Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu CTST (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Cho các điểm I( - 1;0;0) và đường thẳng d:\frac{x - 2}{1} = \frac{y -
1}{2} = \frac{z - 1}{1}. Phương trình mặt cầu (S) có tâm I và tiếp xúc d là:

    Hướng dẫn:

    Đường thẳngdđi qua I(2;1;1)và có một vectơ chỉ phương:

    \overrightarrow{u} = (1;\ 2;\ 1)
\Rightarrow d(I;d) = \frac{\left| \left\lbrack
\overrightarrow{u},\overrightarrow{MI} \right\rbrack \right|}{\left|
\overrightarrow{u} \right|} = \sqrt{5}

    Phương trình mặt cầu là: (x + 1)^{2} +
y^{2} + z^{2} = 5.

  • Câu 2: Vận dụng cao
    Tính thể tích tứ diện

    Trong không gian Oxyz, cho ba điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c), trong đó a > 0, b > 0, c > 0\frac{1}{a} + \frac{2}{b} +
\frac{3}{c} = 7. Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S): (x − 1)^2 + (y − 2)^2 + (z − 3)^2 = 72/7. Thể tích của khối tứ diện OABC là:

    Hướng dẫn:

    Mặt phẳng (ABC) có phương trình là \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1

    Mặt cầu (S) có tâm là I(1; 2; 3) và bán kính R =
\sqrt{\frac{72}{7}}. Khi đó:

    d\left( I;(ABC) ight) = \dfrac{\left|\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} ight|}{\sqrt{\dfrac{1}{a^{2}} +\dfrac{1}{b^{2}} + \dfrac{1}{c^{2}}}} = \sqrt{\dfrac{72}{7}}

    \Leftrightarrow \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} = \frac{7}{2}

    Áp dụng bất đẳng thức Cauchy - Schwarz, ta có:

    49 = \left( \frac{1}{a} + \frac{2}{b} +
\frac{3}{c} ight)^{2} \leq \left( 1^{2} + 2^{2} + 3^{2} ight)\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} ight) =
\frac{7}{2}.14 = 49

    Dấu đẳng thức xảy ra khi a = 2b = 3c. Thay vào giả thiết ta có:

    a = 2;b = 1;c = \frac{2}{3}

    Vì OABC là tứ diện vuông tại O nên V_{OABC} = \frac{abc}{2} =
\frac{2}{9}

  • Câu 3: Vận dụng
    Tìm phương trình mặt cầu

    Cho điểm A(1;3;2), đường thẳng d:\frac{x + 1}{2} = \frac{y - 4}{- 1} =
\frac{z}{- 2} và mặt phẳng (P):2x -
2y + z - 6 = 0. Phương trình mặt cầu (S) đi qua A, có tâm thuộc d đồng thời tiếp xúc với (P) là:

    Hướng dẫn:

    Ta có:

    d có phương trình tham số \left\{ \begin{matrix}
x = - 1 + 2t \\
y = 4 - t \\
z = - 2t \\
\end{matrix} \right.

    Gọi I là tâm mặt cầu (S), do I thuộc d nên I( - 1
+ 2t;4 - t; - 2t)

    Theo đề bài, (S) có bán kính R =
IA = d\left( I;(P) \right).

    \Rightarrow \sqrt{(2 - 2t)^{2} + (t -
1)^{2} + (2 + 2t)^{2}} = \frac{\left| 2( - 1 + 2t) - 2(4 - t) - 2t - 6
\right|}{\sqrt{2^{2} + 2^{2} + 1^{2}}}

    \Leftrightarrow \sqrt{9t^{2} - 2t + 9} =
\frac{|4t - 16|}{3}

    \Leftrightarrow 9\left( 9t^{2} - 2t + 9
\right) = (4t - 16)^{2}

    \Leftrightarrow 65t^{2} + 110t - 175 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = - \frac{35}{13} \\
\end{matrix} \right.

    Với t = 1 \Rightarrow I\left( {1;3; - 2} \right),R = 4 

    \Rightarrow (S):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 2} \right)^2} = 16.

    Với t =  - \frac{{35}}{{13}} \Rightarrow I\left( { - \frac{{83}}{{13}};\frac{{87}}{{13}};\frac{{70}}{{13}}} \right);R = \frac{{116}}{{13}}

    \Rightarrow (S):{\left( {x + \frac{{83}}{{13}}} \right)^2} + {\left( {y - \frac{{87}}{{13}}} \right)^2} + {\left( {z - \frac{{70}}{{13}}} \right)^2} = \frac{{13456}}{{169}}.

  • Câu 4: Vận dụng
    Chọn phương án đúng

    Trong không gian Oxyz cho đường tròn (C):\left\{ \begin{matrix}
x^2 + y^2+ z^{2} - 2x - 4y - 6z - 67 = 0 \\
2x - 2y + z + 5 = 0 \\
\end{matrix} \right.. Bán kính r của (C) bằng:

    Hướng dẫn:

    Viết lại phương trình mặt cầu (S) chứa (C) :

    (x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
81.

    Để biết tâm I(1,2,3) và bán kính R = 9 .

    \Rightarrow Bán kính của (C) là :r =
\sqrt{81 - 4} = \sqrt{77} (do khoảng cách từ I đến mặt phẳng chứa (C)h = \frac{|2.1 - 2.2 + 3 + 5|}{\sqrt{2^{2} + ( -
2)^{2} + 1^{2}}} = 2) .

  • Câu 5: Vận dụng
    Xác định các tham số m thỏa mãn yêu cầu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; 1; 2)B(5; 7; 0). Có tất cả bao nhiêu giá trị thực của tham số m để phương trình x^{2} + y^{2} + z^{2} - 4x + 2my - 2(m + 1)z +
m^{2} + 2m + 8 = 0 là phương trình của một mặt cầu (S) sao cho qua hai điểm A, B có duy nhất một mặt phẳng cắt mặt cầu (S) đó theo giao tuyến là một đường tròn có bán kính bằng 1.

    Hướng dẫn:

    Ta có:

    x^{2} + y^{2} + z^{2} - 4x + 2my - 2(m +
1)z + m^{2} + 2m + 8 = 0

    \Leftrightarrow (x - 2)^{2} + (y +
m)^{2} + (z - m - 1)^{2} = m^{2} - 3(*)

    Suy ra (*) là phương trình mặt cầu

    \Leftrightarrow m^{2} - 3 > 0
\Leftrightarrow |m| > \sqrt{3}

    Khi đó, mặt cầu (S) có tâm I(2; −m; m + 1) và bán kính R = \sqrt{m^{2} - 3}

    Gọi (P) là mặt phẳng đi qua A, B.

    Theo giả thiết (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính r = 1.

    Mặt khác, khoảng cách từ tâm I đến mặt phẳng (P) là d = \sqrt{R^{2} - r^{2}} = \sqrt{m^{2} - 4};\left(
m^{2} - 4 \geq 0 ight)

    Ta có: \overrightarrow{AB} = (2;6; -
2) suy ra \overrightarrow{u} =
(1;3; - 1) là một vectơ chỉ phương của đường thẳng AB

    Suy ra đường thẳng AB là: \left\{ \begin{matrix}
x = 3 + t \\
y = 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Để có duy nhất mặt phẳng (P) thỏa mãn bài thì

    TH1. Mặt phẳng (P) đi qua điểm I và I
otin AB

    Ta có I ∈ (P) ⇔ d = 0 ⇔ m^2 − 4 = 0 ⇔ m = ±2.

    + Với m = 2 ⇒ I(2; −2; 3) ∈ AB ⇒ m = 2 (loại).

    + Với m = −2 ⇒ I(2;2; - 1) otin
AB⇒ m = −2 (thỏa mãn).

    TH2. Mặt phẳng (P) cách I một khoảng lớn nhất ⇔ d lớn nhất ⇔ d = d(I, AB). (*)

    \overrightarrow{IA} = (1;1 + m;1 -
m)

    \Rightarrow \left\lbrack
\overrightarrow{IA};\overrightarrow{u} ightbrack = ( - 4 + 2m;2 -
m;2 - m)

    \Rightarrow \left| \left\lbrack
\overrightarrow{IA};\overrightarrow{u} ightbrack ight| = |2 -
m|\sqrt{6};\left| \overrightarrow{u} ight| = \sqrt{11}

    Khi đó d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{IA};\overrightarrow{u} ightbrack
ight|}{\left| \overrightarrow{u} ight|} = \frac{|2 -
m|\sqrt{6}}{\sqrt{11}}

    (*) \Leftrightarrow \sqrt{m^{2} - 4} =
\frac{|2 - m|\sqrt{6}}{\sqrt{11}}

    \Leftrightarrow 5m^{2} + 24m - 68 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 2(ktm) \\m = - \dfrac{34}{5}(tm) \\\end{matrix} ight.

    Vậy có 2 giá trị tham số m thỏa mãn yêu cầu.

  • Câu 6: Thông hiểu
    Điều kiện để có mặt cầu

    Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu: 

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {2 - \ln t} ight)x + 4\ln t.y + 2\left( {\ln t + 1} ight)z + 5{\ln ^2}t + 8 = 0.

    Hướng dẫn:

    Theo đề bài, ta có:

    a = \ln t - 2;\,\,b =  - 2\ln t;\,\,c =  - \ln t - 1;\,\,d = 5{\ln ^2}t + 8

    (S) là mặt cầu \Leftrightarrow {\left( {\ln t - 2} ight)^2} + 4{\ln ^2}t + {\left( {\ln t + 1} ight)^2} - 5{\ln ^2}t - 8 > 0

    \Leftrightarrow {\ln ^2}t - 2\ln t - 3 > 0

    \Leftrightarrow \ln t <  - 1 \vee \ln t > 3

    \Leftrightarrow 0 < t < \frac{1}{e} \vee t > {e^3}

  • Câu 7: Vận dụng
    Chọn đáp án đúng

    Cho hai điểm A(1; - 2;3),\ B( -
1;0;1) và mặt phẳng (P):x + y + z +
4 = 0 . Phương trình mặt cầu (S) có bán kính bằng \frac{AB}{6} có tâm thuộc đường thẳng AB(S) tiếp xúc với mặt phẳng (P) là:

    Hướng dẫn:

    Ta có \overrightarrow{AB} = ( - 2;2; - 2)
= - 2(1; - 1;1). Bán kính mặt cầu là R = \frac{AB}{6} =
\frac{\sqrt{3}}{3}.

    Tâm I của mặt cầu thuộc đường thẳng AB nên tọa độ I có dạng I(1
+ t; - 2 - t;3 + t)

    Ta có: (S)tiếp xúc với mặt phẳng (P)

    \Leftrightarrow \ \ d\left(I;(P)\  \right)\  = \ \frac{AB}{6} \Leftrightarrow \frac{|t +6|}{\sqrt{3}} = \frac{\sqrt{3}}{3} \Leftrightarrow \left\lbrack\begin{matrix}t = - 5 \\t = - 7 \\\end{matrix} \right.

  • Câu 8: Vận dụng cao
    Tính thể tích khối tứ diện

    Trong không gian với hệ tọa độ Oxyz cho các điểm A(a;0;0),B(0;b;0),C(0;0;c) trong đó a > 0,b > 0,c > 0\frac{1}{a} + \frac{2}{b} + \frac{3}{c} =
7. Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S):(x - 1)^{2} + (y -
2)^{2} + (z - 3)^{2} = \frac{72}{7} Tính thể tích của khối tứ diện O.ABC

    Hướng dẫn:

    +) Ta có (ABC):\frac{x}{a} + \frac{y}{b}
+ \frac{z}{c} = 1

    +) Mặt cầu (ABC):\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1 có tâm I(1;2;3) và bán kính R = \sqrt{\frac{72}{7}}

    +) Mặt phẳng (ABC) tiếp xúc với (S) \Leftrightarrow d\left( I;(ABC) \right)
= R \Leftrightarrow \frac{\left| \frac{1}{a} + \frac{2}{b} + \frac{3}{c}
- 1 \right|}{\sqrt{\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}}}}
= \sqrt{\frac{72}{7}}.

    +) Áp dụng BĐT Bunhiacopski ta có:

    \left( 1^{2} + 2^{2} + 3^{2}
\right)\left( \frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}}
\right) \geq \left( \frac{1}{a} + \frac{2}{b} + \frac{3}{c} \right)^{2}
= 7^{2}

    \Rightarrow \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} \geq \frac{7}{2}

    +) Dấu xảy ra \left. \ \begin{matrix}
\frac{1}{\frac{1}{a}} = \frac{2}{\frac{1}{b}} = \frac{3}{\frac{1}{c}} \\
\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 7
\end{matrix} \right\} \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
c = \frac{2}{3}
\end{matrix} \right. khi đó V_{OABC} = \frac{1}{6}abc =
\frac{2}{9}

  • Câu 9: Vận dụng cao
    Tính giá trị của biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} + (z - 3)^{2} =
16 và các điểm A(1;0;2),B( -
1;2;2). Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax + by
+ cz + 3 = 0. Tính T = a + b +c.

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; 2; 3) và bán kính R = 4.

    IA = \sqrt{5} < R nên điểm A nằm bên trong mặt cầu. Suy ra (P) luôn cắt mặt cầu. Gọi r là bán

    kính đường tròn giao tuyến, ta có r =
\sqrt{R^{2} - d^{2}} với d là khoảng cách từ I đến mặt phẳng (P).

    Diện tích hình tròn thiết diện nhỏ nhất khi và chỉ khi bán kính r nhỏ nhất, hay d lớn nhất.

    Gọi H là hình chiếu của I lên đường thẳng AB ta có d lớn nhất khi d = IH tức IH vuông góc với (P).

    Phương trình đường thẳng AB:\left\{
\begin{matrix}
x = 1 - t \\
y = t \\
z = 2
\end{matrix} \right.\ (t\mathbb{\in R})

    Gọi H(1 - t;t;2). \overrightarrow{IH} = ( - t;t - 2; -
1).

    IH\bot AB \Leftrightarrow t + (t - 2) = 0
\Leftrightarrow t = 1. Suy ra H(0;1;2).

    Mặt phẳng (P) nhận \overrightarrow{IH} làm vectơ pháp tuyến và đi qua điểm A nên có phương trình

    - (x - 1) - y - (z - 2) = 0 \Leftrightarrow - x - y - z + 3 = 0.

    Vậy a + b + c =- 3.

  • Câu 10: Vận dụng
    Chọn đáp án thích hợp

    Tìm tập hợp các tâm I của mặt cầu

    (S): x^{2} + y^{2} + z^{2} - 6\cos t -
4\sin ty + 6z\cos 2t - 3 = 0, t\mathbb{\in R}.

    Hướng dẫn:

    Ta có:

    a = 3cost;b = 2sint;c = - 3;d = cos2t -
3 = - 2sin^{2}t - 2

    \Rightarrow 9cos^{2}t + 4sin^{2}t +
2sin^{2}t + 11 > 0,\ \ \forall t\mathbb{\in R}

    Tâm I:x = 3cost;y = 2sint;z = -
3

    \Rightarrow \frac{x^{2}}{9} +
\frac{y^{2}}{4} = 1;\ \ z + 3 = 0

    Vậy tập hợp các tâm I là elip \frac{x^{2}}{9} + \frac{y^{2}}{4} = 1;z + 3 =
0

  • Câu 11: Vận dụng
    Tìm phương trình mặt cầu thỏa mãn điều kiện

    Cho hình lập phương QABC.DEFG có cạnh bằng 1 có \overrightarrow{OA},\ \ \overrightarrow{OC},\ \
\overrightarrow{OG} trùng với ba trục \overrightarrow{Ox},\ \overrightarrow{Oy},\
\overrightarrow{Oz}. Viết phương trình mặt cầu \left( S_{1} \right) ngoại tiếp hình lập phương.

    Hướng dẫn:

    \left( S_{1} \right) có tâm I là trung điểm chung của 4 đường chéo: I\left(
\frac{1}{2},\frac{1}{2},\frac{1}{2} \right), bán kính R_{1} = \frac{1}{2}OE =
\frac{\sqrt{3}}{2}

    \Rightarrow \left( S_{1} \right):\left(
x - \frac{1}{2} \right)^{2} + \left( y - \frac{1}{2} \right)^{2} +
\left( z - \frac{1}{2} \right)^{2} = \frac{3}{4}

    \Rightarrow \left( S_{1} \right):x^{2} +
y^{2} + z^{2} - x - y - z = 0

  • Câu 12: Vận dụng
    Tìm bán kính

    Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng cạnh đáy bằng a. Khi đó mặt cầu nội tiếp hình chóp S.ABCD có bán kính bằng:

    Hướng dẫn:

    Tìm bán kính

    Gọi H là tâm của hình vuông ABCD.

    Ta có SH là trục đường tròn ngoại tiếp đáy.

    Gọi M là trung điểm của CD và I là chân đường phân giác trong của góc \widehat {SMH}{m{ (}}I \in SH).

    Suy ra I là tâm của mặt cầu nội tiếp hình chóp, bán kính r = IH.

    Ta có:

    \begin{array}{l}SH = \sqrt {S{A^2} - A{H^2}}  = \dfrac{{a\sqrt 2 }}{2};{m{ }}\\SM = \dfrac{{a\sqrt 3 }}{2};{m{ }}MH = \dfrac{a}{2}.\end{array}

    Dựa vào tính chất của đường phân giác ta có: \frac{{IS}}{{IH}} = \frac{{MS}}{{MH}}

     

       \Rightarrow \frac{{SH}}{{IH}} = \frac{{MS + MH}}{{MH}}

    \Rightarrow IH = \dfrac{{SH.MH}}{{MS + MH}} = \frac{a}{{\sqrt 2  + \sqrt 6 }} = \dfrac{{a\left( {\sqrt 6  - \sqrt 2 } ight)}}{4}

  • Câu 13: Vận dụng
    Tìm phương trình mặt phẳng (P)

    Cho hai điểm M(1; 0; 4) , N(1;1;2) và mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 2y - 2 =
0. Mặt phẳng (P) qua M, N và tiếp xúc với mặt cầu (S) có phương trình:

    Hướng dẫn:

    Ta có mặt cầu (S) có tâm I(1; -
1;0) và bán kính R = 2, \overrightarrow{MN} = (0;1; -
2)

    Gọi \overrightarrow{n} =
(A,B,C)với A^{2} + B^{2} + C^{2}
> 0 là một vectơ pháp tuyến của mặt phẳng (P).

    (P) qua M, N nên \overrightarrow{n}\bot\overrightarrow{MN}
\Leftrightarrow \overrightarrow{n}.\overrightarrow{MN} = 0
\Leftrightarrow B - 2C = 0\ \ (1)

    Mặt phẳng (P) qua M(1 ; 0; 4) và nhận \overrightarrow{n} = (A,B,C) là vectơ pháp tuyến nên có phương trình

    A(x - 1) + B(y - 0) + C(z - 4) = 0\Leftrightarrow Ax + By + Cz - A - 4C = 0.

    Mặt phẳng (P) tiếp xúc với (S)

    \Leftrightarrow d\left( I;(P) \right) =
R \Leftrightarrow \frac{|1.A - 1.B + 0.C - A - 4C|}{\sqrt{A^{2} + B^{2}
+ C^{2}}} = 2

    \Leftrightarrow |B + 4C| = 2\sqrt{A^{2}
+ B^{2} + C^{2}}(2)

    Từ (1) và (2) \Rightarrow A^{2} - 4C^{2}
= 0 (*)

    Trong (*), nếu C = 0 thì A = 0, và từ (1) suy ra B
= 0 (vô lí). Do vậy C \neq
0.

    Chọn C = 1 \Rightarrow A = \pm
2.

    Với A = 2,\ C = 1, ta có B = 2. Khi đó (P):2x + 2y + z - 6 = 0.

    Với A = - 2,\ C = 1, ta có B = 2. Khi đó (P):2x - 2y - z + 2 = 0.

    Vậy phương trình mặt phẳng (P):2x + 2y +
z - 6 = 0 hoặc (P):2x - 2y - z + 2
= 0.

  • Câu 14: Thông hiểu
    Chọn đáp án chính xác

    Viết phương trình mặt cầu (S) tâm E( - 1,2,4) qua gốc O.

    Hướng dẫn:

    Ta có:

    M(x,y,z) \in (S) \Rightarrow EM^{2} =
OE^{2}

    \Leftrightarrow (x + 1)^{2} + (y -
2)^{2} + (z - 4)^{2} = 1 + 4 + 16

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
2x - 4y - 8z = 0

  • Câu 15: Thông hiểu
    Xác định giá trị tham số t

    Giá trị t phải thỏa mãn điều kiện nào để mặt cong sau là mặt cầu:

    (S):x^{2} + y^{2} + z^{2} + 2\left( 2 -
\ln t \right)x + 4lnt.y+ 2\left( \ln t + 1 \right)z + 5ln^{2}t + 8 =
0

    Hướng dẫn:

    Ta có: a = \ln t - 2;\ \ b = - 2lnt;\ \ c
= - \ln t - 1;\ \ d = 5ln^{2}t + 8

    (S) là mặt cầu \Leftrightarrow \left( \ln t - 2 \right)^{2} + 4ln^{2}t + \left(
\ln t + 1 \right)^{2} - 5ln^{2}t - 8 > 0

    \Leftrightarrow ln^{2}t - 2lnt - 3 >
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\ln t < - 1 \\
\ln t > 3 \\
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
0 < t < \frac{1}{e} \\
t > e^{3} \\
\end{matrix} \right.

  • Câu 16: Thông hiểu
    Xác định phương trình mặt cầu

    Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) qua bốn điểm A(3;3;0),B(3;0;3),C(0;3;3),D(3;3;3). Phương trình mặt cầu (S) là:

    Hướng dẫn:

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    Vì mặt cầu đi qua bốn điểm đã cho nên ta có hệ phương trình

    \left\{ \begin{matrix}18 - 6a - 6b + d = 0 \\18 - 6a - 6c + d = 0 \\18 - 6b - 6c + d = 0 \\27 - 6a - 6b - 6c + d = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{3}{2} \\b = \dfrac{3}{2} \\c = \dfrac{3}{2} \\d = 0 \\\end{matrix} ight.. Suy ra tâm mặt cầu I\left( \frac{3}{2};\frac{3}{2};\frac{3}{2}
ight) và bán kính R = \sqrt{a^{2}
+ b^{2} + c^{2} - d} = \frac{3\sqrt{3}}{2}

    Vậy phương trình mặt cầu cần tìm là: \left( x - \frac{3}{2} ight)^{2} + \left( y -
\frac{3}{2} ight)^{2} + \left( z - \frac{3}{2} ight)^{2} =
\frac{27}{4}

  • Câu 17: Thông hiểu
    Chọn đáp án đúng

    Cho điểm A(1; - 2;3) và đường thẳng d có phương trình \frac{x + 1}{2} = \frac{y - 2}{1} = \frac{z + 3}{-
1}. Phương trình mặt cầu tâm A, tiếp xúc với d là:

    Hướng dẫn:

    Ta có:

    d(A,d) = \frac{\left| \left\lbrack
\overrightarrow{BA},\overrightarrow{a} \right\rbrack \right|}{\left|
\overrightarrow{a} \right|} = \frac{\sqrt{4 + 196 + 100}}{\sqrt{4 + 1 +
1}} = 5\sqrt{2}.

    Trong đó B( - 1;2; - 3) \in
d

    Phương trình mặt cầu tâm A(1; -
2;3), bán kính R =
5\sqrt{2}

    (S):(x–1)^{2} + (y + 2)^{2} + (z–3)^{2} = 50.

  • Câu 18: Vận dụng cao
    Tính bán kính mặt cầu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C và BC=a. Mặt phẳng (SAB) vuông góc với đáy, SA = SB = a, \widehat {ASB} = {120^0}. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC  là:

    Hướng dẫn:

     Tính bán kính mặt cầu

    Gọi M là trung điểm AB , suy ra SM \bot ABSM \bot \left( {ABC} ight).

    Do đó SM là trục của tam giác ABC.

    Trong mặt phẳng (SMB), kẻ đường trung trực d của đoạn SB cắt SM tại I . Khi đó I là tâm mặt cầu ngoại tiếp hình chóp S.ABC , bán kính R=SI

    Ta có AB = \sqrt {S{A^2} + S{B^2} - 2SA.SB.\cos \widehat {ASB}}  = a\sqrt 3 .

    Trong tam giác vuông SMB, ta có SM = SB.\cos \widehat {MSB} = a.\cos {60^0} = \frac{a}{2}.

    Ta có \Delta SMB \backsim\Delta SPI, suy ra

    \frac{{SM}}{{SB}} = \frac{{SP}}{{SI}} \Rightarrow R = SI = \frac{{SB.SP}}{{SM}} = a

  • Câu 19: Vận dụng
    Tìm tập hợp điểm I theo yêu cầu

    Tìm tập hợp các tâm I của mặt cầu (S):\
x^{2} + y^{2} + z^{2} + 2(3 - 4cost)x - 2(4sint + 1)y - 4z - 5 -
2sin^{2}t = 0,\ \ t\mathbb{\in R}.

    Hướng dẫn:

    Ta có:

    a = 4cost - 3;b = 4sint + 1;c = 2;d = -
5 - 2sin^{2}t

    \Rightarrow (4cost - 3)^{2} + (4sint +
1)^{2} + 9 + 2sin^{2}t > 0,\forall t\mathbb{\in R}

    Tâm I:x = 4cost - 3;y = 4sint + 1;z =
2

    \Rightarrow x + 3 = 4cost;y - 1 = 4sint
\Rightarrow (x + 3)^{2} + (y - 1)^{2} = 16

    Vậy tập hợp các tâm I là đường tròn (x +
3)^{2} + (y - 1)^{2} = 16;z - 2 = 0

  • Câu 20: Vận dụng cao
    Tính độ dài đoạn thẳng MN

    Trong không gian với hệ trục tọa độ Oxyzcho đường thẳng d:\frac{x - 2}{2} = \frac{y}{- 1} =
\frac{z}{4} và mặt cầu (S):(x -
1)^{2} + (y - 2)^{2} + (z - 1)^{2} = 2. Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với (S). Gọi M và N là tiếp điểm. Độ dài đoạn thẳng MN bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Từ (S) Tâm I(1;2;1) và bán kính R = \sqrt{2}

    Từ d Vectơ \overrightarrow{u} = (2; - 1;4)

    Hạ \overrightarrow{u} = (2; -
1;4) \Rightarrow H(2 + 2t; -
t;4t)

    \Rightarrow
\overrightarrow{IH}.\overrightarrow{u} = \overrightarrow{0}

    \Leftrightarrow (2t + 1).2 + ( - 1).( -
2 - t) + (4t - 1).4 = 0

    \Leftrightarrow t = 0 \Leftrightarrow
H(2;0;0)

    Xét tam giác \Delta IHM vuông tại M ta có:

    MH^{2} = IH^{2} - IM^{2} = 62 = 4
\Rightarrow MH = 2.

    Ta có \frac{1}{MK^{2}} = \frac{1}{MH^{2}}
+ \frac{1}{MI^{2}} = \frac{1}{4} + \frac{1}{2} = \frac{3}{4} \Rightarrow MK = \frac{2}{\sqrt{3}}.

    \Rightarrow MN = 2MK =
\frac{4}{\sqrt{3}}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo