Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Phương trình mặt cầu CTST (Mức Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tìm bán kính mặt cầu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA = BC = a. Cạnh bên SA = 2a và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC  là:

    Hướng dẫn:

     Tìm bán kính

    Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.

    Gọi I là trung điểm SC, suy ra IM ||SA nên IM \bot \left( {ABC} ight) .

    Do đó IM là trục của \triangle ABC, suy ra IA=IB=IC     (1)

    Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên IS=IC=IA.  (2)

    Từ (1) và (2) , ta có IS=IA=IB=IC

    hay I là tâm của mặt cầu ngoại tiếp hình chóp S.ABC.

    Vậy bán kính R = IS = \frac{{SC}}{2} = \frac{{\sqrt {S{A^2} + A{C^2}} }}{2} = \frac{{a\sqrt 6 }}{2} .

  • Câu 2: Vận dụng cao
    Tính thể tích mặt cầu nội tiếp tứ diện

    Trong không gian ABCD cho tứ diện ABCD với điểm A(1;2;2), B(
- 1;2; - 1), D(1;6; - 1)D( - 1;6;2). Thể tích của mặt cầu nội tiếp tứ diện ABCD

    Hướng dẫn:

    Ta có phương trình các mặt phẳng như sau:

    (ABC):6x - 3y - 4z+ 8 = 0

    (BCD):6x - 3y + 4z + 16 = 0

    (CDA):6x + 3y + 4z - 20 = 0

    (ABD):6x + 3y - 4z - 4 = 0

    Gọi I(a';b';c') là tâm và R là bán kính mặt cầu nội tiếp tứ diện DABC

    Do đó:

    I nằm cùng phái với A đối với (DBC) suy ra: 6a' - 3b' + 4c' + 16 >
0.

    I nằm cùng phía với B đối với (DAC) suy ra: 6a' + 3b' + 4c' - 20 <
0.

    I nằm cùng phía với C đối với (DAB) suy ra: 6a' + 3b' - 4c' - 4 >
0.

    I nằm cùng phía với D đối với (ABC) suy ra: 6a' - 3b' - 4c' + 8 <
0.

    Suy ra:

    \left\{ \begin{matrix}
d\left( I;(DAB) \right) = d\left( I;(DAC) \right) \\
d\left( I;(DAB) \right) = d\left( I;(DBC) \right) \\
d\left( I;(DAB) \right) = d\left( I;(ABC) \right)
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
|6a' + 3b' - 4c' - 4| = |6a' + 3b' + 4c' - 20|
\\
|6a' + 3b' - 4c' - 4| = |6a' - 3b' + 4c' + 16|
\\
|6a' + 3b' - 4c' - 4| = |6a' - 3b' - 4c' + 8|
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
6a' + 3b' - 4c' - 4 = - \left( 6a' + 3b' + 4c' -
20 \right) \\
6a' + 3b' - 4c' - 4 = 6a' - 3b' + 4c' + 16 \\
6a' + 3b' - 4c' - 4 = - \left( 6a' - 3b' - 4c' +
8 \right)
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
a' = 0 \\
b' = 4 \\
c' = \frac{1}{2}
\end{matrix} \right.

    Suy ra: I\left( 0;4;\frac{1}{2} \right),R
= \sqrt{\frac{36}{61}}

    Thể tích mặt cầu cần tìm là: V =
\frac{4}{3}\pi R^{3} = \frac{288\pi\sqrt{61}}{3721}

    Cách khác: Sử dụng công thức nhanh.

    V_{ABCD} = \frac{1}{3}.r\left( S_{ABC} +
S_{ABD} + S_{ADC} + S_{BCD} \right) (r là bán kính của mặt cầu nội tiếp)

    Ta có: \overrightarrow{AB} = ( - 2;0; -
3),\overrightarrow{AC} = (0;4; - 3) ,\overrightarrow{AD} = ( -
2;4;0),\overrightarrow{DB} = (0; - 4; - 3), \overrightarrow{DC} = (2;0; - 3).

    V_{ABCD} = \frac{1}{6}.\left|
\left\lbrack \overrightarrow{AB};\overrightarrow{AC}
\right\rbrack.\overrightarrow{AD} \right| = 8.

    S_{ABC} = \frac{1}{2}.\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} \right\rbrack \right| =
\sqrt{61}, S_{ADC} =
\frac{1}{2}.\left| \left\lbrack \overrightarrow{AD};\overrightarrow{AC}
\right\rbrack \right| = \sqrt{61}, S_{ABD} = \frac{1}{2}.\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AD} \right\rbrack \right| =
\sqrt{61},

    S_{BCD} = \frac{1}{2}.\left| \left\lbrack
\overrightarrow{BD};\overrightarrow{DC} \right\rbrack \right| =
\sqrt{61}.

    Ta có:

    V_{ABCD} = \frac{1}{3}.r\left( S_{ABC} +
S_{ABD} + S_{ADC} + S_{BCD} \right)

    \Leftrightarrow 8 =
\frac{1}{3}.r4\sqrt{61} \Leftrightarrow r =
\sqrt{\frac{36}{21}}.

    Vậy: \mathbf{V
=}\frac{\mathbf{4}}{\mathbf{3}}\mathbf{\pi}\mathbf{R}^{\mathbf{3}}\mathbf{=}\frac{\mathbf{288}\mathbf{\pi}\sqrt{\mathbf{61}}}{\mathbf{3721}}.

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 4y - 6z + 5 =
0 và mặt phẳng (\alpha):2x + y + 2z
- 15 = 0. Mặt phẳng (P) song song với (\alpha) và tiếp xúc với (S)

    Hướng dẫn:

    Ta có:

    (S) có tâm I (1; −2; 3), bán kính R = 3. (P) song song với (α)

    (P):2x + y + 2z + m = 0, với m eq - 15

    Do mặt phẳng (P) tiếp xúc với (S) nên d\left( I;(P) ight) = R \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 15 \\
m = 3 \\
\end{matrix} ight., so với điều kiện ta nhận m = 3.

    Vậy (P):2x + y + 2z + 3 = 0.

  • Câu 4: Vận dụng
    Chọn đáp án đúng

    Cho hai điểm A(2, - 3, - 1);\ \ \ B( -
4,5, - 3). Tìm tập hợp các điểm M(x,y,z) thỏa mãn \frac{MA}{MB} = \frac{\sqrt{3}}{2}

    Hướng dẫn:

    Theo bài ra ta có:

    2MA = \sqrt{3}MB \Leftrightarrow 4MA^{2}
= 3MB^{2}

    \Leftrightarrow 4\left\lbrack (2 -
x)^{2} + ( - 3 - y)^{2} + ( - 1 - z)^{2} \right\rbrack

    = 3\left\lbrack ( - 4 - x)^{2} + (5 -
y)^{2} + ( - 3 - z)^{2} \right\rbrack

    Mặt cầu x^{2} + y^{2} + z^{2} - 40x - 54y
- 10z - 94 = 0

  • Câu 5: Vận dụng
    Chọn phương án đúng

    Tìm tập hợp các tâm I của mặt cầu

    (S):\
x^{2} + y^{2} + z^{2} + 2(m - 2)x+ 4y - 2z + 2m + 4 = 0; m\mathbb{\in R}

    Hướng dẫn:

    Ta có:

    a = 2 - m;b = - 2;c = 1;d = 2m +
4

    Tâm I;(x = 2 - m;y = - 2;z =
1)

    \Rightarrow I \in đường thẳng: y + 2 = 0;z - 1 = 0

    (S) là mặt cầu

    \Leftrightarrow a^{2} + b^{2} + c^{2} -
d > 0 \Leftrightarrow m^{2} - 6m + 5 > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
m < 1 \\
m > 5 \\
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
2 - x < 1 \\
2 - x > 5 \\
\end{matrix} \right. \Rightarrow
\left\lbrack \begin{matrix}
x < - 3 \\
x > 1 \\
\end{matrix} \right.

    Vậy tập hợp các tâm O là phần đường thẳng :y + 2 = 0;z - 1 = 0 tương ứng với \left\lbrack \begin{matrix}
x < - 3 \\
x > 1 \\
\end{matrix} \right.

  • Câu 6: Vận dụng
    Tính bán kính đường tròn ngoại tiếp tam giác

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x - 4z - 4 =
0 và ba điểmA(1,2, - 2);B( -
4,2,3);C(1, - 3,3) nằm trên mặt cầu (S). Bán kính r của đường tròn ngoại tiếp tam giác ABC là:

    Hướng dẫn:

    Ta có:

    h = \frac{|1 + 5.0 - 2 - 8|}{\sqrt{1^{2}
+ 5^{2} + ( - 1)^{2}}} = \sqrt{3}

    \Rightarrow r = \sqrt{R^{2} - h^{2}} =
\sqrt{9 - 3} = \sqrt{6}.

  • Câu 7: Thông hiểu
    Chọn đáp án thích hợp

    Cho 4 điểm A(3; - 2; - 2),\ B(3;2;0),\
C(0;2;1)D( - 1;1;2). Mặt cầu tâm A và tiếp xúc với mặt phẳng (BCD) có phương trình là:

    Hướng dẫn:

    Mặt phẳng (BCD)đi qua B(3;2;0)và có vectơ pháp tuyến \overrightarrow{n} = \left\lbrack
\overrightarrow{BC},\overrightarrow{BD} \right\rbrack =
(1;2;3)

    \Rightarrow (BCD):x + 2y + 3z - 7 =
0

    Vì mặt cầu (S)có tâm A tiếp xúc với mặt phẳng (BCD)nên bán kính

    R = d\left( A,(BCD) \right) =
\frac{\left| 3 + 2.( - 2) + 3.( - 2) - 7 \right|}{\sqrt{1^{2} + 2^{2} +
3^{2}}} = \sqrt{14}.

    Vậy phương trình mặt cầu (S):(x - 3)^{2}
+ (y + 2)^{2} + (z + 2)^{2} = 14.

  • Câu 8: Vận dụng cao
    Tính khoảng cách lớn nhất

    Trong không gian Oxyz, , cho hai mặt cầu (S_1), (S_2) có phương trình lần lượt là (x − 2)^2 + (y − 1)^2 + (z − 1)^2 = 16(x − 2)^2 + (y − 1)^2 + (z − 5)^2 = 4. Gọi (P) là mặt phẳng thay đổi tiếp xúc với cả hai mặt cầu (S_1), (S_2). Tính khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng (P).

    Hướng dẫn:

    Hình vẽ minh họa

    Mặt cầu (S1) có tâm I(2; 1; 1) và bán kính R_1 = 4.

    Mặt cầu (S2) có tâm J(2; 1; 5) và bán kính R_2 = 2.

    Gọi A, B lần lượt là hai tiếp điểm của (S1), (S2) với mặt phẳng (P).

    Gọi M là giao điểm của IJ với mặt phẳng (P). Ta có:

    \frac{MI}{MJ} = \frac{IA}{IB} =
2

    Suy ra J là trung điểm của IM, do đó M(2; 1; 9).

    Gọi véc-tơ pháp tuyến của mặt phẳng (P) là \overrightarrow{n} = (a;b;c),\left( a^{2} + b^{2}
+ c^{2} > 0 ight) khi đó phương trình của mặt phẳng (P) là

    a(x − 2) + b(y − 1) + c(z − 9) = 0

    Ta có:

    d\left( I;(P) ight) = 4
\Leftrightarrow \frac{|8c|}{\sqrt{a^{2} + b^{2} + c}} = 4

    \Leftrightarrow \frac{|c|}{\sqrt{a^{2} +
b^{2} + c}} = \frac{1}{2} \Leftrightarrow a^{2} + b^{2} =
3c^{2}

    \Leftrightarrow \left( \frac{a}{c}
ight)^{2} + \left( \frac{b}{c} ight)^{2} = 3\ \ \ (1)

    Mặt khác d\left( O;(P) ight) =
\frac{|2a + b + 9c|}{\sqrt{a^{2} + b^{2} + c^{2}}} = \frac{|2a + b +
9c|}{2c} = \frac{1}{2}\left| \frac{2a}{c} + \frac{b}{c} + 9 ight|\ \ \
(2)

    Áp dụng bất đẳng thức Bunhiacopxki ta có

    \left( \frac{2a}{c} + \frac{b}{c}
ight)^{2} \leq \left( 2^{2} + 1^{2} ight)\left\lbrack \left(
\frac{a}{c} ight)^{2} + \left( \frac{b}{c} ight)^{2} ightbrack\
\ \ (3)

    Từ (1) và (3) ta có: \left( \frac{2a}{c}
+ \frac{b}{c} ight)^{2} \leq 15 \Leftrightarrow - \sqrt{15} \leq
\frac{2a}{c} + \frac{b}{c} \leq \sqrt{15}\ \ (4)

    Từ (2) và (4) suy ra:

    \frac{9 - \sqrt{15}}{2} \leq d\left(
O;(P) ight) \leq \frac{9 + \sqrt{15}}{2}

    Vậy khoảng cách lớn nhất từ gốc tọa độ O đến mặt phẳng (P) bằng \frac{9 + \sqrt{15}}{2}.

  • Câu 9: Thông hiểu
    Tìm các khẳng định sai

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0 và mặt phẳng (P):Ax + By + Cz + D = 0

    I. \frac{|Aa + Bb + Cc + D| -
\sqrt{\left( A^{2} + B^{2} + C^{2} \right)\left( a^{2} + b^{2} + c^{2} -
d \right)}}{A^{2} + B^{2} + C^{2}} > 0 \Rightarrow (P) cắt (S)

    II. \frac{|Aa + Bb + Cc + D| -
\sqrt{\left( A^{2} + B^{2} + C^{2} \right)\left( a^{2} + b^{2} + c^{2} -
d \right)}}{A^{2} + B^{2} + C^{2}} = 0 \Rightarrow (P)tiếp xúc (S)

    III. \frac{|Aa + Bb + Cc + D| -
\sqrt{\left( A^{2} + B^{2} + C^{2} \right)\left( a^{2} + b^{2} + c^{2} -
d \right)}}{A^{2} + B^{2} + C^{2}} < 0 \Rightarrow (P) không cắt (S)

    Xác định các khẳng định sai?

    Hướng dẫn:

    Đáp án cần tìm là: Chỉ I và III.

  • Câu 10: Vận dụng cao
    Viết phương trình tiếp diện của mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x − 1)^2 + (y − 2)^2 + (z − 2)^2 = 9 hai hai điểm M(4; −4; 2),N(6; 0; 6). Gọi E là điểm thuộc mặt cầu (S) sao cho EM + EN đạt giá trị lớn nhất. Viết phương trình tiếp diện của mặt cầu (S) tại E?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi I(1; 2; 2) là tâm của (S), P(5; −2; 4) là trung điểm MN.

    Theo bất đẳng thức Bu-nhi-a-copx-ki và công thức độ dài trung tuyến ta được:

    (EM + EN)^{2} \leq 2\left( EM^{2} +
EN^{2} ight) = 2\left( 2EP^{2} + \frac{MN^{2}}{2} ight)

    nên T = EM + EN đạt giá trị lớn nhất khi EM = EN và EP đạt giá trị lớn nhất.

    Khi đó E là giao điểm của đường thẳng IP với mặt cầu (S) (I nằm giữa E và P). Đường thẳng IP có phương trình:

    \frac{x - 1}{2} = \frac{y - 2}{- 2} =
\frac{z - 2}{1}

    Tọa độ E thỏa hệ phương trình:

    \left\{ \begin{matrix}(x - 1)^{2} + (y - 2)^{2} + (z - 2)^{2} = 9 \\\dfrac{x - 1}{2} = \dfrac{y - 2}{- 2} = \dfrac{z - 2}{1} \\\end{matrix} ight.

    Tìm được E(3; 0; 3) hoặc E(−1; 4; 1), thử lại để EP lớn nhất ta được E(−1; 4; 1).

    Khi đó phương trình tiếp diện với (S) tại E là 2x−2y+z+9 = 0.

  • Câu 11: Vận dụng cao
    Xác định số mặt phẳng theo yêu cầu

    Trong không gian với hệ tọa độ Oxyz, cho A(1;2; - 3),B\left( \frac{3}{2};\frac{3}{2}; -\frac{1}{2} ight),C(1;1;4),D(5;3;0). Gọi \left( S_{1} ight) là mặt cầu tâm A bán kính bằng 3,\left( S_{2} ight) là mặt cầu tâm B bán kính bằng \frac{3}{2}. Có bao nhiêu mặt phẳng tiếp xúc với hai mặt cầu \left( S_{1}ight),\left( S_{2} ight) đồng thời song song với đường thẳng đi qua 2 điểm C, D ?

    Hướng dẫn:

    Hình vẽ minh họa:

    Ta có \overrightarrow{AB} = \left(\frac{1}{2}; - \frac{1}{2};\frac{5}{2} ight) \Rightarrow AB =\frac{3\sqrt{3}}{2} < 3 nên B nằm bên trong mặt cầu \left( S_{1} ight).

    Một mặt phẳng qua AB cắt hai mặt cầu theo hai đường tròn giao tuyến như hình bên.

    Kẻ tiếp tuyến chung của hai đường tròn, tiếp tuyến này sẽ cắt đường thẳng AB tại M.

    Gọi N,E lần lượt là tiếp điểm với hai đường tròn như hình vẽ.

    Tam giác ANM đồng dạng tam giác BEM nên \frac{AM}{BM} = \frac{AN}{BE} = 2.

    Suy ra \overrightarrow{AM} =2\overrightarrow{AB} \Rightarrow M(2;1;2).

    Gọi (P) là mặt phẳng tiếp xúc với cả hai mặt cầu \left( S_{1}ight)\left( S_{2}ight).

    Khi đó (P) sẽ luôn đi qua M.

    Gọi \overrightarrow{n} = (m;n;p) với m^{2} + n^{2} + p^{2} eq 0 là một vectơ pháp tuyến của mặt phẳng (P).

    Phương trình (P):m(x - 2) + n(y - 1) +p(z - 2) = 0.

    Ta có:

    \overrightarrow{CD} = (4;2; -4)

    CD // (P) \Rightarrow\overrightarrow{n} \cdot \overrightarrow{CD} = 0

    \Rightarrow 4m + 2n - 4p = 0 \Rightarrown = 2p - 2m

    d\left( A,(P) ight) = 3\Leftrightarrow \frac{| - m + n - 5p|}{\sqrt{m^{2} + n^{2} + p^{2}}} =3

    \Leftrightarrow | - 3m - 3p| =3\sqrt{m^{2} + (2p - 2m)^{2} + p^{2}}

    \Leftrightarrow 4m^{2} - 10mp + 4p^{2} =0 \Leftrightarrow \left\lbrack \begin{matrix}\dfrac{m}{p} = \dfrac{1}{2} \\\dfrac{m}{p} = 2 \\\end{matrix} ight.

    Trường hợp \frac{m}{p} =\frac{1}{2} : chọn m = 1,p = 2\Rightarrow n = 2.

    Khi đó (P):x + 2y + 2z - 8 = 0 (nhận).

    Trường hợp \frac{m}{p} = 2 : chọn m = 2,p = 1 \Rightarrow n = -2.

    Khi đó (P):2x - 2y + z - 4 = 0 (loại vì chứa C,D).

  • Câu 12: Vận dụng cao
    Tính thể tích tứ diện

    Trong không gian Oxyz, cho ba điểm A(a; 0; 0), B(0; b; 0), C(0; 0; c), trong đó a > 0, b > 0, c > 0\frac{1}{a} + \frac{2}{b} +
\frac{3}{c} = 7. Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S): (x − 1)^2 + (y − 2)^2 + (z − 3)^2 = 72/7. Thể tích của khối tứ diện OABC là:

    Hướng dẫn:

    Mặt phẳng (ABC) có phương trình là \frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1

    Mặt cầu (S) có tâm là I(1; 2; 3) và bán kính R =
\sqrt{\frac{72}{7}}. Khi đó:

    d\left( I;(ABC) ight) = \dfrac{\left|\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} ight|}{\sqrt{\dfrac{1}{a^{2}} +\dfrac{1}{b^{2}} + \dfrac{1}{c^{2}}}} = \sqrt{\dfrac{72}{7}}

    \Leftrightarrow \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} = \frac{7}{2}

    Áp dụng bất đẳng thức Cauchy - Schwarz, ta có:

    49 = \left( \frac{1}{a} + \frac{2}{b} +
\frac{3}{c} ight)^{2} \leq \left( 1^{2} + 2^{2} + 3^{2} ight)\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} ight) =
\frac{7}{2}.14 = 49

    Dấu đẳng thức xảy ra khi a = 2b = 3c. Thay vào giả thiết ta có:

    a = 2;b = 1;c = \frac{2}{3}

    Vì OABC là tứ diện vuông tại O nên V_{OABC} = \frac{abc}{2} =
\frac{2}{9}

  • Câu 13: Thông hiểu
    Viết phương trình mặt phẳng

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} -2x - 4y - 6z - 2 = 0 và mặt phẳng (\alpha):4x + 3y - 12z + 10 = 0 . Mặt phẳng tiếp xúc với (S) và song song với (\alpha) có phương trình là:

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1;2;3) và bán kính R = \sqrt{1^{2} + 2^{2} + 3^{2} + 2} =
4

    Gọi (\beta) là mặt phẳng tiếp xúc với (S) và song song với (\alpha).

    (\beta)//(\alpha) \Rightarrow
(\beta):4x + 3y - 12z + D = 0\ \ (D \neq 10)

    Mặt phẳng (\beta) tiếp xúc với mặt cầu (S) \Leftrightarrow d\left( I,(\beta) \right) =
R

    \Leftrightarrow \frac{|4.1 + 3.2 - 12.3 +
D|}{\sqrt{4^{2} + 3^{2} + ( - 12)^{2}}} = 4

    \Leftrightarrow |D - 26| = 52
\Leftrightarrow \left\lbrack \begin{matrix}
D = 78 \\
D = - 26 \\
\end{matrix} \right. (thỏa điều kiện)

    Vậy phương trình mặt phẳng (\beta):4x +
3y - 12z + 78 = 0 hoặc (\beta):4x +
3y - 12z - 26 = 0 .

    Lưu ý: Nếu hình dung phác họa hình học bài toán được thì ta có thể dự đoán được có 2 mặt phẳng thỏa mãn yêu cầu đề bài.

  • Câu 14: Thông hiểu
    Xét tính đúng sai của các mệnh đề

    Trong không gian Oxyz, cho mặt cầu (S) có phương trình: (x - 3)^{2} + y^{2} + (z - 2)^{2} = m^{2} +
1. Xét tính đúng sai của các nhận định dưới đây?

    a) Bán kính nhỏ nhất của (S)1. Sai||Đúng

    b) Với m = \pm \sqrt{2} thì mặt phẳng (Oxy) tiếp xúc với (S). Sai||Đúng

    c) Với m = 2\sqrt{6} thì (S)cắt (P):2x
- y + 2z + 2 = 0 theo giao tuyến là một đường tròn có bán kính bằng 3.Đúng||Sai

    d) Có 5 giá trị nguyên của tham số m để đường thẳng \Delta:\frac{x - 2}{- 3} = \frac{y-1}{1} =\frac{z - 3}{- 1} cắt (S) tại 2 điểm phân biệt. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz, cho mặt cầu (S) có phương trình: (x - 3)^{2} + y^{2} + (z - 2)^{2} = m^{2} +
1. Xét tính đúng sai của các nhận định dưới đây?

    a) Bán kính nhỏ nhất của (S)1. Sai||Đúng

    b) Với m = \pm \sqrt{2} thì mặt phẳng (Oxy) tiếp xúc với (S). Sai||Đúng

    c) Với m = 2\sqrt{6} thì (S)cắt (P):2x
- y + 2z + 2 = 0 theo giao tuyến là một đường tròn có bán kính bằng 3.Đúng||Sai

    d) Có 5 giá trị nguyên của tham số m để đường thẳng \Delta:\frac{x - 2}{- 3} = \frac{y-1}{1} =\frac{z - 3}{- 1} cắt (S) tại 2 điểm phân biệt. Sai||Đúng

    Mặt cầu (S) có tâm I(3;0;2), bán kính R = \sqrt{m^{2} + 1}.

    a) Với mọi giá trị m, ta có: m^{2} + 1 \geq 1 \Leftrightarrow \sqrt{m^{2}
+ 1} \geq 1 \Leftrightarrow R \geq 1.

    Vậy R_{\min} = 1.

    b) (S) tiếp xúc với (Oxy) \Leftrightarrow d(I,(Oxy)) = R

    \Leftrightarrow 2 = \sqrt{m^{2} + 1}
\Leftrightarrow m^{2} = 3 \Leftrightarrow m = \pm \sqrt{3}.

    c) Với m = 2\sqrt{6}, mặt cầu (S) có tâm I(3;0;2), bán kính R = 5.

    Ta có: d = d\left( I,(P) \right) =
\frac{|2.3 - 0 + 2.2 + 2|}{3} = 4 \Rightarrow d < R.

    Khi đó, (S) cắt (P) theo giao tuyến là một đường tròn có bán kính là:

    r = \sqrt{R^{2} - d^{2}} =\sqrt{25-16} = 3.

    d) Phương trình tham số của \Delta:\left\{ \begin{matrix}
x = 2 - 3t \\
y = 1 + t \\
z = 3 - t
\end{matrix} \right..

    Từ phương trình của \Delta(S) ta có phương trình

    (2 - 3t - 3)^{2} + (1 + t)^{2} + (3 - t- 2)^{2} = m^{2} + 1

    \Leftrightarrow 11t^{2} + 6t + 2 - m^{2} =  0 (1)

    Để \Delta cắt (S) tại 2 điểm phân biệt thì phương trình (1)2 nghiệm phân biệt

    \Leftrightarrow \Delta'= 9 -11\left( 2 - m^{2} \right) > 0

    \Leftrightarrow 11m^{2} - 13 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m > \sqrt{\frac{13}{11}} \\
m < - \sqrt{\frac{13}{11}}
\end{matrix} \right..

    Vậy có vô số giá trị nguyên m thỏa mãn.

  • Câu 15: Vận dụng
    Tìm tọa độ giao điểm theo yêu cầu

    Cho mặt cầu (S): x^{2} + y^{2} + z^{2} -
4x + 6y + 2z - 2 = 0 và điểm A( -
6, - 1,3). Gọi M là tiếp điểm của (S) và tiếp tuyến di động (d) qua A. Tính tọa độ giao điểm của AI và mặt cầu (S).

    Hướng dẫn:

    Ta có:

    \overrightarrow{AI} = 2(4, - 1, - 2)\Rightarrow AI:x = 2 + 4t;y = - 3 - t;z = - 1 - 2t,\ \ t\mathbb{\in
R}

    AI cắt (S) \Rightarrow(2 + 4t)^{2} + (3 + t)^{2} + (1 +
2t)^{2}- 4(2 + 4t) + 6( - 3 - t) + 2( - 1 - 2t) - 2 = 0

    \Leftrightarrow 21t^{2} - 16 = 0
\Leftrightarrow t = \pm \frac{4\sqrt{21}}{21}

    \Rightarrow Hai giao điểm \left( 2 \pm \frac{16\sqrt{21}}{21}; - 3 \mp
\frac{4\sqrt{21}}{21}; - 1 \mp \frac{8\sqrt{21}}{21}
\right)

  • Câu 16: Vận dụng
    Tìm phương trình mặt cầu

    Cho đường thẳng d:\left\{ \begin{matrix}
x = t \\
y = - 1 + 3t \\
z = 1 \\
\end{matrix} \right.. Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của đường thẳng d và trục Ox là:

    Hướng dẫn:

    Gọi A(t; - 1 + 3t;1) \in d;B(t';0;0)
\in Ox

    \Rightarrow \overrightarrow{AB} = (t'
- t;1 - 3t; - 1), \overrightarrow{u_{d}} = (1;3;0),\
\overrightarrow{i} = (1;0;0).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB}.\overrightarrow{u_{d}} = 0 \\
\overrightarrow{AB}.\overrightarrow{i} = 0 \\
\end{matrix} \right.\  \Rightarrow t = t' = \frac{1}{3}R = \frac{1}{2} \Rightarrow \left( x -
\frac{1}{3} \right)^{2} + y^{2} + \left( z - \frac{1}{2} \right)^{2} =
\frac{1}{4}.

  • Câu 17: Vận dụng
    Chọn đáp án đúng

    Cho hai điểm A(1; - 2;3),\ B( -
1;0;1) và mặt phẳng (P):x + y + z +
4 = 0 . Phương trình mặt cầu (S) có bán kính bằng \frac{AB}{6} có tâm thuộc đường thẳng AB(S) tiếp xúc với mặt phẳng (P) là:

    Hướng dẫn:

    Ta có \overrightarrow{AB} = ( - 2;2; - 2)
= - 2(1; - 1;1). Bán kính mặt cầu là R = \frac{AB}{6} =
\frac{\sqrt{3}}{3}.

    Tâm I của mặt cầu thuộc đường thẳng AB nên tọa độ I có dạng I(1
+ t; - 2 - t;3 + t)

    Ta có: (S)tiếp xúc với mặt phẳng (P)

    \Leftrightarrow \ \ d\left(I;(P)\  \right)\  = \ \frac{AB}{6} \Leftrightarrow \frac{|t +6|}{\sqrt{3}} = \frac{\sqrt{3}}{3} \Leftrightarrow \left\lbrack\begin{matrix}t = - 5 \\t = - 7 \\\end{matrix} \right.

  • Câu 18: Vận dụng
    Viết phương trình mặt phẳng (P)

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 6y - 4z
- 2 = 0 và mặt phẳng (α) : x + 4y + z − 11 = 0. Viết phương trình mặt phẳng (P), biết (P) song song với giá của vectơ \overrightarrow{v} = (1;6;2), vuông góc với (α) và tiếp xúc với (S).

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; −3; 2) và bán kính R = 4.

    Vectơ pháp tuyến của (α) là \overrightarrow{n_{(\alpha)}} =
(1;4;1)

    Theo giả thiết, suy ra (P) có vectơ pháp tuyến là \overrightarrow{n_{(P)}} = \left\lbrack
\overrightarrow{v};\overrightarrow{n_{(\alpha)}} ightbrack = (2; -
1;2)

    Phương trình của mặt phẳng (P) có dạng 2x − y + 2z + D = 0

    Vì (P) tiếp xúc với mặt cầu (S) nên ta có:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2 + 3 + 4 + D|}{\sqrt{2^{2} + 1^{2} + 2^{2}}} =
4

    \Leftrightarrow |9 + D| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
D = 3 \\
D = - 21 \\
\end{matrix} ight.

    Vậy có 2 mặt phẳng thỏa yêu cầu bài toán có phương trình là: \left\lbrack \begin{matrix}
(P):2x - y + 2z + 3 = 0 \\
(P):2x - y + 2z - 21 = 0 \\
\end{matrix} ight.

  • Câu 19: Vận dụng
    Định phương trình mặt cầu

    Cho tứ diện ABCD có A(1,1,1);\ \ \
B(3,3,1);\ \ \ C(3,1,3);\ \ \ D(1,3,3). Viết phương trình mặt cầu \left( S_{2} \right) nội tiếp tứ diện.

    Hướng dẫn:

    Ta có:

    AB = AC = AD = BC = CD = DB = 2\sqrt{2}
\Rightarrow Tứ diện ABCD đều.

    \left( S_{2} \right) tiếp xúc với bốn mặt của tứ diện tại trọng tâm của mỗi mặt.

    Trọng tâm G của tam giác đều ACD: G\left(
\frac{5}{3},\frac{5}{3},\frac{7}{3} \right); tâm của \left( S_{2} \right):\ E(2,2,2).

    Bán kính của \left( S_{2}
\right):R_{2}^{2} = EG^{2}= \left( \frac{5}{3} - 2 \right)^{2} + \left(
\frac{5}{3} - 2 \right)^{2} + \left( \frac{7}{3} - 2 \right)^{2} =
\frac{1}{3}

    \Rightarrow \left( S_{2} \right):(x -
2)^{2} + (y - 2)^{2} + (z - 2)^{2} = \frac{1}{3}

  • Câu 20: Thông hiểu
    Tìm mặt cầu ngoại tiếp tứ diện

    Cho ba điểm A(6; - 2;3), B(0;1;6), C(2;0; - 1), D(4;1;0). Khi đó mặt cầu ngoại tiếp tứ diện ABCD có phương trình là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng: x^{2} + y^{2} + z^{2} - 2Ax - 2By -
2Cz + D = 0, ta có:

    \left\{ \begin{matrix}
A(6; - 2;3) \in (S) \\
B(0;1;6) \in (S) \\
C(2;0; - 1) \in (S) \\
D(4;1;0) \in (S) \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
49 - 12A + 4B - 6C + D = 0(1) \\
37 - 2B - 12C + D = 0(2) \\
5 - 4A + 2C + D = 0(3) \\
17 - 8A - 2B + D = 0(4) \\
\end{matrix} \right.

    Lấy (1) - (2); (2) - (3); (3) - (4)ta được hệ:

    \left\{ \begin{matrix}
- 12A + 6B + 6C = - 12 \\
4A - 2B - 14C = - 32 \\
4A + 2B + 2C = 12 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
A = 2 \\
B = - 1 \Rightarrow \\
C = 3 \\
\end{matrix} \right.\ D = - 3

    Vậy phương trình măt cầu là: x^{2} +
y^{2} + z^{2} - 4x + 2y - 6z - 3 = 0 .

    Lưu ý : Ở bài này máy tính Casio giúp chúng ta giải nhanh chóng hệ phương trình bậc nhất ba ấn được tạo ra để tìm các hệ số của phương trình mặt cầu tổng quát. (Ta cũng có thể dùng máy tính cầm tay thay trực tiếp tọa độ các điểm vào từng đáp án và tìm ra đáp án đúng)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo