Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 17 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Viết phương trình mặt cầu

    Cho hình lập phương QABC.DEFG có cạnh bằng 1 có \overrightarrow{OA},\ \ \overrightarrow{OC},\ \
\overrightarrow{OG}trùng với ba trục \overrightarrow{Ox},\ \overrightarrow{Oy},\
\overrightarrow{Oz}. Viết phương trình mặt cầu \left( S_{2} \right) nội tiếp hình lập phương.

    Hướng dẫn:

    \left( S_{2} \right) có tâm I\left( \frac{1}{2},\frac{1}{2},\frac{1}{2}
\right) là trung điểm của 3 đoạn nối trung điểm các mặt đối diện đôi một có độ dài cạnh bằng 1. Bán kính R_{1} = \frac{1}{2}

    \Rightarrow \left( S_{2} \right):\left(
x - \frac{1}{2} \right)^{2} + \left( y - \frac{1}{2} \right)^{2} +
\left( z - \frac{1}{2} \right)^{2} = \frac{1}{4}

    \Rightarrow \left( S_{2} \right):x^{2} +
y^{2} + z^{2} - x - y - z + \frac{1}{2} = 0

  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Cho mặt phẳng (P):2x + y - z + 5 =
0 và các điểm A(0;0;4),\
B(2;0;0). Phương trình mặt cầu đi qua O,\ A,\ B và tiếp xúc với mặt phẳng (P) là:

    Hướng dẫn:

    Gọi (S) có tâm I(a;b;c) và bán kính R.

    Phương mặt cầu (S) có dạng: x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d
= 0

    (S) qua 3 điểm O,\ A,\ B, ta có hệ phương trình:

    \left\{ \begin{matrix}
d = 0 \\
- 8c + d = - 16 \\
- 4a + d = - 4 \\
\frac{|2a + b - c + 5|}{\sqrt{4 + 1 + 1}} = R \\
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
d = 0 \\
c = 2 \\
a = 1 \\
(2 + b - 2 + 5)^{2} = 6\left( 1^{2} + b^{2} + 2^{2} - 0 \right) \\
\end{matrix} \right.

    \Leftrightarrow \left\{ \begin{matrix}
d = 0 \\
c = 2 \\
a = 1 \\
5b^{2} - 10b + 5 = 0 \\
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
c = 2 \\
d = 0 \\
\end{matrix} \right.\ .

    Vậy (S): (x - 1)^{2} + (y -
1)^{2} + (z - 2)^{2} = 6.

  • Câu 3: Nhận biết
    Chọn khẳng định đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x + 2y - z - 1 = 0 và mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x - 4y + 6z + 5 =
0. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; 2; −3), bán kính R = \sqrt{1 + 4 + 9 - 5} = 3

    Ta có:

    d\left( I;(P) ight) = \frac{\left| 2.1
+ 2.2 - ( - 3) - 1 ight|}{\sqrt{4 + 4 + 1}} = \frac{8}{3} <
R

    Do đó (P) cắt mặt cầu (S).

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Cho điểm I(0;0;3) và đường thẳng d:\left\{ \begin{matrix}
x = - 1 + t \\
y = 2t \\
z = 2 + t \\
\end{matrix} \right.\ . Phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A,\ B sao cho tam giác IAB vuông là:

    Hướng dẫn:

    Gọi H( - 1 + t;2t;2 + t) \in d là hình chiếu vuông góc của I lên đường thẳng d \Rightarrow \overrightarrow{IH} = ( - 1 + t;2t; -
1 + t)

    Ta có vectơ chỉ phương của d: \overrightarrow{a_{d}} = (1;2;1)IH\bot d

    \Rightarrow
\overrightarrow{IH}.\overrightarrow{a_{d}} = 0 \Leftrightarrow - 1 + t +
4t - 1 + t = 0 \Leftrightarrow - 2 + 6t = 0 \Leftrightarrow t =
\frac{1}{3} \Rightarrow H\left( - \frac{2}{3};\frac{2}{3};\frac{7}{3}
\right)

    \Rightarrow IH = \sqrt{\left( \frac{2}{3}
\right)^{2} + \left( \frac{2}{3} \right)^{2} + \left( \frac{2}{3}
\right)^{2}} = \frac{2\sqrt{3}}{3}

    Vì tam giác IAB vuông tại IIA = IB =
R. Suy ra tam giác IAB vuông cân tại I, do đó bán kính:

    R = IA = ABcos45^{0} =
2IH.\frac{\sqrt{2}}{2} = \sqrt{2}IH = \sqrt{2}.\frac{2\sqrt{3}}{3} =
\frac{2\sqrt{6}}{3}

    Vậy phương trình mặt cầu (S):x^{2} +
y^{2} + (z - 3)^{2} = \frac{8}{3}.

  • Câu 5: Thông hiểu
    Viết phương trình tổng quát của đường kính AB

    Cho mặt cầu (S):x^{2} + y^{2} + z^{2} -
6x - 4y - 4z - 12 = 0. Viết phương trình tổng quát của đường kính AB song song với đường thẳng (D):x = 2t + 1;y = 3;z = 5t + 2,t\mathbb{\in
R}.

    Hướng dẫn:

    Tâm I(3,2,2); vecto chỉ phương của AB:\overrightarrow{a} =
(2,0,5)

    \Rightarrow AB:x = 3 + 2t;\ \ y = 2;\ z
= 2 + 5t,\ \ t\mathbb{\in R}

    \Rightarrow AB\left\{ \begin{matrix}
\frac{x - 3}{2} = \frac{z - 2}{5} \\
y = 2 \\
\end{matrix} \right.\  \Rightarrow AB\left\{ \begin{matrix}
5x - 2z - 11 = 0 \\
y = 2 \\
\end{matrix} \right.

  • Câu 6: Vận dụng
    Viết phương trình mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho (S):(x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
1 và điểm A(2;2;2). Xét các điểm M \in (S) sao cho đường thẳng AM luôn tiếp xúc với (S). Điểm M luôn thuộc một mặt phẳng cố định có phương trình là

    Hướng dẫn:

    Tọa độ tâm mặt cầu là:I(1;1;1)

    Gọi M(x;y;z) khi đó: \left\{ \begin{matrix}
\overrightarrow{AM} = (x - 2;y - 2;z - 2) \\
\overrightarrow{IM} = (x - 1;y - 1;z - 1) \\
\end{matrix} ight..

    Theo đề bài ra ta có:

    \overrightarrow{AM}.\overrightarrow{IM}
= 0

    \Leftrightarrow (x - 2)(x - 1) + (y -
2)(y - 1) + (z - 2)(z - 1) = 0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
3x - 3y - 3z + 6 = 0(*)

    Mặt khác phương trình mặt cầu

    (S):(x - 1)^{2} + (y - 1)^{2} + (z -
1)^{2} = 1

    \Rightarrow x^{2} + y^{2} + z^{2} - 2x -
2y - 2z + 2 = 0(**)

    Lấy (*) trừ (**) ta được: x + y + z - 4 =
0.

  • Câu 7: Vận dụng
    Tìm bán kính mặt cầu

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA = BC = a. Cạnh bên SA = 2a và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC  là:

    Hướng dẫn:

     Tìm bán kính

    Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.

    Gọi I là trung điểm SC, suy ra IM ||SA nên IM \bot \left( {ABC} ight) .

    Do đó IM là trục của \triangle ABC, suy ra IA=IB=IC     (1)

    Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên IS=IC=IA.  (2)

    Từ (1) và (2) , ta có IS=IA=IB=IC

    hay I là tâm của mặt cầu ngoại tiếp hình chóp S.ABC.

    Vậy bán kính R = IS = \frac{{SC}}{2} = \frac{{\sqrt {S{A^2} + A{C^2}} }}{2} = \frac{{a\sqrt 6 }}{2} .

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 4y - 6z + 5 =
0 và mặt phẳng (\alpha):2x + y + 2z
- 15 = 0. Mặt phẳng (P) song song với (\alpha) và tiếp xúc với (S)

    Hướng dẫn:

    Ta có:

    (S) có tâm I (1; −2; 3), bán kính R = 3. (P) song song với (α)

    (P):2x + y + 2z + m = 0, với m eq - 15

    Do mặt phẳng (P) tiếp xúc với (S) nên d\left( I;(P) ight) = R \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 15 \\
m = 3 \\
\end{matrix} ight., so với điều kiện ta nhận m = 3.

    Vậy (P):2x + y + 2z + 3 = 0.

  • Câu 9: Thông hiểu
    Xác định phương trình mặt cầu (S’)

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 1)^{2} + z^{2} =
4. Một mặt cầu (S') có tâm I'(9;1;6) và tiếp xúc ngoài với mặt cầu (S). Kết luận nào sau đây đúng về phương trình mặt cầu (S')?

    Hướng dẫn:

    Ta có tâm và bán kính mặt cầu (S) lần lượt là I(1;1;0);R = 2.

    Suy ra II' = 10

    Gọi R' là bán kính mặt cầu (S'). Theo giả thiết ta có:

    R + R' = II' \Leftrightarrow
R' = II' - R = 8

    Khi đó phương trình mặt cầu cần tìm là: (S'):(x - 9)^{2} + (y - 1)^{2} + (z - 6)^{2} =
64.

  • Câu 10: Vận dụng
    Xác định giá trị của k

    Cho hai điểm A(2, - 3, - 1);\ \ \ B( -
4,5, - 3). Định k để tập hợp các điểm M(x,y,z) sao cho AM^{2} + BM^{2} = 2\left( k^{2} + 1 \right),\ \ k
\in \mathbb{R}^{+}, là một mặt cầu.

    Hướng dẫn:

    Theo bài ra ta có:

    AM^{2} + BM^{2} = 2\left( k^{2} + 1
\right)

    \Leftrightarrow (x - 2)^{2} + (y +
3)^{2} + (z + 1)^{2} + (x + 4)^{2}+ (y - 5)^{2} + (z + 3)^{2} = 2\left(
k^{2} + 1 \right)

    \Leftrightarrow (S):x^{2} + y^{2} + z^{2}
+ 2x - 2y + 4z + 31 - k^{2} = 0,\ \ k \in \mathbb{R}^{+}

    Ta có: a = - 1;b = 1;c = - 2;d = 31 -
k^{2}

    (S) là mặt cầu \Leftrightarrow a^{2} + b^{2} + c^{2} - d > 0
\Leftrightarrow k^{2} - 25 > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
k < 5 \\
k > - 5 \\
\end{matrix} \right. Với k \in
\mathbb{R}^{+} \Rightarrow k > 5

  • Câu 11: Thông hiểu
    Viết phương trình mặt cầu

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm I(1; - 2;3). Viết phương trình mặt cầu tâm I cắt trục Ox tại hai điểm A;B sao cho AB = 2\sqrt{3}?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi H là trung điểm AB suy ra H là hình chiếu vuông góc của I lên Ox nên H(1;0;0)

    IH = \sqrt{13} \Rightarrow R = IA =
\sqrt{IH^{2} + AH^{2}} = 4

    Phương trình mặt cầu là: (x - 1)^{2} + (y
+ 2)^{2} + (z - 3)^{2} = 16.

  • Câu 12: Thông hiểu
    Tìm tập hợp các điểm M

    Cho hai điểm A(2, - 3, - 1);\ \ \ B( -
4,5, - 3). Tìm tập hợp các điểm M(x,y,z) thỏa mãn AM^{2} + BM^{2} = 124.

    Hướng dẫn:

    Ta có:

    AM^{2} + BM^{2} = 124

    \Leftrightarrow (x - 2)^{2} + (y + 3)^{2}= (z + 1)^{2} + (x + 4)^{2} + (y - 5)^{2} + (z + 3)^{2} =
124

    \Leftrightarrow Mặt cầu x^{2} + y^{2} + z^{2} + 2x - 2y + 4z - 30 =
0

  • Câu 13: Thông hiểu
    Xác định phương trình mặt cầu

    Cho I(1;2;4) và mặt phẳng (P):2x + 2y + z - 1 = 0. Mặt cầu tâm I và tiếp xúc với mặt phẳng (P), có phương trình là:

    Hướng dẫn:

    Bán kính mặt cầu là : R = d\left(
I,(\alpha) \right) = \frac{|2.1 + 2.2 + 4 - 1|}{\sqrt{2^{2} + 2^{2} +
1^{2}}} = 3.

    Phương trình mặt cầu là: (x - 1)^{2} + (y
- 2)^{2} + (z - 4)^{2} = 3

  • Câu 14: Vận dụng
    Tìm bán kính

    Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng cạnh đáy bằng a. Khi đó mặt cầu nội tiếp hình chóp S.ABCD có bán kính bằng:

    Hướng dẫn:

    Tìm bán kính

    Gọi H là tâm của hình vuông ABCD.

    Ta có SH là trục đường tròn ngoại tiếp đáy.

    Gọi M là trung điểm của CD và I là chân đường phân giác trong của góc \widehat {SMH}{m{ (}}I \in SH).

    Suy ra I là tâm của mặt cầu nội tiếp hình chóp, bán kính r = IH.

    Ta có:

    \begin{array}{l}SH = \sqrt {S{A^2} - A{H^2}}  = \dfrac{{a\sqrt 2 }}{2};{m{ }}\\SM = \dfrac{{a\sqrt 3 }}{2};{m{ }}MH = \dfrac{a}{2}.\end{array}

    Dựa vào tính chất của đường phân giác ta có: \frac{{IS}}{{IH}} = \frac{{MS}}{{MH}}

     

       \Rightarrow \frac{{SH}}{{IH}} = \frac{{MS + MH}}{{MH}}

    \Rightarrow IH = \dfrac{{SH.MH}}{{MS + MH}} = \frac{a}{{\sqrt 2  + \sqrt 6 }} = \dfrac{{a\left( {\sqrt 6  - \sqrt 2 } ight)}}{4}

  • Câu 15: Nhận biết
    Tìm tâm mặt cầu

    Mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} +
z^{2} = 9 có tâm là:

    Hướng dẫn:

    Phương trình mặt cầu (S) có dạng (x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2} có tâm I(a;b;c), bán kính R.

    Mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} +
z^{2} = 9 có tâm là I\left( {1; - 2;0} \right).

  • Câu 16: Nhận biết
    Chọn kết luận đúng

    Trong không gian với hệ tọa độ Oxyz, tìm tọa độ tâm I và bán kính R của mặt cầu (S):(x - 1)^{2} + (y + 2)^{2} + (z - 4)^{2} =
20

    Hướng dẫn:

    Tâm của (S) có tọa độ là I(1; - 2;4)

    Bán kính mặt cầu (S) là: R = \sqrt{20} = 2\sqrt{5}.

  • Câu 17: Thông hiểu
    Viết phương trình mặt phẳng

    Trong hệ tọa độ Oxyz, cho mặt cầu (S) có đường kính AB, với A(6;2; - 5),B( - 4;0;7). Viết phương trình (P) tiếp xúc với mặt cầu (S) tại A?

    Hướng dẫn:

    Hình vẽ minh họa

    Vì mặt cầu (S) có đường kính là AB nên tâm I của mặt cầu (S) là trung điểm của AB.

    Mặt cầu (S) có tâm I(1; 1; 1).

    (P) tiếp xúc với (S) tại A nên (P) đi qua A và nhận \overrightarrow{IA} = (5;1; - 6) làm vectơ pháp tuyến.

    Suy ra (P):5(x - 6) + (y - 2) - 6(z + 5)
= 0

    \Rightarrow (P):5x + y - 6z - 62 =
0

  • Câu 18: Thông hiểu
    Tìm phương trình tổng quát của tiếp diện

    Viết phương trình tổng quát của tiếp diện của mặt cầu (S):\ \ x^{2} + y^{2} + z^{2} - 4x - 2y - 2z - 10
= 0 song song với mặt phẳng (P):\ \
2x - 3y + 6z - 7 = 0.

    Hướng dẫn:

    (S) có tâm I(2,1,1), bán kính R = 4.

    Tiếp điểm của (S) có phương trình:

    (Q):2x - 3y + 6z + m = 0

    \Rightarrow d(I,Q) = R \Leftrightarrow
\frac{|m + 7|}{7} = 4 \Leftrightarrow \left\lbrack \begin{matrix}
m = 21 \\
m = - 35 \\
\end{matrix} \right.

    \Rightarrow \left\lbrack \begin{matrix}
(Q):2x - 3y + 6z + 21 = 0 \\
(Q'):2x - 3y + 6z - 35 = 0 \\
\end{matrix} \right.

  • Câu 19: Thông hiểu
    Xác định tọa độ tâm mặt cầu

    Cho các điểm A(0;1;3)B(2;2;1) và đường thẳng d:\frac{x - 1}{1} = \frac{y - 2}{- 1} = \frac{z -
3}{- 2}. Mặt cầu đi qua hai điểm A, B và tâm thuộc đường thẳng d thì tọa độ tâm là:

    Hướng dẫn:

    Gọi I(1 + t;2 - t;3 - 2t) trên dIA = IB \Rightarrow t =
\frac{3}{10} \Rightarrow I\left(
\frac{13}{10};\frac{17}{10};\frac{12}{5} \right).

  • Câu 20: Thông hiểu
    Xác định tâm mặt cầu

    Nếu mặt cầu (S) đi qua bốn điểm M(2;2;2),\ N(4;0;2),\ P(4;2;0)Q(4;2;2) thì tâm I của (S) có toạ độ là:

    Hướng dẫn:

    Gọi phương trình mặt cầu (S) x^{2} + y^{2} + z^{2} - 2ax - 2by - 2cz + d =
0, \left( a^{2} + b^{2} + c^{2} - d
> 0 \right).

    Do M(2;2;2) \in (S)
\Leftrightarrow - 4a - 4b - 4c + d
= - 12 (1)

    N(4;0;2) \in (S) \Leftrightarrow - 8a -
4c + d = - 20 (2)

    P(4;2;0) \in (S) \Leftrightarrow - 8a -
4b + d = - 20 (3)

    Q(4;2;2) \in (S) \Leftrightarrow - 8a -
4b - 4c + d = - 24 (4)

    Giải hệ (1), (2), (3), (4) ta có a = 1,\
b = 2,\ c = 1,\ d = - 8, suy ra mặt cầu (S) có tâm I(1;2;1)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (60%):
    2/3
  • Vận dụng (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo