Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 19 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Hướng dẫn:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Tính xác suất để hạt giống lấy ra lần 2 là hạt loại A.

    Hướng dẫn:

    Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0,1, 2 hạt loại B.

    {H0, H1, H2} là một hệ đầy đủ.

    Áp dụng công thức xác suất đầy đủ ta có

    P(F) = P\left( H_{0} ight).P\left(
F|H_{0} ight) + P\left( H_{1} ight).P\left( F|H_{1} ight) +
P\left( H_{2} ight).P\left( F|H_{2} ight)

    \Rightarrow P(F) =
\frac{C_{7}^{2}}{C_{13}^{2}}.\frac{5}{11} +
\frac{C_{7}^{1}.C_{6}^{1}}{C_{13}^{2}}.\frac{6}{11} +
\frac{C_{6}^{2}}{C_{13}^{2}}.\frac{7}{11} = 0,538.

  • Câu 3: Nhận biết
    Tính P(B|A)

    Cho hai biến cố A,B thỏa mãn P(A) = 0,4, P(B) = 0,3, P(A|B) = 0,25. Khi đó, P(B|A) bằng

    Hướng dẫn:

    Theo công thức Bayes, ta có:

    P(B|A) = \frac{P(B).P(A|B)}{P(A)} =
\frac{0,3.0,25}{0,4} = 0,1875.

  • Câu 4: Nhận biết
    Tìm khẳng định sai

    Giả sử AB là hai biến cố ngẫu nhiên thỏa mãn P(A) > 00 < P(B) < 1. Khẳng định nào dưới đây sai?

    Hướng dẫn:

    Giả sử AB là hai biến cố ngẫu nhiên thỏa mãn P(A) > 00 < P(B) < 1.

    Khi đó, công thức Bayes:

    P\left( B|A \right) = \frac{P(B)P\left(
A|B \right)}{P(B)P\left( A|B \right) + P\left( \overline{B}
\right)P\left( A|\overline{B} \right)}

    Hay còn có thể viết dưới dạng: P\left( B|A \right) =
\frac{P(B)P\left( A|B \right)}{P(A)}.

  • Câu 5: Nhận biết
    Tính xác suất P

    Cho hai biến cố AB với P(B) =
0,2;P\left( A|B ight) = 0,5;P\left( A|\overline{B} ight) =
0,4. Tính P\left( B|A
ight)?

    Hướng dẫn:

    Ta có: P(B) = 0,2 \Rightarrow P\left(
\overline{B} ight) = 1 - P(B) = 1 - 0,2 = 0,8

    Áp dụng công thức Bayes:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(B).P\left( A|B ight) + P\left( \overline{B}
ight).P\left( A|\overline{B} ight)}

    \Rightarrow P\left( B|A ight) =
\frac{0,2.0,5}{0,2.0,5 + 0,8.0,4} = \frac{5}{21} \approx 0,238 .

  • Câu 6: Thông hiểu
    Tính xác suất P

    Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên từ mỗi hộp ra một phiếu thi, sau đó cho học sinh A rút ngẫu nhiên ra 1 phiếu từ 2 phiếu mà giáo viên đã rút. Tính xác suất để học sinh A trả lời được câu hỏi trong phiếu.

    Hướng dẫn:

    Gọi E1 là biến cố sinh viên rút ra từ hộp 1

    E2 là biến cố sinh viên rút ra từ hộp 2

    E1, E2 tạo thành một nhóm biến cố đầy đủ

    Gọi B là biến cố rút ra 1 câu thuộc B=(E_1∩B)∪(E_2∩B)

    => P(B) = P(E_1).P(B|E_1) + P(E_2).P(B|E_2)

    Ta có: \left\{ \begin{gathered}
  P\left( {{E_1}} ight) = \frac{{C_1^1}}{{C_2^1}} = \frac{1}{2};P\left( {{E_2}} ight) = \frac{{C_1^1}}{{C_2^1}} = \frac{1}{2} \hfill \\
  P\left( {B|{E_1}} ight) = \frac{{C_{10}^1}}{{C_{15}^1}} = \frac{2}{3} \hfill \\
  P\left( {B|{E_2}} ight) = \frac{{C_8^1}}{{C_9^1}} = \frac{8}{9} \hfill \\ 
\end{gathered}  ight.

    Thay vào công thức ta tính được P(B) =
\frac{7}{9}.

  • Câu 7: Nhận biết
    Tính xác suất cỉa biến cố A

    Cho hai biến cố AB biết P(B) =
0,6\ ;\ \ P\left( A|B \right) = 0,3\ ;\ \ P\left( A|\overline{B} \right)
= 0,8. Tính P(A)

    Hướng dẫn:

    Ta có:

    P\left( \overline{B} \right) = 1 -
P(B) = 0,4

    \Rightarrow P(A) = P(B).P\left( A|B
\right) + P\left( \overline{B} \right).P\left( A|\overline{B}
\right)

    = 0,6.0,3 + 0,4.0,8 = 0,5

  • Câu 8: Nhận biết
    Tính P(A)

    Cho hai biến cố A,B với P(B) = 0,6, P(A|B) = 0,7P(A|\overline{B}) = 0,4. Khi đó P(A) bằng

    Hướng dẫn:

    Ta có: P(\overline{B}) = 1 - P(B) = 1 -
0,6 = 0,4.

    Theo công thức xác suất toàn phần:

    P(A) = P(B).P\left( A \middle| B \right)
+ P\left( \overline{B} \right).P\left( A \middle| \overline{B}
\right)

    = 0,6.0,7 + 0,4.0,4 = 0,58.

  • Câu 9: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hai biến cố ABP(A) =
0,6, P(B) = 0,4, P(AB) = 0,2.

    a) P\left( \overline{A} \right) =
0,6.Sai||Đúng

    b) P\left( \overline{B} \right) =
0,6.Đúng|Sai

    c) P\left( A|B \right) = 0,4. Sai||Đúng

    d) P\left( B|A \right) =
\frac{1}{3}. Đúng|Sai

    Đáp án là:

    Cho hai biến cố ABP(A) =
0,6, P(B) = 0,4, P(AB) = 0,2.

    a) P\left( \overline{A} \right) =
0,6.Sai||Đúng

    b) P\left( \overline{B} \right) =
0,6.Đúng|Sai

    c) P\left( A|B \right) = 0,4. Sai||Đúng

    d) P\left( B|A \right) =
\frac{1}{3}. Đúng|Sai

    a) SP\left( \overline{A} \right) = 1 -
0,6 = 0,4 \neq 0,6.

    b) Đ P\left( \overline{B} \right) = 1 -
0,4 = 0,6.

    c) s P\left( A|B \right) =
\frac{P(AB)}{P(B)} = \frac{0,2}{0,4} = 0,5 \neq 0,4.

    d) Đ P\left( B|A \right) =
\frac{P(AB)}{P(A)} = \frac{0,2}{0,6} = \frac{1}{3}.

  • Câu 10: Nhận biết
    Xét tính đúng sai của các kết luận

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó

    có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét

    các biến cố: A:” lần thứ nhất lấy ra chai nước loại I”; B:”Lần thứ hai lấy ra chai nước loại I”.

    a)P\left( B|A \right) =
\frac{16}{23}. Sai||Đúng

    b)P\left( B|A \right) =
\frac{15}{23}. Sai||Đúng

    c)P\left( B|A \right) =
\frac{8}{23}. Đúng||Sai

    d) P\left( B|A \right) =
\frac{7}{23}. Đúng||Sai

    Đáp án là:

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó

    có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét

    các biến cố: A:” lần thứ nhất lấy ra chai nước loại I”; B:”Lần thứ hai lấy ra chai nước loại I”.

    a)P\left( B|A \right) =
\frac{16}{23}. Sai||Đúng

    b)P\left( B|A \right) =
\frac{15}{23}. Sai||Đúng

    c)P\left( B|A \right) =
\frac{8}{23}. Đúng||Sai

    d) P\left( B|A \right) =
\frac{7}{23}. Đúng||Sai

    Ta có: P(A) = \frac{16}{24} =
\frac{2}{3};P(\overline{A}) = \frac{8}{24} = \frac{1}{3}.

    Nếu lần thứ nhất lấy ra chai loại I thì két còn 23 chai nước, trong đó có 15 chai loại I, 8 chai loại II. Suy ra P(B
\mid A) = \frac{15}{23}.

    Nếu lần thứ nhất lấy ra chai loại II thì két còn 23 chai nước, trong đó có 16 chai loại I, 7 chai loại II. Suy ra P(B \mid \overline{A}) =
\frac{16}{23}.

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A).P(B \mid A) +
P(\overline{A}).P(B \mid \overline{A}) = \frac{2}{3} \cdot \frac{15}{23}
+ \frac{1}{3} \cdot \frac{16}{23} = \frac{2}{3}.

    Ta có: P(\overline{B} \mid A) = 1 - P(B
\mid A) = 1 - \frac{15}{23} = \frac{8}{23};

    P(\overline{B} \mid \overline{A}) = 1 -
P(B \mid \overline{A}) = 1 - \frac{16}{23} = \frac{7}{23}.

    Đáp án: a) S, b) S, c) Đ, d) Đ.

  • Câu 11: Nhận biết
    Tính P(B|A)

    Cho hai biến cố AB, với P(B) =
0,8, P\left( A|B \right) =
0,7, P\left( A|\overline{B} \right)
= 0,45. Tính P\left( B|A
\right).

    Hướng dẫn:

    Ta có: P\left( \overline{B} \right) = 1
- 0,8 = 0,2.

    Công thức Bayes:

    P\left( B|A \right) =
\frac{P(B)P\left( A|B \right)}{P(B)P\left( A|B \right) + P\left(
\overline{B} \right)P\left( A|\overline{B} \right)}

    \Rightarrow P\left( B|A \right) =
\frac{0,8.0,7}{0,8.0,7 + 0,2.0,45} = \frac{56}{65}.

  • Câu 12: Nhận biết
    Tính xác suất của biến cố

    Cho hai biến cố A,B sao cho P(A) = 0,3; P(B) = 0,6P(A|B) = 0,2. Tính P(B|A).

    Hướng dẫn:

    Ta có P(B|A) = \frac{P(B).P(A|B)}{P(A)} =
\frac{0,6.0,2}{0,3} = \frac{2}{5}.

  • Câu 13: Nhận biết
    Tính giá trị của P(A)

    Cho hai biến cố AB, với P(B) =
0,8, P\left( A|B \right) =
0,7, P\left( A|\overline{B} \right)
= 0,45. Giá trị P(A) bằng

    Hướng dẫn:

    Ta có: P\left( \overline{B} \right) = 1 -
P(B) = 1 - 0,8 = 0,2

    Công thức xác suất toàn phần

    P(A) = P(B).P\left( A|B \right) +
P\left( \overline{B} \right).P\left( A|\overline{B} \right)= 0,8.0,7 + 0,2.0,45 = 0,65

  • Câu 14: Nhận biết
    Tính xác suất

    Nếu hai biến cố A;B thỏa mãn P(A) = 0,3;P(B) = 0,6;P\left( A|B ight) =
0,4 thì P\left( B|A
ight) bằng bao nhiêu?

    Hướng dẫn:

    Theo công thức Bayes ta có:

    P\left( B|A ight) = \frac{P(B).P\left(
A|B ight)}{P(A)}

    \Rightarrow P\left( B|A ight) =
\frac{0,6.0,4}{0,3} = \frac{4}{5}

  • Câu 15: Nhận biết
    Tìm P(A)

    Cho 2 biến cố AB, tìm P(A) biết P\left( A|B \right) = 0,8; P\left( A|\overline{B} \right) = 0,3; P(B) = 0,4.

    Hướng dẫn:

    Ta có:

    P(B) = 0,4 \Rightarrow P\left(
\overline{B} \right) = 1 - 0,4 = 0,6.

    Theo công thức xác suất toàn phần:

    P(A) = P(B).P\left( A|B \right) +
P\left( \overline{B} \right).P\left( A|\overline{B} \right)

    \Leftrightarrow P(A) = 0,4.0,8\  +
0,6.0,3 = 0,5.

  • Câu 16: Nhận biết
    Tính P(A|B)

    Cho P(A) = 0,3; P(B) = 0,5; P\left( B\left| A \right.\  \right) =
0,7. Khi đó P\left( A\left| B
\right.\  \right) bằng

    Hướng dẫn:

    Theo công thức Bayes, ta có:

    P\left( A\left| B \right.\  \right) =
\frac{P(A).P\left( B\left| A \right.\  \right)}{P(B)} =
\frac{0,3.0,7}{0,5} = 0,42.

  • Câu 17: Thông hiểu
    Tính xác suất lấy được bi trắng

    Hộp I: 5 bi trắng và 5 bi đen. Hộp II: 6 bi trắng và 4 bi đen. Bỏ hai viên bi từ hộp I sang hộp II. Sau đó lấy ra 1 viên bi. Tính xác suất để lấy được bi trắng.

    Hướng dẫn:

    Gọi A là biến cố lấy được bi trắng

    Cách 1: Ta có sơ đồ cây mô tả như sau:

    P(A) = P\left( H_{0} ight).P\left(
A|H_{0} ight) + P\left( H_{1} ight).P\left( A|H_{1} ight) +
P\left( H_{2} ight).P\left( A|H_{2} ight) =
\frac{7}{12}.

    Cách 2: Gọi K1 là biến cố lấy bi ra từ hộp II của hộp I

    Gọi K2 là biến cố lấy bi ra từ hộp II của hộp II

    Ta xác định được:

    \left\{ \begin{gathered}
  P\left( {{K_1}} ight) = \frac{{C_2^1}}{{C_{12}^1}};P\left( {{K_2}} ight) = \frac{{C_{10}^1}}{{C_{12}^1}} \hfill \\
  P\left( {A|{E_1}} ight) = \frac{{C_5^1}}{{C_{10}^1}};P\left( {A|{E_2}} ight) = \frac{{C_6^1}}{{C_{10}^1}} \hfill \\ 
\end{gathered}  ight.

    Khi đó: P(A) = P\left( K_{1}
ight).P\left( A|K_{1} ight) + P\left( K_{2} ight).P\left( A|K_{2}
ight) = \frac{7}{12}

  • Câu 18: Nhận biết
    Tính xác suất của biến cố B

    Cho sơ đồ hình cây như sau

    Tính xác suất của biến cố B.

    Hướng dẫn:

    Ta có P(B) = 0,4.0,6 + 0,4.0,3 =
0,36.

  • Câu 19: Thông hiểu
    Tính xác suất P

    Có ba kiện hàng (mỗi kiện hàng có 20 sản phẩm) với số sản phẩm tốt tương ứng của mỗi kiện là 18, 16, 12. Lấy ngẫu nhiên một kiện hàng, rồi từ đó lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Trả sản phẩm này lại kiện hàng vừa lấy, sau đó lại lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Tính xác suất để các sản phẩm tốt đó được lấy từ kiện hàng thứ nhất?

    Hướng dẫn:

    Gọi Ai là "sản phẩm lấy từ kiện thứ i" thì A1, A2, A3 tạo thành hệ đầy đủ.

    Gọi A là các sản phẩm lấy ra đều tốt.

    P\left( A_{1} ight) = P\left( A_{2}
ight) = P\left( A_{3} ight) = \frac{1}{3}

    Áp dụng công thức xác suất toàn phần ta có:

    P\left( A|A_{1} ight) =
\frac{18}{20}.\frac{18}{20}

    P\left( A|A_{2} ight) =
\frac{16}{20}.\frac{16}{20}

    P\left( A|A_{3} ight) =
\frac{12}{20}.\frac{12}{20}

    Từ đó ta có:

    P(A) = P\left( A_{1} ight).P\left(
A|A_{1} ight) + P\left( A_{2} ight).P\left( A|A_{2} ight) +
P\left( A_{3} ight).P\left( A|A_{3} ight)

    \Rightarrow P(A) =
\frac{1}{3}.\frac{18}{20}.\frac{18}{20} +
\frac{1}{3}.\frac{16}{20}.\frac{16}{20} +
\frac{1}{3}.\frac{12}{20}.\frac{12}{20} = \frac{181}{300} \approx
0,6033

  • Câu 20: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB, công thức tính xác suất toàn phần là

    Hướng dẫn:

    Ta có: P(A) = P(B).P\left( A|B \right) +
P\left( \overline{B} \right).P\left( A|\overline{B} \right)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo