Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 17 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính diện tích đường tròn

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (Oxy) cắt mặt cầu (S):(x - 1)^{2} + (y - 1)^{2} + (z + 3)^{2} =
25 theo thiết diện là đường tròn bán kính r bằng bao nhiêu?

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1;1; - 3) và bán kính R = 5.

    Khoảng cách từ tâm I đến (Oxy) bằng 3.

    \Rightarrow r = \sqrt{5^{2} - 3^{2}} =
4

  • Câu 2: Thông hiểu
    Xác định số phần bằng nhau

    Cho hình hợp chữ nhật ABCD.EFGH có A(0,0,0);\ \ \ B(4,0,0);\ \ \ D(0,6,0);\ \ \
E(0,0,2). Ba mặt phẳng: x - 2z =
0;\ \ y - 3 = 0;\ \ \ x + 2z - 4 = 0 chia hình hộp chữ nhật thanh mấy phần bằng nhau?

    Hướng dẫn:

    Hai mặt phẳng: x - 2zx + 2z- 4 = 0 chia hình hộp chữ nhật thành 4 phần bằng nhau.

    Mặt phẳng y - 3 = 0 cắt 4 phần trên thành 8 phần bằng nhau. (Học sinh tự vẽ hình).

  • Câu 3: Vận dụng
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho (S):(x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
1 và điểm A(2;2;2). Xét các điểm M \in (S) sao cho đường thẳng AM luôn tiếp xúc với (S). Điểm M luôn thuộc một mặt phẳng cố định có phương trình là

    Hướng dẫn:

    Tọa độ tâm mặt cầu là:I(1;1;1)

    Gọi M(x;y;z) khi đó: \left\{ \begin{matrix}
\overrightarrow{AM} = (x - 2;y - 2;z - 2) \\
\overrightarrow{IM} = (x - 1;y - 1;z - 1) \\
\end{matrix} ight..

    Theo đề bài ra ta có:

    \overrightarrow{AM}.\overrightarrow{IM}
= 0

    \Leftrightarrow (x - 2)(x - 1) + (y -
2)(y - 1) + (z - 2)(z - 1) = 0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
3x - 3y - 3z + 6 = 0(*)

    Mặt khác phương trình mặt cầu

    (S):(x - 1)^{2} + (y - 1)^{2} + (z -
1)^{2} = 1

    \Rightarrow x^{2} + y^{2} + z^{2} - 2x -
2y - 2z + 2 = 0(**)

    Lấy (*) trừ (**) ta được: x + y + z - 4 =
0.

  • Câu 4: Thông hiểu
    Xác định phương trình mặt cầu

    Cho điểm I(1;0;0)và đường thẳng d:\frac{x - 1}{1} = \frac{y - 1}{2} =
\frac{z + 2}{1}. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho AB = 4 là:

    Hướng dẫn:

    Đường thẳng(d)đi qua M(1;\ 1; - 2)và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;\ 1).

    Gọi H là hình chiếu của I trên (d).

    Ta có:IH = d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{5}

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 9.

    Vậy phương trình mặt cầu: (x - 1)^{2} +
y^{2} + z^{2} = 9.

  • Câu 5: Vận dụng
    Xác định tọa độ tâm I

    Cho tứ diện ABCD có A(3,6, -
2);B(6,0,1);C( - 1,2,0);D(0,4,1). Tâm I của mặt cầu ngoại tiếp tứ diện ABCD có tọa độ:

    Hướng dẫn:

    Gọi I(x,y,z) là tâm cầu ngoại tiếp tứ diện ABCD. Tọa độ của I là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}
AI^{2} = BI^{2} \\
BI^{2} = CI^{2} \\
CI^{2} = DI^{2} \\
\end{matrix} \right.\Leftrightarrow \left\{ \begin{matrix}
(x - 3)^{2} + (y - 6)^{2} + (z + 2)^{2} = (x - 6)^{2} + y^{2} + (z -
1)^{2} \\
(x - 6)^{2} + y^{2} + (z - 1)^{2} = (x + 1)^{2} + (y - 2)^{2} + z^{2} \\
(x + 1)^{2} + (y - 2)^{2} + z^{2} = x^{2} + (y - 4)^{2} + (z - 1)^{2} \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
6x - 12y + 6z = - 12 \\
- 14x + 4y - 2z = - 32 \\
2x + 4y + 2z = 12 \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
x - 2y + z = - 2 \\
7x - 2y + z = 16 \\
x + 2y + z = 6 \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = 2 \\
z = - 1 \\
\end{matrix} \right.\  \Rightarrow I(3,2, - 1)

  • Câu 6: Vận dụng
    Tìm phương trình mặt cầu

    Cho đường thẳng d:\left\{ \begin{matrix}
x = t \\
y = - 1 + 3t \\
z = 1 \\
\end{matrix} \right.. Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của đường thẳng d và trục Ox là:

    Hướng dẫn:

    Gọi A(t; - 1 + 3t;1) \in d;B(t';0;0)
\in Ox

    \Rightarrow \overrightarrow{AB} = (t'
- t;1 - 3t; - 1), \overrightarrow{u_{d}} = (1;3;0),\
\overrightarrow{i} = (1;0;0).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB}.\overrightarrow{u_{d}} = 0 \\
\overrightarrow{AB}.\overrightarrow{i} = 0 \\
\end{matrix} \right.\  \Rightarrow t = t' = \frac{1}{3}R = \frac{1}{2} \Rightarrow \left( x -
\frac{1}{3} \right)^{2} + y^{2} + \left( z - \frac{1}{2} \right)^{2} =
\frac{1}{4}.

  • Câu 7: Thông hiểu
    Xác định tọa độ tâm mặt cầu

    Cho các điểm A(0;1;3)B(2;2;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z -
3}{- 2}. Mặt cầu đi qua hai điểm A, B và tâm thuộc đường thẳng d thì tọa độ tâm là:

    Hướng dẫn:

    Gọi I(1 + t;2 - t;3 - 2t) trên dIA = IB \Rightarrow t =
\frac{3}{10} \Rightarrow I\left(
\frac{13}{10};\frac{17}{10};\frac{12}{5} \right).

  • Câu 8: Nhận biết
    Xác định tâm và bán kính mặt cầu

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x +1 = 0 có tọa độ tâm và bán kính R là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0 với a^{2} + b^{2} + c^{2} - d
> 0, có tâm I(a;b;c), bán kính R = \sqrt{a^{2} + b^{2} + c^{2} -
d}.

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x +1 = 0 có tọa độ tâm và bán kính R là: I(2;0;0),\ R =
\sqrt{3}.

  • Câu 9: Thông hiểu
    Chọn đáp án chính xác

    Gọi (S) là mặt cầu đi qua bốn điểm A(2;0;0),B(1;3;0),C( -
1;0;3),D(1;2;3). Tính bán kính R của (S)?

    Hướng dẫn:

    Gọi I(a;b;c) là tâm mặt cầu đi qua bốn điểm A;B;C;D

    Khi đó ta có phương trình:

    \left\{ \begin{matrix}
AI^{2} = BI^{2} \\
AI^{2} = CI^{2} \\
AI^{2} = DI^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 2)^{2} + b^{2} + c^{2} = (a - 1)^{2} + (b - 3)^{2} + c^{2} \\
(a - 2)^{2} + b^{2} + c^{2} = (a + 1)^{2} + b^{2} + (c - 3)^{2} \\
(a - 2)^{2} + b^{2} + c^{2} = (a - 1)^{2} + (b - 2)^{2} + (c - 3)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a - 3b = - 3 \\
a - c = - 1 \\
a - 2b - 3c = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 0 \\
b = 1 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow I(0;1;1)

    Vậy bán kính cần tìm là: R = IA =
\sqrt{2^{2} + 1^{2} + 1^{2}} = \sqrt{6}

  • Câu 10: Vận dụng
    Tìm phương trình mặt cầu

    Cho điểm A(1;3;2), đường thẳng d:\frac{x + 1}{2} = \frac{y - 4}{- 1} =
\frac{z}{- 2} và mặt phẳng (P):2x -
2y + z - 6 = 0. Phương trình mặt cầu (S) đi qua A, có tâm thuộc d đồng thời tiếp xúc với (P) là:

    Hướng dẫn:

    Ta có:

    d có phương trình tham số \left\{ \begin{matrix}
x = - 1 + 2t \\
y = 4 - t \\
z = - 2t \\
\end{matrix} \right.

    Gọi I là tâm mặt cầu (S), do I thuộc d nên I( - 1
+ 2t;4 - t; - 2t)

    Theo đề bài, (S) có bán kính R =
IA = d\left( I;(P) \right).

    \Rightarrow \sqrt{(2 - 2t)^{2} + (t -
1)^{2} + (2 + 2t)^{2}} = \frac{\left| 2( - 1 + 2t) - 2(4 - t) - 2t - 6
\right|}{\sqrt{2^{2} + 2^{2} + 1^{2}}}

    \Leftrightarrow \sqrt{9t^{2} - 2t + 9} =
\frac{|4t - 16|}{3}

    \Leftrightarrow 9\left( 9t^{2} - 2t + 9
\right) = (4t - 16)^{2}

    \Leftrightarrow 65t^{2} + 110t - 175 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \\
t = - \frac{35}{13} \\
\end{matrix} \right.

    Với t = 1 \Rightarrow I\left( {1;3; - 2} \right),R = 4 

    \Rightarrow (S):{\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 2} \right)^2} = 16.

    Với t =  - \frac{{35}}{{13}} \Rightarrow I\left( { - \frac{{83}}{{13}};\frac{{87}}{{13}};\frac{{70}}{{13}}} \right);R = \frac{{116}}{{13}}

    \Rightarrow (S):{\left( {x + \frac{{83}}{{13}}} \right)^2} + {\left( {y - \frac{{87}}{{13}}} \right)^2} + {\left( {z - \frac{{70}}{{13}}} \right)^2} = \frac{{13456}}{{169}}.

  • Câu 11: Thông hiểu
    Chọn đáp án đúng

    Cho điểm I(1;0;0)và đường thẳng d:\frac{x - 1}{1} = \frac{y - 1}{2} =
\frac{z + 2}{1}. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông là:

    Hướng dẫn:

    Đường thẳng d đi qua M(1;\ 1; - 2)và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;\ 1).

    Gọi H là hình chiếu của I trên d

    Ta có : IH = d(I;AB) = \frac{\left|\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{5}

    \Rightarrow R^{2} = IH^{2} + \left(
\frac{AB}{2} \right)^{2} = 10.

    Vậy phương trình mặt cầu là : (x - 1)^{2}
+ y^{2} + z^{2} = 10.

  • Câu 12: Vận dụng
    Chọn phương án đúng

    Tìm tập các tâm I của mặt cầu (S) tiếp xúc với hai mặt phẳng (P): x - 2y + 2z + 4 = 0;(Q):x - 2y + 2z -
6 = 0.

    Hướng dẫn:

    Gọi A( - 4,0,0)B(6, 0 , 0) lần lượt là giao điểm của trục x’Ox với (P) và (Q). Trung điểm E(1,0,0) của AB cách đều (P) và (Q).

    Tâm I cách đều (P) và (Q)

    \Rightarrow
EI nằm trong mặt (R) qua E song song và cách đều (P) và (Q) ((P)//(Q)).

    \Rightarrow (R):x - 2y + 2z + D = 0,E \in
(R) \Rightarrow D = - 1

    Vậy I \in (R):x - 2y + 2z - 1 =
0

  • Câu 13: Nhận biết
    Tìm phương trình mặt cầu

    Trong không gian Oxyz, hỏi trong các phương trình sau đây phương trình nào là phương trình của mặt cầu?

    Hướng dẫn:

    Phương trình x^{2} + z^{2} + 3x - 2y + 4z
- 1 = 0 không có y^{2}=> Loại

    Phương trình x^{2} + y^{2} + z^{2} + 2xy
- 4y + 4z - 1 = 0 có số hạng 2xy => Loại

    Phương trình x^{2} + y^{2} + z^{2} - 2x +
2y - 4z + 8 = 0 loại vì

    a^{2} + b^{2} + c^{2} - d = 1 + 1 + 4 -
8 < 0

    Phương trình x^{2} + y^{2} + z^{2} - 2x +
4z - 1 = 0 thỏa mãn vì

    a^{2} +
b^{2} + c^{2} - d = 1 + 0 + 4 + 1 = 6 > 0.

  • Câu 14: Nhận biết
    Chọn đáp án thích hợp

    Phương trình nào sau đây không phải là phương trình mặt cầu?

    Gợi ý:

    Phương trình mặt cầu (S) có hai dạng là:

    (1) (x - a)^{2} + (y - b)^{2} + (z -
c)^{2} = R^{2};

    (2) x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0 với a^{2} + b^{2} +
c^{2} - d > 0.

    Từ đây ta có dấu hiệu nhận biết nhanh chóng, hoặc thực hiện phép biến đổi đưa phương trình cho trước về một trong hai dạng trên.

    Hướng dẫn:

    Ở các đáp án 2x^{2} + 2y^{2} = (x +
y)^{2} - z^{2} + 2x - 1, x^{2} +
y^{2} + z^{2} + 2x - 2y + 1 = 0, (x
+ y)^{2} = 2xy - z^{2} + 1 - 4x đều thỏa mãn điều kiện phương trình mặt cầu. Tuy nhiên ở đáp án x^{2} +
y^{2} + z^{2} - 2x = 0. thì phương trình: 2x^{2} + 2y^{2} = (x + y)^{2} - z^{2} + 2x - 1
\Leftrightarrow x^{2} + y^{2} + z^{2} - 2xy - 2x + 1 = 0 không đúng dạng phương trình mặt cầu.

  • Câu 15: Thông hiểu
    Tìm phương trình mặt cầu (S)

    Cho đường thẳng d: \frac{x -
1}{3} = \frac{y + 1}{1} = \frac{z}{1} và mặt phẳng (P):2x + y - 2z + 2 = 0. Phương trình mặt cầu (S) có tâm nằm trên đường thẳng d có bán kính nhỏ nhất tiếp xúc với (P) và đi qua điểm A(1; - 1;1) là:

    Hướng dẫn:

    Gọi I là tâm của (S).

    I \in d \Rightarrow I(1 + 3t; - 1 +
t;t). Bán kính R = IA =
\sqrt{11t^{2} - 2t + 1}.

    Mặt phẳng (P) tiếp xúc với (S) nên d(I,(P)) = \frac{|5t + 3|}{3} = R .

    37t^{2} - 24t = 0\left\lbrack \begin{matrix}
t = 0 \Rightarrow R = 1 \\
t = \dfrac{24}{37} \Rightarrow R = \dfrac{77}{37} \\
\end{matrix} \right..

    (S) có bán kính nhỏ nhất nên chọn t = 0, R = 1.

    Suy ra I(1;-1;0).

    Vậy phương trình mặt cầu (S): (x- 1)^{2} + (y + 1)^{2} + z^{2} = 1.

  • Câu 16: Thông hiểu
    Tìm bán kính đường tròn

    Trong không gian Oxyz, cho mặt phẳng (P):2x + 2y + z - 2 = 0 và mặt cầu (S) tâm I(2;1; - 1) bán kính R = 2. Bán kính đường tròn giao của mặt phẳng (P) và mặt cầu (S) là:

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi bán kính đường tròn giao của mặt phẳng (P) và mặt cầu (S)r

    Ta có:

    h = d\left( I;(P) ight) = \frac{\left|
2.2 + 2.( - 1) - 1 - 2 ight|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} =
1

    Suy ra r = \sqrt{2^{2} - 1^{2}} =
\sqrt{3}

  • Câu 17: Thông hiểu
    Tìm tập hợp các giá trị a

    Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) có phương trình dạng x^{2} + y^{2} + z^{2} - 4x + 2y - 2az + 10a =
0. Tập hợp các giá trị thực của tham số a để (S) có chu vi 8\pi?

    Hướng dẫn:

    Đường tròn lớn có chu vi là 8\pi nên bán kính của (S)\frac{8\pi}{2\pi} = 4

    Từ phương trình của (S) suy ra bán kính của (S)R = \sqrt{2^{2} + 1^{2} + a^{2} -
10a}

    Do đó \sqrt{2^{2} + 1^{2} + a^{2} - 10a}
= 4 \Leftrightarrow \left\lbrack \begin{matrix}
a = - 1 \\
a = 11 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: a \in \left\{ -
1;11 ight\}

  • Câu 18: Thông hiểu
    Tìm phương trình mặt cầu

    Cho mặt phẳng (P):2x + 3y + z - 2 =
0 . Mặt cầu (S) có tâm I thuộc trục Oz, bán kính bằng \frac{2}{\sqrt{14}} và tiếp xúc mặt phẳng (P) có phương trình:

    Hướng dẫn:

    Vì tâmI \in Oz \Rightarrow
I(0;0;z)

    Mặt cầu (S)có tâm I tiếp xúc với mặt phẳng

    (P) \Leftrightarrow d\left( I,(\beta) \right) = R
\Leftrightarrow \frac{|2.0 + 3.0 + 1.z - 2|}{\sqrt{2^{2} + 3^{2} +
1^{2}}} = \frac{2}{\sqrt{14}}

    \Leftrightarrow |z - 2| = 2
\Leftrightarrow \left\lbrack \begin{matrix}
z = 0 \Rightarrow I(0;0;0) \\
z = 4 \Rightarrow I(0;0;4) \\
\end{matrix} \right.

    Vậy phương trình mặt cầu .(S):x^{2} +
y^{2} + z^{2} = \frac{2}{7} hoặc (S):x^{2} + y^{2} + (z - 4)^{2} =
\frac{2}{7}.

  • Câu 19: Thông hiểu
    Chọn đáp án đúng

    Cho điểm I(0;0;3) và đường thẳng d:\left\{ \begin{matrix}
x = - 1 + t \\
y = 2t \\
z = 2 + t \\
\end{matrix} \right.\ . Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A,\ B sao cho tam giác IAB vuông là:

    Hướng dẫn:

    Gọi H( - 1 + t;2t;2 + t) \in d là hình chiếu vuông góc của I lên đường thẳng d \Rightarrow \overrightarrow{IH} = ( - 1 + t;2t; -
1 + t)

    Ta có vectơ chỉ phương của d: \overrightarrow{a_{d}} = (1;2;1)IH\bot d

    \Rightarrow
\overrightarrow{IH}.\overrightarrow{a_{d}} = 0 \Leftrightarrow - 1 + t +
4t - 1 + t = 0 \Leftrightarrow - 2 + 6t = 0 \Leftrightarrow t =
\frac{1}{3} \Rightarrow H\left( - \frac{2}{3};\frac{2}{3};\frac{7}{3}
\right)

    \Rightarrow IH = \sqrt{\left( \frac{2}{3}
\right)^{2} + \left( \frac{2}{3} \right)^{2} + \left( \frac{2}{3}
\right)^{2}} = \frac{2\sqrt{3}}{3}

    Vì tam giác IAB vuông tại IIA = IB =
R. Suy ra tam giác IAB vuông cân tại I, do đó bán kính:

    R = IA = ABcos45^{0} =
2IH.\frac{\sqrt{2}}{2} = \sqrt{2}IH = \sqrt{2}.\frac{2\sqrt{3}}{3} =
\frac{2\sqrt{6}}{3}

    Vậy phương trình mặt cầu (S):x^{2} +
y^{2} + (z - 3)^{2} = \frac{8}{3}.

  • Câu 20: Thông hiểu
    Viết phương trình mặt cầu

    Cho hai mặt cầu (S):x^{2} + y^{2} + z^{2}
+ 4x - 2y + 2z - 3 = 0(S'):x^{2} + y^{2} + z^{2} - 6x + 4y - 2z - 2
= 0. Gọi (C) là giao tuyến của (S)(S'). Viết phương trình mặt cầu \left( S_{1} \right) qua (C) và điểm A(2,1, - 3).

    Hướng dẫn:

    \left( S_{1} \right) thuộc họ (chùm) mặt cầu có phương trình (S) +
m(S') = 0,\ m \neq 0

    A \in \left( S_{1} \right) \Rightarrow
10m + 11 = 0 \Leftrightarrow m = - \frac{11}{10}. Thay vào phương trình trên:

    \Rightarrow \left( S_{1} \right) = x^{2}
+ y^{2} + z^{2} - 106x + 64y - 42z + 8 = 0

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo