Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tọa độ của vectơ (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng cao
    Chọn phương án đúng

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 2,\ \ SA vuông góc với đáy và SA bằng 1. Thiết lập hệ tọa độ như hình vẽ bên dưới, tọa độ điểm S\left(
a;\sqrt{b};c \right). Khi đó a + b
+ c bằng bao nhiêu?

    Hướng dẫn:

    Các vectơ đơn vị trên các trục Ox,Oy,Oz lần lươt là \overrightarrow{i} = \overrightarrow{OC},\ \
\overrightarrow{j} = \overrightarrow{OE},\ \ \overrightarrow{k} =
\overrightarrow{OH} với E là điểm thuộc tia Oy sao cho OE = 1H là điểm thuộc tia Oz sao cho OH
= 1.

    \Delta ABC đều và AO\bot BC nên O là trung điểm cùa BC.

    BC = 2 nên OB = OC = 1OA = \sqrt{3}.

    Vì \overrightarrow{OA}\overrightarrow{j} cùng hướng và OA = \sqrt{3} nên \overrightarrow{OA} =
\sqrt{3}\overrightarrow{j}.

    Theo quy tắc hình bình hành, ta có \overrightarrow{OS} = \overrightarrow{OA} +
\overrightarrow{OH} = \sqrt{3}\overrightarrow{j} +
\overrightarrow{k}.

    Suy ra S\left( 0;\sqrt{3};1
\right). Vậy a + b + c = 0 + 3 + 1
= 4

  • Câu 2: Vận dụng
    Tính giá trị biểu thức

    Trong không gian với hệ trục Oxyz cho ba điểm A( - 1;2; - 3),\ \ B(1;0;2),\ \ C(x;y; -
2) thẳng hàng. Khi đó x +
y bằng

    Hướng dẫn:

    \overrightarrow{AB} = (2; - 2;5),\ \
\overrightarrow{AC} = (x + 1;y - 2;1).

    A,\ B,\ C thẳng hàng \Leftrightarrow \overrightarrow{AB},\overrightarrow{AC} cùng phương

    \Leftrightarrow \frac{x + 1}{2} = \frac{y
- 2}{- 2} = \frac{1}{5}

    \Leftrightarrow \left\{ \begin{matrix}
x = - \dfrac{3}{5} \\
y = \dfrac{8}{5} \\
\end{matrix} ight.\  \Rightarrow x + y = 1.

  • Câu 3: Vận dụng
    Xác định toạ độ của vectơ biểu diễn độ dịch chuyển

    Để theo dõi hành trình của một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890\ km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyzđược lấy theo kilômét.

    A sunset over a cityDescription automatically generated with medium confidence

    Hướng dẫn:

    Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

    890.\frac{1}{2} = 445(km)

    Vì máy bay duy trì hướng bay về phía nam nên tọa độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ tọa độ đã chọn là (0;445;0).

  • Câu 4: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian Oxyz, cho điểm M thỏa mãn \overrightarrow{OM} = (2x - 4)\overrightarrow{i} -4\overrightarrow{j} + (y - 1) \overrightarrow{k}. Khi điểm M \in Oy thì giá trị x + 2y bằng?

    Hướng dẫn:

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{OM} = (2x - 4)\overrightarrow{i} - 4\overrightarrow{j} +
(y - 1)\overrightarrow{k} \\
M \in Oy \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
2x - 4 = 0 \\
y - 1 = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 2 \\
y = 1 \\
\end{matrix} ight.

    Vậy x + 2y = 4 

  • Câu 5: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho A(1;0;0),\ \ B(0;2;0);M(x - 1;2y - 2;7). Gọi M' là hình chiếu của M trên mặt phẳng (Oxy). Khi tứ giác OBM'A là hình bình hành thì giá trị x + y bằng?

    Hướng dẫn:

    M' là hình chiếu của M trên mặt phẳng (Oxy) \Rightarrow M'(x - 1;2y -
2;0).

    OBM'A là hình bình hành

    \Leftrightarrow \overrightarrow{OB} =
\overrightarrow{AM'} \Leftrightarrow \left\{ \begin{matrix}
0 = x - 2 \\
2 = 2y - 2 \\
0 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 2 \\
\end{matrix} \right..

    Vậy x + y = 4.

  • Câu 6: Vận dụng
    Chọn đáp án đúng

    Một phòng học có thiết kế dạng hình hộp chữ nhật với chiều dài là 8m, chiều rộng là 6m và chiều cao là 3m. Một chiếc đèn được treo tại chính giữa trần nhà của phòng học. Xét hệ trục toạ độ Oxyz có gốc O trùng với một góc phòng và mặt phẳng (Oxy) trùng với mặt sàn, đơn vị đo được lấy theo mét. Hãy tìm toạ độ của điểm treo đèn

    A rectangular box with a straight line and a straight lineDescription automatically generated with medium confidence

    Hướng dẫn:

    Gọi toạ độ các điểm B(6\ ;\ 0\ ;\ 0)\ ;\
C(6\ ;\ 8\ ;\ 0)\ ;\ D(0\ ;\ 8\ ;\ 0) như hình vẽ dưới đây:

    A diagram of a rectangular box with letters and numbersDescription automatically generated

    Gọi N là trung điểm của OC, N' là hình chiếu của N lên mặt phẳng trần nhà suy ra N' là điểm treo đèn.

    Khi đó N(3;\ 4\ ;\ 0) \Rightarrow
N'(3;\ 4\ ;\ 3)

    Vậy toạ độ của điểm treo đèn là (3;\ 4\
;\ 3)

  • Câu 7: Vận dụng
    Chọn đáp án đúng

    Trong không gian Oxyzcho hình hộp chữ nhật OABC.EFGH có các cạnh OA = 5, OC = 8, OE =
7 (xem hình vẽ dưới đây). Tọa độ H(x;y;z). Tính giá trị biểu thức P = 50x + 75y + 1000z

    Hướng dẫn:

    Ta có H \in (yOz) và hình chiếu của H lên Oy trùng với C nên H(0;\
8;\ 7).

    P = 50x + 75y + 1000z = 50.0 + 75.8 +
1000.7 = 7600.

  • Câu 8: Vận dụng
    Tìm tọa độ vecto của máy bay

    Cho biết máy bay Ađang bay với vận tốc \overrightarrow{u} =
(300;200;400) (đơn vị:km/h). Máy bay B ngược hướng và có tốc độ gấp 2 lần tốc độ của máy bay A. Tọa độ vectơ vận tốc \overrightarrow{v} của máy bay B

    Hướng dẫn:

    Tọa độ vectơ vận tốc \overrightarrow{v} của máy bay Blà:

    \overrightarrow{v} = -
2\overrightarrow{u} \Rightarrow \overrightarrow{v} = ( - 600; - 400; -
800)

  • Câu 9: Thông hiểu
    Tìm tọa độ vecto

    Trong không gian Oxyz, cho điểm A thỏa \overrightarrow{AO} = 4\overrightarrow{k} -
2\overrightarrow{j}B(1;2; -
1). Tọa độ của véctơ \overrightarrow{AB}

    Hướng dẫn:

    Ta có: \overrightarrow{AO} =
4\overrightarrow{k} - 2\overrightarrow{j} \Rightarrow A(0;2; -
4)

    \Rightarrow \overrightarrow{AB} =
(1;0;3)

  • Câu 10: Vận dụng
    Xét tính đúng sai của mỗi khẳng định

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    a) Sai

    Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là ( -
1,5\ ;\  - 1\ ;\ 0,5).

    b) Đúng

    Chiếc khinh khí cầu thứ nhất có tọa độ là (2,5\ ;\ 1\ ;\ 0,7).

    Khoảng cách giữa hai chiếc khinh khí cầu là

    \sqrt{(2,5 + 1,5)^{2} + (1 + 1)^{2} +
(0,7 + 0,5)^{2}}

    = \frac{2\sqrt{134}}{5} \approx
4,6(km)

    c) Sai

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:

    \sqrt{2,5^{2} + 1^{2} + 0,7^{2}} =
\frac{3\sqrt{86}}{10} \approx 2,8(km)

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:

    \sqrt{( - 1,5)^{2} + ( - 1)^{2} +
0,5^{2}} = \frac{\sqrt{14}}{2} \approx 1,9(km)

    Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.

    d) Đúng

    Vị trí của chiếc flycam là

    \left( \frac{2,5 - 1,5}{2}\ ;\ \frac{1 -
1}{2}\ ;\ \frac{0,7 + 0,5}{2} ight) = (0,5\ ;\ 0\ ;\
0,6).

    Khoảng cách bay của flycam là:

    \sqrt{0,5^{2} + 0^{2} + 0,6^{2}} =
\frac{\sqrt{61}}{10} \approx 0,8(km)

    Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ (3\ ;\ 1\ ;\  - 1)

    \sqrt{3^{2} + 1^{2} + ( - 1)^{2}} =
\sqrt{11} \approx 3,3(km) > 0,8(km)

    Vậy flycam không đến được vị trí có tọa độ (3\ ;\ 1\ ;\  - 1).

  • Câu 11: Thông hiểu
    Tìm tọa độ hình chiếu của điểm M

    Trong không gian Oxyz, cho điểm M( - 3;4;2), hình chiếu của điểm M trên mặt phẳng Oxz có tọa độ bằng

    Hướng dẫn:

    Hình chiếu của điểm M trên mặt phẳng Oxz có tọa độ bằng ( - 3;0;2)

  • Câu 12: Vận dụng
    Tìm tọa độ điểm C’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Giả sử điểm C'(a;b;c). Tính giá trị biểu thức T=a+b+2c?

    Hướng dẫn:

    Gọi điểm C'(x;y;z)

    Ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +2\overrightarrow{j} + 0.\overrightarrow{k} \\\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +0.\overrightarrow{j} + 1.\overrightarrow{k} \\\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +2\overrightarrow{j} + 3\overrightarrow{k} \\\end{matrix} ight.

    \overrightarrow{AB} +\overrightarrow{AD} + \overrightarrow{AA'} =\overrightarrow{AC'} \Rightarrow \overrightarrow{AC'} =10\overrightarrow{i} + 4\overrightarrow{j} +4\overrightarrow{k}

    Suy ra \left\{ \begin{matrix}x = 10 + 3 \\y = 4 - 0 \\z = 4 - 0 \\\end{matrix} ight.\  \Rightarrow C'(13;4;4) suy ra a=13;b=4;c=4

    Vậy  T=25

  • Câu 13: Vận dụng cao
    Tính giá trị của biểu thức

    Trong không gian với một hệ trục toạ độ cho trước, ra đa phát hiện một chiếc máy bay di chuyển với vận tốc và hướng không đổi từ điểm A(800;500;7) đến điểm B(940;550;8) trong 10 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì toạ độ của máy bay sau 10 phút tiếp theo D(x;y;z). Khi đó x + y + z = ?

    A drawing of a point of a personDescription automatically generated with medium confidence

    Hướng dẫn:

    Gọi D(x;y;z) là vị trí của máy bay sau 10 phút bay tiếp theo. Vì hướng của máy bay không đổi nên \overrightarrow{AB}\overrightarrow{BD} cùng hướng. Do vận tốc máy bay không đổi và thời gian bay từ A đến B bằng thời gian bay từ B đến D nên AB =
BD.

    Do đó, \overrightarrow{BD} =
\overrightarrow{AB} = (140;50;1).

    Mặt khác: \overrightarrow{BD} = (x -
940;y - 550;z - 8) nên \left\{
\begin{matrix}
x - 940 = 140 \\
y - 550 = 50 \\
z - 8 = 1 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x = 1080 \\
y = 600 \\
z = 9 \\
\end{matrix} \right.\  \right.

    Vậy D(1080;600;9).

    Vậy tọa độ của máy bay trong 10 phút tiếp theo là (1080;600;9).

    Suy ra x + y + z = 1689

  • Câu 14: Vận dụng
    Tính giá trị biểu thức T

    Trong không gian Oxyz, cho A(3;2; - 1), B( - 1;0;5). Điểm M(a;b;c) thay đổi thuộc mặt phẳng (Oxy). Tính giá trị của biểu thức T = a + b + c khi \left| \overrightarrow{MA} + \overrightarrow{MB}
\right| nhỏ nhất.

    Hướng dẫn:

    Gọi K là điểm thỏa: \overrightarrow{KA} + \overrightarrow{KB} =
\overrightarrow{0} \Leftrightarrow K(1;1;2).

    Ta có:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} \right| = \left| \left( \overrightarrow{MK} +
\overrightarrow{KA} \right) + \left( \overrightarrow{MK} +
\overrightarrow{KB} \right) \right|

    = \left| 2\overrightarrow{MK} + \left(
\overrightarrow{KA} + \overrightarrow{KB} \right) \right| = \left|
2\overrightarrow{MK} \right| = 2MK.

    Do đó \left| \overrightarrow{MA} +
\overrightarrow{MB} \right| nhỏ nhất khi và chỉ khi MK nhỏ nhất.

    Điều này xảy ra khi và chỉ khi M là hình chiếu của K lên mặt phẳng (Oxy).

    Suy ra M(1;1;0).

    Vậy T = a + b + c = 1 + 1 + 0 =
2.

  • Câu 15: Vận dụng cao
    Tính tổng a, b, c

    Cho tứ diện SABCABC là tam giác vuông tại B, BC = 3,\ \
BA = 2,\ \ SA vuông góc với mặt phẳng (ABC) và có độ dài bằng 2. Chọn hệ trục tọa độ như hình bên dưới. Điểm D(a;b;c) sao cho SBCD là hình bình hành. Khi đó a + b + c bằng bao nhiêu?

    Hướng dẫn:

    Các vectơ đơn vị trên các trục Bx,By,Bz lần lượt là \overrightarrow{i},\ \ \overrightarrow{j},\ \
\overrightarrow{k} có độ dài bằng 1.

    Vì \overrightarrow{BA} cùng hướng với \overrightarrow{j} và BA = 2 nên \overrightarrow{BA} =
2\overrightarrow{j}

    Gọi I \in Bz sao cho SABI là hình bình hành, ta có \overrightarrow{BI} cùng hướng với \overrightarrow{k} và BI = SA = 2 nên \overrightarrow{BI} =
3\overrightarrow{k}

    Theo quy tắc hình bình hành, ta có: \overrightarrow{BS} = \overrightarrow{BA} +
\overrightarrow{BI} = 2\overrightarrow{j} +
3\overrightarrow{k}

    Vì \overrightarrow{BC} cùng hướng với \overrightarrow{i} và BC = 3 nên \overrightarrow{BC} =
3\overrightarrow{i}

    Gọi \overrightarrow{BD} =
a\overrightarrow{i} + b\overrightarrow{j} +
c\overrightarrow{k}

    \overrightarrow{CD} =\overrightarrow{BD} - \overrightarrow{BC}= a\overrightarrow{i} +b\overrightarrow{j} + c\overrightarrow{k} - 3\overrightarrow{i}= (a -3)\overrightarrow{i} + b\overrightarrow{j} +c\overrightarrow{k}

    Để SBCD là hình bình hành thì

    \overrightarrow{BS} =
\overrightarrow{CD} \Leftrightarrow 2\overrightarrow{j} +
3\overrightarrow{k} = (a - 3)\overrightarrow{i} + b\overrightarrow{j} +
c\overrightarrow{k}

    \Leftrightarrow \left\{ \begin{matrix}
a - 3 = 0 \\
b = 2 \\
c = 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 2 \\
c = 3 \\
\end{matrix} \right.

    Vậy a + b + c = 8

  • Câu 16: Vận dụng
    Xác định tính đúng sai của từng phương án

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho \overrightarrow{OA} = 3\overrightarrow{i} -
\overrightarrow{k}, với \overrightarrow{i},\overrightarrow{k} là hai vectơ đơn vị trên hai trục tọa độ Ox,Oz, hai điểm B( - 1;2;3),C(1;4;1).

    a) A(3;0; - 1). Đúng||Sai

    b) Ba điểm A,B,C thẳng hàng. Sai||Đúng

    c) Điểm D(a;b;c) là điểm đối xứng của với A qua B. Khi đó a +
b + c = 6. Đúng||Sai

    d) Điểm M(m;n;p) trên mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất. Khi đó 2m - n + 2024p = 0. Đúng||Sai

    a) Đúng: Vì \overrightarrow{OA} =
3\overrightarrow{i} - \overrightarrow{k} nên A(3;0; - 1).

    b) Sai: Ta có \overrightarrow{AB} =
(4;2;4),\overrightarrow{AC} = ( - 2;4;2).

    4:2:4 eq - 2:4:2 nên \overrightarrow{AB},\overrightarrow{AC} không cùng phương suy ra A,B,C không thẳng hàng.

    c) Đúng

    D là điểm đối xứng với A qua B nên B là trung điểm của AD.

    Ta có \left\{ \begin{matrix}
x_{D} = 2x_{B} - x_{A} = - 5 \\
y_{D} = 2y_{B} - y_{A} = 4 \\
z_{D} = 2z_{B} - z_{A} = 7. \\
\end{matrix} ight. suy ra D( -
5;4;7).

    Do đó a = - 5,b = 4,c = 7. Vậy a + b + c = 6.

    d) Đúng. Gọi I(x;y;z) là điểm thỏa mãn \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} =
\overrightarrow{0}.

    Ta có:

    \left\{ \begin{matrix}
3 - x - 1 - x + 1 - x = 0 \\
0 - y + 2 - y + 4 - y = 0 \\
- 1 - z + 3 - z + 1 - z = 0 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = 2 \\
z = 1 \\
\end{matrix} \Rightarrow I(1;2;1) ight.

    MA^{2} + MB^{2} + MC^{2}

    =(\overrightarrow{MI} + \overrightarrow{IA})^{2} + (\overrightarrow{MI} +\overrightarrow{IB})^{2} + (\overrightarrow{MI} +\overrightarrow{IC})^{2}

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2} +2\overrightarrow{MI}(\overrightarrow{IA} + \overrightarrow{IB} +\overrightarrow{IC})

    = 3MI^{2} + IA^{2} + IB^{2} + IC^{2}

    Do IA^{2} + IB^{2} + IC^{2} không thay đổi nên MA^{2} + MB^{2} +
MC^{2} nhỏ nhất khi MI nhỏ nhất hay M là hình chiếu của điểm I trên mặt phẳng (Oxy).

    Do đó M(1;2;0) suy ra m=1,n=2,p=0.

    Vậy 2m - n + 2024p = 2 - 2 + 0 =
0.

  • Câu 17: Vận dụng cao
    Tìm tọa độ của máy bay theo yêu cầu

    Máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(600;400;20)đến điểm N(800;500;30) trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 15 phút tiếp theo bằng bao nhiêu?

    1

    Hướng dẫn:

    Gọi Q(x;y;z) là tọa độ của máy bay sau 15 phút tiếp theo.

    \overrightarrow{MN} =
(200;100;10)

    \overrightarrow{NQ} = (x - 800;y - 500;z
- 30)

    Vì máy bay giữ nguyên hướng bay nên \overrightarrow{MN}\overrightarrow{NQ} cùng hướng.

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M \rightarrow N gấp 2 lần thời gian bay từ N \rightarrow Q nên MN = 2NQ

    Suy ra \overrightarrow{MN} =2\overrightarrow{NQ} \Leftrightarrow \left\{ \begin{matrix}200 = 2(x - 800) \\100 = 2(y - 500) \\10 = 2(z - 30) \\\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}x = 900 \\y = 550 \\z = 35 \\\end{matrix} \right.\  \Rightarrow Q(900;550;35)

    Tọa độ của máy bay sau 15 phút tiếp theo là (900;550;35)

  • Câu 18: Vận dụng cao
    Xác định giá trị của biểu thức

    Trong không gian Oxyz cho A(1;0;2), B(
- 1;2;2), C(3;1;1). Gọi M(a;b;c) là điểm thuộc mặt phẳng (Oxz) sao cho biểu thức S = 2\overrightarrow{MA}.\overrightarrow{MB} +
\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó T = 6a - 5b + 3c có giá trị là

    Hướng dẫn:

    Do M(a;b;c) thuộc mặt phẳng (Oxz) nên b = 0 \Rightarrow M(a;0;c).

    Ta có \overrightarrow{MA} = (1 - a;0;2 -
c), \overrightarrow{MB} = ( - 1 -
a;2;2 - c), \overrightarrow{MC} =
(3 - a;1;1 - c).

    S =
2\overrightarrow{MA}.\overrightarrow{MB} +
\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA}

    = 2\left( a^{2} - 1 + 4 - 4c + c^{2}\right)+ \left( a^{2} - 2a - 3 + 2 + c^{2} - 3c + 2 \right)+ 3\left(a^{2} - 4a + 3 + c^{2} - 3c + 2 \right)= 6a^{2} + 6c^{2} - 14a - 20c +
22

    = 6\left( a - \frac{7}{6} \right)^{2} +
6\left( b - \frac{5}{3} \right)^{2} - \frac{17}{6} \geq -
\frac{17}{6}.

    Suy ra S đạt giá trị nhỏ nhất - \frac{17}{6} khi và chỉ khi \left\{ \begin{matrix}
a = \frac{7}{6} \\
c = \frac{5}{3} \\
\end{matrix} \right..

    Vậy T = 6a - 5b + 3c = 6.\frac{7}{6} -
5.0 + 3.\frac{5}{3} = 12.

  • Câu 19: Vận dụng cao
    Tính giá trị biểu thức

    Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 5 , giao điểm hai đường chéo ACBD trùng với gốc O. Các vectơ \overrightarrow{OB},\ \ \overrightarrow{OC},\ \
\overrightarrow{OS} lần lượt cùng hướng với \overrightarrow{i}, \overrightarrow{j},\overrightarrow{k}OA = OS = 4 như hình bên dưới. Toạ độ vectơ \overrightarrow{AM} =
(a;b;c) với M là trung điểm của cạnh SC, khi đó a + b + c bằng bao nhiêu?

    Hướng dẫn:

    ABCD là hình thoi cạnh bằng 5 , O là giao điểm của ACBD nên O là trung điểm của ACBD.

    Xét \Delta OAB vuông tại O, có OB =
\sqrt{AB^{2} - OA^{2}} = \sqrt{25 - 16} = 3.

    \overrightarrow{OB}\overrightarrow{i} cùng hướng và OB = 3 nên \overrightarrow{OB} =
3\overrightarrow{i}.

    Vì \overrightarrow{OA}\overrightarrow{j} cùng hướng và OA = 4 nên \overrightarrow{OA} = -
4\overrightarrow{j}.

    Ta có \overrightarrow{AB} =
\overrightarrow{OB} - \overrightarrow{OA} = 3\overrightarrow{i} +
4\overrightarrow{j}

    AC = 2OA = 8\overrightarrow{AC}\overrightarrow{j} cùng hướng nên \overrightarrow{AC} =
8\overrightarrow{j}.

    \overrightarrow{OS}\overrightarrow{k} cùng hướng và OS = 4 nên \overrightarrow{OS} =
4\overrightarrow{k}.

    \overrightarrow{SB} =
\overrightarrow{OB} - \overrightarrow{OS} = 3\overrightarrow{i} -
4\overrightarrow{k}

    Lại có \overrightarrow{AS} =
\overrightarrow{AB} + \overrightarrow{BS} = \left( 3\overrightarrow{i} +
4\overrightarrow{j} \right) - \left( 3\overrightarrow{i} -
4\overrightarrow{k} \right) = 4\overrightarrow{j} +
4\overrightarrow{k}.

    M là trung điểm của SC nên \overrightarrow{AM} = \frac{1}{2}\left(
\overrightarrow{AS} + \overrightarrow{AC} \right) = \frac{1}{2}\left(
4\overrightarrow{j} + 4\overrightarrow{k} + 8\overrightarrow{j} \right)
= 6\overrightarrow{j} + 2\overrightarrow{k}.

    Do đó \overrightarrow{AM} =
(0;6;2).

    Suy ra a + b + c = 0 + 6 + 2 =
8

  • Câu 20: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian Oxyz, cho điểm A( - 3; - 1; - 1). Hình chiếu vuông góc của A trên mặt phẳng (Oyz) là điểm A'(x;y;z). Khi đó giá trị 2x + y + z bằng:

    Hướng dẫn:

    Hình chiếu vuông góc của A( - 3; - 1; -
1) trên mặt phẳng (Oyz)A'(0; - 1; - 1)

    Suy ra 2x + y + z = - 2.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo