Cho hai biến cố với
,
và
. Khi đó
bằng
Ta có: .
Theo công thức xác suất toàn phần:
.
Cho hai biến cố với
,
và
. Khi đó
bằng
Ta có: .
Theo công thức xác suất toàn phần:
.
Cho 2 biến cố và
, tìm
biết
;
.
Ta có:
.
Theo công thức xác suất toàn phần:
.
Có hai hộp đựng các viên bi cùng kích thước và khối lượng. Hộp thứ nhất chứa 5 viên bi đỏ và 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai, sau đó lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Gọi A là biến cố “Viên bị được lấy ra từ hộp thứ hai là bi đỏ”, B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ”. Các khẳng định sau đúng hay sai?
a) Xác suất của biến cố B là .Đúng||Sai
b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì khi đó . Đúng||Sai
c) Gọi : “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” thì
. Sai||Đúng
d) Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là . Đúng||Sai
Có hai hộp đựng các viên bi cùng kích thước và khối lượng. Hộp thứ nhất chứa 5 viên bi đỏ và 5 viên bi xanh, hộp thứ hai chứa 6 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên một viên bi từ hộp thứ nhất chuyển sang hộp thứ hai, sau đó lấy ra ngẫu nhiên một viên bi từ hộp thứ hai. Gọi A là biến cố “Viên bị được lấy ra từ hộp thứ hai là bi đỏ”, B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ”. Các khẳng định sau đúng hay sai?
a) Xác suất của biến cố B là .Đúng||Sai
b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì khi đó . Đúng||Sai
c) Gọi : “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” thì
. Sai||Đúng
d) Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là . Đúng||Sai
a) Ta có: B là biến cố “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ” nên .
b) Giả sử viên bi lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bị đỏ thì sau khi chuyển, hộp thứ hai có 7 bi đỏ và 4 bi xanh nên .
c) Gọi : “Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh” Nếu viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh thì sau khi chuyển, hộp thứ hai có 6 bi đỏ và 5 bi xanh.
Khi đó .
d) Ta có:
Xác suất để viên bi được lấy ra từ hộp thứ hai là viên bi đỏ là:
Áp dụng công thức xác suất toàn phần, ta có:
.
Cho hai biến cố và
biết
. Tính
Ta có:
Cho sơ đồ hình cây như sau

Tính xác suất của biến cố .
Ta có .
Cho ;
;
. Khi đó
bằng
Theo công thức Bayes, ta có:
.
Cho hai biến cố thỏa mãn
. Khi đó,
bằng
Ta có: .
Theo công thức xác suất toàn phần, ta có:
.
Giả sử và
là hai biến cố ngẫu nhiên thỏa mãn
và
. Khi đó
Ta có:
Nếu hai biến cố A, B thỏa mãn thì
bằng:
Ta có:
Cho hai biến cố và
với
. Khi đó công thức xác suất toàn phần tính
là:
Ta có công thức xác suất toàn phần tính là:
Có hai hộp đựng bóng giống nhau (khác màu sắc):
Hộp thứ chứa 10 quả bóng trong đó có 9 quả màu đen.
Hộp thứ hai chứa 20 quả bóng trng đó có 18 quả màu đen,
Từ hộp thứ nhất lấy ngẫu nhiên một quả bóng bỏ sang hộp thứ hai. Tìm xác suất để lấy ngẫu nhiên một quả bóng từ hộp thứ hai được quả màu đen?
Gọi A là biến cố lấy được quả bóng màu đen từ hộp thứ hai.
Biến cố A có thể xảy ra đòng thời với một trong hai biến cố sau đây tạo nên một nhóm đầy đủ các biến cố:
H1 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai là màu đen.
H2 là biến cố quả bóng bỏ từ hộp thứ nhất sang hộp thứ hai không phải màu đen.
Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai là quả bóng màu đen bằng:
Xác suất để từ hộp thứ nhất bỏ sang hộp thứ hai không phải quả bóng màu đen bằng:
Xác suất có điều kiện để từ hộp thứ hai lấy được quả bóng màu đen khi các giả thuyết xảy ra là:
Do đó:
Cho hai biến cố và
, với
,
,
. Tính
.
Ta có: .
Công thức Bayes:
.
Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó
có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét
các biến cố: ” lần thứ nhất lấy ra chai nước loại I”;
”Lần thứ hai lấy ra chai nước loại I”.
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó
có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét
các biến cố: ” lần thứ nhất lấy ra chai nước loại I”;
”Lần thứ hai lấy ra chai nước loại I”.
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
Ta có: .
Nếu lần thứ nhất lấy ra chai loại thì két còn 23 chai nước, trong đó có 15 chai loại I, 8 chai loại II. Suy ra
.
Nếu lần thứ nhất lấy ra chai loại II thì két còn 23 chai nước, trong đó có 16 chai loại I, 7 chai loại II. Suy ra .
Theo công thức xác suất toàn phần, ta có:
.
Ta có: ;
.
Đáp án: a) S, b) S, c) Đ, d) Đ.
Hộp I: 5 bi trắng và 5 bi đen. Hộp II: 6 bi trắng và 4 bi đen. Bỏ hai viên bi từ hộp I sang hộp II. Sau đó lấy ra 1 viên bi. Giả sử lấy được bị trắng, tính xác suất để lấy được bi trắng của hộp I?
Gọi A là biến cố lấy được bi trắng
Gọi K1 là biến cố lấy bi ra từ hộp II của hộp I
Gọi K2 là biến cố lấy bi ra từ hộp II của hộp II
Ta xác định được:
Khi đó:
Vậy xác suất để lấy được bi trắng của hộp I là:
Nếu hai biến cố thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Có hai chiếc hộp đựng 30 chiếc bút chì có hình dáng, kích thước giống nhau. Sau khi thống kê nhận được bảng số liệu sau:

Lấy ngẫu nhiên một chiếc bút từ hộp I bỏ sang hộp II. Sau đó, lấy ngẫu nhiên một chiếc bút từ hộp II. Xác suất để chiếc bút lấy ra từ hộp II có màu xanh là
Gọi hai biến cố:
: “Lấy được bút xanh từ hộp I”;
: “Lấy được bút xanh từ hộp II”.
Theo bài ra, ta có
;
;
;
.
Áp dụng công thức xác suất toàn phần, ta có
.
Người ta khảo sát khả năng chơi nhạc cụ của một nhóm học sinh nam nữ tại một trường phổ thông T. Xét phép thử chọn ngẫu nhiên 1 học sinh trong nhóm đó. Gọi là biến cố “học sinh được chọn biết chơi ít nhất một nhạc cụ”, và
là biến cố “học sinh được chọn là nam”. Biết xác xuất học sinh được chọn là nam bằng
; xác suất học sinh được chọn là nam và biết chơi ít nhất một nhạc cụ là
; xác suất học sinh được chọn là nữ và biết chơi ít nhất một nhạc cụ là
. Tính
?
Theo bài ra ta có:
Theo công thức xác suất toàn phần, ta có:
.
Chọn khẳng định đúng.
Câu đúng là : « Với hai biến cố mà
, ta có:
”
Cho hai biến cố và
với
,
,
. Tính
.
Ta có .
Công thức xác suất toàn phần:
.
Cho hai biến cố thỏa mãn
,
,
. Khi đó,
bằng
Theo công thức Bayes, ta có:
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: