Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Vectơ và các phép toán trong không gian (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Tìm điều kiện của các hệ số a; b; c

    Cho hình chóp S.ABC. Lấy các điểm A';B';C' lần lượt thuộc các tia SA;SB;SC sao cho \frac{SA}{SA'} = a;\frac{SB}{SB'} =
b;\frac{SC}{SC'} = c trong đó a;b;c là các hệ số biến thiên. Để mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC thì tổng các hệ số bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi G là trọng tâm tam giác ABC suy ra \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}

    Khi đó 3\overrightarrow{GS} +
\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} =
\overrightarrow{0}\overrightarrow{SA} =
a\overrightarrow{SA'};\overrightarrow{SB} =
b\overrightarrow{SB'};\overrightarrow{SC} =
c\overrightarrow{SC'}

    Suy ra 3\overrightarrow{SG} =
a\overrightarrow{SA'} + b\overrightarrow{SB'} +
c\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'}

    Vì mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC suy ra \overrightarrow{GA'};\overrightarrow{GB'};\overrightarrow{GC'} đồng phẳng.

    Do đó tồn tại ba số l;m;n sao cho l^{2} + m^{2} + n^{2} eq 0) và l\overrightarrow{GA'} +
m\overrightarrow{GB'} + n\overrightarrow{GC'} =
\overrightarrow{0}

    \Leftrightarrow l\left(
\overrightarrow{GS} + \overrightarrow{SA'} ight) + m\left(
\overrightarrow{GS} + \overrightarrow{SB'} ight) + n\left(
\overrightarrow{GS} + \overrightarrow{SC'} ight) =
\overrightarrow{0}s

    \Leftrightarrow (l + m +
n)\overrightarrow{SG} = l\overrightarrow{SA'} +
m\overrightarrow{SB'} + n\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{l}{l + m + n}\overrightarrow{SA'} + \frac{m}{l + m +
n}\overrightarrow{SB'} + \frac{n}{l + m +
n}\overrightarrow{SC'}

    \Leftrightarrow
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'} = \frac{l}{l + m +
n}\overrightarrow{SA'} + \frac{m}{l + m + n}\overrightarrow{SB'}
+ \frac{n}{l + m + n}\overrightarrow{SC'}

    Suy ra \frac{a}{3} + \frac{b}{3} +
\frac{c}{3} = \frac{l}{l + m + n} + \frac{m}{l + m + n} + \frac{n}{l + m
+ n} = 1

    \Rightarrow a + b + c = 3

  • Câu 2: Vận dụng cao
    Ghi đáp án vào ô trống

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đáp án là:

    Một chiếc cần cẩu, cẩu tấm kim loại có trọng lực 2000(N), được thiết kế với tấm kim loại được giữ bởi ba đoạn cáp AB,AC,AD sao cho AB = AC = ADBCD là tam giác đều, đồng thời các cạnh AB,AC,AD tạo với mặt phẳng (BCD) một góc có 30^{0}(như hình vẽ).

    Tìm độ lớn của lực căng của mỗi sợi dây cáp? (Kết quả làm tròn đến hàng đơn vị)

    Đáp án:  1333(N)

    Đặt \overrightarrow{F} ={\overrightarrow{F}}_{1} + {\overrightarrow{F}}_{2} +{\overrightarrow{F}}_{3} thì \left|\overrightarrow{F} ight| = 2000(N).

    Chú ý thêm là: \left|{\overrightarrow{F}}_{1} ight| = \left| {\overrightarrow{F}}_{2}ight| = \left| {\overrightarrow{F}}_{3} ight|

    Ta có:

    \overrightarrow{AB} + \overrightarrow{AC}+ \overrightarrow{AD} = 3\overrightarrow{AG} với G là trọng tâm \Delta BCD.

    Vì hình chóp A.BCD đều nên AG\bot mp(BCD)

    Do đó \widehat{ABG} = 30^{0}, suy ra AG = AB.sin30^{0} = \frac{AB}{2}\Rightarrow AB = 2AG.

    Khi gắn các lực vào ta có:

    \overrightarrow{F} =\overrightarrow{F_{1}} + \overrightarrow{F_{2}} + \overrightarrow{F_{3}}= - \overrightarrow{F_{AB}} - \overrightarrow{F_{AC}} -\overrightarrow{F_{AD}} = - 3\overrightarrow{F_{AG}}

    \Rightarrow \left| {\overrightarrow F } ight| = 3\left| {\overrightarrow {{F_{AG}}} } ight| \Rightarrow \left| {\overrightarrow {{F_{AG}}} } ight| = \frac{{2000}}{3}\left( N ight)

    Từ đó: \left| \overrightarrow{F_{1}}ight| = \left| \overrightarrow{F_{AB}} ight| = 2\left|\overrightarrow{F_{AG}} ight| = \frac{4000}{3}(N).

    Vậy lực căng mỗi sợi dây là \frac{4000}{3}\ N \approx 1333\ N.

  • Câu 3: Thông hiểu
    Chọn đẳng thức đúng

    Cho tứ diện ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{a},\overrightarrow{AC} =
\overrightarrow{b},\overrightarrow{AD} = \overrightarrow{c}, gọi G là trọng tâm của tam giácBCD. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi M là trung điểm BC.

    \overrightarrow{AG} =
\overrightarrow{AB} + \overrightarrow{BG}

    = \overrightarrow{a} +
\frac{2}{3}\overrightarrow{BM} = \overrightarrow{a} +
\frac{2}{3}.\frac{1}{2}\left( \overrightarrow{BC} + \overrightarrow{BD}
ight)

    \ \ \ \ \ \ \ \  = \overrightarrow{a} +
\frac{1}{3}\left( \overrightarrow{AC} - \overrightarrow{AB} +
\overrightarrow{AD} - \overrightarrow{AB} ight)

    = \overrightarrow{a} + \frac{1}{3}\left(
- 2\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} ight)
= \frac{1}{3}\left( \overrightarrow{a} + \overrightarrow{b} +
\overrightarrow{c} ight).

  • Câu 4: Thông hiểu
    Chọn khẳng định đúng

    Cho tứ diện ABCD. Gọi M;P lần lượt là trung điểm của AB;CD. Đặt \overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} =
\overrightarrow{c};\overrightarrow{AD} = \overrightarrow{d}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \overrightarrow{MP} =
\frac{1}{2}\overrightarrow{MC} + \frac{1}{2}\overrightarrow{MD} =
\overrightarrow{MA} + \frac{1}{2}\overrightarrow{AC} +
\frac{1}{2}\overrightarrow{AD}

    = - \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD} =
\frac{1}{2}\left( \overrightarrow{c} + \overrightarrow{d} -
\overrightarrow{b} ight)

    Vậy khẳng định đúng \overrightarrow{MP} =
\frac{1}{2}\left( \overrightarrow{c} + \overrightarrow{d} -
\overrightarrow{b} ight).

  • Câu 5: Thông hiểu
    Chọn mệnh đề đúng

    Cho tứ diện ABCD. Gọi M;N lần lượt là tung điểm của AB;CD. Chọn mệnh đề đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AD} +
\overrightarrow{DN} \\
\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BC} +
\overrightarrow{CN} \\
\end{matrix} ight.

    Cộng hai vế của hai đẳng thức trên ta có:

    2\overrightarrow{MN} =
\overrightarrow{MA} + \overrightarrow{AD} + \overrightarrow{DN} +
\overrightarrow{MB} + \overrightarrow{BC} +
\overrightarrow{CN}

    \Leftrightarrow 2\overrightarrow{MN} =
\left( \overrightarrow{MA} + \overrightarrow{MB} ight) + \left(
\overrightarrow{AD} + \overrightarrow{BC} ight) + \left(
\overrightarrow{DN} + \overrightarrow{CN} ight)

    \Leftrightarrow 2\overrightarrow{MN} =
\overrightarrow{AD} + \overrightarrow{BC} \Leftrightarrow
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{AD} +
\overrightarrow{BC} ight)

  • Câu 6: Vận dụng
    Tìm khẳng định sai

    Cho hình hộp ABCD.A'B'C'D'. Gọi IK lần lượt là tâm của hình bình hành ABB’A’BCC'B'. Khẳng định nào sau đây sai ?

    Hướng dẫn:

    “Bốn điểm I, K, C, A đồng phẳng ». Đúng vì \overrightarrow{IK},\overrightarrow{AC} cùng thuộc (B'AC)

    \overrightarrow{IK} =
\frac{1}{2}\overrightarrow{AC} =
\frac{1}{2}\overrightarrow{A'C'}”. Đúng vì \overrightarrow{IK} = \overrightarrow{IB'} +\overrightarrow{B'K}= \frac{1}{2}\left( \overrightarrow{a} +\overrightarrow{b} \right) + \frac{1}{2}\left( - \overrightarrow{a} +\overrightarrow{c} \right)= \frac{1}{2}\left( \overrightarrow{b} +\overrightarrow{c} \right)= \frac{1}{2}\overrightarrow{AC} =\frac{1}{2}\overrightarrow{A'C'}.

    “Ba vectơ \overrightarrow{BD};\overrightarrow{IK};\overrightarrow{B'C'} không đồng phẳng ». Sai vì \overrightarrow{IK} = \overrightarrow{IB'} +\overrightarrow{B'K}= \frac{1}{2}\left( \overrightarrow{a} +\overrightarrow{b} \right) + \frac{1}{2}\left( - \overrightarrow{a} +\overrightarrow{c} \right)= \frac{1}{2}\left( \overrightarrow{b} +\overrightarrow{c} \right).

    \Rightarrow \overrightarrow{BD} +
2\overrightarrow{IK} = - \overrightarrow{b} + \overrightarrow{c} +
\overrightarrow{b} + \overrightarrow{c} = 2\overrightarrow{c} =
2\overrightarrow{B'C'} \Rightarrow Ba vectơ đồng phẳng.

    \overrightarrow{BD} +
2\overrightarrow{IK} = 2\overrightarrow{BC}”. Đúng vì theo câu trên\Rightarrow \overrightarrow{BD} +
2\overrightarrow{IK} = - \overrightarrow{b} + \overrightarrow{c} +
\overrightarrow{b} + \overrightarrow{c} = 2\overrightarrow{c} =
2\overrightarrow{B'C'} = 2\overrightarrow{BC}.

  • Câu 7: Vận dụng
    Chọn phương án đúng

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1} có cạnh a. Gọi M là trung điểm AD. Giá trị \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}} là:

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}} =
\left( \overrightarrow{B_{1}B} + \overrightarrow{BA} +
\overrightarrow{AM} ight)\left( \overrightarrow{BA} +
\overrightarrow{AD} + \overrightarrow{DD_{1}} ight)

    =
\overrightarrow{B_{1}B}.\overrightarrow{DD_{1}} +
{\overrightarrow{BA}}^{2} +
\overrightarrow{AM}.\overrightarrow{AD} = - a^{2} + a^{2} + \frac{a^{2}}{2} =
\frac{a^{2}}{2}

  • Câu 8: Vận dụng
    Chọn khẳng định đúng

    Cho hình hộp ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình bình hành ABCD. Đặt \overrightarrow{AC'} =
\overrightarrow{u},\overrightarrow{CA'} =
\overrightarrow{v}, \overrightarrow{BD'} =
\overrightarrow{x}, \overrightarrow{DB'} =
\overrightarrow{y}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta phân tích:

    \overrightarrow{u} + \overrightarrow{v} =\overrightarrow{AC'} + \overrightarrow{CA'}= \left(\overrightarrow{AC} + \overrightarrow{CC'} \right) + \left(\overrightarrow{CA} + \overrightarrow{AA'} \right) =2\overrightarrow{AA'}.

    \overrightarrow{x} + \overrightarrow{y} =\overrightarrow{BD'} + \overrightarrow{DB'}= \left(\overrightarrow{BD} + \overrightarrow{DD'} \right) + \left(\overrightarrow{DB} + \overrightarrow{BB'} \right) =2\overrightarrow{BB'} = 2\overrightarrow{AA'}.

    \Rightarrow \overrightarrow{u} +
\overrightarrow{v} + \overrightarrow{x} + \overrightarrow{y} =
4\overrightarrow{AA'} = - 4\overrightarrow{A'A} = -
4.2\overrightarrow{OI}.

    \Rightarrow 2\overrightarrow{OI} = -
\frac{1}{4}\left( \overrightarrow{u} + \overrightarrow{v} +
\overrightarrow{x} + \overrightarrow{y} \right).

  • Câu 9: Vận dụng
    Xác định góc giữa cặp vectơ

    Cho tứ diệnABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} = 60^{0},\
\widehat{CAD} = 90^{0}. Gọi IJ lần lượt là trung điểm của ABCD. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{IJ}?

    Hướng dẫn:

    Hình vẽ minh họa

    Xét tam giácICDJ là trung điểm đoạn CD.

    Ta có: \overrightarrow{I J} =
\frac{1}{2}\left( \overrightarrow{IC} + \overrightarrow{ID}
ight)

    Vì tam giác ABCAB = AC\widehat{BAC} = 60{^\circ}

    Nên tam giác ABC đều. Suy ra: CI\bot AB

    Tương tự ta có tam giác ABD đều nên DI\bot AB.

    Xét \overrightarrow{IJ}.\overrightarrow{AB} =
\frac{1}{2}\left( \overrightarrow{IC} + \overrightarrow{ID}
ight).\overrightarrow{AB}=
\frac{1}{2}\overrightarrow{IC}.\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{ID}.\overrightarrow{AB} =
\overrightarrow{0}.

    Suy ra \overrightarrow{I
J}\bot\overrightarrow{AB}. Hay góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{IJ} bằng 90^{0}.

  • Câu 10: Vận dụng
    Tính góc giữa hai đường thẳng

    Cho hình hộp ABCD.A'B'C'D' có các cạnh đều bằng a và các góc \widehat{B'A'D'} =
60^{0},\widehat{B'A'A} = \widehat{D'A'A} =
120^{0}. Tính góc giữa các cặp đường thẳng AB với A'D; AC' với B'D.

    Hướng dẫn:

    Hình vẽ minh họa

    Đặt \overrightarrow{AA'} =
\overrightarrow{a},\overrightarrow{A'B'} =
\overrightarrow{b},\overrightarrow{A'D'} =
\overrightarrow{c}

    Ta có \overrightarrow{A'D} =
\overrightarrow{a} + \overrightarrow{c} nên

    \cos\left( \widehat{AB,A'D} \right)
= \left| \cos\left( \overrightarrow{AB},\overrightarrow{A'D} \right)
\right|

    = \frac{\left|
\overrightarrow{AB}.\overrightarrow{A'D} \right|}{\left|
\overrightarrow{AB} \right|\left| \overrightarrow{A'D} \right|} =
\frac{\left| \overrightarrow{a}\left( \overrightarrow{a} +
\overrightarrow{c} \right) \right|}{\left| \overrightarrow{a}
\right|\left| \overrightarrow{a} + \overrightarrow{c}
\right|}.

    Để ý rằng \left| \overrightarrow{a} +
\overrightarrow{c} \right| = a, \overrightarrow{a}\left( \overrightarrow{a} +
\overrightarrow{c} \right) = \frac{a^{2}}{2}.

    Từ đó \cos\left( \widehat{AB,A'D}
\right) = \frac{1}{2} \Rightarrow \widehat{(AB,A'D)} =
60^{0}

    Ta có \overrightarrow{AC'} =
\overline{b} + \overrightarrow{c} -
\overrightarrow{a},\overrightarrow{B'D} = \overrightarrow{a} -
\overrightarrow{b} + \overrightarrow{c}, từ đó tính được:

    \overrightarrow{AC'}\overrightarrow{B'D} =\left( \overrightarrow{b} + \overrightarrow{c} - \overrightarrow{a}\right)\left( \overrightarrow{a} - \overrightarrow{b} +\overrightarrow{c} \right) = 0\Rightarrow \widehat{(AC',B'D)} =90^{0}.

  • Câu 11: Vận dụng
    Tìm giá trị của k

    Cho tứ diện ABCD. Gọi MN lần lượt là trung điểm của ABCD. Tìm giá trị của k thích hợp điền vào đẳng thức vectơ: \overrightarrow{MN} = k\left(
\overrightarrow{AD} + \overrightarrow{BC} \right)

    Hướng dẫn:

    Ta có: \left. \ \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AD} +
\overrightarrow{DN} \\
\overrightarrow{MN} = \overrightarrow{MB} + \overrightarrow{BC} +
\overrightarrow{CN} \\
\end{matrix} \right\}

    \Rightarrow 2\overrightarrow{MN} =\overrightarrow{AD} + \overrightarrow{BC}+ \overrightarrow{MA} +\overrightarrow{MB} + \overrightarrow{DN} +\overrightarrow{CN}

    MN lần lượt là trung điểm của ABCD nên

    \overrightarrow{MA} = \overrightarrow{BM} = -
\overrightarrow{MB};\ \ \overrightarrow{DN} = \overrightarrow{NC} = -
\overrightarrow{CN}

    Do đó 2\overrightarrow{MN} =
\overrightarrow{AD} + \overrightarrow{BC} \Rightarrow
\overrightarrow{MN} = \frac{1}{2}\left( \overrightarrow{AD} +
\overrightarrow{BC} \right).

  • Câu 12: Vận dụng
    Chọn khẳng định sai

    Cho hình chóp S.ABCD. Gọi O là giao điểm của ACBD. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Hình vẽ minh họa

    “Nếu \overrightarrow{SA} +
\overrightarrow{SB} + 2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO} thì ABCD là hình thang » Đúng

    \overrightarrow{SA} + \overrightarrow{SB} +
2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO}SC\bot(BIH).

    O,A,CBIH thẳng hàng nên đặt \overrightarrow{OA} = k\overrightarrow{OC};OB =
m\overrightarrow{OD}

    \Rightarrow (k + 1)\overrightarrow{OC} +
(m + 1)\overrightarrow{OD} = \overrightarrow{0}.

    \overrightarrow{OC},\overrightarrow{OD} không cùng phương nên k = - 2m = - 2

    \Rightarrow \frac{OA}{OC} = \frac{OB}{OD} = 2
\Rightarrow AB//CD.

    “Nếu ABCD là hình bình hành thì \overrightarrow{SA} + \overrightarrow{SB} +
\overrightarrow{SC} + \overrightarrow{SD} =
4\overrightarrow{SO}.“. Đúng.

    Hs tự biến đổi bằng cách chêm điểm O vào vế trái.

    “Nếu ABCD là hình thang thì \overrightarrow{SA} + \overrightarrow{SB} +
2\overrightarrow{SC} + 2\overrightarrow{SD} =
6\overrightarrow{SO}. ». Sai.

    Vì nếu ABCD là hình thang cân có 2 đáy là AD,BC thì sẽ sai.

    “Nếu \overrightarrow{SA} +
\overrightarrow{SB} + \overrightarrow{SC} + \overrightarrow{SD} =
4\overrightarrow{SO} thì ABCD là hình bình hành ». Đúng.

    Tương tự đáp án A với k = - 1,m = - 1 \Rightarrow
O là trung điểm 2 đường chéo.

  • Câu 13: Vận dụng
    Tính giá trị của k

    Cho hình chóp S.ABC, mặt phẳng (\alpha) cắt các tia SA,SB,SC,SG( G là trọng tâm tam giác ABC) lần lượt tại các điểm A',B',C',G'.Ta có \frac{SA}{SA'} + \frac{SB}{SB'} +
\frac{SC}{SC'} = k\frac{SG}{SG'}. Hỏi k bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa

    Do G là trọng tâm của \Delta ABC nên \overrightarrow{GA} + \overrightarrow{GB} +\overrightarrow{GC} = \overrightarrow{0}

    \Rightarrow3\overrightarrow{SG} = \overrightarrow{SA} + \overrightarrow{SB} +\overrightarrow{SC}

    \begin{matrix}
\Leftrightarrow 3\frac{SG}{SG'}\overrightarrow{SG'} =
\frac{SA}{SA'}\overrightarrow{SA'} +
\frac{SB}{SB'}\overrightarrow{SB'} \\
+ \frac{SC}{SC'}\overrightarrow{SC'} \\
\end{matrix}

    Mặt khác A',B',C',G' đồng phẳng nên

    \frac{SA}{SA'} + \frac{SB}{SB'} +
\frac{SC}{SC'} = 3\frac{SG}{SG'}.

  • Câu 14: Vận dụng
    Chọn kết luận đúng

    Cho tứ diện ABCD, M là một điểm nằm trong tứ diện. Các đường thẳng AM,BM,CM,DM cắt các mặt (BCD),(CDA),(DAB),(ABC) lần lượt tại A',B',C',D'. Mặt phẳng (\alpha) đi qua M và song song với (BCD) lần lượt cắt A'B',A'C',A'D' tại các điểm B_{1},C_{1},D_{1}.Khẳng định nào sau đây là đúng nhất. Chứng minh M là trọng tâm của tam giác B_{1}C_{1}D_{1}.

    Hướng dẫn:

    Hình vẽ minh họa

    M nằm trong tứ diện ABCD nên

    tồn tại x,y,z,t > 0 sao cho x\overrightarrow{MA} + y\overrightarrow{MB}
+ z\overrightarrow{MC} + t\overrightarrow{MD} = \overrightarrow{0}\ \ \
(1)

    Gọi (\alpha) là mặt phẳng đi qua M và song song với mặt phẳng (BCD).

    Ta có \left\{ \begin{matrix}
(\alpha)//(BCD) \\
(BB'A') \cap (\alpha) = MB_{1} \\
(BB'A') \cap (BCD) = BA' \\
\end{matrix} \right.\  \Rightarrow MB_{1}//BA'.

    Do đó \frac{MB_{1}}{BA'} =
\frac{MB'}{BB'} \Rightarrow \overrightarrow{MB_{1}} =
\frac{MB'}{BB'}\overrightarrow{BA'}\ \ \ (2)

    Trong (1), chiếu các vec tơ lên đường thẳng BB' theo phương (ACD) ta được:

    x\overrightarrow{MB'} +
y\overrightarrow{MB} + z\overrightarrow{MB'} +
t\overrightarrow{MB'} = \overrightarrow{0} \Rightarrow (x + y + z)\overrightarrow{MB'} +
y\overrightarrow{MB} = \overrightarrow{0}

    \Rightarrow (x + y + z +t)\overrightarrow{MB'} = y\overrightarrow{BB'}\Rightarrow\frac{MB'}{BB'} = \frac{y}{x + y + z + t}

    Từ (2) suy ra \overrightarrow{MB_{1}} = \frac{y}{x + y + z +
t}\overrightarrow{BA'}\ \ \ (3)

    Tương tự ta có \overrightarrow{MC_{1}} =
\frac{z}{x + y + z + t}\overrightarrow{CA'}\ \ (4)

    \overrightarrow{MD_{1}} = \frac{z}{x + y
+ z + t}\overrightarrow{DA'}\ \ (5)

    Mặt khác chiếu các vec tơ trong (1) lên mặt phẳng (BCD) theo phương AA' tì thu được y\overrightarrow{A'B} +
z\overrightarrow{A'C} + t\overrightarrow{A'D} =
\overrightarrow{0}.

    Vậy từ (3),(4),(5) ta có \overrightarrow{MB_{1}} + \overrightarrow{MC_{1}}+ \overrightarrow{MD_{1}}= \frac{1}{x + y + z + t}\left(y\overrightarrow{BA'} + z\overrightarrow{CA'} +t\overrightarrow{DA'} \right) = \overrightarrow{0}, hay M là trọng tâm của tam giác B_{1}C_{1}D_{1}.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Trong không gian cho hình hộp ABCD.A'B'C'D'\overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AC} =
\overrightarrow{b};\overrightarrow{AA'} =
\overrightarrow{c}. Gọi I là trung điểm của B'C', K là giao điểm của A'IB'D'. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Vì I là trung điểm của B’C’ suy ra \overrightarrow{A'B'} +
\overrightarrow{A'C'} = 2\overrightarrow{A'I}

    Và K là giao điểm của A'I';B'D' nên theo định lí Talet \Rightarrow
\overrightarrow{A'K} =
\frac{2}{3}\overrightarrow{A'I}

    Ta có: \overrightarrow{AK} =
\overrightarrow{AA'} + \overrightarrow{A'K} =
\overrightarrow{AA'} +
\frac{2}{3}\overrightarrow{A'I}

    = \overrightarrow{AA'} +
\frac{1}{3}\left( \overrightarrow{A'B'} +
\overrightarrow{A'C'} ight) = \frac{1}{3}\overrightarrow{a} +
\frac{1}{3}\overrightarrow{b} + \overrightarrow{c}

    Khi đó

    \overrightarrow{DK} =
\overrightarrow{DA} + \overrightarrow{AK} = \overrightarrow{CB} +
\overrightarrow{AK} = \left( \overrightarrow{AB} - \overrightarrow{AC}
ight) + \overrightarrow{AK}

    = \overrightarrow{a} -
\overrightarrow{b} + \frac{1}{3}\overrightarrow{a} +
\frac{1}{3}\overrightarrow{b} + \overrightarrow{c} =
\frac{4}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b} +
\overrightarrow{c}

    Vậy \overrightarrow{DK} =
\frac{1}{3}\left( 4\overrightarrow{a} - 2\overrightarrow{b} +
3\overrightarrow{c} ight).

  • Câu 16: Vận dụng
    Chọn đáp án đúng

    Theo định luật II Newton: Gia tốc của một vật có cùng hướng với lực tác dụng lên vật. Độ lớn của gia tốc tỉ lệ thuận với độ lớn của lực và tỉ lệ nghịch với khối lượng của vật: \overrightarrow{F} =
m\overrightarrow{a}, trong đó \overrightarrow{a} là vectơ gia tốc \left( m/s^{2} \right), \overrightarrow{F} là vectơ lực (N)tác dụng lên vật, m(kg) là khối lượng của vật. Muốn truyền cho quả bóng có khối lượng 0,5\ kg một gia tốc 20\ \ m/s^{2} thì cần một lực đá có độ lớn là bao nhiêu?

    A football ball on a fieldDescription automatically generated

    Hướng dẫn:

    Ta có \overrightarrow{F} =
m\overrightarrow{a} \Rightarrow \left| \overrightarrow{F} \right| =
m\left| \overrightarrow{a} \right| = 0,5.20 = 10(N).

    Vậy muốn truyền cho quả bóng có khối lượng 0,5\ kg một gia tốc 20\ \ m/s^{2} thì cần một lực đá có độ lớn là 10(N).

  • Câu 17: Vận dụng cao
    Chọn khẳng định đúng

    Cho tứ diện ABCD. Gọi E,F là các điểm thỏa nãm \overrightarrow{EA} =
k\overrightarrow{EB},\overrightarrow{FD} = k\overrightarrow{FC} còn P,Q,R là các điểm xác định bởi \overrightarrow{PA} =
l\overrightarrow{PD},\overrightarrow{QE} =
l\overrightarrow{QF},\overrightarrow{RB} =
l\overrightarrow{RC}. Chứng minh ba điểm P,Q,R thẳng hàng. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có \overrightarrow{PQ} =
\overrightarrow{PA} + \overrightarrow{AE} + \overrightarrow{EQ}\ \
(1)

    \overrightarrow{PQ} =
\overrightarrow{PD} + \overrightarrow{DF} + \overrightarrow{FQ}\ \
(2)

    Từ (2) ta có l\overrightarrow{PQ} = l\overrightarrow{PD} +
l\overrightarrow{DF} + l\overrightarrow{FQ}\ \ \ \ (3)

    Lấy (1) - (3) theo vế ta có

    (1 - l)\overrightarrow{PQ} =
\overrightarrow{AE} - l\overrightarrow{DF}

    \Rightarrow \overrightarrow{PQ} =
\frac{1}{1 - l}\overrightarrow{AE} - \frac{l}{1 -
l}\overrightarrow{DF}

    Tương tự \overrightarrow{QR} = \frac{1}{1
- l}\overrightarrow{EB} - \frac{l}{1 -
l}\overrightarrow{FC}

    Mặt khác \overrightarrow{EA} =
k\overrightarrow{EB},\overrightarrow{FD} = k\overrightarrow{FC} nên

    \overrightarrow{PQ} = \frac{1}{1 -l}\overrightarrow{AE} - \frac{l}{1 - l}\overrightarrow{DF}= \frac{-k}{1 - l}\overrightarrow{EB} - \frac{kl}{1 - l}\overrightarrow{FC} = -k\overrightarrow{QR}

    Vậy P,Q,R thẳng hàng.

  • Câu 18: Vận dụng cao
    Chọn phương án thích hợp

    Một chiếc ô tô được đặt trên mặt đáy dưới cùa một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật ABCD, mặt phẳng (ABCD) song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc E của chiếc cần cẩu sao cho các đoạn dây cáp EA,EB,EC,ED có độ dài bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc bằng 60{^\circ}. Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng.

    A screenshot of a computerDescription automatically generated

    Tính trọng lượng của chiếc xe ô tô (làm tròn đến hàng đơn vị), biết rằng các lực căng \overrightarrow{F_{1}},\
\overrightarrow{F_{2}},\ \overrightarrow{F_{3}},\
\overrightarrow{F_{4}} đều có cường độ là 4700N và trọng lượng của khung sắt là 3000N.

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi A_{1},\ B_{1},\ C_{1},D_{1} lần lượt là các điểm sao cho \overrightarrow{EA_{1}} = \overrightarrow{F_{1}},\
\overrightarrow{EB_{1}} = \overrightarrow{F_{2}},\
\overrightarrow{EC_{1}} = \overrightarrow{F_{3}},\
\overrightarrow{ED_{1}} = \overrightarrow{F_{4}}.

    EA,EB,EC,ED có độ dài bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc bằng 60^{o} nên EA_{1},EB_{1},EC_{1},ED_{1} có độ dài bằng nhau và cùng tạo với mặt phẳng \left(
A_{1}B_{1}C_{1}D_{1} \right) một góc bằng 60^{o}.

    ABCD là hình chữ nhật nên A_{1}B_{1}C_{1}D_{1} cũng là hình chữa nhật.

    Gọi O là tâm của hình chữ nhật A_{1}B_{1}C_{1}D_{1}. Ta suy ra EO\bot\left( A_{1}B_{1}C_{1}D_{1}
\right).

    Do đó góc giữa đường thẳng EA_{1} và mặt phẳng \left( A_{1}B_{1}C_{1}D_{1} \right) bằng góc \widehat{EA_{1}O} suy ra \widehat{EA_{1}O} = 60^{o}.

    Ta có \left| \overrightarrow{F_{1}}
\right| = \left| \overrightarrow{F_{2}} \right| = \left|
\overrightarrow{F_{3}} \right| = \left| \overrightarrow{F_{4}} \right| =
4700N nên EA_{1} = EB_{1} = EC_{1}
= ED_{1} = 4700N.

    Tam giác EOA_{1} vuông tại O nên EO =
EA_{1}.sin\widehat{EA_{1}O} = 4700.sin60{^\circ} =
2350\sqrt{3}.

    Ta có:

    \overrightarrow {{F_1}}  + \,\overrightarrow {{F_2}}  + \,\overrightarrow {{F_3}}  + \overrightarrow {{F_4}}

    = \overrightarrow {E{A_1}}  + \,\overrightarrow {E{B_1}}  + \overrightarrow {E{C_1}}  + \overrightarrow {E{D_1}}

    = 4\overrightarrow {EO}  + \overrightarrow {O{A_1}}  + \overrightarrow {O{C_1}}  + \,\overrightarrow {O{B_1}}  + \overrightarrow {O{D_1}}  = 4\overrightarrow {EO}.

    Vì chiếc khung sắt chứa xe ô tô ở vị trí cân bằng nên \overrightarrow{F_{1}} + \ \overrightarrow{F_{2}}
+ \ \overrightarrow{F_{3}} + \overrightarrow{F_{4}} =
\overrightarrow{P}, với \overrightarrow{P} là trọng lực tác dụng lên khung sắt chứa xe ô tô.

    Suy ra trọng lượng của khung sắt chứa chiếc xe ô tô là: \left| \overrightarrow{P} \right| = 4\left|
\overrightarrow{EO} \right| = 4.2350\sqrt{3} =
9400\sqrt{3}N

    Vì trọng lượng của khung sắt là 3000N nên trọng lượng của chiếc xe ô tô là: 9400\sqrt{3} - 3000 \approx
13281N.

  • Câu 19: Vận dụng
    Tìm khẳng định sai

    Cho tứ diện ABCD. Trên các cạnh ADBC lần lượt lấy M,Nsao cho AM
= 3MD, BN = 3NC. Gọi P,Q lần lượt là trung điểm của ADBC. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Hình vẽ minh họa

    «Các vectơ \overrightarrow{BD},\overrightarrow{AC},\overrightarrow{MN} đồng phẳng” . Sai vì

    \left\{ \begin{matrix}
  \overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AC}  + \overrightarrow {CN}  \hfill \\
  \overrightarrow {MN}  = \overrightarrow {MD}  + \overrightarrow {DB}  + \overrightarrow {BN}  \hfill \\ 
\end{matrix}  \right.\Rightarrow \left\{ \begin{matrix}
  \overrightarrow {MN}  = \overrightarrow {MA}  + \overrightarrow {AC}  + \overrightarrow {CN}  \hfill \\
  \overrightarrow {3MN}  = \overrightarrow {3MD}  + 3\overrightarrow {DB}  + 3\overrightarrow {BN}  \hfill \\ 
\end{matrix}  \right.

    \Rightarrow 4\overrightarrow {MN}  = \overrightarrow {AC}  - 3\overrightarrow {BD}  + \frac{1}{2}\overrightarrow {BC} \mathbf{\Rightarrow} \overrightarrow{BD},\overrightarrow{AC},\overrightarrow{MN} không đồng phẳng.

    « Các vectơ \overrightarrow{MN},\overrightarrow{DC},\overrightarrow{PQ} đồng phẳng’. Đúng vì \left\{ \begin{gathered}
  \overrightarrow {MN}  = \overrightarrow {MP}  + \overrightarrow {PQ}  + \overrightarrow {QN}  \hfill \\
  \overrightarrow {MN}  = \overrightarrow {MD}  + \overrightarrow {DC}  + \overrightarrow {CN}  \hfill \\ 
\end{gathered}  \right.

    \Rightarrow 2\overrightarrow {MN}  = \overrightarrow {PQ}  + \overrightarrow {DC}  \Rightarrow \overrightarrow {MN}  = \frac{1}{2}\left( {\overrightarrow {PQ}  + \overrightarrow {DC} } \right)

    \mathbf{\Rightarrow}\overrightarrow{MN},\overrightarrow{DC},\overrightarrow{PQ}: đồng phẳng.

    “Các vectơ \overrightarrow{AB},\overrightarrow{DC},\overrightarrow{PQ} đồng phẳng”. Đúng. Bằng cách biểu diễn \overrightarrow{PQ} tương tự như trên ta có \overrightarrow{PQ} = \frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{DC} \right).

    « Các vectơ \overrightarrow{AB},\overrightarrow{DC},\overrightarrow{MN} đồng phẳng”. Đúng. Ta có \overrightarrow{MN} =
\frac{1}{4}\overrightarrow{AB} +
\frac{1}{4}\overrightarrow{DC}.

  • Câu 20: Vận dụng cao
    Ghi đáp án đúng vào ô trống

    Cho tam giác ABC có ba góc đều là góc nhọn. Gọi Glà trọng tâm tam giác ABC, Hlà chân đường cao hạ từ A xuống cạnh BC thỏa mãn: \overrightarrow{BH} =\frac{1}{5}\overrightarrow{BC}. Điểm I đi động trên BC sao cho \overrightarrow{BI} =\frac{m}{n}\overrightarrow{BC}(Trong đó \frac{m}{n} là phân số tối giản, m,\ n\mathbb{\in Z},\ n eq 0). Tính giá trị biểu thức Q = m + n khi độ dài véc tơ \overrightarrow{IA} +\overrightarrow{GC} đạt giá trị nhỏ nhất.

    Đáp án: 9

    Đáp án là:

    Cho tam giác ABC có ba góc đều là góc nhọn. Gọi Glà trọng tâm tam giác ABC, Hlà chân đường cao hạ từ A xuống cạnh BC thỏa mãn: \overrightarrow{BH} =\frac{1}{5}\overrightarrow{BC}. Điểm I đi động trên BC sao cho \overrightarrow{BI} =\frac{m}{n}\overrightarrow{BC}(Trong đó \frac{m}{n} là phân số tối giản, m,\ n\mathbb{\in Z},\ n eq 0). Tính giá trị biểu thức Q = m + n khi độ dài véc tơ \overrightarrow{IA} +\overrightarrow{GC} đạt giá trị nhỏ nhất.

    Đáp án: 9

    Hình vẽ minh họa

    Gọi Plà trung điểm của AC, E là điểm đối xứng của P qua G.

    Khi đó tứ giác AGCE có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên AGCE là hình bình hành.

    \Rightarrow \overrightarrow{GC} =\overrightarrow{AE}.

    + Dựng EF\bot BC\ \ (F \inBC).

    Ta có: \left| \overrightarrow{IA} +\overrightarrow{GC} ight| = \left| \overrightarrow{IA} +\overrightarrow{AE} ight| = \left| \overrightarrow{IE} ight| = IE\geq EF.

    Do đó \left| \overrightarrow{IA} +\overrightarrow{GC} ight| nhỏ nhất khi I \equiv F.

    + Ta có: \overrightarrow{BH} =\frac{1}{5}\overrightarrow{BC} \Rightarrow \overrightarrow{HC} =\frac{4}{5}\overrightarrow{BC}.

    + Gọi Q là hình chiếu vuông góc của P lên BC (Q \inBC).

    Ta có:

    \frac{BP}{BE} = \frac{3GP}{BP + PE} =\frac{3GP}{3GP + GP} = \frac{3}{4}.

    + Do PQ // EF(vì cùng vuông góc với BC).

    Nên \Delta BPQ\Delta BEF đồng dạng

    \Rightarrow \frac{BQ}{BF} = \frac{BP}{BE}= \frac{3}{4} \Rightarrow\overrightarrow{BF} = \frac{4}{3}\overrightarrow{BQ}.

    + \Delta AHCP là trung điểm ACPQ // AH (do cùng vuông góc với BC).

    \Rightarrow PQ là đường trung bình.

    Khi đó, Q là trung điểm HC hay \overrightarrow{HQ} =\frac{1}{2}\overrightarrow{HC} =\frac{2}{5}\overrightarrow{BC}.

    \overrightarrow{BF} =\frac{4}{3}\overrightarrow{BQ} = \frac{4}{3}(\overrightarrow{BH} +\overrightarrow{HQ}) = \frac{4}{3}(\frac{1}{5}\overrightarrow{BC} +\frac{2}{5}\overrightarrow{BC}) =\frac{4}{5}\overrightarrow{BC}

    Vậy M = 4 + 5 = 9.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (55%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo