Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 17 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Cho các điểm I( - 1;0;0) và đường thẳng d:\frac{x - 2}{1} = \frac{y -
1}{2} = \frac{z - 1}{1}. Phương trình mặt cầu (S) có tâm I và tiếp xúc d là:

    Hướng dẫn:

    Đường thẳngdđi qua I(2;1;1)và có một vectơ chỉ phương:

    \overrightarrow{u} = (1;\ 2;\ 1)
\Rightarrow d(I;d) = \frac{\left| \left\lbrack
\overrightarrow{u},\overrightarrow{MI} \right\rbrack \right|}{\left|
\overrightarrow{u} \right|} = \sqrt{5}

    Phương trình mặt cầu là: (x + 1)^{2} +
y^{2} + z^{2} = 5.

  • Câu 2: Nhận biết
    Xác định tâm và bán kính mặt cầu

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x +1 = 0 có tọa độ tâm và bán kính R là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0 với a^{2} + b^{2} + c^{2} - d
> 0, có tâm I(a;b;c), bán kính R = \sqrt{a^{2} + b^{2} + c^{2} -
d}.

    Mặt cầu (S):x^{2} + y^{2} + z^{2} - 4x +1 = 0 có tọa độ tâm và bán kính R là: I(2;0;0),\ R =
\sqrt{3}.

  • Câu 3: Vận dụng
    Tính giá trị biểu thức T

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} = 9 và mặt phẳng (P):x + y + z - 3 = 0. Gọi (S') là mặt cầu chứa đường tròn giao tuyến của (S)(P) đồng thời (S') tiếp xúc với mặt phẳng (Q):x - y + z - 5 = 0. Gọi I(a;b;c) là tâm của (S'). Tính giá trị biểu thức T = abc.

    Hướng dẫn:

    Phương trình mặt cầu (S’) có dạng:

    x^{2} + y^{2} + z^{2} - 9 + m(x + y + z
- 3) = 0

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
mx + my + mz - 9 - 3m = 0

    Mặt cầu (S') có tâm I\left( - \frac{m}{2}; - \frac{m}{2}; -
\frac{m}{2} ight), bán kính R =
\sqrt{\frac{3m^{2}}{4} + 3m + 9}.

    Mặt cầu (S') tiếp xúc với (Q) nên

    d\left( I;(Q) ight) = R\Leftrightarrow \dfrac{\left| - \dfrac{m}{2} - 5 ight|}{\sqrt{2}} =\sqrt{\frac{3m^{2}}{4} + 3m + 9}

    \Leftrightarrow |m + 10| = \sqrt{9m^{2}
+ 36m + 108}

    \Leftrightarrow m = - 1 \Rightarrow
I\left( \frac{1}{2};\frac{1}{2};\frac{1}{2} ight)

    Vậy T = abc = \frac{1}{8}.

  • Câu 4: Thông hiểu
    Tính bán kính mặt cầu ngoại tiếp tứ diện

    Trong không gian với hệ tọa độ Oxyz, cho A(
- 1;0;0), B(0;0;2), C(0; - 3;0). Bán kính mặt cầu ngoại tiếp tứ diện OABC

    Hướng dẫn:

    Gọi (S) là mặt cầu ngoại tiếp tứ diện OABC.

    Phương trình mặt cầu (S) có dạng: x^{2} + y^{2} + z^{2} - 2ax - 2by -
2cz + d = 0.

    O, A, B, C thuộc (S) nên ta có: \left\{ \begin{matrix}
d = 0 \\
1 + 2a + d = 0 \\
4 - 4c + d = 0 \\
9 + 6b + d = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - \dfrac{1}{2} \\
b = - \dfrac{3}{2} \\
c = 1 \\
d = 0 \\
\end{matrix} ight..

    Vậy bán kính mặt cầu (S) là:

    R = \sqrt{a^{2} + b^{2} + c^{2} - d} =
\sqrt{\frac{1}{4} + \frac{9}{4} + 1} = \frac{\sqrt{14}}{2}.

  • Câu 5: Thông hiểu
    Xác định điều kiện tham số m

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x + 2y + z - m^{2} - 3m = 0 và mặt cầu (S):(x - 1)^{2} + (y + 1)^{2} + (z -
1)^{2} = 9. Tìm tất cả các giá trị của m để (P) tiếp xúc với mặt cầu (S)?

    Hướng dẫn:

    Ta có mặt cầu (S) có tâm I(1; −1; 1) và bán kính R = 3.

    Mặt phẳng (P) tiếp xúc với (S) khi và chỉ khi:

    d\left\lbrack I;(P) ightbrack = R
\Leftrightarrow \frac{\left| 1 - m^{2} - 3m ight|}{3} = 3

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} + 3m - 10 = 0 \\
m^{2} + 3m + 8 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 2 \\
m = - 5 \\
\end{matrix} ight..

  • Câu 6: Thông hiểu
    Tìm tham số m thỏa mãn yêu cầu

    Với giá trị nào của m thì mặt phẳng (P):2x - y + z - 5 = 0 tiếp xúc với mặt cầu (S):x^{2} + y^{2} + z^{2} - 2mx + 2(2 -
m)y - 4mz + 5m^{2} + 1 = 0?

    Hướng dẫn:

    Ta có:

    a = m;b = m - 2;c = 2m;d = 5m^{2} +
1. Tâm I(m,m - 2,2m)

    \Rightarrow R^{2} = m^{2} + (m - 2)^{2} +
4m^{2} - 5m^{2} - 1 = m^{2} - 4m + 3 > 0

    \Rightarrow m < 1 \vee m >
3.(P) tiếp xúc (S) khi:

    d(I,P) = \frac{|3m - 3|}{\sqrt{6}} = R =
\sqrt{m^{2} - 4m3}

    \Leftrightarrow m^{2} + 2m - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 3 \\
m = 1 \\
\end{matrix} \right. (loại)

    \Rightarrow m = - 3

  • Câu 7: Vận dụng
    Tính diện tích mặt cầu (S)

    Cho hình hợp chữ nhật ABCD.EFGH có A(0,0,0);\ \ \ B(4,0,0);\ \ \ D(0,6,0);\ \ \
E(0,0,2). Tính diện tích mặt cầu (S) ngoại tiếp hình hợp chữ nhật.

    Hướng dẫn:

    Mặt cầu (S) ngoại tiếp hình hợp chữ nhật có tâm là trung điểm chung của 4 đường chéo bằng nhau của hình hộp và có đường chéo bằng đường chéo. (Học sinh tự vẽ hình)

    AG^{2} = AC^{2} + AE^{2} = AB^{2} +
AD^{2} + AE^{2}= 16 + 36 + 4 = 56

    R = \frac{AG}{2} \Rightarrow R^{2} =
\frac{AG^{2}}{4} = \frac{56}{4} = 14 \Rightarrow S = 4\pi R^{2} = 56\piđvdt

  • Câu 8: Vận dụng
    Tính bán kính r của đường tròn (C)

    Trong không gian cho đường tròn (C):\left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 4x + 6y + 6z + 17 = 0 \\
x - 2y + 2z + 1 = 0 \\
\end{matrix} \right.

    Bán kính r của đường tròn (C) bằng:

    Hướng dẫn:

    Cùng đề trên nên có bán kính mặt cầu là R
= \sqrt{5} .

    Khoảng cách từ I đến thiết diện là h =
\frac{\left| 2 - 2( - 3) + 2( - 3) + 1 \right|}{\sqrt{1^{2} + ( - 2)^{2}
+ 2^{2}}} = 1 .

    \Rightarrow Bán kính của (C) là: r =
\sqrt{R^{2} - r^{2}} = 2.

  • Câu 9: Thông hiểu
    Xác định số giao điểm của đường thẳng và mặt cầu

    Cho đường thẳng \Delta:\frac{x + 2}{- 1}
= \frac{y}{1} = \frac{z - 3}{- 1} và và mặt cầu (S): x^{2} + y^{2} + z^{2} + 4x - 2y - 21 =
0. Số giao điểm của (\Delta)(S) là:

    Hướng dẫn:

    Đường thẳng(\Delta)đi qua M = ( - 2;\ 0;\ 3)và có VTCP \overrightarrow{u} = ( - 1;\ 1;\  -
1)

    Mặt cầu (S)có tâm I = (1;\ 2;\  - 3)và bán kính R=9

    Ta có \overrightarrow{MI} = (3;2; -
6)\left\lbrack
\overrightarrow{u},\overrightarrow{MI} \right\rbrack = ( - 4; - 9; -
5)

    \Rightarrow d(I;\Delta) = \frac{\left|
\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} =
\frac{\sqrt{366}}{3}

    d(I,\ \Delta) < R nên (\Delta) cắt mặt cầu (S) tại hai điểm phân biệt.

  • Câu 10: Thông hiểu
    Tìm tọa độ tâm mặt cầu (S)

    Cho các điểm A(1;1;3)B(2;2;0) và đường thẳng d:\frac{x}{1} = \frac{y - 2}{- 1} = \frac{z -
3}{1}. Mặt cầu (S) đi qua hai điểm A, B và tâm thuộc đường thẳng d thì tọa độ tâm (S) là:

    Hướng dẫn:

    Gọi I(t;2 - t;3 + t) trên dIA = IB \Rightarrow t = -
\frac{11}{6} \Rightarrow I\left( \frac{- 11}{6};\frac{23}{6};\frac{7}{6}
\right).

  • Câu 11: Vận dụng
    Tìm phương trình mặt cầu thỏa mãn điều kiện

    Cho hình lập phương QABC.DEFG có cạnh bằng 1 có \overrightarrow{OA},\ \ \overrightarrow{OC},\ \
\overrightarrow{OG} trùng với ba trục \overrightarrow{Ox},\ \overrightarrow{Oy},\
\overrightarrow{Oz}. Viết phương trình mặt cầu \left( S_{1} \right) ngoại tiếp hình lập phương.

    Hướng dẫn:

    \left( S_{1} \right) có tâm I là trung điểm chung của 4 đường chéo: I\left(
\frac{1}{2},\frac{1}{2},\frac{1}{2} \right), bán kính R_{1} = \frac{1}{2}OE =
\frac{\sqrt{3}}{2}

    \Rightarrow \left( S_{1} \right):\left(
x - \frac{1}{2} \right)^{2} + \left( y - \frac{1}{2} \right)^{2} +
\left( z - \frac{1}{2} \right)^{2} = \frac{3}{4}

    \Rightarrow \left( S_{1} \right):x^{2} +
y^{2} + z^{2} - x - y - z = 0

  • Câu 12: Thông hiểu
    Xác định phương trình mặt cầu

    Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) qua bốn điểm A(3;3;0),B(3;0;3),C(0;3;3),D(3;3;3). Phương trình mặt cầu (S) là:

    Hướng dẫn:

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    Vì mặt cầu đi qua bốn điểm đã cho nên ta có hệ phương trình

    \left\{ \begin{matrix}18 - 6a - 6b + d = 0 \\18 - 6a - 6c + d = 0 \\18 - 6b - 6c + d = 0 \\27 - 6a - 6b - 6c + d = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{3}{2} \\b = \dfrac{3}{2} \\c = \dfrac{3}{2} \\d = 0 \\\end{matrix} ight.. Suy ra tâm mặt cầu I\left( \frac{3}{2};\frac{3}{2};\frac{3}{2}
ight) và bán kính R = \sqrt{a^{2}
+ b^{2} + c^{2} - d} = \frac{3\sqrt{3}}{2}

    Vậy phương trình mặt cầu cần tìm là: \left( x - \frac{3}{2} ight)^{2} + \left( y -
\frac{3}{2} ight)^{2} + \left( z - \frac{3}{2} ight)^{2} =
\frac{27}{4}

  • Câu 13: Nhận biết
    Viết phương trình mặt cầu

    Cho mặt cầu có tâm I(1;2;4) và bán kính R = 5. Khi đó mặt cầu có phương trình là:

    Hướng dẫn:

    Phương trình mặt cầu có tâm I(1;2;4) và bán kính R = 5 là:

    \Leftrightarrow (x - 1)^{2} + (y -
2)^{2} + (z - 4)^{2} = 5^{2}

    \Leftrightarrow (x - 1)^{2} + (y -
2)^{2} + (z - 4)^{2} = 25

  • Câu 14: Thông hiểu
    Chọn kết quả chính xác

    Tìm tập hợp các điểm M có cùng phương tích với hai mặt cầu \left( S_{1} \right): x^{2} + y^{2} + z^2 -4x + 6y + 2z - 5 = 0; \left( S_{2}
\right):\ \ x^{2} + y^{2} + z^{2} + 2x - 8y - 6z + 3 = 0

    Hướng dẫn:

    Ta có:

    M(x,y,z):P_{M/\left( S_{1} \right)} =
P_{M/\left( S_{2} \right)}

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
4x + 6y + 2z - 5 = x^{2} + y^{2} + z^{2} + 2x - 8y - 6z + 3 =
0

    \Rightarrow M \in mặt phẳng: 3x - 7y- 4z + 4 = 0

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Phương trình nào sau đây là phương trình mặt cầu (S) tâm A(2;1;0) và đi qua điểm B(0;1;2)?

    Hướng dẫn:

    Vì mặt cầu (S) tâm A(2;1;0) và đi qua điểm B(0;1;2) nên mặt cầu (S) nhận độ dài đoạn thẳng AB làm bán kính.

    Ta có: \overrightarrow{AB} = ( - 2;0;2)
\Rightarrow AB = 2\sqrt{2}

    \Rightarrow R = 2\sqrt{2}

    Vậy phương trình mặt cầu cần tìm là: (x -
2)^{2} + (y - 1)^{2} + z^{2} = 8.

  • Câu 16: Thông hiểu
    Tìm phương trình mặt cầu thích hợp

    Phương trình mặt cầu tâm I(2;4;6) nào sau đây tiếp xúc với trục Ox:

    Hướng dẫn:

    Mặt cầu tâm I(2;4;6), bán kính R và tiếp xúc trục Ox\Leftrightarrow R = d(I;Ox)

    \Leftrightarrow R = \sqrt{y_{I}^{2} +
z_{I}^{2}} = \sqrt{52}.

    Vậy (S):(x - 2)^{2} + (y - 4)^{2} + (z -
6)^{2} = 52.

    Lưu ý : Học sinh hoàn toàn có thể sử dụng công thức khoảng cách từ một điểm đến một đường thẳng để giải quyết.

  • Câu 17: Thông hiểu
    Chọn phương trình mặt cầu thích hợp

    Cho điểm I(1;1; - 2) đường thẳng d:\frac{x + 1}{1} = \frac{y - 3}{2} =
\frac{z - 2}{1}. Phương trình mặt cầu (S)có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho AB = 6 là:

    Hướng dẫn:

    Đường thẳng(d)đi qua M( - 1;\ 3;2)và có vectơ chỉ phương \overrightarrow{u} = (1;\ 2;\ 1).

    Gọi H là hình chiếu của I trên (d).

    Ta có: IH = d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{u},\overrightarrow{MI} \right\rbrack
\right|}{\left| \overrightarrow{u} \right|} = \sqrt{18}

    \Rightarrow R^{2} = IH^{2} + \left(\frac{AB}{2} \right)^{2} = 27.

    Vậy phương trình mặt cầu: (x - 1)^{2} +
(y - 1)^{2} + (z + 2)^{2} = 27.

  • Câu 18: Vận dụng
    Tính bán kính đường tròn

    Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu (S): (x − 3)^2 + (y + 1)^2 + z^ 2 = 9 và ba điểm A(1; 0; 0), B(2; 1; 3), C(0; 2; −3). Biết rằng quỹ tích các điểm M thỏa mãn MA^{2} + 2\overrightarrow{MB}.\overrightarrow{MC}= 8 là đường tròn cố định, tính bán kính r đường tròn này?

    Hướng dẫn:

    Ta có:\left\{ \begin{matrix}\overrightarrow{MA} = (1 - x; - y; - z) \\\overrightarrow{MB} = (2 - x;1 - y;3 - z) \\\overrightarrow{MC} = ( - x;2 - y; - 3 - z) \\\end{matrix} ight. khi đó:

    MA^{2} +2\overrightarrow{MB}.\overrightarrow{MC} = 8

    \Leftrightarrow (x - 1)^{2} + y^{2} +z^{2} + 2\left\lbrack x(x - 2) + (y - 1)(y - 2) + (z - 3)(z + 3)ightbrack = 8

    \Leftrightarrow 3.\left( x^{2} + y^{2} +z^{2} ight) - 6x - 6y - 21 = 0

    \Leftrightarrow M \in (S'):x^{2} +y^{2} + z^{2} - 2x - 2y - 7 = 0

    M \in (S):(x - 3)^{2} + (y + 1)^{2} +z^{2} = 9

    \Leftrightarrow x^{2} + y^{2} + z^{2} -6x + 2y + 1 = 0

    Suy ra M ∈ (P): 4x − 4y − 8 = 0.

    Như vậy quỹ tích điểm M là đường tròn giao tuyến của (S) tâm I(3; −1; 0), bán kính R = 3 và (P)

    Ta có: d\left( I;(P) ight) = \sqrt{2}\Leftrightarrow r = \sqrt{R^{2} - d^{2}} = \sqrt{7}

  • Câu 19: Thông hiểu
    Xác định phương trình mặt cầu

    Cho I(1;2;4) và mặt phẳng (P):2x + 2y + z - 1 = 0. Mặt cầu tâm I và tiếp xúc với mặt phẳng (P), có phương trình là:

    Hướng dẫn:

    Bán kính mặt cầu là : R = d\left(
I,(\alpha) \right) = \frac{|2.1 + 2.2 + 4 - 1|}{\sqrt{2^{2} + 2^{2} +
1^{2}}} = 3.

    Phương trình mặt cầu là: (x - 1)^{2} + (y
- 2)^{2} + (z - 4)^{2} = 3

  • Câu 20: Thông hiểu
    Xác định điểm không thuộc mặt cầu

    Gọi (S) là mặt cầu có tâm I(1; -
3;0) và cắt trục Ox tại hai điểm A, B sao cho tam giác IAB đều. Điểm nào sau đây không thuộc mặt cầu (S):

    Hướng dẫn:

    Gọi H là hình chiếu của I(1; -
3;0) trên Ox

    \Rightarrow H(1;0;0) \Rightarrow IH =
d(I;Ox) = 3

    \Rightarrow IH = R.\frac{\sqrt{3}}{2}
\Rightarrow R = \frac{2IH}{\sqrt{3}} = 2\sqrt{3}

    Vậy phương trình mặt cầu là: (x - 1)^{2}
+ (y + 3)^{2} + z^{2} = 12 \mathbf{\Rightarrow}\left(
\mathbf{2;}\mathbf{-}\mathbf{1;1} \right)\mathbf{\notin}\left(
\mathbf{S} \right)\mathbf{.}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo