Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu CTST (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính bán kính mặt cầu ngoại tiếp tứ diện

    Trong không gian với hệ tọa độ Oxyz, cho A(
- 1;0;0), B(0;0;2), C(0; - 3;0). Bán kính mặt cầu ngoại tiếp tứ diện OABC

    Hướng dẫn:

    Gọi (S) là mặt cầu ngoại tiếp tứ diện OABC.

    Phương trình mặt cầu (S) có dạng: x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0.

    O, A, B, C thuộc (S) nên ta có: \left\{ \begin{matrix}
d = 0 \\
1 + 2a + d = 0 \\
4 - 4c + d = 0 \\
9 + 6b + d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - \dfrac{1}{2} \\
b = - \dfrac{3}{2} \\
c = 1 \\
d = 0 \\
\end{matrix} ight..

    Vậy bán kính mặt cầu (S) là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{\frac{1}{4} + \frac{9}{4} + 1} = \frac{\sqrt{14}}{2}.

  • Câu 2: Thông hiểu
    Chọn phương án đúng

    Viết phương trình mặt cầu (S) qua gốc O và các giao điểm của mặt phẳng (P):\ \ \ 2x + y - 3z + 6 = 0 với ba trục tọa độ.

    Hướng dẫn:

    (P) cắt ba trục Ox,Oy,\ Oz tại A( - 3,0,0);B(0, - 6,0),C(0,0,2)

    (S):x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0\ \ qua\ O,\ A,\ B,\ C, nên:

    d = 0;\ \ 9 + 6a = 0 \Leftrightarrow a =
- \frac{3}{2};\ \ 36 + 12b = 0

    \Leftrightarrow b = - 3;\ \ 4 - 4c = 0
\Leftrightarrow c = 1

    Vậy (S):x^{2} + y^{2} + z^{2} + 3x + 6y -
2z = 0

  • Câu 3: Vận dụng
    Viết phương trình mặt phẳng (P)

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 6y - 4z
- 2 = 0 và mặt phẳng (α) : x + 4y + z − 11 = 0. Viết phương trình mặt phẳng (P), biết (P) song song với giá của vectơ \overrightarrow{v} = (1;6;2), vuông góc với (α) và tiếp xúc với (S).

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; −3; 2) và bán kính R = 4.

    Vectơ pháp tuyến của (α) là \overrightarrow{n_{(\alpha)}} =
(1;4;1)

    Theo giả thiết, suy ra (P) có vectơ pháp tuyến là \overrightarrow{n_{(P)}} = \left\lbrack
\overrightarrow{v};\overrightarrow{n_{(\alpha)}} ightbrack = (2; -
1;2)

    Phương trình của mặt phẳng (P) có dạng 2x − y + 2z + D = 0

    Vì (P) tiếp xúc với mặt cầu (S) nên ta có:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2 + 3 + 4 + D|}{\sqrt{2^{2} + 1^{2} + 2^{2}}} =
4

    \Leftrightarrow |9 + D| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
D = 3 \\
D = - 21 \\
\end{matrix} ight.

    Vậy có 2 mặt phẳng thỏa yêu cầu bài toán có phương trình là: \left\lbrack \begin{matrix}
(P):2x - y + 2z + 3 = 0 \\
(P):2x - y + 2z - 21 = 0 \\
\end{matrix} ight.

  • Câu 4: Vận dụng
    Ghi đáp án vào ô trống

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Đáp án là:

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Ta đặt hệ trục vào căn phòng sao cho có hai bức tường là mặt (Oxz),(Oyz), và nền là (Oxy)

    Vậy bài toán dẫn đến việc tìm đường kính của mặt cầu tiếp xúc với 3 mặt phẳng toạ độ và chứa điểm M(17\ ;\ 18\ ;\ 21).

    Ta có thể gọi phương trình mặt cầu là (S):(x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}, với a,b,c,R >
0

    Do mặt cầu tiếp xúc với các mặt phẳng toạ độ nên a = b = c = R

    \Rightarrow (S):(x - a)^{2} + (y -
a)^{2} + (z - a)^{2} = a^{2}

    Do M(17\ ;\ 18\ ;\ 21) \in (S) nên (17 - a)^{2} + (18 - a)^{2} + (21 -
a)^{2} = a^{2}.

    \Rightarrow 2a^{2} - 112a + 1054 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = 28 - \sqrt{257} \\
a = 28 + \sqrt{257} \\
\end{matrix} ight.

    Vì quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm nên a = 28 - \sqrt{257} thỏa.

    Vậy đường kính quả bóng bằng 2a = 56 -
2\sqrt{257} \approx 23,9\ (cm).

  • Câu 5: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Một tháp kiểm soát không lưu ở sân bay cao 109 m đặt một đài kiểm soát không lưu ở độ cao 105m. Máy bay trong phạm vi cách đài kiểm soát 450\
km sẽ hiển thị trên màn hình ra đa. Chọn hệ trục toạ độ Oxyz có gốc O trùng với vị trí chân tháp, mặt phẳng (Oxy) trùng với mặt đất sao cho trục Ox là hướng tây, trục Oy là hướng nam và trục Oz là trục thẳng đứng (như hình vẽ), đơn vị trên mỗi trục là kilômét.

    Một máy bay đang ở vị trí Acách mặt đất 8\ km, cách 268\ km về phía đông, 185\ km về phía nam so với tháp kiểm soát không lưu và đang chuyển động theo đường thẳng dcó vectơ chỉ phương là \overrightarrow{u} = (82; 76; 0) hướng về đài kiểm soát không lưu. Các khẳng định dưới đây đúng hay sai?

    a) Đài kiểm soát không lưu có toạ độ là (0;0;0).Sai||Đúng

    b) Vị trí Acó toạ độ là ( - 268;185;8). Đúng||Sai

    c) Đài kiểm soát không lưu có phát hiện được máy bay tại vị trí A. Đúng||Sai

    d) Khoảng cách gần nhất giữa máy bay và đài kiểm soát không lưu là 217,96\ km. Sai||Đúng

    Đáp án là:

    Một tháp kiểm soát không lưu ở sân bay cao 109 m đặt một đài kiểm soát không lưu ở độ cao 105m. Máy bay trong phạm vi cách đài kiểm soát 450\
km sẽ hiển thị trên màn hình ra đa. Chọn hệ trục toạ độ Oxyz có gốc O trùng với vị trí chân tháp, mặt phẳng (Oxy) trùng với mặt đất sao cho trục Ox là hướng tây, trục Oy là hướng nam và trục Oz là trục thẳng đứng (như hình vẽ), đơn vị trên mỗi trục là kilômét.

    Một máy bay đang ở vị trí Acách mặt đất 8\ km, cách 268\ km về phía đông, 185\ km về phía nam so với tháp kiểm soát không lưu và đang chuyển động theo đường thẳng dcó vectơ chỉ phương là \overrightarrow{u} = (82; 76; 0) hướng về đài kiểm soát không lưu. Các khẳng định dưới đây đúng hay sai?

    a) Đài kiểm soát không lưu có toạ độ là (0;0;0).Sai||Đúng

    b) Vị trí Acó toạ độ là ( - 268;185;8). Đúng||Sai

    c) Đài kiểm soát không lưu có phát hiện được máy bay tại vị trí A. Đúng||Sai

    d) Khoảng cách gần nhất giữa máy bay và đài kiểm soát không lưu là 217,96\ km. Sai||Đúng

    a) Sai.

    Gốc O trùng với vị trí chân tháp và đài kiểm soát không lưu được đặt ở độ cao 105\ mnên có toạ độ là (0;0;0,105)

    b) Đúng.

    Hệ trục toạ độ Oxyzcó trục Oxlà hướng tây, trục Oylà hướng nam và trục Ozlà trục thẳng đứng và vị trí Acách mặt đất 8\ km, cách 268\ kmvề phía đông, 185\ kmvề phía nam nên có toạ độ là ( - 268;185;8).

    c) Đúng.

    Khoảng cách từ máy bay đến đài kiểm soát không lưu là:

    \sqrt{(0 + 268)^{2} + (0 - 185)^{2} +
(0,105 - 8)^{2}} \approx 325,75 (km).

    325,75 < 450 nên đài kiểm soát không lưu có phát hiện được máy bay tại vị trí A.

    d) Sai.

    Gọi I(0;0;0,105) là vị trí đài kiểm soát không lưu.

    Phương trình tham số của đường thẳng dlà:\left\{
\begin{matrix}
x = - 268 + 82t \\
y = 185 + 76t \\
z = 8
\end{matrix} \right. (tlà tham số)

    Gọi Mlà vị trí mà máy bay bay gần đài kiểm soát không lưu nhất khi đó:

    \left\{ \begin{matrix}
M \in d \\
IM\bot d
\end{matrix} \right. hay M( - 268
+ 82t;185 + 76t;8)

    \overrightarrow{IM}.\overrightarrow{u} =
0

    \Leftrightarrow ( - 268 + 82t).82 + (185
+ 76t).76 + (8 - 0,105).0 = 0

    \Leftrightarrow 12500t - 7916 = 0
\Leftrightarrow t = \frac{1979}{3125}

    \Rightarrow M( -
216,07;233,13;8)

    Khoảng cách gần nhất giữa máy bay và đài kiểm soát không lưu là:

    \sqrt{( - 216,07)^{2} + (233,13) + (8 -
0,105)^{2}} \approx 317,96(km).

  • Câu 6: Vận dụng cao
    Tính thể tích khối tứ diện

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(a;0;0),B(0;b;0),C(0;0;c), trong đó a > 0,b > 0,c > 0\frac{1}{a} + \frac{2}{b} + \frac{3}{c} =
7. Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S):(x - 1)^{2} + (y -
2)^{2} + (y - 3)^{2} = \frac{72}{7}. Thể tích của khối tứ diện OABC là.

    Hướng dẫn:

    Cách 1:

    Ta có : (ABC):\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1 \Leftrightarrow bcx + acy + abz - abc = 0.

    Theo bài ra có: \frac{1}{a} + \frac{2}{b}
+ \frac{3}{c} = 7 \Leftrightarrow bc + 2ca + 3ab = 7abc.

    Mặt phẳng (ABC) tiếp xúc với mặt cầu (S) \Rightarrow d\left( I;(ABC) \right)
= R

    \Leftrightarrow \frac{|bc + 2ca + 3ab -
abc|}{\sqrt{b^{2}c^{2} + c^{2}a^{2} + a^{2}b^{2}}} =
\sqrt{\frac{72}{7}}

    \Leftrightarrow \frac{1}{36}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} \right) =
\frac{7}{72} \Leftrightarrow \frac{1}{a^{2}} + \frac{1}{b^{2}} +
\frac{1}{c^{2}} = \frac{7}{2}.

    Ta có \frac{1}{a} + \frac{2}{b} +
\frac{3}{c} = 7

    \Leftrightarrow 7 = \left( \frac{1}{a} +
2.\frac{1}{b} + 3.\frac{1}{c} \right)^{2} \leq (1 + 4 + 9)\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}}
\right).

    Dấu bằng xảy ra \Leftrightarrow \left\{\begin{matrix}a = 2b = 3c \\\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 7\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix} a = 2 \\b = 1 \\c = \frac{2}{3}\end{matrix} \right..

    VậyV_{OABC} = \frac{1}{6}abc =
\frac{1}{6}.2.1.\frac{2}{3} = \frac{2}{9}.

    Cách 2:

    Ta có (ABC):\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1\frac{1}{a} +
\frac{2}{b} + \frac{3}{c} = 7 suy ra M\left( \frac{1}{7};\frac{2}{7};\frac{3}{7}\right)\in (ABC).

    Lại có M\left(
\frac{1}{7};\frac{2}{7};\frac{3}{7} \right) \in (S) nên (ABC) tiếp xúc với (S) tại M.

    Suy ra (ABC):\frac{x}{2} + \frac{y}{1} +
\frac{z}{\frac{2}{3}} = 1 nên V_{OABC} = \frac{1}{6}abc =
\frac{1}{6}.2.1.\frac{2}{3} = \frac{2}{9}.

  • Câu 7: Thông hiểu
    Chọn phương án đúng

    Cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Phương trình mặt cầu đi qua ba điểm A,B,C và có tâm thuộc mặt phẳng (P) là:

    Hướng dẫn:

    Phương mặt cầu (S) có dạng: x^{2} + y^{2} + z^{2} - 2Ax - 2By - 2Cz + D
= 0, ta có :

    \left\{ \begin{matrix}
A(2;0;1) \in (S) \\
B(1;0;0) \in (S) \\
C(1;1;1) \in (S) \\
I \in (P) \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
- 4A - 2C + D = - 5\ \ \ \ \ (1) \\
- 2A + D = - 1\ \ \ \ \ \ \ (2) \\
- 2A - 2B - 2C + D = - 3\ \ \ \ \ (3) \\
A + B + C = 2\ \ \ \ \ \ (4) \\
\end{matrix} \right.

    Lấy (1) - (2); (2) - (3); kết hợp (4) ta được hệ:

    \left\{ \begin{matrix}
- 2A - 2C = - 4 \\
2B + 2C = 2 \\
A + B + C = 2 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
A = 1 \\
B = 0 \Rightarrow \\
C = 1 \\
\end{matrix} \right.\ D = 1

    Vậy phương trình mặt cầu là : x^{2} +
y^{2} + z^{2} - 2x - 2z + 1 = 0.

    Lưu ý : Ở câu này nếu nhanh trí chúng ta có thể sử dụng máy tính cầm tay thay ngay tọa độ tâm của các mặt cầu ở 4 đáp án trên vào phương trình mặt phẳng (P) để loại ngay được các đáp án có tọa độ tâm không thuộc mặt phẳng (P)

  • Câu 8: Vận dụng
    Tính diện tích mặt cầu (S)

    Cho hình hợp chữ nhật ABCD.EFGH có A(0,0,0);\ \ \ B(4,0,0);\ \ \ D(0,6,0);\ \ \
E(0,0,2). Tính diện tích mặt cầu (S) ngoại tiếp hình hợp chữ nhật.

    Hướng dẫn:

    Mặt cầu (S) ngoại tiếp hình hợp chữ nhật có tâm là trung điểm chung của 4 đường chéo bằng nhau của hình hộp và có đường chéo bằng đường chéo. (Học sinh tự vẽ hình)

    AG^{2} = AC^{2} + AE^{2} = AB^{2} +
AD^{2} + AE^{2}= 16 + 36 + 4 = 56

    R = \frac{AG}{2} \Rightarrow R^{2} =
\frac{AG^{2}}{4} = \frac{56}{4} = 14 \Rightarrow S = 4\pi R^{2} = 56\piđvdt

  • Câu 9: Vận dụng
    Xác định phương trình mặt cầu

    Cho tứ diện ABCD có A(1,1,1);\ \ \
B(3,3,1);\ \ \ C(3,1,3);\ \ \ D(1,3,3). Viết phương trình mặt cầu \left( S_{1} \right) tiếp xúc với 6 cạnh của tứ diện.

    Hướng dẫn:

    Ta có:

    \overrightarrow{AB} = (2,2,0);\ \
\overrightarrow{AC} = (2,0,2);\overrightarrow{AD} =
(0,2,2);\overrightarrow{BC} = (0, - 2,2);

    \overrightarrow{BD} = ( -
2,0,2);\overrightarrow{CD} = ( - 2,2,0).

    \Rightarrow AB = AC = AD = BC = BD = CD =
2\sqrt{2}

    \Rightarrow Mặt cầy \left( S_{2} \right) tiếp xúc với 6 cạnh tại trung điểm của chúng.

    Gọi I và J là trung điểm của AB và CD \Rightarrow I(2,2,1);J(2,2,3)

    \Rightarrow IJ = 2.\ \ \left( S_{1}
\right) có bán kính R_{1} =
1, tâm E(2,2,2)

    \Rightarrow \left( S_{1} \right):(x -
2)^{2} + (y - 2)^{2} + (z - 2)^{2} = 1

    Chú ý: Tứ diện đều ABCD có tâm E:\left\{ \begin{matrix}
x = \frac{1}{4}(1 + 3 + 3 + 1) = 2 \\
y = \frac{1}{4}(1 + 3 + 1 + 3) = 2 \\
z = \frac{1}{4}(1 + 1 + 3 + 3) = 2 \\
\end{matrix} \right. cũng là tâm của mặt cầu \left( S_{1} \right). Bán kính của \left( S_{1} \right):R_{1} = d(E,\ \ AB) =
1

  • Câu 10: Vận dụng cao
    Xác định số mặt phẳng

    Trong không gian Oxyz, cho 3 điểm A(3;7;1),B(8;3;8)C(3;3;0). Gọi \left( S_{1} \right) là mặt cầu tâm A bán kính bằng 3 và \left( S_{2} \right) là mặt cầu tâm B bán kính bằng 6. Hỏi có tất cả bao nhiêu mặt phẳng đi qua C và tiếp xúc đồng thời với cả hai mặt cầu \left( S_{1} \right),\left( S_{2}
\right)?

    Hướng dẫn:

    Phương trình mặt phẳng qua C có dạng (P):m(x - 3) + n(y - 3) + pz = 0,m^{2} + n^{2} +
p^{2} > 0.

    Mặt phẳng (P) tiếp xúc \left( S_{1} \right) ta có |4n + p| = 3\sqrt{m^{2} + n^{2} + p^{2}} (1)

    Mặt phẳng (P) tiếp xúc \left( S_{2} \right) ta có |5m + 8p| = 6\sqrt{m^{2} + n^{2} + p^{2}} (2)

    Từ đây ta có phương trình |5m + 8p| =
2|4n + p| \Leftrightarrow \left\lbrack \begin{matrix}
5m = 8n - 6p\ \ \ (3) \\
5m = - 8n - 10p\ \ \ (4)
\end{matrix} \right.

    Từ (1), (3) ta có:

    (4n + p)^{2} = 9\left\lbrack \left(
\frac{8n - 6p}{5} \right)^{2} + n^{2} + p^{2} \right\rbrack

    \Leftrightarrow 401n^{2} - 1064np +
524p^{2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 2p \\
n = \frac{262}{401}p
\end{matrix} \right.

    Trường hợp này ta tìm được hai mặt phẳng:

    \left( P_{1} \right):2x + 2y + z - 12 =
0

    \left( P_{2} \right):62x - 262y - 101z +
600 = 0

    Từ (1); (4) ta có:

    (4n + p)^{2} = 9\left\lbrack \left(
\frac{8n + 10p}{5} \right)^{2} + n^{2} + p^{2}
\right\rbrack

    \Leftrightarrow 401n^{2} + 1240np +
1100p^{2} = 0 \Leftrightarrow n = p = 0

    Trường hợp này không có mặt phẳng nào.

  • Câu 11: Vận dụng cao
    Tính giá trị nhỏ nhất của biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt cầu \left( S_{1} ight):x^{2} + y^{2} + z^{2} =1,\left( S_{2} ight):x^{2} + (y -4)^{2} + z^{2} = 4 và các điểm A(4;0;0),B\left( \frac{1}{4};0;0ight),C(1;4;0),D(4;4;0). Gọi M là điểm thay đổi trên \left( S_{1} ight),N là điểm thay đổi trên \left( S_{2} ight). Giá trị nhỏ nhất của biểu thức Q = MA + 2ND + 4MN +6BC là:

    Hướng dẫn:

    Hình vẽ minh họa

    Mặt cầu \left( S_{1} ight) có tâm O(0;0;0) bán kính bằng 1; mặt cầu \left( S_{2} ight) có tâm I(0;4;0) bán kính bằng 2 .
    Ta có 4 diểm O,A,D,I là 4 dỉnh của hình vuông cạnh bằng 4 và OB =\frac{1}{4},IC = 1.
    Ta có \bigtriangleup OMA \backsim\bigtriangleup OBM (c.g.c) \Rightarrow \frac{MA}{BM} = \frac{OM}{OB}\Rightarrow MA = 4MB.
    Ta có \bigtriangleup IND \backsim\bigtriangleup ICN (c.g.c) \Rightarrow \frac{ND}{CN} = \frac{IN}{IC} = 2\Rightarrow ND = 2NC.

    Q = 4MB + 4NC + 4MN + 6BC

    = 4(BM + MN + NC) + 6BC

    \  \geq 4BC + 6BC = 10BC = 10 \cdot\frac{\sqrt{265}}{4} = \frac{5\sqrt{265}}{2}

    Vậy Q nhỏ nhất là bằng \frac{5\sqrt{265}}{2}, dấu " = " xảy ra khi M,N là giao điểm của BC với các mặt cầu.

  • Câu 12: Vận dụng
    Chọn phương án thích hợp

    Cho mặt phẳng (P):x - 2y - 2z + 10 =0 và hai đường thẳng \Delta_{1}:\
\frac{x - 2}{1} = \frac{y}{1} = \frac{z - 1}{- 1}, \ \Delta_{2}:\frac{x - 2}{1} = \frac{y}{1} =
\frac{z + 3}{4}. Mặt cầu (S) có tâm thuộc \Delta_{1}, tiếp xúc với \Delta_{2} và mặt phẳng (P), có phương trình:

    Hướng dẫn:

    Ta có:

    \Delta_{1}:\left\{ \begin{matrix}
x = 2 + t \\
y = t \\
z = 1 - t \\
\end{matrix} \right.; \Delta_{2} đi qua điểm A(2;0; - 3) và có vectơ chỉ phương \overrightarrow{a_{2}} = (1;1;4).

    Giả sử I(2 + t;t;1 - t) \in
\Delta_{1} là tâm và R là bán kính của mặt cầu (S).

    Ta có: \overrightarrow{AI} = (t;t;4 -
t) \left\lbrack
\overrightarrow{AI},\overrightarrow{a_{2}} \right\rbrack = (5t - 4;4 -
5t;0)

    d\left( I;\Delta_{2} \right) =
\frac{\left| \left\lbrack \overrightarrow{AI},\overrightarrow{a_{2}}
\right\rbrack \right|}{\left| \overrightarrow{a_{2}} \right|} =
\frac{|5t - 4|}{3}

    d(I,(P)) = \frac{\left| 2 + t - 2t - 2(1
- t) + 10 \right|}{\sqrt{1 + 4 + 4}} = \frac{|t + 10|}{3}.

    (S) tiếp xúc với \Delta_{2}(P) d(I,\Delta_{2}) = d(I,(P)) |5t - 4| = |t + 10| \left\lbrack \begin{matrix}
t = \frac{7}{2} \\
t = - 1 \\
\end{matrix} \right..

    Với t = \frac{7}{2} I\left( \frac{11}{2};\frac{7}{2}; - \frac{5}{2}
\right), R = \frac{9}{2} (S):\left( x - \frac{11}{2} \right)^{2} +
\left( y - \frac{7}{2} \right)^{2} + \left( z + \frac{5}{2} \right)^{2}
= \frac{81}{4}.

    Với t = - 1 I(1; - 1;2),\ R = 3 (S):(x - 1)^{2} + (y + 1)^{2} + (z - 2)^{2} =
9.

  • Câu 13: Thông hiểu
    Xét tính đúng sai của các khẳng định dưới đây

    Trong không gian với hệ tọa độ Oxyz (đơn vị trên trục là kilomet), một trạm thu phát sóng điện thoại di động (hình vẽ dưới đây) được đặt ở vị trí I( - 4;\ 2;\ 5). Biết rằng trạm phát sóng được thiết kế với bán kính phủ sóng là 4 km.

    a) Phương trình mặt cầu mô tả ranh giới bên ngoài của vùng phủ sóng là:

    (x + 4)^{2} + (y - 2)^{2} + (z - 5)^{2} =
16. Đúng||Sai

    b) Điểm A(3;\ 5;\  - 6) nằm phía trong mặt cầu đó.Sai||Đúng

    c) Nếu người dùng đứng ở vị trí điểm B( -2; 3; 0) thì không thể sử dụng dịch vụ của trạm phát sóng này. Đúng||Sai

    d) Nếu người dùng đứng ở vị trí điểm M( -
4;\ 6;\ 2) thì quãng đường ngắn nhất người đó phải di chuyển để đến được vị trí có thể sử dụng dịch vụ của trạm phát sóng là 1 km. Đúng||Sai

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz (đơn vị trên trục là kilomet), một trạm thu phát sóng điện thoại di động (hình vẽ dưới đây) được đặt ở vị trí I( - 4;\ 2;\ 5). Biết rằng trạm phát sóng được thiết kế với bán kính phủ sóng là 4 km.

    a) Phương trình mặt cầu mô tả ranh giới bên ngoài của vùng phủ sóng là:

    (x + 4)^{2} + (y - 2)^{2} + (z - 5)^{2} =
16. Đúng||Sai

    b) Điểm A(3;\ 5;\  - 6) nằm phía trong mặt cầu đó.Sai||Đúng

    c) Nếu người dùng đứng ở vị trí điểm B( -2; 3; 0) thì không thể sử dụng dịch vụ của trạm phát sóng này. Đúng||Sai

    d) Nếu người dùng đứng ở vị trí điểm M( -
4;\ 6;\ 2) thì quãng đường ngắn nhất người đó phải di chuyển để đến được vị trí có thể sử dụng dịch vụ của trạm phát sóng là 1 km. Đúng||Sai

    a) Đúng

    Mặt cầu tâm I( - 4;\ 2;\ 5) , bán kính R = 4 có phương trình là:

    (x + 4)^{2} + (y - 2)^{2} + (z - 5)^{2}
= 16

    b) Sai

    Ta có: IA = \sqrt{7^{2} + 3^{2} + ( -
11)^{2}} = \sqrt{179} > R .

    Vậy điểm A nằm phía ngoài mặt cầu đó.

    c) Đúng

    Ta có: IB = \sqrt{2^{2} + 1^{2} + ( -
5)^{2}} = \sqrt{30} > R , từ đó suy ra nếu người dùng đứng ở vị trí điểm B( - 2;\ 3;\ 0) thì không thể sử dụng dịch vụ của trạm phát sóng này.

    d) Đúng

    Với điểm M( - 4;\ 6;\ 2) ta có: IM = \sqrt{0^{2} + 4^{2} + ( - 3)^{2}} = 5
> R

    Quãng đường ngắn nhất mà người đứng ở điểm M( - 4;\ 6;\ 2) phải di chuyển để đến được vùng phủ sóng là đoạn thẳng MH , với H là giao điểm của đoạn thẳng MI với mặt cầu.

    Khi đó, MH = MI - R = 5 - 4 =
1 km.

  • Câu 14: Vận dụng
    Tìm bán kính mặt cầu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA = BC = a. Cạnh bên SA = 2a và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC  là:

    Hướng dẫn:

     Tìm bán kính

    Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.

    Gọi I là trung điểm SC, suy ra IM ||SA nên IM \bot \left( {ABC} ight) .

    Do đó IM là trục của \triangle ABC, suy ra IA=IB=IC     (1)

    Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên IS=IC=IA.  (2)

    Từ (1) và (2) , ta có IS=IA=IB=IC

    hay I là tâm của mặt cầu ngoại tiếp hình chóp S.ABC.

    Vậy bán kính R = IS = \frac{{SC}}{2} = \frac{{\sqrt {S{A^2} + A{C^2}} }}{2} = \frac{{a\sqrt 6 }}{2} .

  • Câu 15: Vận dụng
    Tính diện tích mặt cầu ngoại tiếp tứ diện

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2; - 2). Mặt phẳng (\alpha) đi qua H và cắt các trục Ox,Oy,Oz lần lượt tại các điểm A,B,C sao cho H là trực tâm của \Delta ABC. Tính diện tích mặt cầu ngoại tiếp tứ diện OABC?

    Hướng dẫn:

    Gọi A(a; 0; 0), B(0; b; 0), C(0; 0; c) lần lượt thuộc các trục tọa độ Ox, Oy, Oz.

    Khi đó ta có phương trình mặt phẳng (α) đi qua các điểm A, B, C là

    \frac{x}{a} + \frac{y}{b} + \frac{z}{c}
= 1

    H \in (\alpha) \Rightarrow \frac{1}{a}
+ \frac{2}{b} - \frac{2}{c} = 1\ \ (1)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AM} = (1 - a;2; - 2);\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{BH} = (1;2 - b; - 2);\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight.

    Theo đề bài ta có H là trực tâm \Delta
ABC, ta có:

    \left\{ \begin{matrix}
\overrightarrow{AM}\bot\overrightarrow{BC} \\
\overrightarrow{BH}\bot\overrightarrow{AC} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AM}.\overrightarrow{BC} = 0 \\
\overrightarrow{BH}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 2b - 2c = 0 \\
- a - 2c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 2c \\
b = - c \\
\end{matrix} ight. thay vào (1) ta được:

    \frac{1}{- 2c} + \frac{2}{- c} -
\frac{2}{c} = 1 \Rightarrow c = - \frac{9}{2} \Rightarrow a = 9;b =
\frac{9}{2}

    \Rightarrow \left\{ \begin{matrix}A(9;0;0) \\B\left( 0;\dfrac{9}{2};0 ight) \\C\left( 0;0; - \dfrac{9}{2} ight) \\\end{matrix} ight.. Gọi I\left(
x_{0};y_{0};z_{0} ight)là tâm mặt cầu ngoại tiếp chóp tứ giác OABC, ta có:

    \left\{ \begin{matrix}OI = IA \\OI = IB \\OI = IC \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}{x_{0}}^{2} + {y_{0}}^{2} + {z_{0}}^{2} = \left( x_{0} - 9 ight)^{2} +{y_{0}}^{2} + {z_{0}}^{2} \\{x_{0}}^{2} + {y_{0}}^{2} + {z_{0}}^{2} = {x_{0}}^{2} + \left( y_{0} -\dfrac{9}{2} ight)^{2} + {z_{0}}^{2} \\{x_{0}}^{2} + {y_{0}}^{2} + {z_{0}}^{2} = {x_{0}}^{2} + {y_{0}}^{2} +\left( z_{0} - \dfrac{9}{2} ight)^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}{x_{0}}^{2} = \left( x_{0} - 9 ight)^{2} \\{y_{0}}^{2} = \left( y_{0} - \dfrac{9}{2} ight)^{2} \\{z_{0}}^{2} = \left( z_{0} - \dfrac{9}{2} ight)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{0} = - x_{0} - 9 \\y_{0} = - y_{0} - \dfrac{9}{2} \\z_{0} = - z_{0} - \dfrac{9}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x_{0} = \dfrac{9}{2} \\y_{0} = \dfrac{9}{4} \\z_{0} = - \frac{9}{4} \\\end{matrix} ight.

    Vậy I\left( \frac{9}{2};\frac{9}{4}; -
\frac{9}{4} ight);R = OI = \frac{9\sqrt{6}}{4}

    \Rightarrow S_{(I)} = 4\pi R^{2} =
4\pi.\left( \frac{9\sqrt{6}}{4} ight)^{2} =
\frac{243\pi}{2}

  • Câu 16: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Hệ thống định vị toàn cầu (tên tiếng Anh là: Global Positioning System, viết tắt là GPS) là một hệ thống cho phép xác định chính xác vị trí của một vật thể trong không gian. Ta có thể mô phỏng cơ chế hoạt động của hệ thoogns GPS trong không gian như sau: Trong cùng một thời điểm, tọa độ của một điểm M trong không gian sẽ được xác định bởi bốn vệ tinh, trên mỗi vệ tinh có một máy thu tín hiệu. Bằng cách so sánh sự sai lệch về thời gian từ lúc tín hiệu được phát đi với thời gian nhận phản hồi tín hiệu đó, mỗi máy thu tín hiệu xác định được khoảng cách từ vệ tinh đến vị trí M cần tìm tọa độ. Như vậy điểm M là giao điểm của bốn mặt cầu với tâm lần lượt là bốn vệ tinh đã cho.

    Trong không gian với hệ tọa độ Oxyz cho bốn vệ tinh A(3;\  - 1;\ 6), B(1;\ 4;\ 8), C(7;\ 9;\ 6), D(7;\  - 15;\ 18). Các khẳng định dưới đây đúng hay sai?

    a) Phương trình mặt cầu tâm A bán kính bằng 6 có phương trình là:

    (x - 3)^{2} + (y + 1)^{2} + (z - 6)^{2} =
36.Đúng||Sai

    b) Nếu điểm M(x;\ y;\ z) thuộc mặt cầu tâm B bán kính bằng 7 thì tọa độ điểm Mthỏa mãn phương trình: (x - 1)^{2} + (y - 4)^{2} + (z - 8)^{2} =
7.Sai||Đúng

    c) Khoảng cách từ điểm N(2;\  - 3;\
5) đến vệ tinh D là lớn nhất. Đúng||Sai

    d) Biết khoảng cách từ điểm M(x;\ y;\
z) đến các vệ tinh lần lượt là MA =
6, MB = 7, MC = 12, MD =
24. Khi đó x + y + z =
4.Sai||Đúng

    Đáp án là:

    Hệ thống định vị toàn cầu (tên tiếng Anh là: Global Positioning System, viết tắt là GPS) là một hệ thống cho phép xác định chính xác vị trí của một vật thể trong không gian. Ta có thể mô phỏng cơ chế hoạt động của hệ thoogns GPS trong không gian như sau: Trong cùng một thời điểm, tọa độ của một điểm M trong không gian sẽ được xác định bởi bốn vệ tinh, trên mỗi vệ tinh có một máy thu tín hiệu. Bằng cách so sánh sự sai lệch về thời gian từ lúc tín hiệu được phát đi với thời gian nhận phản hồi tín hiệu đó, mỗi máy thu tín hiệu xác định được khoảng cách từ vệ tinh đến vị trí M cần tìm tọa độ. Như vậy điểm M là giao điểm của bốn mặt cầu với tâm lần lượt là bốn vệ tinh đã cho.

    Trong không gian với hệ tọa độ Oxyz cho bốn vệ tinh A(3;\  - 1;\ 6), B(1;\ 4;\ 8), C(7;\ 9;\ 6), D(7;\  - 15;\ 18). Các khẳng định dưới đây đúng hay sai?

    a) Phương trình mặt cầu tâm A bán kính bằng 6 có phương trình là:

    (x - 3)^{2} + (y + 1)^{2} + (z - 6)^{2} =
36.Đúng||Sai

    b) Nếu điểm M(x;\ y;\ z) thuộc mặt cầu tâm B bán kính bằng 7 thì tọa độ điểm Mthỏa mãn phương trình: (x - 1)^{2} + (y - 4)^{2} + (z - 8)^{2} =
7.Sai||Đúng

    c) Khoảng cách từ điểm N(2;\  - 3;\
5) đến vệ tinh D là lớn nhất. Đúng||Sai

    d) Biết khoảng cách từ điểm M(x;\ y;\
z) đến các vệ tinh lần lượt là MA =
6, MB = 7, MC = 12, MD =
24. Khi đó x + y + z =
4.Sai||Đúng

    a) Đúng

    Mặt cầu tâm A(3;\  - 1;\ 6) bán kính bằng 6 có phương trình là: (x - 3)^{2}
+ (y + 1)^{2} + (z - 6)^{2} = 36

    b) Sai

    Mặt cầu tâm B bán kính bằng 7 có phương trình là: (x - 1)^{2} + (y - 4)^{2} +
(z - 8)^{2} = 49.

    Do đó, nếu điểm M(x;\ y;\ z) thuộc mặt cầu tâm B bán kính bằng 7 thì tọa độ điểm Mthỏa mãn phương trình: (x - 1)^{2} + (y - 4)^{2} + (z -
8)^{2} = 49.

    c) Đúng

    Với bốn vệ tinh A(3;\  - 1;\ 6), B(1;\ 4;\ 8), C(7;\ 9;\ 6), D(7;\  - 15;\ 18) và một điểm N(2;\  - 3;\ 5), ta có:

    \begin{matrix}NA = \sqrt{( - 1)^{2} + ( - 2)^{2} + ( - 1)^{2}} = \sqrt{6}\hfill  \\NB = \sqrt{1^{2} + ( - 7)^{2} + ( - 3)^{2}} = \sqrt{59} \hfill\\NC = \sqrt{( - 5)^{2} + ( - 12)^{2} + ( - 1)^{2}} = \sqrt{170}\hfill \\ND = \sqrt{( - 5)^{2} + 12^{2} + ( - 13)^2} = \sqrt{338}\end{matrix}

    Vậy khoảng cách từ điểm N(2;\  - 3;\
5) đến vệ tinh D là lớn nhất.

    d) Sai

    Khoảng cách từ điểm M(x;\ y;\ z) đến các vệ tinh lần lượt là MA = 6, MB = 7, MC = 12, MD =
24 nên ta có hệ phương trình:

    \left\{ \begin{matrix}(x - 3)^{2} + (y + 1)^{2} + (z - 6)^{2} = 36 \\(x - 1)^{2} + (y - 4)^{2} + (z - 8)^{2} = 49 \\(x - 7)^{2} + (y - 9)^{2} + (z - 6)^{2} = 144 \\(x - 7)^{2} + (y + 15)^{2} + (z - 18)^{2} = 576\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}- 4x + 10y + 4z = 22 \\8x + 20y = 12 \\8x - 28y + 24z = 12\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}x = - 1 \\y = 1 \\z = 2\end{matrix} \right.\  \Rightarrow M( - 1; 1; 2)

    Do đó, x + y + z = 2.

  • Câu 17: Vận dụng cao
    Tính giá trị của biểu thức

    Trong không gian Oxyz, cho điểm A(1;2;-1) và mặt phẳng (P):x+y+2z-13=0. Xét các mặt cầu (S) có tâm I(a;b;c), đi qua điểm A, tiếp xúc với mặt phẳng (P) . Tính giá trị của biểu thức T=a^2+2b^2+3c^2 khi (S) có bán kính nhỏ nhất.

    Hướng dẫn:

     Gọi H là hình chiếu của I trên mặt phẳng (P) ta có IA + IH =2R nên R nhỏ nhất khi I, A, H thẳng hàng và I là trung điểm của AH.

    Phương trình AH đi qua A và vuông góc với mặt phẳng (P) có phương trình là

    \left\{\begin{matrix} x=1+t \\ y=2+t \\ z=-1+2t \end{matrix}ight.

    Tọa độ H là nghiệm (x;y;z) của hệ:

    \left\{\begin{matrix} x=1+t \\ y=2+t \\ z=-1+2t \\ x+y+2z-13=0 \end{matrix}ight.

    \Rightarrow H(3;4;3)\Rightarrow I(2;3;1)

    Suy ra, ta có: T=a^2+2b^2+3c^2 =2^2+2.3^2+3.1^2=25

  • Câu 18: Vận dụng
    Chọn kết luận đúng

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2; - 2). Mặt phẳng (\alpha) đi qua H và cắt các trục Ox;Oy;Oz tại A;B;C sao cho H là trực tâm tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha)?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có H là trực tâm của tam giác ABC suy ra OH\bot(ABC)

    Thật vậy \left\{ \begin{matrix}
OH\bot OA \\
OH\bot OB \\
\end{matrix} ight.\  \Rightarrow OC\bot AB(1)

    CH\bot AB (vì H là trực tâm tam giác ABC) (2)

    Từ (1) và (2) suy ra AB\bot(OHC) suy ra AB\bot OH(*)

    Tương tự BC\bot(OAH) \Rightarrow BC\bot
OH(**)

    Từ (*) và (**) suy ra OH\bot(ABC)

    Khi đó mặt cầu tâm O tiếp xúc với mặt phẳng (ABC) có bán kính R = OH = 3

    Vây mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha) là: x^{2} + y^{2} + z^{2} = 9.

  • Câu 19: Vận dụng cao
    Xác định bán kính mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm S(0;0;1)A(1;1;1). Hai điểm M(m;0;0),N(0  ;n;0) thay đổi sao cho m + n = 1m > 0,n > 0. Biết rằng luôn tồn tại một mặt cầu cố định đi qua A và tiếp xúc với mặt phẳng (SMN). Bán kính của mặt cầu đó là:

    Hướng dẫn:

    Phương trình mặt phẳng (SMN)\frac{x}{m} + \frac{y}{n} + \frac{z}{1} =1

    \Leftrightarrow nx + my + mnz - mn =0.

    Gọi I(a;b;c)R là tâm và bán kính của mặt cầu cố định.

    Ta có

    R = d(I;(SMN))

    = \frac{|na + mb + mnc -mn|}{\sqrt{n^{2} + m^{2} + m^{2}n^{2}}}

    = \frac{|(1 - m)a + mb + m(1 - m)(c -1)|}{\sqrt{1 - 2mn + m^{2}n^{2}}}

    = \frac{|(1 - m)a + mb + m(1 - m)(c -1)|}{1 - mn}

    = \frac{\left| (1 - c)m^{2} + (b + c - a- 1)m + a ight|}{m^{2} - m + 1}

    R không đổi nên \frac{1 - c}{1} = \frac{b + c - a - 1}{- 1} =\frac{a}{1} = t \Rightarrow \left\{ \begin{matrix}a = t \\b = t \\c = 1 - t \\\end{matrix} ight., hay I(t;t;1- t).
    Mặt khác ta có R = IA = \sqrt{3t^{3} - 4t +2} = |t| \Rightarrow t = 1.

    Vậy R = 1.

  • Câu 20: Vận dụng
    Tính giá trị biểu thức T

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; −2; 6), B(0; 1; 0) và mặt cầu (S):(x - 1)^{2} + (y - 2)^{2}
+ (z - 3)^{2} = 25. Mặt phẳng (P): ax + by + cz + d = 0 (với a, b, c là các số nguyên dương và a, b, c, d nguyên tố cùng nhau) đi qua A, B và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính tổng T = a + b + c.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có \overrightarrow{AB} = ( - 3;3; -
6) cùng phương với \overrightarrow{u} = (1; - 1;2) suy ra phương trình đường thẳng AB:\left\{
\begin{matrix}
x = t \\
y = 1 - t \\
z = 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Xét mặt cầu (S):(x - 1)^{2} + (y - 2)^{2}
+ (z - 3)^{2} = 25⇒ I(1; 2; 3), R = 5.

    Gọi H(t; 1 − t; 2t) là điểm trên AB sao cho AB ⊥ IH

    \Rightarrow \overrightarrow{IH} = (t -
1; - t - 1;2t)

    AB ⊥ IH ⇒ t − 1 + t + 1 + 4t − 6 = 0 ⇒ t = 1⇒ H(1; 0; 2), \overrightarrow{IH} = (0; - 2; - 1)

    Gọi r là bán kính đường tròn giao tuyến giữa (P) và (S), K là hình chiếu vuông góc của I lên (P) ⇒ IK ≤ IH.

    Ta có r = \sqrt{R^{2} - IK^{2}} \geq
\sqrt{R^{2} - IH^{2}}

    Dấu bằng chỉ xảy ra khi K ≡ H.

    Khi đó phương trình mặt phẳng (P) nhận \overrightarrow{IH} = (0; - 2; - 1) là vectơ pháp tuyến và đi qua điểm H(1; 0; 2)2y + z − 2 = 0 ⇒ T = 3

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo