Cho tứ diện . Gọi
và
lần lượt là trung điểm của
và
Tìm giá trị của
thích hợp điền vào đẳng thức vectơ:
Ta có:
Mà và
lần lượt là trung điểm của
và
nên
Do đó .
Cho tứ diện . Gọi
và
lần lượt là trung điểm của
và
Tìm giá trị của
thích hợp điền vào đẳng thức vectơ:
Ta có:
Mà và
lần lượt là trung điểm của
và
nên
Do đó .
Cho hình hộp . Xác định vị trí các điểm
lần lượt trên
và
sao cho
. Tính tỉ số
bằng?
Hình vẽ minh họa

.
Giả sử .
Dễ dàng có các biểu diễn và
.
Từ đó suy ra
Để thì
Từ và
ta có:
.
Vậy các điểm được xác định bởi
.
Ta cũng có .
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Hình vẽ minh họa
a) Đúng: .
b) Đúng: Vi là trung điểm của
nên
Vì là trung điểm của
nên
Vì là trung điểm của
nên
Do đó:
c) Sai:
d) Đúng
Ta có: .
.
Do đó: nhỏ nhất khi
Gọi lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
và
là một điểm bất kì trong không gian. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Hình vẽ minh họa
Vì lần lượt là trung điểm của các cạnh
nên ta có:
.
Mặt khác (vì I là trung điểm của MN) suy ra
Theo bài ra ta có:
Cho lăng trụ tam giác . Đặt
. Biểu diễn vectơ
qua các vectơ
. Chọn đáp án đúng?
Hình vẽ minh họa
Ta có:
Vậy đáp án đúng là: .
Trong không gian , cho hai vectơ
và
tạo với nhau một góc
và
,
. Tính
Ta có:
.
Suy ra .
Cho , góc giữa
bằng
. Chọn khẳng định sai trong các khẳng định sau?
Ta có:
Khi đó:
Vậy khẳng định sai là .
Cho hình chóp có
. Một mặt phẳng
luôn đi qua trọng tâm của tam giác
, cắt các cạnh
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Gọi là trọng tâm của tam giác
. Ta có
.
Mà đồng phẳng nên
Theo BĐT Cauchy schwarz:
Ta có
.
Đẳng thức xảy ra khi
kết hợp với
ta được;
.
Vậy GTNN của là
.
Cho hình hộp . Chọn khẳng định đúng?
Hình vẽ minh họa

lần lượt là trung điểm của
.
Ta có
đồng phẳng.
Cho tứ diện . Gọi
lần lượt là trung điểm của
và
,
là trung điểm của
. Cho các đẳng thức sau, đẳng thức nào đúng?
Ta có:
.
Cho hình hộp . Điểm
được xác định bởi đẳng thức vectơ
. Mệnh đề nào sau đây đúng?
Gọi
Khi đó
Ta có:
Tương tự ta cũng có:
Từ đó suy ra
Vậy điểm M cần tìm là trung điểm của .
Cho hình chóp . Gọi
là giao điểm của
và
. Trong các khẳng định sau, khẳng định nào sai?
Hình vẽ minh họa

“Nếu thì
là hình thang » Đúng
Vì và
.
Vì và
thẳng hàng nên đặt
.
Mà không cùng phương nên
và
“Nếu là hình bình hành thì
.“. Đúng.
Hs tự biến đổi bằng cách chêm điểm vào vế trái.
“Nếu là hình thang thì
. ». Sai.
Vì nếu là hình thang cân có 2 đáy là
thì sẽ sai.
“Nếu thì
là hình bình hành ». Đúng.
Tương tự đáp án A với là trung điểm 2 đường chéo.
Cho tứ diện . Gọi
là các điểm thỏa nãm
còn
là các điểm xác định bởi
. Chứng minh ba điểm
thẳng hàng. Khẳng định nào sau đây là đúng?
Hình vẽ minh họa

Ta có
Từ ta có
Lấy theo vế ta có
Tương tự
Mặt khác nên
Vậy thẳng hàng.
Trong không gian , cho các điểm
,
, điểm
và tam giác
vuông tại
, hình chiếu vuông góc của
trên
là điểm
. Khi đó điểm
luôn thuộc đường tròn cố định có bán kính bằng
Hình vẽ minh họa
Dễ thấy . Ta có
và
, suy ra
.
Ta có
, mà
. Suy ra
.
Mặt khác ta có
, .
Từ và
suy ra
và
.
Với suy ra
thuộc mặt phẳng
với
là mặt phẳng đi qua O và vuông góc với đường thẳng
.
Phương trình của là:
.
Với
vuông tại
.
Do đó thuộc mặt cầu
có tâm
là trung điểm của
và bán kính
.
Do đó điểm luôn thuộc đường tròn
cố định là giao tuyến của mp
với mặt cầu
.
Giả sử có tâm
và bán kính
thì
và
.
Vậy điểm luôn thuộc đường tròn cố định có bán kính bằng
.
Một em nhỏ cân nặng trượt trên cầu trượt dài
(như trong hình dưới đây). Biết rằng, cầu trượt có góc nghiêng so với phương nằm ngang là
. Trong các khẳng định sau, có bao nhiêu khẳng định đúng?
+ Với gia tốc rơi tự do có độ lớn là
thì độ lớn của trọng lực
tác dụng lên em nhỏ có độ lớn là
.
+ Góc giữa độ dịch chuyển so với trọng lực
là
.
+ Công sinh bởi một lực
có độ dịch chuyển
được tính bởi công thức
thì công sinh bởi trọng lực
khi em nhỏ trượt hết chiều dài cầu trượt là
.

» Với gia tốc rơi tự do có độ lớn là
thì độ lớn của trọng lực
tác dụng lên em nhỏ có độ lớn là
.
» Em nhỏ trượt từ điểm tới điểm
nên khi đó góc giữa độ dịch chuyển
so với trọng lực
là
.
» Ta có độ lớn của trọng lực tác dụng lên em nhỏ có độ lớn là
nên công sinh bởi trọng lực
khi em nhỏ trượt hết chiều dài cầu trượt là
.
Cho hình hộp . Gọi
và
lần lượt là tâm của hình bình hành
và
. Khẳng định nào sau đây sai ?
“Bốn điểm ,
,
,
đồng phẳng ». Đúng vì
cùng thuộc
“”. Đúng vì
“Ba vectơ không đồng phẳng ». Sai vì
Ba vectơ đồng phẳng.
””. Đúng vì theo câu trên
Cho hình hộp có các cạnh đều bằng
và các góc
. Tính diện tích các tứ giác
và
.
Hình vẽ minh họa

Ta có:
nên
.
Dễ dàng tính được
,
.
Tính được
Vậy .
Theo định luật Newton: Gia tốc của một vật có cùng hướng với lực tác dụng lên vật. Độ lớn của gia tốc tỉ lệ thuận với độ lớn của lực và tỉ lệ nghịch với khối lượng của vật:
, trong đó
là vectơ gia tốc
,
là vectơ lực
tác dụng lên vật,
là khối lượng của vật. Muốn truyền cho quả bóng có khối lượng
một gia tốc
thì cần một lực đá có độ lớn là bao nhiêu?

Ta có .
Vậy muốn truyền cho quả bóng có khối lượng một gia tốc
thì cần một lực đá có độ lớn là
.
Cho hình chóp có đáy
là hình bình hành. Một mặt phẳng
cắt các cạnh
lần lượt tại
.Đẳng thức nào sau đây đúng?
Hình vẽ minh họa

Gọi là tâm của hình bình hành
thì
Do đồng phẳng nên đẳng thức trên
.
Cho hình hộp và các điểm
xác định bởi
. Hãy tính
theo
để ba điểm
thẳng hàng.
Hình vẽ minh họa

Đặt .
Từ giả thiết ta có :
Từ đó ta có
.
Ba điểm thẳng hàng khi và chỉ khi tồn tại
sao cho
.
Thay các vectơ vào
và lưu ý
không đồng phẳng ta tính được
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: