Cho hình lập phương QABC.DEFG có cạnh bằng 1 có trùng với ba trục
. Viết phương trình mặt cầu
nội tiếp hình lập phương.
có tâm
là trung điểm của 3 đoạn nối trung điểm các mặt đối diện đôi một có độ dài cạnh bằng 1. Bán kính
Cho hình lập phương QABC.DEFG có cạnh bằng 1 có trùng với ba trục
. Viết phương trình mặt cầu
nội tiếp hình lập phương.
có tâm
là trung điểm của 3 đoạn nối trung điểm các mặt đối diện đôi một có độ dài cạnh bằng 1. Bán kính
Cho mặt phẳng và các điểm
. Phương trình mặt cầu đi qua
và tiếp xúc với mặt phẳng
là:
Gọi có tâm
và bán kính
.
Phương mặt cầu có dạng:
(S) qua 3 điểm , ta có hệ phương trình:
Vậy (S): .
Trong không gian với hệ tọa độ , cho mặt phẳng
và mặt cầu
. Khẳng định nào sau đây đúng?
Mặt cầu (S) có tâm , bán kính
Ta có:
Do đó (P) cắt mặt cầu (S).
Cho điểm và đường thẳng
Phương trình mặt cầu (S) có tâm
và cắt đường thẳng
tại hai điểm
sao cho tam giác
vuông là:
Gọi là hình chiếu vuông góc của
lên đường thẳng
Ta có vectơ chỉ phương của :
và
Vì tam giác vuông tại
và
. Suy ra tam giác
vuông cân tại
, do đó bán kính:
Vậy phương trình mặt cầu .
Cho mặt cầu . Viết phương trình tổng quát của đường kính
song song với đường thẳng
.
Tâm vecto chỉ phương của
Trong không gian với hệ tọa độ , cho
và điểm
. Xét các điểm
sao cho đường thẳng
luôn tiếp xúc với
. Điểm
luôn thuộc một mặt phẳng cố định có phương trình là
Tọa độ tâm mặt cầu là:
Gọi khi đó:
.
Theo đề bài ra ta có:
Mặt khác phương trình mặt cầu
Lấy (*) trừ (**) ta được: .
Cho hình chóp có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp
là:

Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.
Gọi I là trung điểm SC, suy ra nên
.
Do đó IM là trục của , suy ra
(1)
Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên . (2)
Từ (1) và (2) , ta có
hay I là tâm của mặt cầu ngoại tiếp hình chóp .
Vậy bán kính .
Trong không gian với hệ tọa độ , cho mặt cầu
và mặt phẳng
. Mặt phẳng
song song với
và tiếp xúc với
là
Ta có:
(S) có tâm , bán kính
. (P) song song với (α)
⇒, với
Do mặt phẳng (P) tiếp xúc với (S) nên , so với điều kiện ta nhận
.
Vậy .
Trong không gian với hệ tọa độ , cho mặt cầu
. Một mặt cầu
có tâm
và tiếp xúc ngoài với mặt cầu
. Kết luận nào sau đây đúng về phương trình mặt cầu
?
Ta có tâm và bán kính mặt cầu lần lượt là
.
Suy ra
Gọi là bán kính mặt cầu
. Theo giả thiết ta có:
Khi đó phương trình mặt cầu cần tìm là: .
Cho hai điểm . Định
để tập hợp các điểm
sao cho
, là một mặt cầu.
Theo bài ra ta có:
Ta có:
là mặt cầu
Với
Trong không gian với hệ trục toạ độ , cho điểm
. Viết phương trình mặt cầu tâm
cắt trục
tại hai điểm
sao cho
?
Hình vẽ minh họa
Gọi H là trung điểm AB suy ra H là hình chiếu vuông góc của I lên Ox nên
Phương trình mặt cầu là: .
Cho hai điểm . Tìm tập hợp các điểm
thỏa mãn
.
Ta có:
Mặt cầu
Cho và mặt phẳng
. Mặt cầu tâm
và tiếp xúc với mặt phẳng
, có phương trình là:
Bán kính mặt cầu là : .
Phương trình mặt cầu là:
Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng cạnh đáy bằng a. Khi đó mặt cầu nội tiếp hình chóp S.ABCD có bán kính bằng:

Gọi H là tâm của hình vuông ABCD.
Ta có SH là trục đường tròn ngoại tiếp đáy.
Gọi M là trung điểm của CD và I là chân đường phân giác trong của góc .
Suy ra I là tâm của mặt cầu nội tiếp hình chóp, bán kính .
Ta có:
Dựa vào tính chất của đường phân giác ta có:
Mặt cầu có tâm là:
Phương trình mặt cầu có dạng
có tâm
, bán kính
Mặt cầu có tâm là
Trong không gian với hệ tọa độ , tìm tọa độ tâm
và bán kính
của mặt cầu
Tâm của có tọa độ là
Bán kính mặt cầu là:
.
Trong hệ tọa độ , cho mặt cầu
có đường kính
, với
. Viết phương trình
tiếp xúc với mặt cầu
tại
?
Hình vẽ minh họa
Vì mặt cầu có đường kính là AB nên tâm I của mặt cầu
là trung điểm của
.
Mặt cầu có tâm I(1; 1; 1).
Vì tiếp xúc với
tại
nên
đi qua
và nhận
làm vectơ pháp tuyến.
Suy ra
Viết phương trình tổng quát của tiếp diện của mặt cầu song song với mặt phẳng
.
có tâm
, bán kính
Tiếp điểm của có phương trình:
Cho các điểm và
và đường thẳng
. Mặt cầu đi qua hai điểm A, B và tâm thuộc đường thẳng d thì tọa độ tâm là:
Gọi trên d vì
Nếu mặt cầu đi qua bốn điểm
và
thì tâm
của
có toạ độ là:
Gọi phương trình mặt cầu (S) ,
.
Do
(1)
(2)
(3)
(4)
Giải hệ (1), (2), (3), (4) ta có , suy ra mặt cầu (S) có tâm
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: