
+ \frac{c}{SC'} \right)^{2}

    \Leftrightarrow \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}} \geq \frac{9}{a^{2} +
b^{2} + c^{2}}.

    Đẳng thức xảy ra khi

    \frac{1}{aSA'} = \frac{1}{bSB'} =
\frac{1}{cSC'} kết hợp với \frac{a}{SA'} + \frac{b}{SB'} +
\frac{c}{SC'} = 3 ta được;

    SA' = \frac{a^{2} + b^{2} + c^{2}}{3a},SB'
= \frac{a^{2} + b^{2} + c^{2}}{3b},SC' = \frac{a^{2} + b^{2} +
c^{2}}{3c}.

    Vậy GTNN của \frac{1}{SA'^{2}} +
\frac{1}{SB'^{2}} + \frac{1}{SC'^{2}}\frac{9}{a^{2} + b^{2} + c^{2}}.

  • Câu 8: Thông hiểu
    Tính giá trị biểu thức

    Cho tam giác ABC. Lấy điểm S nằm ngoài mặt phẳng (ABC). Trên đoạn SA lấy điểm M sao cho \overrightarrow{MS} = -
2\overrightarrow{MA} và trên đoạn BC lấy điểm N sao cho \overrightarrow{NB} = -
\frac{1}{2}\overrightarrow{NC}. Biết biểu diễn \overrightarrow{MN} = m.\overrightarrow{AB} +
n.\overrightarrow{SC} là duy nhất. Tính giá trị biểu thức T = m + n?

    Hướng dẫn:

    Hình vẽ minh họa

    Theo giả thiết ta có: \overrightarrow{MS}
= - 2\overrightarrow{MA}; \overrightarrow{NB} = -
\frac{1}{2}\overrightarrow{NC}

    Lấy điểm P trên cạnh AC sao cho \overrightarrow{PC} = -
2\overrightarrow{PA}. Khi đó:

    \overrightarrow{MN} =
\overrightarrow{MP} + \overrightarrow{PN} =
\frac{1}{3}\overrightarrow{SC} +
\frac{2}{3}\overrightarrow{AB}

    \Rightarrow \left\{ \begin{matrix}m = \dfrac{2}{3} \ = \dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow T = 1

  • Câu 9: Thông hiểu
    Chọn khẳng định sai

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Chọn khẳng định sai?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AA_{1}}.\overrightarrow{B_{1}D_{1}}
= \overrightarrow{BB_{1}}.\overrightarrow{BD} =
\overrightarrow{BB_{1}}.\left( \overrightarrow{BA} + \overrightarrow{BC}
ight)

    =
\overrightarrow{BB_{1}}.\overrightarrow{BA} +
\overrightarrow{BB_{1}}.\overrightarrow{BC} = 0 (vì \left( \overrightarrow{BB_{1}},\overrightarrow{BA}
ight) = 90^{0}\left(
\overrightarrow{BB_{1}},\overrightarrow{BC} ight) =
90^{0})

    Do đó: \left(
\overrightarrow{AA_{1}},\overrightarrow{B_{1}D_{1}} ight) = 90^{0}
\Rightarrow \left( AA_{1},B_{1}D_{1} ight) = 90^{0}

  • Câu 10: Vận dụng
    Chọn khẳng định đúng

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Chọn khẳng định đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    + \ M,N,P,Q lần lượt là trung điểm của AB,\ \
AA_{1},DD_{1},CD.

    Ta có CD_{1}//(MNPQ);\ \ AD//(MNPQ);\ \
A_{1}C//(MNPQ)

    \Rightarrow
\overrightarrow{CD_{1}},\overrightarrow{AD},\overrightarrow{A_{1}C} đồng phẳng.

  • Câu 11: Vận dụng
    Chọn đáp án đúng

    Theo định luật II Newton: Gia tốc của một vật có cùng hướng với lực tác dụng lên vật. Độ lớn của gia tốc tỉ lệ thuận với độ lớn của lực và tỉ lệ nghịch với khối lượng của vật: \overrightarrow{F} =
m\overrightarrow{a}, trong đó \overrightarrow{a} là vectơ gia tốc \left( m/s^{2} \right), \overrightarrow{F} là vectơ lực (N)tác dụng lên vật, m(kg) là khối lượng của vật. Muốn truyền cho quả bóng có khối lượng 0,5\ kg một gia tốc 20\ \ m/s^{2} thì cần một lực đá có độ lớn là bao nhiêu?

    A football ball on a fieldDescription automatically generated

    Hướng dẫn:

    Ta có \overrightarrow{F} =
m\overrightarrow{a} \Rightarrow \left| \overrightarrow{F} \right| =
m\left| \overrightarrow{a} \right| = 0,5.20 = 10(N).

    Vậy muốn truyền cho quả bóng có khối lượng 0,5\ kg một gia tốc 20\ \ m/s^{2} thì cần một lực đá có độ lớn là 10(N).

  • Câu 12: Vận dụng
    Tìm khẳng định sai

    Cho tứ diện ABCD. Trên các cạnh ADBC lần lượt lấy M,Nsao cho AM
= 3MD, BN = 3NC. Gọi P,Q lần lượt là trung điểm của ADBC. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Hình vẽ minh họa

    «Các vectơ \overrightarrow{BD},\overrightarrow{AC},\overrightarrow{MN} đồng phẳng” . Sai vì

    \left\{ \begin{matrix}
  \overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AC}  + \overrightarrow {CN}  \hfill \\
  \overrightarrow {MN}  = \overrightarrow {MD}  + \overrightarrow {DB}  + \overrightarrow {BN}  \hfill \\ 
\end{matrix}  \right.\Rightarrow \left\{ \begin{matrix}
  \overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AC}  + \overrightarrow {CN}  \hfill \\
  \overrightarrow {3MN}  = \overrightarrow {3MD}  + 3\overrightarrow {DB}  + 3\overrightarrow {BN}  \hfill \\ 
\end{matrix}  \right.

    \Rightarrow 4\overrightarrow {MN}  = \overrightarrow {AC}  - 3\overrightarrow {BD}  + \frac{1}{2}\overrightarrow {BC} \mathbf{\Rightarrow} \overrightarrow{BD},\overrightarrow{AC},\overrightarrow{MN} không đồng phẳng.

    « Các vectơ \overrightarrow{MN},\overrightarrow{DC},\overrightarrow{PQ} đồng phẳng’. Đúng vì \left\{ \begin{gathered}
  \overrightarrow {MN}  = \overrightarrow {MP}  + \overrightarrow {PQ}  + \overrightarrow {QN}  \hfill \\
  \overrightarrow {MN}  = \overrightarrow {MD}  + \overrightarrow {DC}  + \overrightarrow {CN}  \hfill \\ 
\end{gathered}  \right.

    \Rightarrow 2\overrightarrow {MN}  = \overrightarrow {PQ}  + \overrightarrow {DC}  \Rightarrow \overrightarrow {MN}  = \frac{1}{2}\left( {\overrightarrow {PQ}  + \overrightarrow {DC} } \right)

    \mathbf{\Rightarrow}\overrightarrow{MN},\overrightarrow{DC},\overrightarrow{PQ}: đồng phẳng.

    “Các vectơ \overrightarrow{AB},\overrightarrow{DC},\overrightarrow{PQ} đồng phẳng”. Đúng. Bằng cách biểu diễn \overrightarrow{PQ} tương tự như trên ta có \overrightarrow{PQ} = \frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{DC} \right).

    « Các vectơ \overrightarrow{AB},\overrightarrow{DC},\overrightarrow{MN} đồng phẳng”. Đúng. Ta có \overrightarrow{MN} =
\frac{1}{4}\overrightarrow{AB} +
\frac{1}{4}\overrightarrow{DC}.

  • Câu 13: Vận dụng cao
    Ghi đáp án vào ô trống

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Đáp án là:

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Gọi hai lực tạo với nhau một góc 80^{\circ}\overrightarrow{F_{1}}\overrightarrow{F_{2}}, ta có \left| \overrightarrow{F_{1}} ight| = \left|
\overrightarrow{F_{2}} ight| = 50N.

    Lực còn lại là \overrightarrow{F_{3}}, ta có \left| \overrightarrow{F_{3}} ight| =
60N.

    Gọi \overrightarrow{F} là hợp lực của ba lực trên ta có

    \left| \overrightarrow{F} ight|^{2} =
\left( \overrightarrow{F_{1}} + \overrightarrow{F_{2}} +
\overrightarrow{F_{3}} ight)^{2}

    = \left| \overrightarrow{F_{1}}
ight|^{2} + \left| \overrightarrow{F_{2}} ight|^{2} + \left|
\overrightarrow{F_{3}} ight|^{2} + 2\lbrack\left|
\overrightarrow{F_{1}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{1}},\overrightarrow{F_{2}}
ight)

    + \left| \overrightarrow{F_{1}}
ight|.\left| \overrightarrow{F_{3}} ight|.cos\left(
\overrightarrow{F_{1}},\overrightarrow{F_{3}} ight) + \left|
\overrightarrow{F_{3}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{3}},\overrightarrow{F_{2}}
ight)brack

    = 50^{2} + 50^{2} + 60^{2} + 2\lbrack
50.50.cos80^{0}+ 50.60.cos60^{0} +
60.50.cos60^{0}brack \approx 15468.

    \Rightarrow |F| \approx 124 N

  • Câu 14: Vận dụng
    Phân tích vectơ

    Cho hình hộp ABCD.A'B'C'D'. Điểm M được xác định bởi đẳng thức vectơ \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} + \overrightarrow{MD} + \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = \overrightarrow{0}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Gọi \left\{ \begin{matrix}
O = AC \cap BD \\
O' = A'C' \cap B'D' \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} +
\overrightarrow{OD} = \overrightarrow{0} \\
\overrightarrow{OA'} + \overrightarrow{OB'} +
\overrightarrow{OC'} + \overrightarrow{OD'} = \overrightarrow{0}
\\
\end{matrix} ight.

    Ta có:

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} +
\overrightarrow{MD}

    = \left( \overrightarrow{MO} +
\overrightarrow{OA} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OB} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OC} ight) + \left( \overrightarrow{MO} +
\overrightarrow{OD} ight)

    = \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} +
4\overrightarrow{MO} = \overrightarrow{0} + 4\overrightarrow{MO} =
4\overrightarrow{MO}

    Tương tự ta cũng có: \overrightarrow{MA'} +
\overrightarrow{MB'} + \overrightarrow{MC'} +
\overrightarrow{MD'} = 4\overrightarrow{MO'}

    Từ đó suy ra

    \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} +
\overrightarrow{MA'} + \overrightarrow{MB'} +
\overrightarrow{MC'} + \overrightarrow{MD'} =
\overrightarrow{0}

    \Leftrightarrow 4\overrightarrow{MO} +
4\overrightarrow{MO'} = \overrightarrow{0} \Leftrightarrow 4\left(
\overrightarrow{MO} + \overrightarrow{MO'} ight) =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{MO} +
\overrightarrow{MO'} = \overrightarrow{0}

    Vậy điểm M cần tìm là trung điểm của OO'.

  • Câu 15: Vận dụng cao
    Tính giá trị lớn nhất của biểu thức

    Cho tứ diện ABCDBC = DA = a,CA = DB = b,AB = DC = c. Gọi S là diện tích toàn phần (tổng diện tích tất cả các mặt). Tính giá trị lớn nhất của \frac{1}{a^{2}b^{2}} + \frac{1}{b^{2}c^{2}} +
\frac{1}{c^{2}a^{2}}.

    Hướng dẫn:

    Do tứ diện ABCDBC = DA = a,CA = DB = b,AB = DC = c nên \Delta BCD = \Delta ADC = \Delta DAB =
\Delta CBA.

    Gọi S' là diện tích và R là bán kính đường tròn ngoại tiếp mỗi mặt đó thì S = 4S' =
\frac{abc}{R}, nên bất đẳng thức cần chứng minh:

    \frac{1}{a^{2}b^{2}} + \frac{1}{b^{2}c^{2}} +
\frac{1}{c^{2}a^{2}} \leq \frac{9}{S^{2}} \Leftrightarrow a^{2} + b^{2}
+ c^{2} \leq 9R^{2}.

    Theo công thức Leibbnitz:

    Với điểm M bất kì và G là trọng tâm của tam giác ABC thì

    MA^{2} + MB^{2} + MC^{2}

    = GA^{2} + GB^{2} +BC^{2} + 3MG^{2}

    = \frac{1}{3}\left( a^{2} + b^{2} + c^{2} + 9MG^{2}\right)

    Cho M trùng với tâm đường tròn ngoại tiếp tam giác ABC ta được:

    9R^{2} = aa^{2} + b^{2} + c^{2} + 9OG^{2}
\geq a^{2} + b^{2} + c^{2}.

  • Câu 16: Vận dụng cao
    Ghi đáp án vào ô trống

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đáp án là:

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đặt \overrightarrow{F} ={\overrightarrow{F}}_{1} + {\overrightarrow{F}}_{2} +{\overrightarrow{F}}_{3} thì \left|\overrightarrow{F} ight| = 2000(N).

    Chú ý thêm là: \left|{\overrightarrow{F}}_{1} ight| = \left| {\overrightarrow{F}}_{2}ight| = \left| {\overrightarrow{F}}_{3} ight|

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AC}+ \overrightarrow{AD} = 3\overrightarrow{AG} với G là trọng tâm \Delta BCD.

    Vì hình chóp A.BCD đều nên AG\bot mp(BCD)

    Do đó \widehat{ABG} = 30^{0}, suy ra AG = AB.sin30^{0} = \frac{AB}{2}\Rightarrow AB = 2AG.

    Khi gắn các lực vào ta có:

    \overrightarrow{F} =\overrightarrow{F_{1}} + \overrightarrow{F_{2}} + \overrightarrow{F_{3}}= - \overrightarrow{F_{AB}} - \overrightarrow{F_{AC}} -\overrightarrow{F_{AD}} = - 3\overrightarrow{F_{AG}}

    \Rightarrow \left| {\overrightarrow F } ight| = 3\left| {\overrightarrow {{F_{AG}}} } ight| \Rightarrow \left| {\overrightarrow {{F_{AG}}} } ight| = \frac{{2000}}{3}\left( N ight)

    Từ đó: \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{AB}} ight| = 2\left|\overrightarrow{F_{AG}} ight| = \frac{4000}{3}(N).

    Vậy lực căng mỗi sợi dây là \frac{4000}{3}\ N \approx 1333\ N.

  • Câu 17: Vận dụng
    Xác định góc giữa cặp vectơ

    Cho tứ diệnABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} = 60^{0},\
\widehat{CAD} = 90^{0}. Gọi IJ lần lượt là trung điểm của ABCD. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{IJ}?

    Hướng dẫn:

    Hình vẽ minh họa

    Xét tam giácICDJ là trung điểm đoạn CD.

    Ta có: \overrightarrow{I J} =
\frac{1}{2}\left( \overrightarrow{IC} + \overrightarrow{ID}
ight)

    Vì tam giác ABCAB = AC\widehat{BAC} = 60{^\circ}

    Nên tam giác ABC đều. Suy ra: CI\bot AB

    Tương tự ta có tam giác ABD đều nên DI\bot AB.

    Xét \overrightarrow{IJ}.\overrightarrow{AB} =
\frac{1}{2}\left( \overrightarrow{IC} + \overrightarrow{ID}
ight).\overrightarrow{AB}=
\frac{1}{2}\overrightarrow{IC}.\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{ID}.\overrightarrow{AB} =
\overrightarrow{0}.

    Suy ra \overrightarrow{I
J}\bot\overrightarrow{AB}. Hay góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{IJ} bằng 90^{0}.

  • Câu 18: Thông hiểu
    Chọn đáp án đúng

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{u};\overrightarrow{AB} =
\overrightarrow{v};\overrightarrow{AC} = \overrightarrow{w}. Biểu diễn vectơ \overrightarrow{BC'} qua các vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w}. Chọn đáp án đúng?

    Hướng dẫn:

    Ta có:

    \overrightarrow{BC'} =
\overrightarrow{BC} + \overrightarrow{CC'} = \overrightarrow{BA} +
\overrightarrow{AC} + \overrightarrow{CC'}

    = - \overrightarrow{v} +
\overrightarrow{w} + \overrightarrow{u} = \overrightarrow{u} -
\overrightarrow{v} + \overrightarrow{w}

    Vậy đáp án đúng là: \overrightarrow{BC'} = \overrightarrow{u} -
\overrightarrow{v} + \overrightarrow{w}.

  • Câu 19: Vận dụng
    Tính góc giữa hai đường thẳng

    Cho hình hộp ABCD.A'B'C'D' có các cạnh đều bằng a và các góc \widehat{B'A'D'} =
60^{0},\widehat{B'A'A} = \widehat{D'A'A} =
120^{0}. Tính diện tích các tứ giác A'B'CDACC'A'.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{A'C} =
\overrightarrow{a} + \overrightarrow{b} +
\overrightarrow{c},\overrightarrow{B'D} = \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}

    \Rightarrow
\overrightarrow{A'C}.\overrightarrow{B'D} = \left(
\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}
\right)\left( \overrightarrow{a} - \overrightarrow{b} +
\overrightarrow{c} \right) = 0

    \Rightarrow A'C\bot B'D nên S_{A'B'DC} =
\frac{1}{2}A'C.B'D.

    Dễ dàng tính được A'C =a\sqrt{2},B'D = a\sqrt{2}

    \Rightarrow S_{A'B'CD} =\frac{1}{2}a\sqrt{2}a.\sqrt{2} = a^{2}

    S_{AA'C'C} = AA'AC\sin\left(
\overrightarrow{AA'},\overrightarrow{AC} \right), AA' = a,Ac = a\sqrt{3}.

    Tính được \sin\left(
\overrightarrow{AA'},\overrightarrow{AC} \right) = \sqrt{1 -
cos^{2}\left( \overrightarrow{AA'},\overrightarrow{AC} \right)} =
\frac{\sqrt{6}}{3}

    Vậy S_{AA'C'C} =
AA'AC\sin\left( \overrightarrow{AA'},\overrightarrow{AC} \right)
= a.a\sqrt{3}.\frac{\sqrt{6}}{3} = a^{2}\sqrt{2}.

  • Câu 20: Vận dụng
    Tính góc giữa hai đường thẳng

    Cho hình hộp ABCD.A'B'C'D' có các cạnh đều bằng a và các góc \widehat{B'A'D'} =
60^{0},\widehat{B'A'A} = \widehat{D'A'A} =
120^{0}. Tính góc giữa các cặp đường thẳng AB với A'D; AC' với B'D.

    Hướng dẫn:

    Hình vẽ minh họa

    Đặt \overrightarrow{AA'} =
\overrightarrow{a},\overrightarrow{A'B'} =
\overrightarrow{b},\overrightarrow{A'D'} =
\overrightarrow{c}

    Ta có \overrightarrow{A'D} =
\overrightarrow{a} + \overrightarrow{c} nên

    \cos\left( \widehat{AB,A'D} \right)
= \left| \cos\left( \overrightarrow{AB},\overrightarrow{A'D} \right)
\right|

    = \frac{\left|
\overrightarrow{AB}.\overrightarrow{A'D} \right|}{\left|
\overrightarrow{AB} \right|\left| \overrightarrow{A'D} \right|} =
\frac{\left| \overrightarrow{a}\left( \overrightarrow{a} +
\overrightarrow{c} \right) \right|}{\left| \overrightarrow{a}
\right|\left| \overrightarrow{a} + \overrightarrow{c}
\right|}.

    Để ý rằng \left| \overrightarrow{a} +
\overrightarrow{c} \right| = a, \overrightarrow{a}\left( \overrightarrow{a} +
\overrightarrow{c} \right) = \frac{a^{2}}{2}.

    Từ đó \cos\left( \widehat{AB,A'D}
\right) = \frac{1}{2} \Rightarrow \widehat{(AB,A'D)} =
60^{0}

    Ta có \overrightarrow{AC'} =
\overline{b} + \overrightarrow{c} -
\overrightarrow{a},\overrightarrow{B'D} = \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}, từ đó tính được:

    \overrightarrow{AC'}\overrightarrow{B'D} =\left( \overrightarrow{b} + \overrightarrow{c} - \overrightarrow{a}\right)\left( \overrightarrow{a} - \overrightarrow{b} +\overrightarrow{c} \right) = 0\Rightarrow \widehat{(AC',B'D)} =90^{0}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo