Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu CTST (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Chọn đáp án thích hợp

    Tìm tập hợp các tâm I của mặt cầu

    (S): x^{2} + y^{2} + z^{2} - 6\cos t -
4\sin ty + 6z\cos 2t - 3 = 0, t\mathbb{\in R}.

    Hướng dẫn:

    Ta có:

    a = 3cost;b = 2sint;c = - 3;d = cos2t -
3 = - 2sin^{2}t - 2

    \Rightarrow 9cos^{2}t + 4sin^{2}t +
2sin^{2}t + 11 > 0,\ \ \forall t\mathbb{\in R}

    Tâm I:x = 3cost;y = 2sint;z = -
3

    \Rightarrow \frac{x^{2}}{9} +
\frac{y^{2}}{4} = 1;\ \ z + 3 = 0

    Vậy tập hợp các tâm I là elip \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1;z + 3 =
0

  • Câu 2: Thông hiểu
    Xác định tọa độ tâm mặt cầu

    Cho các điểm A(0;1;3)B(2;2;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z -
3}{- 2}. Mặt cầu đi qua hai điểm A, B và tâm thuộc đường thẳng d thì tọa độ tâm là:

    Hướng dẫn:

    Gọi I(1 + t;2 - t;3 - 2t) trên dIA = IB \Rightarrow t =
\frac{3}{10} \Rightarrow I\left(
\frac{13}{10};\frac{17}{10};\frac{12}{5} \right).

  • Câu 3: Vận dụng cao
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz, cho điểm S(0;0;1), Hai điểm M(m;0;0),N(0;n;0) thay đổi sao cho m + n = 1m > 0,n > 0. Mặt phẳng (SMN) luôn tiếp xúc với một mặt cầu cố định đi qua P(1;1;1) có bán kính là

    Hướng dẫn:

    Phương trình (SMN):\frac{x}{m} +\frac{y}{n} + z = 1. Gọi I(a;b;c)R là tâm và bán kính mặt cầu cố định trong đề bài, phương trình mặt cầu là (x -a)^{2} + (y - b)^{2} + (z - c)^{2} = R^{2}.

    Ta có khoảng cách từ I đên (SMN)d = \dfrac{\left| \dfrac{a}{m} +\dfrac{b}{n} + c - 1 ight|}{\sqrt{\dfrac{1}{m^{2}} + \dfrac{1}{n^{2}} +1}} = R

    \ m + n = 1 \Rightarrow\frac{1}{m^{2}} + \frac{1}{n^{2}} + 1

    = \frac{m^{2} + n^{2} +m^{2}n^{2}}{m^{2}n^{2}} = \frac{1 - 2mn +m^{2}n^{2}}{m^{2}n^{2}}

    \Rightarrow d = \frac{|an + bm + cmn -mn|}{1 - mn} = R

    Nếu an + bm + cmn - mn = R(1 -mn)

    \Leftrightarrow a(1 - m) + bm + cm(1 -m) - m(1 - m) = R - Rm(1 - m)

    \Leftrightarrow m^{2}(R + c - 1) + m(a -b - c - R + 1) - a + R = 0

    Đẳng thức đúng với mọi m \in(0;1) nên R + c - 1 = a - b - c - R+ 1 = - a + R hay a = b = R,c = 1 -R, thay vào phương trình mặt cầu ta có R = 1.

    Nếu an + bm + cmn − mn = −R(1 − mn)

    \Leftrightarrow m^{2}( - R + c - 1) +m(a - b - c + R + 1) - a - R = 0

    Đẳng thức đúng với mọi m ∈ (0; 1) nên R+c−1 = a−b−c−R+1 = −a+R hay a = b = −R, c = 1+R thay vào phương trình mặt cầu ta có R = −1 không thỏa mãn.

    Vậy R = 1.

  • Câu 4: Vận dụng
    Chọn đáp án đúng

    Cho mặt cầu (S): x^{2} + y^{2} + z^{2} -
4x + 6y + 2z - 2 = 0 và điểm A( -
6, - 1,3) . Gọi M là tiếp điểm của (S) và tiếp tuyến di động (d) qua. Tìm tập hợp các điểm M. (Chọn các đáp án đúng)

    Hướng dẫn:

    (S) có tâm I(2, - 3,1).\ \overrightarrow{IM} = (x - 2,y + 3,z
+ 1);\overrightarrow{AM} = (x + 6,y + 1,z - 3)

    \begin{matrix}
\overrightarrow{IM}.\overrightarrow{AM} = (x - 2)(x + 6) + (y + 3)(y +
1) + (z + 1)(z - 3) = 0 \\
\Rightarrow M \in (S'):x^{2} + y^{2} + z^{2} + 4x + 4y - 3z - 12 =
0;\ \ M \in (S) \\
\end{matrix}

    \Rightarrow M \in đường tròn \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 4x + 6y + 2z - 2 = 0 \\
4x - y - 2z - 5 = 0 \\
\end{matrix} \right.

    Hay \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} + 4x + 4y - 2z - 12 = 0 \\
4x - y - 2z - 5 = 0 \\
\end{matrix} \right.

  • Câu 5: Vận dụng
    Chọn kết luận đúng

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2; - 2). Mặt phẳng (\alpha) đi qua H và cắt các trục Ox;Oy;Oz tại A;B;C sao cho H là trực tâm tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha)?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có H là trực tâm của tam giác ABC suy ra OH\bot(ABC)

    Thật vậy \left\{ \begin{matrix}
OH\bot OA \\
OH\bot OB \\
\end{matrix} ight.\  \Rightarrow OC\bot AB(1)

    CH\bot AB (vì H là trực tâm tam giác ABC) (2)

    Từ (1) và (2) suy ra AB\bot(OHC) suy ra AB\bot OH(*)

    Tương tự BC\bot(OAH) \Rightarrow BC\bot
OH(**)

    Từ (*) và (**) suy ra OH\bot(ABC)

    Khi đó mặt cầu tâm O tiếp xúc với mặt phẳng (ABC) có bán kính R = OH = 3

    Vây mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha) là: x^{2} + y^{2} + z^{2} = 9.

  • Câu 6: Thông hiểu
    Định vị trí tương đối của (S) và (Q)

    Xét vị trí tương đối của mặt cầu (S):x^{2} + y^{2} + z^{2} - - 6x - 4y - 8z + 13 =
0 và mặt phẳng (Q):x - 2y + 2z + 5
= 0.

    Hướng dẫn:

    Ta có: a = 3;\ \ b = 2;\ \ c = 4;\ \ d =
13 \Rightarrow R = 4.

    Tâm I(3, 2, 4)

    d(I,P) = \frac{12}{3} = 4 = R \Rightarrow
(P) tiếp xúc (S).

  • Câu 7: Vận dụng cao
    Chọn đáp án đúng

    Hai quả bóng hình cầu có kích thước khác nhau, được đặt ở hai góc của một căn nhà hình hộp chữ nhật sao cho mỗi quả bóng đều tiếp xúc với hai bức tường và nền của căn nhà đó. Biết rằng trên bề mặt của mỗi quả bóng đều tồn tại một điểm có khoảng cách đến hai bức tường và nền nhà nó tiếp xúc lần lượt bằng 1, 2, 3. Tính tổng các bình phương của hai bán kính của hai quả bóng đó.

    Hướng dẫn:

    Hình vẽ minh họa

    Xét quả bóng tiếp xúc với hai bức tường, nền của căn nhà và chọn hệ trục tọa độ Oxyz như hình vẽ (tương tự với góc tường còn lại).

    Gọi I(a; a; a) là tâm của mặt cầu có bán kính R = a.

    Phương trình mặt cầu là: (S):(x - a)^{2}+ (y - a)^{2} + (z - a)^{2} = a^{2}\ \ \ (1)

    Xét điểm M(x; y; z) nằm trên mặt cầu sao cho

    d(M,(Oxz)) = 2, d(M,(Oyz)) = 1, d(M,(Oxy)) = 3.

    Suy ra M(2; 1; 3).

    Vì M thuộc mặt cầu (S) nên từ (1) ta có:

    (2 - a)^{2} + (1 - a)^{2} + (3 - a)^{2}= a^{2}

    \Leftrightarrow a^{2} - 6a + 7 = 0\Leftrightarrow \left\lbrack \begin{matrix}a_{1} = 3 + \sqrt{2} = R_{1} \\a_{2} = 3 - \sqrt{2} = R_{2} \\\end{matrix} ight.

    \Rightarrow {R_{1}}^{2} + {R_{2}}^{2} =22

  • Câu 8: Vận dụng cao
    Xác định giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(0; 8; 2), điểm B(9; −7; 23) và mặt cầu (S) : (x − 5)^2 + (y + 3)^2 + (z − 7)^2 = 72. Gọi (P) là mặt phẳng qua A và tiếp xúc với (S) sao cho khoảng cách từ B đến (P) là lớn nhất. Biết \vec{n} = (1; m; n) là một vectơ pháp tuyến của (P). Tính mn.

    Hướng dẫn:

    Mặt cầu (S) có tâm I(5; −3; 7); bán kính R = 6\sqrt{2}.

    Phương trình mặt phẳng (P) : 1(x − 0) + m(y − 8) + n(z − 2) = 0.

    Vì (P) và (S) tiếp xúc nhau nên:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|5 - 11m + 5n|}{\sqrt{1 + m^{2} + n^{2}}} =
6\sqrt{2}

    \Leftrightarrow |5 - 11m + 5n| =
6\sqrt{2}\sqrt{1 + m^{2} + n^{2}}(*)

    Ta có: d\left( B;(P) ight) = \frac{|9 -
15m + 21n|}{\sqrt{1 + m^{2} + n^{2}}}

    Ta có:

    |9 - 15m + 21n| = |5 - 11m + 5n + 4 - 4m
+ 16n|

    \leq |5 - 11m + 5n| + |4 - 4m +
16n|(**)

    Áp dụng BĐT Bunhiacopxki ta có

    (4 - 4m + 16n)^{2} \leq \left( 4^{2} +
4^{2} + 16^{2} ight)\left( 1 + m^{2} + n^{2} ight) = 288\left( 1 +
m^{2} + n^{2} ight)

    \Rightarrow |4 - 4m + 16n| \leq
12\sqrt{2}.\sqrt{1 + m^{2} + n^{2}}(***)

    Từ (*); (**); (***) ta có:

    |9 - 15m + 21n| \leq 18\sqrt{2}\sqrt{1 +
m^{2} + n^{2}}

    Dấu “=” xảy ra khi và chỉ khi: \left\{\begin{matrix}|5 - 11m + 5n| = 6\sqrt{2}\sqrt{1 + m^{2} + n^{2}} \\(5 - 11m + 5n)(4 - 4m + 16n) \geq 0 \\\dfrac{1}{4} = \dfrac{m}{- 4} = \dfrac{n}{16} \\\end{matrix} ight.

    \Rightarrow m = - 1;n = 4 \Rightarrow mn
= - 4.

  • Câu 9: Thông hiểu
    Xác định phương trình mặt cầu

    Viết phương trình mặt cầu (S) tâm I(1,2, - 3) tiếp xúc với mặt phẳng (P):4x - 2y + 4z - 3 = 0.

    Hướng dẫn:

    Bán kính R = d(I,P) =
\frac{5}{2}

    \Rightarrow (S):(x - 1)^{2} + (y - 2)^{2}
+ (y + 3)^{2} = \frac{25}{4}

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
2x - 4y + 6z + \frac{31}{4} = 0

  • Câu 10: Vận dụng cao
    Tính giá trị của biểu thức T

    Trong không gian hệ trục tọa độ Oxyz, cho hai điểm A(3; - 2;6),B(0;1;0) và mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
25. Mặt phẳng (P):ax + by + cz - 2
= 0 đi qua A,B và cắt (S) theo giao tuyến là hình tròn có bán kinh nhỏ nhất. Tính T = a + b +
c?

    Hướng dẫn:

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1;2;3) bán kính R = 5.

    Mặt phẳng (P) có vtpt \overrightarrow{n_{p}} = (a;b;c);\left( a^{2} +
b^{2} + c^{2} \neq 0 \right).

    Do B(0;1;0) \in (P):b - 2 = 0
\Leftrightarrow b = 2.

    Ta có: \overrightarrow{AB} = ( - 3;3; -
6) = - 3(1; - 1;2), phương trình đường thẳng AB:\left\{ \begin{matrix}
x = t \\
y = 1 - t \\
z = 2t
\end{matrix} \right.\ ;\left( t\mathbb{\in R} \right)

    Gọi r là bán kính của đường tròn giao tuyến, K là hình chiếu của I trên AB, H là hình chiếu vuông góc của I lên mặt phẳng (P).

    Ta có: K \in AB \Rightarrow K(t;1 -
t;2t)

    \Rightarrow \overrightarrow{IK} = (t -
1; - t - 1;2t - 3)

    IK\bot AB \Rightarrow
\overrightarrow{AB}.\overrightarrow{IK} = 0 \Rightarrow t = 1 \Rightarrow \overrightarrow{IK}
= (0; - 2; - 1)

    r = \sqrt{R^{2} - d^{2}\left( I;(P)
\right)} = \sqrt{25 - d^{2}\left(
I;(P) \right)} = \sqrt{25 - IH^{2}}

    Ta có: r đạt min thì IH đạt max.

    IH \leq IK \Rightarrow IH_{\min}
\Leftrightarrow H \equiv K \Rightarrow (P)\bot IK \Rightarrow\overrightarrow{n_{P}},\overrightarrow{IK} cùng phương

    \Rightarrow \overrightarrow{n_{P}} =
k.\overrightarrow{IK} \Rightarrow \left\{ \begin{matrix}
a = 0 \\
b = - 2k = 2 \\
c = - k
\end{matrix} \right.

    \Rightarrow \left\{ \begin{matrix}
a = 0 \\
k = - 1 \\
b = 2 \\
c = 1
\end{matrix} \right.\  \Rightarrow \left\{ \begin{matrix}
a = 0 \\
b = 2 \\
c = 1
\end{matrix} \right.

  • Câu 11: Vận dụng
    Viết phương trình mặt phẳng (P)

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 6y - 4z
- 2 = 0 và mặt phẳng (α) : x + 4y + z − 11 = 0. Viết phương trình mặt phẳng (P), biết (P) song song với giá của vectơ \overrightarrow{v} = (1;6;2), vuông góc với (α) và tiếp xúc với (S).

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; −3; 2) và bán kính R = 4.

    Vectơ pháp tuyến của (α) là \overrightarrow{n_{(\alpha)}} =
(1;4;1)

    Theo giả thiết, suy ra (P) có vectơ pháp tuyến là \overrightarrow{n_{(P)}} = \left\lbrack
\overrightarrow{v};\overrightarrow{n_{(\alpha)}} ightbrack = (2; -
1;2)

    Phương trình của mặt phẳng (P) có dạng 2x − y + 2z + D = 0

    Vì (P) tiếp xúc với mặt cầu (S) nên ta có:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2 + 3 + 4 + D|}{\sqrt{2^{2} + 1^{2} + 2^{2}}} =
4

    \Leftrightarrow |9 + D| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
D = 3 \\
D = - 21 \\
\end{matrix} ight.

    Vậy có 2 mặt phẳng thỏa yêu cầu bài toán có phương trình là: \left\lbrack \begin{matrix}
(P):2x - y + 2z + 3 = 0 \\
(P):2x - y + 2z - 21 = 0 \\
\end{matrix} ight.

  • Câu 12: Vận dụng
    Tính độ dài đoạn thẳng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 3 = 0 và mặt cầu (S) tâm I(5;
- 3;5), bán kính R =
2\sqrt{5}. Từ một điểm A thuộc mặt phẳng (P) kẻ một đường thẳng tiếp xúc với mặt cầu (S) tại B. Tính OA biết AB =
4.

    Hướng dẫn:

    Hình vẽ minh họa

    Khoảng cách từ điểm I đến mặt phẳng (P) là

    d\left( I;(P) ight) = \frac{\left| 5 -
2.( - 3) + 2.5 - 3 ight|}{3} = 6

    Vì AB tiếp xúc với (S) tại B nên tam giác AIB vuông tại B, do đó ta có:

    IA = \sqrt{IB^{2} + AB^{2}} =
\sqrt{R^{2} + AB^{2}} = 6 = d\left( I;(P) ight)

    Đường thẳng IA đi qua I(5; −3; 5) có vectơ chỉ phương là \overrightarrow{u} = (1; - 2;2) nên có phương trình là: \left\{ \begin{matrix}
x = 5 + t \\
y = - 3 - 2t \\
z = 5 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do A = IA ∩ (P) nên 5 + t − 2(−3 − 2t) + 2(5 + 2t) − 3 = 0 ⇔ t = −2

    Vậy A(3; 1; 1) nên OA =
\sqrt{11}.

  • Câu 13: Vận dụng
    Tính tọa độ tâm I và bán kính R

    Cho mặt (S) tâm I ở trên z’Oz tiếp xúc với hai mặt phẳng (P):2x - 2y + z - 3 = 0(Q):\ \ x + 2y - 2z + 9 = 0. Tính tọa độ tâm I và bán kính R? (Có thể chọn nhiều đáp án).

    Hướng dẫn:

    Ta có:

    I(0,0,z) \Rightarrow d(I,P) =
d(I,Q)

    \Leftrightarrow \frac{|z - 3|}{3} =
\frac{| - 2z + 9|}{3}

    \Leftrightarrow \left\lbrack
\begin{matrix}
z_{1} = 4 \\
z_{2} = 6 \\
\end{matrix} \right.\  \Rightarrow \left\lbrack \begin{matrix}
R_{1} = \dfrac{1}{3} \\
R_{2} = 1 \\
\end{matrix} \right.

    Vậy: \left\lbrack \begin{matrix}
I_{1}(0,0,4);R_{1} = \dfrac{1}{3} \\
I_{2}(0,0,6);R_{2} = 1 \\
\end{matrix} \right.

  • Câu 14: Vận dụng
    Tìm tập hợp điểm I theo yêu cầu

    Tìm tập hợp các tâm I của mặt cầu (S):\
x^{2} + y^{2} + z^{2} + 2(3 - 4cost)x - 2(4sint + 1)y - 4z - 5 -
2sin^{2}t = 0,\ \ t\mathbb{\in R}.

    Hướng dẫn:

    Ta có:

    a = 4cost - 3;b = 4sint + 1;c = 2;d = -
5 - 2sin^{2}t

    \Rightarrow (4cost - 3)^{2} + (4sint +
1)^{2} + 9 + 2sin^{2}t > 0,\forall t\mathbb{\in R}

    Tâm I:x = 4cost - 3;y = 4sint + 1;z =
2

    \Rightarrow x + 3 = 4cost;y - 1 = 4sint
\Rightarrow (x + 3)^{2} + (y - 1)^{2} = 16

    Vậy tập hợp các tâm I là đường tròn (x +
3)^{2} + (y - 1)^{2} = 16;z - 2 = 0

  • Câu 15: Vận dụng
    Tính bán kính

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Đường thẳng SA = a\sqrt 2 vuông góc với đáy (ABCD) . Gọi M là trung điểm SC, mặt phẳng (\alpha) đi qua hai điểm A và M đồng thời song song với BD cắt SB, SD lần lượt tại E và F. Bán kính mặt cầu đi qua năm điểm S, A, E, M, Fnhận giá trị nào sau đây?

    Hướng dẫn:

     Tính bán kính

    Mặt phẳng (\alpha) song song với BD cắt SB, SD lần lượt tại E, F nên EF||BD.

    \triangle SAC cân tại A , trung tuyến AM nên AM \bot SC  (1)

    Ta có \left\{ \begin{array}{l}BD \bot AC\\BD \bot SA\end{array} ight. \Rightarrow BD \bot \left( {SAC} ight) \Rightarrow BD \bot SC

    Do đó EF \bot SC   (2)

    Từ (1) và (2), suy ra SC \bot \left( \alpha  ight) \Rightarrow SC \bot AE   (*)

    Lại có \left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} ight. \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow BC \bot AE  (**)

    Từ (*) và (**), suy ra AE \bot \left( {SBC} ight) \Rightarrow AE \bot SB. Tương tự ta cũng có AF \bot SD.

    Do đó \widehat {SEA} = \widehat {SMA} = \widehat {SFA} = {90^0} nên năm điểm S,{m{ }}A,{m{ }}E,{m{ }}M,{m{ }}F cùng thuộc mặt cầu tâm I là trung điểm của SA, bán kính R = \frac{{SA}}{2} = \frac{{a\sqrt 2 }}{2}.

  • Câu 16: Vận dụng
    Chọn kết luận đúng

    Cho mặt cầu (S):\ \ x^{2} + y^{2} + z^{2}
+ 2x - 2y + 6z - 5 = 0 và mặt phẳng (P):\ x - 2y + 2z + 3 = 0. Gọi M là tiếp điểm của (S) và tiếp diện di động (Q) vuông góc với (P). tập hợp các điểm M là:

    Hướng dẫn:

    (S) có tâm I( - 1,1, - 3), bán kính R = 4. IM vuông góc với (Q), nên IM//(P) \Rightarrow M nằm trong mặt phẳng (R) qua I và song song với (P).

    Phương trình (R):x - 2y + 2z + D = 0.\ I
\in (R) \Rightarrow D = 9

    \Rightarrow (R):x - 2y + 2z + 9 =0

    M \in (S) \Rightarrow Tập hợp các điểm M là đường tròn giao tuyến của (S)(R):

    \left\{ \begin{matrix}
x^2 + y^{2} + z^{2} + 2x - 2y + 6z - 5 = 0 \\
x - 2y + 2z + 9 = 0 \\
\end{matrix} \right.

  • Câu 17: Thông hiểu
    Định phương trình tổng quát của mặt phẳng

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} -
6x - 4y - 4z - 12 = 0. Viết phương trình tổng quát của mặt phẳng đối xứng (P) của (S) vuông góc với đường kính qua gốc O.

    Hướng dẫn:

    Pháp vecto của (P):\overrightarrow{n} =
\overrightarrow{OI} = (3,2,2).(P) qua I(3 , 2,2)

    \Rightarrow (P):3(x - 3) + 2(y - 2) +
2(z - 2) = 0

    \Rightarrow (P):3x + 2y + 2z - 17 =
0

  • Câu 18: Thông hiểu
    Tìm phương trình mặt cầu

    Cho mặt phẳng (P):2x + 3y + z - 2 =
0 . Mặt cầu (S) có tâm I thuộc trục Oz, bán kính bằng \frac{2}{\sqrt{14}} và tiếp xúc mặt phẳng (P) có phương trình:

    Hướng dẫn:

    Vì tâmI \in Oz \Rightarrow
I(0;0;z)

    Mặt cầu (S)có tâm I tiếp xúc với mặt phẳng

    (P) \Leftrightarrow d\left( I,(\beta) \right) = R
\Leftrightarrow \frac{|2.0 + 3.0 + 1.z - 2|}{\sqrt{2^{2} + 3^{2} +
1^{2}}} = \frac{2}{\sqrt{14}}

    \Leftrightarrow |z - 2| = 2
\Leftrightarrow \left\lbrack \begin{matrix}
z = 0 \Rightarrow I(0;0;0) \\
z = 4 \Rightarrow I(0;0;4) \\
\end{matrix} \right.

    Vậy phương trình mặt cầu .(S):x^{2} +
y^{2} + z^{2} = \frac{2}{7} hoặc (S):x^{2} + y^{2} + (z - 4)^{2} =
\frac{2}{7}.

  • Câu 19: Thông hiểu
    Tìm tập hợp các điểm M

    Cho hai điểm A(2, - 3, - 1);\ \ \ B( -
4,5, - 3). Tìm tập hợp các điểm M(x,y,z) thỏa mãn AM^{2} + BM^{2} = 124.

    Hướng dẫn:

    Ta có:

    AM^{2} + BM^{2} = 124

    \Leftrightarrow (x - 2)^{2} + (y + 3)^{2}= (z + 1)^{2} + (x + 4)^{2} + (y - 5)^{2} + (z + 3)^{2} =
124

    \Leftrightarrow Mặt cầu x^{2} + y^{2} + z^{2} + 2x - 2y + 4z - 30 =
0

  • Câu 20: Vận dụng cao
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho điểm A(1;2;-1) và mặt phẳng (P):x+y+2z-13=0. Xét các mặt cầu (S) có tâm I(a;b;c), đi qua điểm A, tiếp xúc với mặt phẳng (P) . Tính giá trị của biểu thức T=a^2+2b^2+3c^2 khi (S) có bán kính nhỏ nhất.

    Hướng dẫn:

     Gọi H là hình chiếu của I trên mặt phẳng (P) ta có IA + IH =2R nên R nhỏ nhất khi I, A, H thẳng hàng và I là trung điểm của AH.

    Phương trình AH đi qua A và vuông góc với mặt phẳng (P) có phương trình là

    \left\{\begin{matrix} x=1+t \\ y=2+t \\ z=-1+2t \end{matrix}ight.

    Tọa độ H là nghiệm (x;y;z) của hệ:

    \left\{\begin{matrix} x=1+t \\ y=2+t \\ z=-1+2t \\ x+y+2z-13=0 \end{matrix}ight.

    \Rightarrow H(3;4;3)\Rightarrow I(2;3;1)

    Suy ra, ta có: T=a^2+2b^2+3c^2 =2^2+2.3^2+3.1^2=25

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo