Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Vectơ và các phép toán trong không gian (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Ghi đáp án vào ô trống

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Đáp án là:

    Có ba lực cùng tác động vào một chất điểm. Hai trong ba lực này tạo với nhau một góc 80^{0} và có độ lớn đều bằng 50N, lực còn lại cùng tạo với hai lực kia một góc 60^{0} và có độ lớn bằng 60N. Tính độ lớn của hợp lực của ba lực trên. (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 124 N

    Gọi hai lực tạo với nhau một góc 80^{\circ}\overrightarrow{F_{1}}\overrightarrow{F_{2}}, ta có \left| \overrightarrow{F_{1}} ight| = \left|
\overrightarrow{F_{2}} ight| = 50N.

    Lực còn lại là \overrightarrow{F_{3}}, ta có \left| \overrightarrow{F_{3}} ight| =
60N.

    Gọi \overrightarrow{F} là hợp lực của ba lực trên ta có

    \left| \overrightarrow{F} ight|^{2} =
\left( \overrightarrow{F_{1}} + \overrightarrow{F_{2}} +
\overrightarrow{F_{3}} ight)^{2}

    = \left| \overrightarrow{F_{1}}
ight|^{2} + \left| \overrightarrow{F_{2}} ight|^{2} + \left|
\overrightarrow{F_{3}} ight|^{2} + 2\lbrack\left|
\overrightarrow{F_{1}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{1}},\overrightarrow{F_{2}}
ight)

    + \left| \overrightarrow{F_{1}}
ight|.\left| \overrightarrow{F_{3}} ight|.cos\left(
\overrightarrow{F_{1}},\overrightarrow{F_{3}} ight) + \left|
\overrightarrow{F_{3}} ight|.\left| \overrightarrow{F_{2}}
ight|.cos\left( \overrightarrow{F_{3}},\overrightarrow{F_{2}}
ight)brack

    = 50^{2} + 50^{2} + 60^{2} + 2\lbrack
50.50.cos80^{0}+ 50.60.cos60^{0} +
60.50.cos60^{0}brack \approx 15468.

    \Rightarrow |F| \approx 124 N

  • Câu 2: Vận dụng
    Tính giá trị của k

    Cho hình chóp S.ABC, mặt phẳng (\alpha) cắt các tia SA,SB,SC,SG( G là trọng tâm tam giác ABC) lần lượt tại các điểm A',B',C',G'.Ta có \frac{SA}{SA'} + \frac{SB}{SB'} +
\frac{SC}{SC'} = k\frac{SG}{SG'}. Hỏi k bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa

    Do G là trọng tâm của \Delta ABC nên \overrightarrow{GA} + \overrightarrow{GB} +\overrightarrow{GC} = \overrightarrow{0}

    \Rightarrow3\overrightarrow{SG} = \overrightarrow{SA} + \overrightarrow{SB} +\overrightarrow{SC}

    \begin{matrix}
\Leftrightarrow 3\frac{SG}{SG'}\overrightarrow{SG'} =
\frac{SA}{SA'}\overrightarrow{SA'} +
\frac{SB}{SB'}\overrightarrow{SB'} \\
+ \frac{SC}{SC'}\overrightarrow{SC'} \\
\end{matrix}

    Mặt khác A',B',C',G' đồng phẳng nên

    \frac{SA}{SA'} + \frac{SB}{SB'} +
\frac{SC}{SC'} = 3\frac{SG}{SG'}.

  • Câu 3: Vận dụng
    Chọn kết quả đúng

    Cho hình hộp đứng ABCD.A'B'C'D', trong đó mặt đáy là hình bình hành với \widehat{DAB}
= 120{^\circ}. Biết độ dài các cạnh AB = 25cm,AD = 12cmAA' = 12cm. Tính \left| \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'} \right|.

    Hướng dẫn:

    Theo quy tắc hình hộp, ta có \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'} = \overrightarrow{AC'},

    Vậy \left| \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} \right| = \left|
\overrightarrow{AC'} \right| = AC'

    Với AC' = \sqrt{AC^{2} +
A{A'}^{2}}

    Trong đó: AA' = 12(cm)

    Do tổng hai góc kề của một hình bình hành là 180{^\circ} nên ta có góc \widehat{ABC} = 60{^\circ}

    Áp dụng định lý cosin trong tam giác ABC, ta có:

    AC^{2} = AB^{2} + BC^{2} - 2AB.BC.cos\widehat{ABC}

    = 25^{2} + 12^{2} - 2.25.12.cos60{^0} = 469.

    Vậy AC' = \sqrt{AC^{2} +
A{A'}^{2}} = \sqrt{469 + 144} = \sqrt{613}(cm).

  • Câu 4: Vận dụng
    Tính giá trị biểu thức

    Cho tứ diện ABCDAB;AC;AD đôi một vuông góc với nhau. Tính giá trị của biểu thức T = \left|
\frac{\overrightarrow{AB}}{AB} + \frac{\overrightarrow{AC}}{AC} +
\frac{\overrightarrow{AD}}{AD} ight|?

    Hướng dẫn:

    Vì các vectơ \frac{\overrightarrow{AB}}{AB};\frac{\overrightarrow{AC}}{AC};\frac{\overrightarrow{AD}}{AD} có độ dài bằng 1 và đôi một vuông góc với nhau nên

    \left( \frac{\overrightarrow{AB}}{AB} +
\frac{\overrightarrow{AC}}{AC} + \frac{\overrightarrow{AD}}{AD}
ight)^{2} = 3 \Leftrightarrow T = \left|
\frac{\overrightarrow{AB}}{AB} + \frac{\overrightarrow{AC}}{AC} +
\frac{\overrightarrow{AD}}{AD} ight| = \sqrt{3}

  • Câu 5: Vận dụng
    Chọn kết quả đúng nhất

    Cho tam giác ABC, thì công thức tính diện tích nào sau đây là đúng nhất.

    Hướng dẫn:

    Ta có:

    S_{ABC} = \frac{1}{2}ABAC\sin A =
\frac{1}{2}\sqrt{AB^{2}AB^{2}sin^{2}A}

    = \frac{1}{2}\sqrt{AB^{2}AC^{2}\left( 1
- cos^{2}A \right)}

    = \frac{1}{2}\sqrt{AB^{2}AC^{2} - \left(
\overrightarrow{AB}.\overrightarrow{AC} \right)^{2}}.

  • Câu 6: Vận dụng
    Ghi đáp án vào ô trống

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC}(1),\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}(2). Tìm x để các đường thẳng AD;BC;MN cùng song song với một mặt phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC}(1),\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}(2). Tìm x để các đường thẳng AD;BC;MN cùng song song với một mặt phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Thông hiểu
    Tính góc giữa hai đường thẳng

    Cho tứ diện đều ABCD. Số đo giữa hai đường thẳng ABCD bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm của CD

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CD}.\overrightarrow{AM} = \overrightarrow{0} \\
\overrightarrow{CD}.\overrightarrow{MB} = \overrightarrow{0} \\
\end{matrix} ight.

    \Rightarrow
\overrightarrow{CD}.\overrightarrow{AB} = \overrightarrow{CD}.\left(
\overrightarrow{AM} + \overrightarrow{MB} ight) =
\overrightarrow{CD}.\overrightarrow{AM} +
\overrightarrow{CD}.\overrightarrow{MB} =
\overrightarrow{0}

    Suu ra \overrightarrow{AB}\bot\overrightarrow{CD} nên số đo góc giữa hai đường thẳng AB;CD bằng 90^{0}.

  • Câu 8: Vận dụng cao
    Ghi đáp án vào ô trống

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đáp án là:

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đặt \overrightarrow{F} ={\overrightarrow{F}}_{1} + {\overrightarrow{F}}_{2} +{\overrightarrow{F}}_{3} thì \left|\overrightarrow{F} ight| = 2000(N).

    Chú ý thêm là: \left|{\overrightarrow{F}}_{1} ight| = \left| {\overrightarrow{F}}_{2}ight| = \left| {\overrightarrow{F}}_{3} ight|

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AC}+ \overrightarrow{AD} = 3\overrightarrow{AG} với G là trọng tâm \Delta BCD.

    Vì hình chóp A.BCD đều nên AG\bot mp(BCD)

    Do đó \widehat{ABG} = 30^{0}, suy ra AG = AB.sin30^{0} = \frac{AB}{2}\Rightarrow AB = 2AG.

    Khi gắn các lực vào ta có:

    \overrightarrow{F} =\overrightarrow{F_{1}} + \overrightarrow{F_{2}} + \overrightarrow{F_{3}}= - \overrightarrow{F_{AB}} - \overrightarrow{F_{AC}} -\overrightarrow{F_{AD}} = - 3\overrightarrow{F_{AG}}

    \Rightarrow \left| {\overrightarrow F } ight| = 3\left| {\overrightarrow {{F_{AG}}} } ight| \Rightarrow \left| {\overrightarrow {{F_{AG}}} } ight| = \frac{{2000}}{3}\left( N ight)

    Từ đó: \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{AB}} ight| = 2\left|\overrightarrow{F_{AG}} ight| = \frac{4000}{3}(N).

    Vậy lực căng mỗi sợi dây là \frac{4000}{3}\ N \approx 1333\ N.

  • Câu 9: Vận dụng
    Xác định số khẳng định đúng

    Một em nhỏ cân nặng m = 25(kg) trượt trên cầu trượt dài 3,5(m) (như trong hình dưới đây). Biết rằng, cầu trượt có góc nghiêng so với phương nằm ngang là 30{^\circ}. Trong các khẳng định sau, có bao nhiêu khẳng định đúng?

    + Với gia tốc rơi tự do \overrightarrow{g} có độ lớn là g = 9,8\left( m/s^{2} \right) thì độ lớn của trọng lực \overrightarrow{P} =
m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là 245(N).

    + Góc giữa độ dịch chuyển \overrightarrow{d} so với trọng lực \overrightarrow{P}30{^\circ}.

    + Công A(J) sinh bởi một lực \overrightarrow{F} có độ dịch chuyển \overrightarrow{d} được tính bởi công thức A = \left| \overrightarrow{F}
\right|.\left| \overrightarrow{d} \right|.cos\left(
\overrightarrow{F};\overrightarrow{d} \right) thì công sinh bởi trọng lực \overrightarrow{P} khi em nhỏ trượt hết chiều dài cầu trượt là 428,75(J).

    A drawing of a child on a slideDescription automatically generated

    Hướng dẫn:

    » Với gia tốc rơi tự do \overrightarrow{g} có độ lớn là g = 9,8\left( m/s^{2} \right) thì độ lớn của trọng lực \overrightarrow{P} =
m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là \left| \overrightarrow{P} \right| = m\left|
\overrightarrow{g} \right| = 25.9,8 = 245(N).

    » Em nhỏ trượt từ điểm A tới điểm B nên khi đó góc giữa độ dịch chuyển \overrightarrow{d} so với trọng lực \overrightarrow{P}\left( \overrightarrow{d,}\overrightarrow{P}
\right) = \left( \overrightarrow{AB,}\overrightarrow{P} \right) =
60{^\circ}.

    » Ta có độ lớn của trọng lực \overrightarrow{P} = m\overrightarrow{g} tác dụng lên em nhỏ có độ lớn là \left|
\overrightarrow{P} \right| = m\left| \overrightarrow{g} \right| = 25.9,8
= 245(N) nên công sinh bởi trọng lực \overrightarrow{P} khi em nhỏ trượt hết chiều dài cầu trượt là A = \left|
\overrightarrow{P} \right|.\left| \overrightarrow{d} \right|.cos\left(
\overrightarrow{P,}\overrightarrow{d} \right) = 245.3,5.cos60{^\circ} =
428,75(J).

  • Câu 10: Vận dụng
    Chọn khẳng định sai

    Cho hình chóp S.ABCD. Gọi O là giao điểm của ACBD. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Hình vẽ minh họa

    “Nếu \overrightarrow{SA} +
\overrightarrow{SB} + 2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO} thì ABCD là hình thang » Đúng

    \overrightarrow{SA} + \overrightarrow{SB} +
2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO}SC\bot(BIH).

    O,A,CBIH thẳng hàng nên đặt \overrightarrow{OA} = k\overrightarrow{OC};OB =
m\overrightarrow{OD}

    \Rightarrow (k + 1)\overrightarrow{OC} +
(m + 1)\overrightarrow{OD} = \overrightarrow{0}.

    \overrightarrow{OC},\overrightarrow{OD} không cùng phương nên k = - 2m = - 2

    \Rightarrow \frac{OA}{OC} = \frac{OB}{OD} = 2
\Rightarrow AB//CD.

    “Nếu ABCD là hình bình hành thì \overrightarrow{SA} + \overrightarrow{SB} +
\overrightarrow{SC} + \overrightarrow{SD} =
4\overrightarrow{SO}.“. Đúng.

    Hs tự biến đổi bằng cách chêm điểm O vào vế trái.

    “Nếu ABCD là hình thang thì \overrightarrow{SA} + \overrightarrow{SB} +
2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO}. ». Sai.

    Vì nếu ABCD là hình thang cân có 2 đáy là AD,BC thì sẽ sai.

    “Nếu \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{SD} =
4\overrightarrow{SO} thì ABCD là hình bình hành ». Đúng.

    Tương tự đáp án A với k = - 1,m = - 1 \Rightarrow
O là trung điểm 2 đường chéo.

  • Câu 11: Thông hiểu
    Chọn đáp án đúng

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} thỏa mãn \left| \overrightarrow{a} \right| = \left|
\overrightarrow{b} \right| = 1 và hai vectơ \overrightarrow{u} = \frac{2}{5}\overrightarrow{a}
- 3\overrightarrow{b}\overrightarrow{v} = \overrightarrow{a} +
\overrightarrow{b} vuông góc với nhau. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b}.

    Hướng dẫn:

    Ta có \overrightarrow{u}\bot\overrightarrow{v}
\Rightarrow \overrightarrow{u}.\overrightarrow{v} = 0

    \Leftrightarrow \left(
\frac{2}{5}\overrightarrow{a} - 3\overrightarrow{b} ight)\left(
\overrightarrow{a} + \overrightarrow{b} ight) = 0

    \Leftrightarrow
\frac{2}{5}{\overrightarrow{a}}^{2} -
\frac{13}{5}\overrightarrow{a}\overrightarrow{b} -
3{\overrightarrow{b}}^{2} = 0

    \overset{\left| \overrightarrow{a}
ight| = \left| \overrightarrow{b} ight| =
1}{ightarrow}\overrightarrow{a}.\overrightarrow{b} = - 1

    Suy ra \cos\left(
\overrightarrow{a},\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = - 1 \Rightarrow \left(
\overrightarrow{a},\overrightarrow{b} ight) = 180^{0}

  • Câu 12: Thông hiểu
    Xác định góc giữa cặp vecto

    Cho tứ diện ABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} = 60^{0}. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{CD} ?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có

    \overrightarrow{AB}.\overrightarrow{CD}
= \overrightarrow{AB}.\left( \overrightarrow{AD} - \overrightarrow{AC}
ight) = \overrightarrow{AB}.\overrightarrow{AD} -
\overrightarrow{AB}.\overrightarrow{AC}

    = AB.AD.\cos60^{0} - AB.AC.\cos60^{0} =0

    \Rightarrow \left(
\overrightarrow{AB},\overrightarrow{CD} ight) = 90^{0}

  • Câu 13: Vận dụng
    Xác định giá trị thực của k

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MNP là một điểm bất kì trong không gian. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{PI} =
k.\left( \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}
+ \overrightarrow{PD} ight)?

    Hướng dẫn:

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của các cạnh AC;BD nên ta có: \left\{ \begin{matrix}
\overrightarrow{IA} + \overrightarrow{IC} = 2\overrightarrow{IM} \\
\overrightarrow{IB} + \overrightarrow{ID} = 2\overrightarrow{IN} \\
\end{matrix} ight..

    Mặt khác \overrightarrow{IM} +
\overrightarrow{IN} = \overrightarrow{0} (vì I là trung điểm của MN) suy ra \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} =
\overrightarrow{0}

    Theo bài ra ta có:

    \overrightarrow{PA} +
\overrightarrow{PB} + \overrightarrow{PC} +
\overrightarrow{PD}

    = 4\overrightarrow{PI} +
\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} +
\overrightarrow{ID} = 4\overrightarrow{PI}

    \Rightarrow 4k = 1 \Rightarrow k =
\frac{1}{4}

  • Câu 14: Vận dụng
    Tìm giá trị của k

    Gọi M,\ N lần lượt là trung điểm của các cạnh ACBD của tứ diện ABCD. Gọi I là trung điểm đoạn MNP là 1 điểm bất kỳ trong không gian. Tìm giá trị của k thích hợp điền vào đẳng thức vectơ: \overrightarrow{PI} =
k\left( \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}
+ \overrightarrow{PD} \right).

    Hướng dẫn:

    Ta có \overrightarrow{PA} +
\overrightarrow{PC} = 2\overrightarrow{PM}, \overrightarrow{PB} + \overrightarrow{PD} =
2\overrightarrow{PN}

    nên \overrightarrow{PA} +
\overrightarrow{PB}\overrightarrow{+ PC} + \overrightarrow{PD} =
2\overrightarrow{PM} + 2\overrightarrow{PN}

    = 2(\overrightarrow{PM} +
\overrightarrow{PN}) = 2.2.\overrightarrow{PI} =
4\overrightarrow{PI}

    Vậy k = \frac{1}{4}

  • Câu 15: Vận dụng cao
    Chọn phương án thích hợp

    Một chiếc ô tô được đặt trên mặt đáy dưới cùa một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật ABCD, mặt phẳng (ABCD) song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc E của chiếc cần cẩu sao cho các đoạn dây cáp EA,EB,EC,ED có độ dài bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc bằng 60{^\circ}. Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng.

    A screenshot of a computerDescription automatically generated

    Tính trọng lượng của chiếc xe ô tô (làm tròn đến hàng đơn vị), biết rằng các lực căng \overrightarrow{F_{1}},\
\overrightarrow{F_{2}},\ \overrightarrow{F_{3}},\
\overrightarrow{F_{4}} đều có cường độ là 4700N và trọng lượng của khung sắt là 3000N.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi A_{1},\ B_{1},\ C_{1},D_{1} lần lượt là các điểm sao cho \overrightarrow{EA_{1}} = \overrightarrow{F_{1}},\
\overrightarrow{EB_{1}} = \overrightarrow{F_{2}},\
\overrightarrow{EC_{1}} = \overrightarrow{F_{3}},\
\overrightarrow{ED_{1}} = \overrightarrow{F_{4}}.

    EA,EB,EC,ED có độ dài bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc bằng 60^{o} nên EA_{1},EB_{1},EC_{1},ED_{1} có độ dài bằng nhau và cùng tạo với mặt phẳng \left(
A_{1}B_{1}C_{1}D_{1} \right) một góc bằng 60^{o}.

    ABCD là hình chữ nhật nên A_{1}B_{1}C_{1}D_{1} cũng là hình chữa nhật.

    Gọi O là tâm của hình chữ nhật A_{1}B_{1}C_{1}D_{1}. Ta suy ra EO\bot\left( A_{1}B_{1}C_{1}D_{1}
\right).

    Do đó góc giữa đường thẳng EA_{1} và mặt phẳng \left( A_{1}B_{1}C_{1}D_{1} \right) bằng góc \widehat{EA_{1}O} suy ra \widehat{EA_{1}O} = 60^{o}.

    Ta có \left| \overrightarrow{F_{1}}
\right| = \left| \overrightarrow{F_{2}} \right| = \left|
\overrightarrow{F_{3}} \right| = \left| \overrightarrow{F_{4}} \right| =
4700N nên EA_{1} = EB_{1} = EC_{1}
= ED_{1} = 4700N.

    Tam giác EOA_{1} vuông tại O nên EO =
EA_{1}.sin\widehat{EA_{1}O} = 4700.sin60{^\circ} =
2350\sqrt{3}.

    Ta có:

    \overrightarrow {{F_1}}  + \,\overrightarrow {{F_2}}  + \,\overrightarrow {{F_3}}  + \overrightarrow {{F_4}}

    = \overrightarrow {E{A_1}}  + \,\overrightarrow {E{B_1}}  + \overrightarrow {E{C_1}}  + \overrightarrow {E{D_1}}

    = 4\overrightarrow {EO}  + \overrightarrow {O{A_1}}  + \overrightarrow {O{C_1}}  + \,\overrightarrow {O{B_1}}  + \overrightarrow {O{D_1}}  = 4\overrightarrow {EO}.

    Vì chiếc khung sắt chứa xe ô tô ở vị trí cân bằng nên \overrightarrow{F_{1}} + \ \overrightarrow{F_{2}}
+ \ \overrightarrow{F_{3}} + \overrightarrow{F_{4}} =
\overrightarrow{P}, với \overrightarrow{P} là trọng lực tác dụng lên khung sắt chứa xe ô tô.

    Suy ra trọng lượng của khung sắt chứa chiếc xe ô tô là: \left| \overrightarrow{P} \right| = 4\left|
\overrightarrow{EO} \right| = 4.2350\sqrt{3} =
9400\sqrt{3}N

    Vì trọng lượng của khung sắt là 3000N nên trọng lượng của chiếc xe ô tô là: 9400\sqrt{3} - 3000 \approx
13281N.

  • Câu 16: Vận dụng
    Tính tỉ số hai cạnh

    Cho hình hộp ABCD.A'B'C'D'. Một đường thẳng \Delta cắt các đường thẳng AA',BC,C'D' lần lượt tại M,N,P sao cho \overrightarrow{NM} =
2\overrightarrow{NP}. Tính \frac{MA}{MA'}.

    Hướng dẫn:

    Hình vẽ minh họa

    Đặt \overrightarrow{AD} =
\overrightarrow{a},\overrightarrow{AB} =
\overrightarrow{b},\overrightarrow{AA'} =
\overrightarrow{c}.

    M \in AA' nên \overrightarrow{AM} = k\overrightarrow{AA'} =
k\overrightarrow{c}

    N \in BC \Rightarrow \overrightarrow{BN}
= l\overrightarrow{BC} = l\overrightarrow{a}, P \in C'D' \Rightarrow
\overrightarrow{C'P} = m\overrightarrow{b}

    Ta có \overrightarrow{NM} =
\overrightarrow{NB} + \overrightarrow{BA} + \overrightarrow{AM} = -
l\overrightarrow{a} - \overrightarrow{b} +
k\overrightarrow{c}

    \overrightarrow{NP} =
\overrightarrow{BN} + \overrightarrow{BB'} +
\overrightarrow{B'C'} + \overrightarrow{C'P} = (1 -
l)\overrightarrow{a} + m\overrightarrow{b} +
\overrightarrow{c}

    Do \overrightarrow{NM} =
2\overrightarrow{NP} \Rightarrow - l\overrightarrow{a} -
\overrightarrow{b} + k\overrightarrow{c} = 2\lbrack(1 -
l)\overrightarrow{a} + m\overrightarrow{b} +
\overrightarrow{c}\rbrack

    \Leftrightarrow \left\{ \begin{matrix}
- l = 2(1 - l) \\
- 1 = 2m \\
k = 2 \\
\end{matrix} \right.\  \Leftrightarrow k = 2,m = - \frac{1}{2},l =
2.

    Vậy \frac{MA}{MA'} =
2.

  • Câu 17: Vận dụng cao
    Ghi đáp án đúng vào ô trống

    Cho tam giác ABC có ba góc đều là góc nhọn. Gọi Glà trọng tâm tam giác ABC, Hlà chân đường cao hạ từ A xuống cạnh BC thỏa mãn: \overrightarrow{BH} =\frac{1}{5}\overrightarrow{BC}. Điểm I đi động trên BC sao cho \overrightarrow{BI} =\frac{m}{n}\overrightarrow{BC}(Trong đó \frac{m}{n} là phân số tối giản, m,\ n\mathbb{\in Z},\ n eq 0). Tính giá trị biểu thức Q = m + n khi độ dài véc tơ \overrightarrow{IA} +\overrightarrow{GC} đạt giá trị nhỏ nhất.

    Đáp án: 9

    Đáp án là:

    Cho tam giác ABC có ba góc đều là góc nhọn. Gọi Glà trọng tâm tam giác ABC, Hlà chân đường cao hạ từ A xuống cạnh BC thỏa mãn: \overrightarrow{BH} =\frac{1}{5}\overrightarrow{BC}. Điểm I đi động trên BC sao cho \overrightarrow{BI} =\frac{m}{n}\overrightarrow{BC}(Trong đó \frac{m}{n} là phân số tối giản, m,\ n\mathbb{\in Z},\ n eq 0). Tính giá trị biểu thức Q = m + n khi độ dài véc tơ \overrightarrow{IA} +\overrightarrow{GC} đạt giá trị nhỏ nhất.

    Đáp án: 9

    Hình vẽ minh họa

    Gọi Plà trung điểm của AC, E là điểm đối xứng của P qua G.

    Khi đó tứ giác AGCE có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên AGCE là hình bình hành.

    \Rightarrow \overrightarrow{GC} =\overrightarrow{AE}.

    + Dựng EF\bot BC\ \ (F \inBC).

    Ta có: \left| \overrightarrow{IA} +\overrightarrow{GC} ight| = \left| \overrightarrow{IA} +\overrightarrow{AE} ight| = \left| \overrightarrow{IE} ight| = IE\geq EF.

    Do đó \left| \overrightarrow{IA} +\overrightarrow{GC} ight| nhỏ nhất khi I \equiv F.

    + Ta có: \overrightarrow{BH} =\frac{1}{5}\overrightarrow{BC} \Rightarrow \overrightarrow{HC} =\frac{4}{5}\overrightarrow{BC}.

    + Gọi Q là hình chiếu vuông góc của P lên BC (Q \inBC).

    Ta có:

    \frac{BP}{BE} = \frac{3GP}{BP + PE} =\frac{3GP}{3GP + GP} = \frac{3}{4}.

    + Do PQ // EF(vì cùng vuông góc với BC).

    Nên \Delta BPQ\Delta BEF đồng dạng

    \Rightarrow \frac{BQ}{BF} = \frac{BP}{BE}= \frac{3}{4} \Rightarrow\overrightarrow{BF} = \frac{4}{3}\overrightarrow{BQ}.

    + \Delta AHCP là trung điểm ACPQ // AH (do cùng vuông góc với BC).

    \Rightarrow PQ là đường trung bình.

    Khi đó, Q là trung điểm HC hay \overrightarrow{HQ} =\frac{1}{2}\overrightarrow{HC} =\frac{2}{5}\overrightarrow{BC}.

    \overrightarrow{BF} =\frac{4}{3}\overrightarrow{BQ} = \frac{4}{3}(\overrightarrow{BH} +\overrightarrow{HQ}) = \frac{4}{3}(\frac{1}{5}\overrightarrow{BC} +\frac{2}{5}\overrightarrow{BC}) =\frac{4}{5}\overrightarrow{BC}

    Vậy M = 4 + 5 = 9.

  • Câu 18: Thông hiểu
    Tính độ dài vecto

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} thỏa mãn điều kiện \left| \overrightarrow{a} \right| =
\left| \overrightarrow{b} \right| = 1\overrightarrow{a}.\overrightarrow{b} =
3. Độ dài vectơ 3\overrightarrow{a}
+ 5\overrightarrow{b}:

    Hướng dẫn:

    Ta có:

    \left( 3\overrightarrow{a} +
5\overrightarrow{b} ight)^{2} = 9{\overrightarrow{a}}^{2} +
30\overrightarrow{a}\overrightarrow{b} +
25{\overrightarrow{b}}^{2}

    = 9 + 90 + 25 = 124.

    \Rightarrow \left| 3\overrightarrow{a} +
5\overrightarrow{b} ight| = \sqrt{124}

  • Câu 19: Vận dụng
    Ghi đáp án vào ô trống

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MN. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{IA} + (2k - 1)\overrightarrow{IB}+ k\overrightarrow{IC} + \overrightarrow{ID} =\overrightarrow{0}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MN. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{IA} + (2k - 1)\overrightarrow{IB}+ k\overrightarrow{IC} + \overrightarrow{ID} =\overrightarrow{0}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng cao
    Tìm k để các điểm đồng phẳng

    Cho tứ diện ABCD. Lấy các điểm M,N,P,Q lần lượt thuộc AB,BC,CD,DA sao cho \overrightarrow{AM} =\frac{1}{3}\overrightarrow{AB},\overrightarrow{BN} =\frac{2}{3}\overrightarrow{BC},\overrightarrow{AQ} =\frac{1}{2}\overrightarrow{AD},\overrightarrow{DP} =k\overrightarrow{DC}. Hãy xác định k để M,N,P,Q đồng phẳng.

    Hướng dẫn:

    Hình vẽ minh họa

    Cách 1.

    Ta có \overrightarrow{AM} =
\frac{1}{3}\overrightarrow{AB} \Rightarrow \overrightarrow{BM} -
\overrightarrow{BA} = - \frac{1}{3}\overrightarrow{BA}

    \Rightarrow \overrightarrow{BM} =
\frac{2}{3}\overrightarrow{BA}.

    Lại có \overrightarrow{BN} =
\frac{2}{3}\overrightarrow{BC} do đó MN//AC.

    Vậy nếu M,N,P,Q đồng phẳng thì (MNPQ) \cap (ACD) = PQ \parallel
AC

    \Rightarrow \frac{PC}{PD} = \frac{QA}{QD}
= 1 hay \overrightarrow{DP} =
\frac{1}{2}\overrightarrow{DC} \Rightarrow k = \frac{1}{2}.

    Cách 2. Đặt \overrightarrow{DA} =
\overrightarrow{a},\overrightarrow{DB} =
\overrightarrow{b},\overrightarrow{DC} = \overrightarrow{c} thì không khó khăn ta có các biểu diễn

    \overrightarrow{MN} = -
\frac{2}{3}\overrightarrow{a} + \frac{2}{3}\overrightarrow{b}, \overrightarrow{MP} = -
\frac{2}{3}\overrightarrow{a} - \frac{1}{3}\overrightarrow{b} +
k\overrightarrow{c}, \overrightarrow{MN} = -
\frac{1}{6}\overrightarrow{a} -
\frac{1}{3}\overrightarrow{b}

    Các điểm M,N,P,Q đồng phẳng khi và chỉ khi các vec tơ \overrightarrow{MN},\overrightarrow{MP},\overrightarrow{MQ} đồng phẳng \Leftrightarrow \exists
x,y:\overrightarrow{MP} = x\overrightarrow{MN} +
y\overrightarrow{MQ}

    \Leftrightarrow -
\frac{2}{3}\overrightarrow{a} - \frac{1}{3}\overrightarrow{b} +
k\overrightarrow{c} = x\left( - \frac{2}{3}\overrightarrow{a} +
\frac{2}{3}\overrightarrow{c} \right) + y\left( -
\frac{1}{6}\overrightarrow{a} - \frac{1}{3}\overrightarrow{b}
\right)

    Do các vec tơ \overrightarrow{a},\overrightarrow{b,}\overrightarrow{c} không đồng phẳng nên điều này tương đương với

    \left\{ \begin{matrix}
- \frac{2}{3}x - \frac{1}{6}y = - \frac{2}{3} \\
- \frac{1}{3}y = - \frac{1}{3} \\
\frac{2}{3}x = k \\
\end{matrix} \right.\  \Leftrightarrow x = \frac{3}{4},y = 1,k =
\frac{1}{2}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo