Cho hai biến cố và
với
. Biết
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Cho hai biến cố và
với
. Biết
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Một bình đựng hạt giống có 7 hạt loại A và 6 hạt loại B. Lấy ngẫu nhiên lần thứ nhất ra 2 hạt, lần thứ hai ra một hạt. Tính xác suất để hạt giống lấy ra lần 2 là hạt loại A.
Gọi F là biến cố hạt lấy ra lần hai là loại A. H0, H1, H2 lần lượt là biến cố hai hạt lấy ra lần thứ nhất có 0,1, 2 hạt loại B.
{H0, H1, H2} là một hệ đầy đủ.
Áp dụng công thức xác suất đầy đủ ta có
.
Cho hai biến cố thỏa mãn
,
,
. Khi đó,
bằng
Theo công thức Bayes, ta có:
.
Giả sử và
là hai biến cố ngẫu nhiên thỏa mãn
và
. Khẳng định nào dưới đây sai?
Giả sử và
là hai biến cố ngẫu nhiên thỏa mãn
và
.
Khi đó, công thức Bayes:
Hay còn có thể viết dưới dạng: .
Cho hai biến cố và
với
. Tính
?
Ta có:
Áp dụng công thức Bayes:
.
Có hai hộp đựng phiếu thi, mỗi phiếu ghi một câu hỏi. Hộp thứ nhất có 15 phiếu và hộp thứ hai có 9 phiếu. Học sinh A đi thi chỉ thuộc 10 câu ở hộp thứ nhất và 8 câu ở hộp thứ hai. Giáo viên rút ngẫu nhiên từ mỗi hộp ra một phiếu thi, sau đó cho học sinh A rút ngẫu nhiên ra 1 phiếu từ 2 phiếu mà giáo viên đã rút. Tính xác suất để học sinh A trả lời được câu hỏi trong phiếu.
Gọi E1 là biến cố sinh viên rút ra từ hộp 1
E2 là biến cố sinh viên rút ra từ hộp 2
E1, E2 tạo thành một nhóm biến cố đầy đủ
Gọi B là biến cố rút ra 1 câu thuộc
Ta có:
Thay vào công thức ta tính được .
Cho hai biến cố và
biết
. Tính
Ta có:
Cho hai biến cố với
,
và
. Khi đó
bằng
Ta có: .
Theo công thức xác suất toàn phần:
.
Cho hai biến cố và
có
,
,
.
a) .Sai||Đúng
b) .Đúng|Sai
c) . Sai||Đúng
d) . Đúng|Sai
Cho hai biến cố và
có
,
,
.
a) .Sai||Đúng
b) .Đúng|Sai
c) . Sai||Đúng
d) . Đúng|Sai
a) S.
b) Đ .
c) s .
d) Đ .
Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó
có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét
các biến cố: ” lần thứ nhất lấy ra chai nước loại I”;
”Lần thứ hai lấy ra chai nước loại I”.
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
Một két nước ngọt đựng 24 chai nước có khối lượng và hình thức bề ngoài như nhau, trong đó
có 16 chai loại I và 8 chai loại II. Bác Tùng lần lượt lấy ra ngẫu nhiên hai chai (lấy không hoàn lại). Xét
các biến cố: ” lần thứ nhất lấy ra chai nước loại I”;
”Lần thứ hai lấy ra chai nước loại I”.
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
Ta có: .
Nếu lần thứ nhất lấy ra chai loại thì két còn 23 chai nước, trong đó có 15 chai loại I, 8 chai loại II. Suy ra
.
Nếu lần thứ nhất lấy ra chai loại II thì két còn 23 chai nước, trong đó có 16 chai loại I, 7 chai loại II. Suy ra .
Theo công thức xác suất toàn phần, ta có:
.
Ta có: ;
.
Đáp án: a) S, b) S, c) Đ, d) Đ.
Cho hai biến cố và
, với
,
,
. Tính
.
Ta có: .
Công thức Bayes:
.
Cho hai biến cố sao cho
;
và
. Tính
.
Ta có .
Cho hai biến cố và
, với
,
,
. Giá trị
bằng
Ta có:
Công thức xác suất toàn phần
Nếu hai biến cố thỏa mãn
thì
bằng bao nhiêu?
Theo công thức Bayes ta có:
Cho 2 biến cố và
, tìm
biết
;
.
Ta có:
.
Theo công thức xác suất toàn phần:
.
Cho ;
;
. Khi đó
bằng
Theo công thức Bayes, ta có:
.
Hộp I: 5 bi trắng và 5 bi đen. Hộp II: 6 bi trắng và 4 bi đen. Bỏ hai viên bi từ hộp I sang hộp II. Sau đó lấy ra 1 viên bi. Tính xác suất để lấy được bi trắng.
Gọi A là biến cố lấy được bi trắng
Cách 1: Ta có sơ đồ cây mô tả như sau:
.
Cách 2: Gọi K1 là biến cố lấy bi ra từ hộp II của hộp I
Gọi K2 là biến cố lấy bi ra từ hộp II của hộp II
Ta xác định được:
Khi đó:
Cho sơ đồ hình cây như sau

Tính xác suất của biến cố .
Ta có .
Có ba kiện hàng (mỗi kiện hàng có sản phẩm) với số sản phẩm tốt tương ứng của mỗi kiện là
. Lấy ngẫu nhiên một kiện hàng, rồi từ đó lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Trả sản phẩm này lại kiện hàng vừa lấy, sau đó lại lấy ngẫu nhiên một sản phẩm thì được sản phẩm tốt. Tính xác suất để các sản phẩm tốt đó được lấy từ kiện hàng thứ nhất?
Gọi Ai là "sản phẩm lấy từ kiện thứ i" thì A1, A2, A3 tạo thành hệ đầy đủ.
Gọi A là các sản phẩm lấy ra đều tốt.
Áp dụng công thức xác suất toàn phần ta có:
Từ đó ta có:
Cho hai biến cố và
, công thức tính xác suất toàn phần là
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: