Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 19 (Mức độ Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn công thức đúng

    Cho hai biến cố AB với 0 <
P(B) < 1. Khi đó công thức xác suất toàn phần tính P(A) là:

    Hướng dẫn:

    Ta có công thức xác suất toàn phần tính P(A) là:

    P(A) = P(B).P\left( A|B ight) + P\left(
\overline{B} ight).P\left( A|\overline{B} ight)

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB. Biết P(B)
= 0,01; P\left( A|B \right) =
0,7; P\left( A|\overline{B} \right)
= 0,09. Khi đó P(A) bằng

    Hướng dẫn:

    Ta có: P(B) = 0,01 \Rightarrow P\left(
\overline{B} \right) = 1 - 0,01 = 0,99.

    Theo công thức xác suất toàn phần, ta có:

    P(A) = P(B)P\left( A|B \right) + P\left(
\overline{B} \right)P\left( A|\overline{B} \right)

    = 0,01.0,7 + 0,99.0,09 =
0,0961.

  • Câu 3: Nhận biết
    Tìm P(A)

    Cho 2 biến cố AB, tìm P(A) biết P\left( A|B \right) = 0,8; P\left( A|\overline{B} \right) = 0,3; P(B) = 0,4.

    Hướng dẫn:

    Ta có:

    P(B) = 0,4 \Rightarrow P\left(
\overline{B} \right) = 1 - 0,4 = 0,6.

    Theo công thức xác suất toàn phần:

    P(A) = P(B).P\left( A|B \right) +
P\left( \overline{B} \right).P\left( A|\overline{B} \right)

    \Leftrightarrow P(A) = 0,4.0,8\  +
0,6.0,3 = 0,5.

  • Câu 4: Nhận biết
    Xác định câu đúng

    Chọn khẳng định đúng.

    Hướng dẫn:

    Câu đúng là : « Với hai biến cố A,BP(A)
> 0,P(B) > 0, ta có:

    P(B|A) =
\frac{P(B).P(A|B)}{P(A)}

  • Câu 5: Nhận biết
    Tìm khẳng định sai

    Giả sử AB là hai biến cố ngẫu nhiên thỏa mãn P(A) > 00 < P(B) < 1. Khẳng định nào dưới đây sai?

    Hướng dẫn:

    Giả sử AB là hai biến cố ngẫu nhiên thỏa mãn P(A) > 00 < P(B) < 1.

    Khi đó, công thức Bayes:

    P\left( B|A \right) = \frac{P(B)P\left(
A|B \right)}{P(B)P\left( A|B \right) + P\left( \overline{B}
\right)P\left( A|\overline{B} \right)}

    Hay còn có thể viết dưới dạng: P\left( B|A \right) =
\frac{P(B)P\left( A|B \right)}{P(A)}.

  • Câu 6: Nhận biết
    Tính P(B)

    Xét một phép thử có biến cố AB. Biết xác suất xảy ra các biến cố P(A), P\left( B|A \right), P\left( B|\overline{A} \right) được thể hiện trong sơ đồ sau:

    Tính P(B).

    Hướng dẫn:

    Ta có

    P(B) = P(A)P\left( B|A \right) + P\left(
\overline{A} \right)P\left( B|\overline{A} \right)

    = 0,1 \cdot 0,9 + (1 - 0,1) \cdot 0,8 =
0,81.

  • Câu 7: Nhận biết
    Tính giá trị của P(A)

    Cho hai biến cố AB, với P(B) =
0,8, P\left( A|B \right) =
0,7, P\left( A|\overline{B} \right)
= 0,45. Giá trị P(A) bằng

    Hướng dẫn:

    Ta có: P\left( \overline{B} \right) = 1 -
P(B) = 1 - 0,8 = 0,2

    Công thức xác suất toàn phần

    P(A) = P(B).P\left( A|B \right) +
P\left( \overline{B} \right).P\left( A|\overline{B} \right)= 0,8.0,7 + 0,2.0,45 = 0,65

  • Câu 8: Nhận biết
    Chọn công thức đúng

    Cho hai biến cố AB với 0 <
P(A) < 1. Khi đó công thức xác suất toàn phần tính P(B) là:

    Hướng dẫn:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

  • Câu 9: Thông hiểu
    Chọn kết quả đúng

    Có 2 xạ thủ loại I và 8 xạ thủ loại II, xác suất bắn trúng đích của các loại xạ thủ loại I là 0,9 và loại II là 0,7. Chọn ngẫu nhiên ra một xạ thủ và xạ thủ đó bắn một viên đạn. Tìm xác suất để viên đạn đó trúng đích.

    Hướng dẫn:

    Gọi A là biến cố "Viên đạn trúng đích".

    B_{1} là biến cố "Chọn xạ thủ loại I bắn".

    B_{2} là biến cố "Chọn xạ thủ loại II bắn".

    P\left( {B}_{2} ight) =\frac{8}{10} = 0,8,P\left( A \mid B_{2} ight) =0,7

    P\left( {B}_{1} ight) =\frac{2}{10} = 0,2,P\left( A \mid B_{1} ight) =0,9

    Ta có B_{1},{B}_{2} tạo thành họ đầy đủ các biến cố.

    Áp dụng công thức ta có:

    P\left( \text{ }A ight) = P\left({\text{ }B}_{1} ight)P\left( \text{ }A \mid B_{1} ight) + P\left({\text{ }B}_{2} ight)P\left( \text{ }A \mid B_{2}ight)

    = 0,2 \cdot 0,9 + 0,8 \cdot 0,7 =
0,74

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Dây chuyền lắp ráp nhận được các chi tiết do hai máy sản xuất. Trung bình máy thứ nhất cung cấp 60\% chi tiết, máy thứ hai cung cấp 40\% chi tiết. Biết 90\% chi tiết do máy thứ nhất sản xuất đều đạt tiêu chuẩn và 85\% chi tiết do máy thứ hai sản xuất là đạt tiêu chuẩn. Lấy ngẫu nhiên từ dây chuyển một sản phẩm, thấy nó đạt tiêu chuẩn. Tìm xác suất để sản phẩm đó do máy thứ nhất sản xuất.

    Hướng dẫn:

    Gọi A là biến cố chi tiết lấy từ dây chuyển đạt tiêu chuẩn.

    Biến cố A có thể xảy ra đồng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố.

    H1 chi tiết máy do máy một sản xuất.

    H2 chi tiết máy do máy hai sản xuất.

    Như vậy xác suất để chi tiết máy dó máy một sản xuất bằng:

    P\left( H_{1}|A ight) = \frac{P\left(
H_{1} ight).P\left( A|H_{1} ight)}{P\left( H_{1} ight).P\left(
A|H_{1} ight) + P\left( H_{2} ight).P\left( A|H_{2}
ight)}

    Theo dữ kiện đề bài cho ta có:\left\{
\begin{matrix}
P\left( H_{1} ight) = 0,6;P\left( H_{2} ight) = 0,4 \\
P\left( A|H_{1} ight) = 0,9;P\left( A|H_{2} ight) = 0,85 \\
\end{matrix} ight.

    Do đó:

    P\left( H_{1}|A ight) =
\frac{0,6.0,9}{0,6.0,9 + 0,4.0,85} = 0,614

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB sao cho P(A) = 0,6; P(B) = 0,4; P\left( A|B \right) = 0,3. Khi đó P\left( B|A \right) bằng?

    Hướng dẫn:

    Áp dụng công thức Bayes, ta có:

    P\left( B|A \right) = \frac{P(B)P\left(
A|B \right)}{P(A)} = \frac{0,4.0,3}{0,6} = 0,2.

  • Câu 12: Nhận biết
    Tính P(A)

    Cho hai biến cố A,B với P(B) = 0,6, P(A|B) = 0,7P(A|\overline{B}) = 0,4. Khi đó P(A) bằng

    Hướng dẫn:

    Ta có: P(\overline{B}) = 1 - P(B) = 1 -
0,6 = 0,4.

    Theo công thức xác suất toàn phần:

    P(A) = P(B).P\left( A \middle| B \right)
+ P\left( \overline{B} \right).P\left( A \middle| \overline{B}
\right)

    = 0,6.0,7 + 0,4.0,4 = 0,58.

  • Câu 13: Nhận biết
    Tính P(A)

    Cho hai biến cố AB với P(B) =
0,8;P\left( A|B ight) = 0,7,P\left( A|\overline{B} ight) =
0,45. Tính P(A)?

    Hướng dẫn:

    Ta có:

    P\left( \overline{B} ight) = 1 - P(B)
= 1 - 0,8 = 0,2

    Áp dụng công thức xác suất toàn phần ta có:

    P(A) = P(B).P\left( A|B ight) +
P\left( \overline{B} ight).P\left( A|\overline{B} ight)

    \Rightarrow P(A) = 0,8.0,7 + 0,2.0,45 =
0,65

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB với 0 <
P(A) < 1. Biết P(A) =0,1;P\left( \overline{A} ight) = 0,9;P\left( B|A ight) = 0,3;P\left(B|\overline{A} ight) = 0,6. Tính P(B)?

    Hướng dẫn:

    Ta có công thức xác suất toàn phần tính P(B) là:

    P(B) = P(A).P\left( B|A ight) + P\left(
\overline{A} ight).P\left( B|\overline{A} ight)

    \Rightarrow P(B) = 0,1.0,3 + 0,9.0,6 =
0,57

  • Câu 15: Thông hiểu
    Tính xác suất

    Trong một vùng dân cư, cứ 100 người thì có 30 người hút thuốc lá. Biết tỷ lệ người bị viêm họng trong số người hút thuốc lá là 60\%, trong số người không hút thuốc lá là 30\%. Khám ngẫu nhiên một người và thấy người đó bị viêm họng. Tìm xác suất để người đó hút thuốc lá?

    Hướng dẫn:

    Gọi A: "Người này hút thuốc"

    B: "Người này bị viêm họng"

    Theo giả thiết ta có: P(A) = 0,3;P\left(
B|A ight) = 0,6;P\left( B|\overline{A} ight) = 0,3

    Ta thấy rằng A;\overline{A} là một hệ đầy đủ các biến cố.

    Theo công thức xác suất toàn phần ta tính được:

    P(B) = P\left( B|A ight)P(A) + P\left(
B|\overline{A} ight)P\left( \overline{A} ight)

    = 0,6.0,3 + 0,3.0,7 = 0,39

    Theo công thức Bayes, xác suất để người đó hút thuốc lá khi biết người đó bị viêm họng là:

    P\left( A|B ight) = \frac{P\left( A|B
ight)P(A)}{P(B)} = \frac{0,6.0,3}{0,39} = 0,462

  • Câu 16: Nhận biết
    Xét tính đúng sai của các kết luận

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó

    có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét

    các biến cố: A:” lần thứ nhất lấy ra chai nước loại I”; B:”Lần thứ hai lấy ra chai nước loại I”.

    a)P\left( B|A \right) =
\frac{16}{23}. Sai||Đúng

    b)P\left( B|A \right) =
\frac{15}{23}. Sai||Đúng

    c)P\left( B|A \right) =
\frac{8}{23}. Đúng||Sai

    d) P\left( B|A \right) =
\frac{7}{23}. Đúng||Sai

    Đáp án là:

    Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó

    có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét

    các biến cố: A:” lần thứ nhất lấy ra chai nước loại I”; B:”Lần thứ hai lấy ra chai nước loại I”.

    a)P\left( B|A \right) =
\frac{16}{23}. Sai||Đúng

    b)P\left( B|A \right) =
\frac{15}{23}. Sai||Đúng

    c)P\left( B|A \right) =
\frac{8}{23}. Đúng||Sai

    d) P\left( B|A \right) =
\frac{7}{23}. Đúng||Sai

    Ta có: P(A) = \frac{16}{24} =
\frac{2}{3};P(\overline{A}) = \frac{8}{24} = \frac{1}{3}.

    Nếu lần thứ nhất lấy ra chai loại I thì két còn 23 chai nước, trong đó có 15 chai loại I, 8 chai loại II. Suy ra P(B
\mid A) = \frac{15}{23}.

    Nếu lần thứ nhất lấy ra chai loại II thì két còn 23 chai nước, trong đó có 16 chai loại I, 7 chai loại II. Suy ra P(B \mid \overline{A}) =
\frac{16}{23}.

    Theo công thức xác suất toàn phần, ta có:

    P(B) = P(A).P(B \mid A) +
P(\overline{A}).P(B \mid \overline{A}) = \frac{2}{3} \cdot \frac{15}{23}
+ \frac{1}{3} \cdot \frac{16}{23} = \frac{2}{3}.

    Ta có: P(\overline{B} \mid A) = 1 - P(B
\mid A) = 1 - \frac{15}{23} = \frac{8}{23};

    P(\overline{B} \mid \overline{A}) = 1 -
P(B \mid \overline{A}) = 1 - \frac{16}{23} = \frac{7}{23}.

    Đáp án: a) S, b) S, c) Đ, d) Đ.

  • Câu 17: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hai biến cố AB, với P\left( \overline{A} \right) = 0,4\ ,\ P(B) = 0,7\
,\ P(A \cap B) = 0,3.

    a) P(A) = 0,6P\left( \overline{B} \right) = 0,3 Đúng||Sai

    b) P\left( A|B \right) =
\frac{2}{3}Sai||Đúng

    c) P\left( \overline{B}|A \right) =
\frac{1}{3} Sai||Đúng

    d) P\left( \overline{A} \cap B \right) =
\frac{3}{5} Sai||Đúng

    Đáp án là:

    Cho hai biến cố AB, với P\left( \overline{A} \right) = 0,4\ ,\ P(B) = 0,7\
,\ P(A \cap B) = 0,3.

    a) P(A) = 0,6P\left( \overline{B} \right) = 0,3 Đúng||Sai

    b) P\left( A|B \right) =
\frac{2}{3}Sai||Đúng

    c) P\left( \overline{B}|A \right) =
\frac{1}{3} Sai||Đúng

    d) P\left( \overline{A} \cap B \right) =
\frac{3}{5} Sai||Đúng

    a) Đúng.

    Ta có: P\left( \overline{A} \right) = 1 -
P(A) = 0,6

    P(B) = 1 - P\left( \overline{B} \right) =
0,3.

    b) Sai.

    Ta có: P\left( A|B \right) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

    c) Sai.

    Ta có: P\left( \overline{B}|A \right) = 1
- P\left( B|A \right) = \frac{P(A \cap B)}{P(A)} = 1 - \frac{0,3}{0,6} =
0,5.

    d) Sai.

    Ta có: P\left( \overline{A} \cap B
\right) = P\left( \overline{A}|B \right).P(B)

    P\left( \overline{A}|B \right) = 1 -
P\left( A|B \right) = \frac{P(A \cap B)}{P(B)} = 1 - \frac{0,3}{0,7} =
\frac{4}{7}

    P\left( \overline{B} \cap A \right) =
P\left( \overline{A}|B \right).P(B) = \frac{4}{7}.0,7 =
\frac{2}{5}.

  • Câu 18: Thông hiểu
    Chọn kết quả thích hợp

    Cho hai biến cố AB\ P(A) =
0,2;\ P(B) = 0,6;P\left( A|B \right) = 0,3. Tính \ P\left( \overline{A}B \right).

    Hướng dẫn:

    Theo công thức tính xác suất có điều kiện ta có:

    \ P\left( A|B \right) =
\frac{P(AB)}{P(B)}

    \Rightarrow P(AB) = P\left( A|B
\right).P(B) = 0,3.0,6 = 0,18.

    \ \overline{A}B\ AB là hai biến cố xung khắc và \ \overline{A}B \cup AB = B nên theo tính chất của xác suất, ta có:

    \ P\left( \overline{A}B \right) + P(AB)
= P(B)

    \Rightarrow P\left( \overline{A}B \right)
= P(B) - P(AB) = 0,6 - 0,18 = 0,42.

  • Câu 19: Nhận biết
    Tính P(A|B)

    Cho hai biến cố AB, với P(A) =
0,2, P(B) = 0,26, P\left( B|A \right) = 0,7. Tính P\left( A|B \right).

    Hướng dẫn:

    Theo công thức Bayes, ta có

    P\left( A|B \right) = \frac{P(A).P\left(
B|A \right)}{P(B)} = \frac{0,2.0,7}{0,26} = \frac{7}{13}.

  • Câu 20: Nhận biết
    Xác định giá trị P(A)

    Nếu hai biến cố A, B thỏa mãn P(B) =
0,6;\ P\left( A\left| B \right.\  \right) = 0,5;P\left( A\left|
\overline{B} \right.\  \right) = 0,3 thì P(A) bằng:

    Hướng dẫn:

    Ta có:

    P(A) = P(B).P\left( A\left| B
\right.\  \right) + P\left( \overline{B} \right).P\left( A\left|
\overline{B} \right.\  \right)

    = 0,6.0,5 + 0,4.0,3 = 0,42

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo