Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tọa độ của vectơ (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Xác định toạ độ của vectơ biểu diễn độ dịch chuyển

    Để theo dõi hành trình của một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890\ km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyzđược lấy theo kilômét.

    A sunset over a cityDescription automatically generated with medium confidence

    Hướng dẫn:

    Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:

    890.\frac{1}{2} = 445(km)

    Vì máy bay duy trì hướng bay về phía nam nên tọa độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ tọa độ đã chọn là (0;445;0).

  • Câu 2: Vận dụng cao
    Xác định giá trị của biểu thức

    Trong không gian Oxyz cho A(1;0;2), B(
- 1;2;2), C(3;1;1). Gọi M(a;b;c) là điểm thuộc mặt phẳng (Oxz) sao cho biểu thức S = 2\overrightarrow{MA}.\overrightarrow{MB} +
\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA} đạt giá trị nhỏ nhất. Khi đó T = 6a - 5b + 3c có giá trị là

    Hướng dẫn:

    Do M(a;b;c) thuộc mặt phẳng (Oxz) nên b = 0 \Rightarrow M(a;0;c).

    Ta có \overrightarrow{MA} = (1 - a;0;2 -
c), \overrightarrow{MB} = ( - 1 -
a;2;2 - c), \overrightarrow{MC} =
(3 - a;1;1 - c).

    S =
2\overrightarrow{MA}.\overrightarrow{MB} +
\overrightarrow{MB}.\overrightarrow{MC} +
3\overrightarrow{MC}.\overrightarrow{MA}

    = 2\left( a^{2} - 1 + 4 - 4c + c^{2}\right)+ \left( a^{2} - 2a - 3 + 2 + c^{2} - 3c + 2 \right)+ 3\left(a^{2} - 4a + 3 + c^{2} - 3c + 2 \right)= 6a^{2} + 6c^{2} - 14a - 20c +
22

    = 6\left( a - \frac{7}{6} \right)^{2} +
6\left( b - \frac{5}{3} \right)^{2} - \frac{17}{6} \geq -
\frac{17}{6}.

    Suy ra S đạt giá trị nhỏ nhất - \frac{17}{6} khi và chỉ khi \left\{ \begin{matrix}
a = \frac{7}{6} \\
c = \frac{5}{3} \\
\end{matrix} \right..

    Vậy T = 6a - 5b + 3c = 6.\frac{7}{6} -
5.0 + 3.\frac{5}{3} = 12.

  • Câu 3: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2; - 1),B(2; - 1;3),C( - 2;3;3). Điểm M(a;b;c) là đỉnh thứ tư của hình bình hành ABCM. Khi đó giá trị biểu thức T = a + b - c có giá trị bằng bao nhiêu?

    Hướng dẫn:

    Gọi tọa độ điểm M(x;y;z)

    Ta có: ABCM là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{MC}

    \Leftrightarrow \left\{ \begin{matrix}
- 2 - x = 1 \\
3 - y = - 3 \\
3 - z = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 3 \\
y = 6 \\
z = - 1 \\
\end{matrix} ight. suy ra điểm M( - 3;6; - 1)

    Khi đó T = a + b - c = - 3 + 6 - ( - 1) =
4.

  • Câu 4: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Dưới đây là một giá đỡ chịu hai lực. Biểu diễn từng lực dưới dạng vectơ Descartes

    a. \overrightarrow{F_{2}} = -
200\overrightarrow{i} + 281\overrightarrow{j} +
200\overrightarrow{k}Sai||Đúng

    b. \overrightarrow{F_{1}} =
86,547\overrightarrow{i} + 185,601\overrightarrow{j} -
143,394\overrightarrow{k}Đúng||Sai

    c. Độ lớn lực tổng hợp lên giá đỡ bằng 485,297NĐúng||Sai

    d. Góc tạo bởi lực tổng hợp lên trục Oy16,145{^\circ}Sai||Đúng

    Đáp án là:

    Dưới đây là một giá đỡ chịu hai lực. Biểu diễn từng lực dưới dạng vectơ Descartes

    a. \overrightarrow{F_{2}} = -
200\overrightarrow{i} + 281\overrightarrow{j} +
200\overrightarrow{k}Sai||Đúng

    b. \overrightarrow{F_{1}} =
86,547\overrightarrow{i} + 185,601\overrightarrow{j} -
143,394\overrightarrow{k}Đúng||Sai

    c. Độ lớn lực tổng hợp lên giá đỡ bằng 485,297NĐúng||Sai

    d. Góc tạo bởi lực tổng hợp lên trục Oy16,145{^\circ}Sai||Đúng

    (a) \overrightarrow{F_{2}} = - 200\overrightarrow{i} +
281\overrightarrow{j} + 200\overrightarrow{k}

    Độ lớn lực F_{2} tác dụng lên từng trục tọa độ Descartes như sau:

    F_{X} = - 400cos60{^\circ} = - 200\ \
N

    F_{Y} = 400cos45{^\circ} = 282,84\ \
N

    F_{Z} = 400cos60{^\circ} = 200\ \
N

    \Rightarrow \overrightarrow{F_{2}} = -
200\overrightarrow{i} + 282,84\overrightarrow{j} +
200\overrightarrow{k}

    » Chọn SAI.

    (b) \overrightarrow{F_{1}} = 86,547\overrightarrow{i}
+ 185,601\overrightarrow{j} - 143,394\overrightarrow{k}

    Cắt mặt phẳng tọa độ lực F_{1} tác dụng lên trục tọa độ là xy là chiều ngang và - z là chiều dọc như hình vẽ

    Độ lớn lực F_{1} tác dụng lên trục tọa độ xy- z bằng

    F_{XY} = 250cos35{^\circ} =
204,788N

    F_{Z} = - 250sin35{^\circ} = -
143,394N

    Cắt mặt phẳng tọa độ lực F_{xy} tác dụng lên trục tọa độ là y là chiều ngang và x là chiều dọc như hình vẽ

    F_{X} = 204,788.sin25{^\circ} =
86,547N

    F_{Y} = 204,788.cos25{^\circ} =
185,601N

    Vậy \overrightarrow{F_{1}} =
86,547\overrightarrow{i} + 185,601\overrightarrow{j} -
143,394\overrightarrow{k}

    » Chọn ĐÚNG.

    (c) Độ lớn lực tổng hợp lên giá đỡ bằng 485,297N

    Lực tổng hợp tác dụng lên giá đỡ là :

    \overrightarrow{F_{R}} =
\overrightarrow{F_{1}} + \overrightarrow{F_{2}} = -
113,453\overrightarrow{i} + 468,441\overrightarrow{j} +
56,606\overrightarrow{k}

    F_{R} = \sqrt{113,453^{2} + 468,441^{2}
+ 56,606^{2}} \approx 485,297N

    » Chọn ĐÚNG.

    (d) Góc tạo bởi lực tổng hợp lên trục Oy16,145{^\circ}

    Gọi \alpha là góc tạo bởi lực tổng hợp lên trục Oy

    \cos\alpha = \frac{468,441}{485,297}
\Rightarrow \alpha \approx 15,145{^\circ}.

    » Chọn SAI.

  • Câu 5: Vận dụng cao
    Xác định tọa độ của máy bay

    Trong không gian với một hệ trục toạ độ cho trước, ra đa phát hiện một chiếc máy bay di chuyển với vận tốc và hướng không đổi từ điểm A(800;500;7) đến điểm B(940;550;8) trong 10 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì toạ độ của máy bay sau 5 phút tiếp theo là gì?

    A drawing of a point of a personDescription automatically generated with medium confidence

    Hướng dẫn:

    Gọi D(x;y;z) là vị trí của máy bay sau 5 phút tiếp theo. Vì hướng của máy bay không đổi nên \overrightarrow{AB} và \overrightarrow{BD} cùng hướng. Do vận tốc của máy bay không đổi và thời gian bay từ A đến B gấp đôi thời gian bay từ B đến D nên AB =
2BD.

    Do đó \overrightarrow{BD} =
\frac{1}{2}\overrightarrow{AB} = (70;25;0,5).

    Mặt khác, \overrightarrow{BD} = (x -
940;y - 550;z - 8) nên \left\{
\begin{matrix}
x - 940 = 70 \\
y - 550 = 25 \\
z - 8 = 0,5 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1010 \\
y = 575 \\
z = 8,5 \\
\end{matrix} \right.\  \Rightarrow D(1010;575;8,5).

    Vậy tọa độ của máy bay sau 5 phút tiếp theo là (1\ \ 010;575;8,5).

  • Câu 6: Vận dụng
    Xác định tính đúng sai của từng phương án

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    a) Đúng: Gọi I là trung điểm AB.

    Ta có \left\{ \begin{matrix}
  {x_I} = \dfrac{{{x_A} + {x_B}}}{2} = \dfrac{{1 + 2}}{2} = \dfrac{3}{2} \hfill \\
  {y_I} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2} \hfill \\
  {z_I} = \dfrac{{{z_A} + {z_B}}}{2} = \dfrac{{3 + 5}}{2} = 4 \hfill \\ 
\end{matrix}  ight. \Rightarrow I\left( {\dfrac{3}{2};\dfrac{3}{2};4} ight)

    b) Đúng: Ta có \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10).

    c) Đúng: Ta có \overrightarrow{AB} = (1;
- 1;2),\overrightarrow{AC} = (1;2; - 1).

    \cos(AB,AC) =\cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{|\overrightarrow{AB} \cdot\overrightarrow{AC}|}{|\overrightarrow{AB}| \cdot|\overrightarrow{AC}|}

    = \frac{|1 \cdot 1 + ( - 1) \cdot 2 + 2
\cdot ( - 1)|}{\sqrt{1^{2} + ( - 1)^{2} + 2^{2}} \cdot \sqrt{1^{2} +
2^{2} + ( - 1)^{2}}} = \frac{1}{2}

    Suy ra (AB,AC) = 60^{\circ}.

    d) Sai: Gọi K(x;y;z) thỏa mãn 3\overrightarrow{KB} - \overrightarrow{KC} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - (2 - x) = 0 \\3(1 - y) - (4 - y) = 0 \\3(5 - z) - (2 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = - \dfrac{1}{2} \\z = \dfrac{13}{2} \\\end{matrix} ight.\  ight.

    Suy ra K\left( 2; -
\frac{1}{2};\frac{13}{2} ight).

    Khi đó T = |3\overrightarrow{IB} -
\overrightarrow{IC}| = |3\overrightarrow{IK} + 3\overrightarrow{KB} -
\overrightarrow{IK} - \overrightarrow{KC}| = |2\overrightarrow{IK}| =
2IK.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của K trên (Oxz) suy ra I(2;0;\frac{13}{2} )..

    Suy ra a = 2,b = 0,c =
\frac{13}{2}.

    Vậy a - 2b + 2c = 15.

  • Câu 7: Vận dụng
    Tìm tọa độ điểm C’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Giả sử điểm C'(a;b;c). Tính giá trị biểu thức T=a+b+2c?

    Hướng dẫn:

    Gọi điểm C'(x;y;z)

    Ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +2\overrightarrow{j} + 0.\overrightarrow{k} \\\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +0.\overrightarrow{j} + 1.\overrightarrow{k} \\\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +2\overrightarrow{j} + 3\overrightarrow{k} \\\end{matrix} ight.

    \overrightarrow{AB} +\overrightarrow{AD} + \overrightarrow{AA'} =\overrightarrow{AC'} \Rightarrow \overrightarrow{AC'} =10\overrightarrow{i} + 4\overrightarrow{j} +4\overrightarrow{k}

    Suy ra \left\{ \begin{matrix}x = 10 + 3 \\y = 4 - 0 \\z = 4 - 0 \\\end{matrix} ight.\  \Rightarrow C'(13;4;4) suy ra a=13;b=4;c=4

    Vậy  T=25

  • Câu 8: Vận dụng cao
    Tính tổng a, b, c

    Cho tứ diện SABCABC là tam giác vuông tại B, BC = 3,\ \
BA = 2,\ \ SA vuông góc với mặt phẳng (ABC) và có độ dài bằng 2. Chọn hệ trục tọa độ như hình bên dưới. Điểm D(a;b;c) sao cho SBCD là hình bình hành. Khi đó a + b + c bằng bao nhiêu?

    Hướng dẫn:

    Các vectơ đơn vị trên các trục Bx,By,Bz lần lượt là \overrightarrow{i},\ \ \overrightarrow{j},\ \
\overrightarrow{k} có độ dài bằng 1.

    Vì \overrightarrow{BA} cùng hướng với \overrightarrow{j} và BA = 2 nên \overrightarrow{BA} =
2\overrightarrow{j}

    Gọi I \in Bz sao cho SABI là hình bình hành, ta có \overrightarrow{BI} cùng hướng với \overrightarrow{k} và BI = SA = 2 nên \overrightarrow{BI} =
3\overrightarrow{k}

    Theo quy tắc hình bình hành, ta có: \overrightarrow{BS} = \overrightarrow{BA} +
\overrightarrow{BI} = 2\overrightarrow{j} +
3\overrightarrow{k}

    Vì \overrightarrow{BC} cùng hướng với \overrightarrow{i} và BC = 3 nên \overrightarrow{BC} =
3\overrightarrow{i}

    Gọi \overrightarrow{BD} =
a\overrightarrow{i} + b\overrightarrow{j} +
c\overrightarrow{k}

    \overrightarrow{CD} =\overrightarrow{BD} - \overrightarrow{BC}= a\overrightarrow{i} +b\overrightarrow{j} + c\overrightarrow{k} - 3\overrightarrow{i}= (a -3)\overrightarrow{i} + b\overrightarrow{j} +c\overrightarrow{k}

    Để SBCD là hình bình hành thì

    \overrightarrow{BS} =
\overrightarrow{CD} \Leftrightarrow 2\overrightarrow{j} +
3\overrightarrow{k} = (a - 3)\overrightarrow{i} + b\overrightarrow{j} +
c\overrightarrow{k}

    \Leftrightarrow \left\{ \begin{matrix}
a - 3 = 0 \\
b = 2 \\
c = 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 2 \\
c = 3 \\
\end{matrix} \right.

    Vậy a + b + c = 8

  • Câu 9: Thông hiểu
    Tìm tọa độ điểm D thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm A(1;0;3),B(2;3; - 4),C( - 3;1;2). Biết rằng tứ giác ABCD là hình bình hành, khi đó tọa độ điểm D là:

    Hướng dẫn:

    Giả sử điểm D(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
- 3 - x = 1 \\
1 - y = 3 \\
2 - z = - 7 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 4 \\
y = - 2 \\
z = 9 \\
\end{matrix} ight.. Vậy tọa độ điểm D( - 4; - 2;9).

  • Câu 10: Thông hiểu
    Tính độ lớn lực Trái Đất tác dụng lên vật

    Nếu một vật có khối lượng m(kg) thì lực hấp dẫn \overrightarrow{P}của trái đất tác dụng lên vật được xác định theo công thức \overrightarrow{p} = m\
\overrightarrow{g}, trong đó \overrightarrow{g} là gia tốc rơi tự do có độ lớn g = 9,8\left( m/s^{2}
\right). Độ lớn của lực Trái Đất tác dụng lên một quả lê có khối lượng 105g

    Hướng dẫn:

    Đổi 105g = 0,105kg

    Độ lớn của lực hấp dẫn của trái đất tác dụng lên quả lê là:

    \left| \overrightarrow{p} \right| = m\left|
\overrightarrow{g} \right| = 0,105.9,8 = 1,029N.

  • Câu 11: Vận dụng
    Xét tính đúng sai của các nhận định

    Trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 4, đỉnh A trùng với gốc O, các điểm B,D,A' lần lượt nằm trên các tia Ox,Oy,Oz.

    a. Tọa độ của điểm D là: (4;0;0) Sai||Đúng

    b. Tọa độ của vec tơ C là: (0;4;0) Sai||Đúng

    c. Tọa độ của vec tơ A' là: (0;0;4) Đúng||Sai

    d. Tọa độ của vec tơ C' là: (4;4;4) Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 4, đỉnh A trùng với gốc O, các điểm B,D,A' lần lượt nằm trên các tia Ox,Oy,Oz.

    a. Tọa độ của điểm D là: (4;0;0) Sai||Đúng

    b. Tọa độ của vec tơ C là: (0;4;0) Sai||Đúng

    c. Tọa độ của vec tơ A' là: (0;0;4) Đúng||Sai

    d. Tọa độ của vec tơ C' là: (4;4;4) Đúng||Sai

    Hình vẽ minh họa

    (a) Tọa độ của điểm D là: (4;0;0)

    Do \overrightarrow{OD} cùng hướng với \overrightarrow{j}\left| \overrightarrow{OD} \right| = OD = 4
= 4\left| \overrightarrow{j} \right| nên \overrightarrow{OD} = 4\overrightarrow{j} hay \overrightarrow{OD} =
0\overrightarrow{i} + 4\overrightarrow{j} +
0\overrightarrow{k}.

    Suy ra: D(0;4;0).

    » Chọn SAI.

    (b) Tọa độ của vec tơ C là: (0;4;0)

    Do \overrightarrow{OB} cùng hướng với \overrightarrow{i}\left| \overrightarrow{OB} \right| = OB = 4
= 4\left| \overrightarrow{i} \right| nên \overrightarrow{AB} = 4\overrightarrow{i} hay \overrightarrow{OB} =
4\overrightarrow{i} + 0\overrightarrow{j} +
0\overrightarrow{k}.

    Theo quy tắc hình bình hành, ta có: \overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD} = 4\overrightarrow{i} + 4\overrightarrow{j} +
0\overrightarrow{k}.

    Suy ra: C(4;4;0).

    » Chọn SAI.

    (c) Tọa độ của vec tơ A' là: (0;0;4)

    Do \overrightarrow{OA'} cùng hướng với \overrightarrow{k}\left| \overrightarrow{OA'} \right| =
OA' = 4 = 4\left| \overrightarrow{k} \right| nên \overrightarrow{OA'} =
4\overrightarrow{k} hay \overrightarrow{OA'} = 0\overrightarrow{i} +
0\overrightarrow{j} + 4\overrightarrow{k}.

    Suy ra: A'(0;0;4).

    » Chọn ĐÚNG.

    (d) Tọa độ của vec tơ C' là: (4;4;4).

    Theo quy tắc hình hộp, ta có: \overrightarrow{OC'} = \overrightarrow{OB} +
\overrightarrow{OD} + \overrightarrow{OA'} = 4\overrightarrow{i} +
4\overrightarrow{j} + 4\overrightarrow{k}.

    Suy ra: C'(4;4;4)

    » Chọn ĐÚNG.

  • Câu 12: Vận dụng
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho A(1;0;0),\ \ B(0;2;0);M(x - 1;2y - 2;7). Gọi M' là hình chiếu của M trên mặt phẳng (Oxy). Khi tứ giác OBM'A là hình bình hành thì giá trị x + y bằng?

    Hướng dẫn:

    M' là hình chiếu của M trên mặt phẳng (Oxy) \Rightarrow M'(x - 1;2y -
2;0).

    OBM'A là hình bình hành

    \Leftrightarrow \overrightarrow{OB} =
\overrightarrow{AM'} \Leftrightarrow \left\{ \begin{matrix}
0 = x - 2 \\
2 = 2y - 2 \\
0 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 2 \\
\end{matrix} \right..

    Vậy x + y = 4.

  • Câu 13: Vận dụng cao
    Chọn phương án đúng

    Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh bằng 2,\ \ SA vuông góc với đáy và SA bằng 1. Thiết lập hệ tọa độ như hình vẽ bên dưới, tọa độ điểm S\left(
a;\sqrt{b};c \right). Khi đó a + b
+ c bằng bao nhiêu?

    Hướng dẫn:

    Các vectơ đơn vị trên các trục Ox,Oy,Oz lần lươt là \overrightarrow{i} = \overrightarrow{OC},\ \
\overrightarrow{j} = \overrightarrow{OE},\ \ \overrightarrow{k} =
\overrightarrow{OH} với E là điểm thuộc tia Oy sao cho OE = 1H là điểm thuộc tia Oz sao cho OH
= 1.

    \Delta ABC đều và AO\bot BC nên O là trung điểm cùa BC.

    BC = 2 nên OB = OC = 1OA = \sqrt{3}.

    Vì \overrightarrow{OA}\overrightarrow{j} cùng hướng và OA = \sqrt{3} nên \overrightarrow{OA} =
\sqrt{3}\overrightarrow{j}.

    Theo quy tắc hình bình hành, ta có \overrightarrow{OS} = \overrightarrow{OA} +
\overrightarrow{OH} = \sqrt{3}\overrightarrow{j} +
\overrightarrow{k}.

    Suy ra S\left( 0;\sqrt{3};1
\right). Vậy a + b + c = 0 + 3 + 1
= 4

  • Câu 14: Thông hiểu
    Tìm tọa độ điểm Q

    Trong hệ trục tọa độ Oxyz, cho các điểm M(1; - 1;1)\ ,\ \ N(2;0; - 1)\ ,\ \
P( - 1;2;1). Xét điểm Q sao cho tứ giác MNPQ là một hình bình hành. Tọa độ Q

    Hướng dẫn:

    Gọi Q(x;y;z). Ta có \overrightarrow{MN} = (1;1; - 2)\ \ ,\ \ \ \
\overrightarrow{QP} = ( - 1 - x;2 - y;1 - z).

    Tứ giác MNPQ là một hình bình hành \Leftrightarrow \overrightarrow{MN} =
\overrightarrow{QP}

    \Leftrightarrow \left\{ \begin{matrix}
1 = - 1 - x \\
1 = 2 - y \\
- 2 = 1 - z \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 2 \\
y = 1 \\
z = 3 \\
\end{matrix} ight.\ .

    Vậy, Q( - 2;1;3).

  • Câu 15: Vận dụng
    Xác định tính đúng sai của các nhận định

    Trong không gian Oxyz, cho hình bình hành OABC với A(1;\ 2;\ 3), B(5;\ 0;\  - 1), và C(a;b;c)

    a. Tọa độ điểm O(0;0;1).Sai||Đúng

    b. Tọa độ vectơ \overrightarrow{OA} =
(1;\ 2;\ 3). Đúng||Sai

    c. \overrightarrow{OB} =
5.\overrightarrow{i} - \overrightarrow{k}. Đúng||Sai

    d. Nếu OABC hình bình hành, thì a + b + c = 2. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho hình bình hành OABC với A(1;\ 2;\ 3), B(5;\ 0;\  - 1), và C(a;b;c)

    a. Tọa độ điểm O(0;0;1).Sai||Đúng

    b. Tọa độ vectơ \overrightarrow{OA} =
(1;\ 2;\ 3). Đúng||Sai

    c. \overrightarrow{OB} =
5.\overrightarrow{i} - \overrightarrow{k}. Đúng||Sai

    d. Nếu OABC hình bình hành, thì a + b + c = 2. Đúng||Sai

    (a) Tọa độ điểm O(0;0;1).

    Trong không gian Oxyz, gốc tọa độ O(0;0;0).

    » Chọn SAI.

    (b) Tọa độ vectơ \overrightarrow{OA} = (1;\ 2;\ 3).

    Điểm A(1;\ 2;\ 3), suy ra \overrightarrow{OA} = 1.\overrightarrow{i} +
2.\overrightarrow{j} + 3.\overrightarrow{k} = (1;\ 2;\ 3) .

    » Chọn ĐÚNG.

    (c) \overrightarrow{OB}
= 5.\overrightarrow{i} - \overrightarrow{k}.

    Ta có B(5;\ 0;\  - 1). Suy ra vectơ \overrightarrow{OB} =
5.\overrightarrow{i} - 1.\overrightarrow{k}.

    » Chọn ĐÚNG.

    (d) Nếu OABC hình bình hành, thì a + b + c =
2.

    Ta có \overrightarrow{OA} =
1.\overrightarrow{i} + 2.\overrightarrow{j} + 3.\overrightarrow{k} =
(1;\ 2;\ 3), C(a;b;c)

    \Rightarrow \overrightarrow{OC} =
a\overrightarrow{i} + b\overrightarrow{j} +
c\overrightarrow{k}\overrightarrow{CB} = \overrightarrow{OB} -
\overrightarrow{OC}

    = \left( 5.\overrightarrow{i} -1.\overrightarrow{k} \right) - \left( a.\overrightarrow{i} +b.\overrightarrow{j} + c.\overrightarrow{k} \right)= (5 - a;b; - 1 -c).

    OABC hình bình hành, thì \left\{ \begin{matrix}
5 - a = 1 \\
b = 2 \\
- 1 - c = 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 4 \\
b = 2 \\
c = - 4 \\
\end{matrix} \right.. Khi đó a +
b + c = 2.

    » Chọn ĐÚNG.

  • Câu 16: Vận dụng
    Xác định tọa độ điểm M

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A( - 1;2;3)B(3; - 1;2). Điểm M thỏa mãn MA.\overrightarrow{MA} =
4MB.\overrightarrow{MB} có tọa độ là:

    Hướng dẫn:

    Từ giả thiết MA.\overrightarrow{MA} =
4MB.\overrightarrow{MB} \Rightarrow \overrightarrow{MA} =
4\frac{MB}{MA}.\overrightarrow{MB} nên ba điểm M;A;B thẳng hàng và A;B nằm cùng phía so với điểm M do \frac{4MB}{MA} dương.

    Lại có MA.\overrightarrow{MA} =
4MB.\overrightarrow{MB}

    \Rightarrow \left(
MA.\overrightarrow{MA} \right)^{2} = \left( 4MB.\overrightarrow{MB}
\right)^{2}

    \Rightarrow MA^{4} = 16MB^{4} \Rightarrow
MA = 2MB.

    Vậy B là trung điểm của MA.

    Khi đó ta đươc tọa độ điểm M(7; -
4;1).

  • Câu 17: Vận dụng
    Tìm tọa độ vecto của máy bay

    Cho biết máy bay Ađang bay với vận tốc \overrightarrow{u} =
(300;200;400) (đơn vị:km/h). Máy bay B ngược hướng và có tốc độ gấp 2 lần tốc độ của máy bay A. Tọa độ vectơ vận tốc \overrightarrow{v} của máy bay B

    Hướng dẫn:

    Tọa độ vectơ vận tốc \overrightarrow{v} của máy bay Blà:

    \overrightarrow{v} = -
2\overrightarrow{u} \Rightarrow \overrightarrow{v} = ( - 600; - 400; -
800)

  • Câu 18: Vận dụng
    Xét tính đúng sai của mỗi khẳng định

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của mỗi khẳng định.

    Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí A cách điểm xuất phát 2,5km về phía bắc và 1km về phía tây, đồng thời cách mặt đất 0,7km. Chiếc thứ hai nằm tại vị trí B cách điểm xuất phát 1,5km về phía nam và 1km về phía đông, đồng thời cách mặt đất 0,5km.

    Chọn hệ trục toạ độ Oxyz với gốc O đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng Oxy trùng với mặt đất, trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

    a) Vị trí của khinh khí cầu thứ hai có tọa độ là (1,5\ ;\ 1\ ;\ 0,5). Sai||Đúng

    b) Hai khinh khí cầu cách nhau không quá 5km. Đúng||Sai

    c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng

    d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ (3\ ;\ 1\ ;\  - 1). Đúng||Sai

    a) Sai

    Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là ( -
1,5\ ;\  - 1\ ;\ 0,5).

    b) Đúng

    Chiếc khinh khí cầu thứ nhất có tọa độ là (2,5\ ;\ 1\ ;\ 0,7).

    Khoảng cách giữa hai chiếc khinh khí cầu là

    \sqrt{(2,5 + 1,5)^{2} + (1 + 1)^{2} +
(0,7 + 0,5)^{2}}

    = \frac{2\sqrt{134}}{5} \approx
4,6(km)

    c) Sai

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:

    \sqrt{2,5^{2} + 1^{2} + 0,7^{2}} =
\frac{3\sqrt{86}}{10} \approx 2,8(km)

    Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:

    \sqrt{( - 1,5)^{2} + ( - 1)^{2} +
0,5^{2}} = \frac{\sqrt{14}}{2} \approx 1,9(km)

    Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.

    d) Đúng

    Vị trí của chiếc flycam là

    \left( \frac{2,5 - 1,5}{2}\ ;\ \frac{1 -
1}{2}\ ;\ \frac{0,7 + 0,5}{2} ight) = (0,5\ ;\ 0\ ;\
0,6).

    Khoảng cách bay của flycam là:

    \sqrt{0,5^{2} + 0^{2} + 0,6^{2}} =
\frac{\sqrt{61}}{10} \approx 0,8(km)

    Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ (3\ ;\ 1\ ;\  - 1)

    \sqrt{3^{2} + 1^{2} + ( - 1)^{2}} =
\sqrt{11} \approx 3,3(km) > 0,8(km)

    Vậy flycam không đến được vị trí có tọa độ (3\ ;\ 1\ ;\  - 1).

  • Câu 19: Vận dụng cao
    Tính giá trị biểu thức

    Trong không gian Oxyz, cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 5 , giao điểm hai đường chéo ACBD trùng với gốc O. Các vectơ \overrightarrow{OB},\ \ \overrightarrow{OC},\ \
\overrightarrow{OS} lần lượt cùng hướng với \overrightarrow{i}, \overrightarrow{j},\overrightarrow{k}OA = OS = 4 như hình bên dưới. Toạ độ vectơ \overrightarrow{AM} =
(a;b;c) với M là trung điểm của cạnh SC, khi đó a + b + c bằng bao nhiêu?

    Hướng dẫn:

    ABCD là hình thoi cạnh bằng 5 , O là giao điểm của ACBD nên O là trung điểm của ACBD.

    Xét \Delta OAB vuông tại O, có OB =
\sqrt{AB^{2} - OA^{2}} = \sqrt{25 - 16} = 3.

    \overrightarrow{OB}\overrightarrow{i} cùng hướng và OB = 3 nên \overrightarrow{OB} =
3\overrightarrow{i}.

    Vì \overrightarrow{OA}\overrightarrow{j} cùng hướng và OA = 4 nên \overrightarrow{OA} = -
4\overrightarrow{j}.

    Ta có \overrightarrow{AB} =
\overrightarrow{OB} - \overrightarrow{OA} = 3\overrightarrow{i} +
4\overrightarrow{j}

    AC = 2OA = 8\overrightarrow{AC}\overrightarrow{j} cùng hướng nên \overrightarrow{AC} =
8\overrightarrow{j}.

    \overrightarrow{OS}\overrightarrow{k} cùng hướng và OS = 4 nên \overrightarrow{OS} =
4\overrightarrow{k}.

    \overrightarrow{SB} =
\overrightarrow{OB} - \overrightarrow{OS} = 3\overrightarrow{i} -
4\overrightarrow{k}

    Lại có \overrightarrow{AS} =
\overrightarrow{AB} + \overrightarrow{BS} = \left( 3\overrightarrow{i} +
4\overrightarrow{j} \right) - \left( 3\overrightarrow{i} -
4\overrightarrow{k} \right) = 4\overrightarrow{j} +
4\overrightarrow{k}.

    M là trung điểm của SC nên \overrightarrow{AM} = \frac{1}{2}\left(
\overrightarrow{AS} + \overrightarrow{AC} \right) = \frac{1}{2}\left(
4\overrightarrow{j} + 4\overrightarrow{k} + 8\overrightarrow{j} \right)
= 6\overrightarrow{j} + 2\overrightarrow{k}.

    Do đó \overrightarrow{AM} =
(0;6;2).

    Suy ra a + b + c = 0 + 6 + 2 =
8

  • Câu 20: Vận dụng
    Xác định tọa độ điểm C’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Hướng dẫn:

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo