Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 2 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số f\left( x ight) = \left| { - {x^2} - 4x + 5} ight| trên đoạn [-6; 6] 

    Hướng dẫn:

    Xét hàm số g(x) = -x2 – 4x + 5 liên tục trên đoạn [-6; 6]

    Ta có: g’(x) = -2x – 4

    => g’(x) = 0 => x = -2 thuộc [-6; 6]

    Ta lại có g(x) = 0 => x2 – 4x + 5 = 0 => x = 1 (tm) hoặc x = -5 (tm)

    Ta tính được: \left\{ {\begin{array}{*{20}{c}}  {g\left( { - 6} ight) =  - 7} \\   {g\left( { - 2} ight) = 9} \\   {g\left( 6 ight) =  - 55} \\   {g\left( 1 ight) = g\left( { - 5} ight) = 0} \end{array}} ight. \Rightarrow \mathop {\max }\limits_{\left[ { - 6;6} ight]} f\left( x ight) = 55

  • Câu 2: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên tập xác định

    Giá trị nhỏ nhất của hàm số y = \sqrt{4 -
x} + \sqrt{3} trên tập xác định của nó là

    Hướng dẫn:

    Tập xác định của hàm số là: D = ( -
\infty;4brack.

    Ta có y' = \frac{- 1}{2\sqrt{4 - x}}
< 0,\ \forall x \in D

    Bảng biến thiên

    Từ bảng biến thiên suy ra \min_{( -
\infty;4brack}y = \sqrt{3} khi x
= 4.

  • Câu 3: Vận dụng cao
    Xét tính đúng sai của các kết luận

    Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn \lbrack -
3;3brack và đồ thị hàm số y =
f'(x) như hình vẽ dưới đây.

    Biết f(1) = 6g(x) = f(x) - \frac{(x + 1)^{2}}{2}.

    a) [NB] g(1) = 4 Đúng||Sai

    b) [TH] g'(x) = f'(x) - (x +
1). Đúng||Sai

    c) [TH] Phương trình g'(x) =
0 có ba nghiệm phân biệt. Đúng||Sai

    d) [VD, VDC] Giá trị nhỏ nhất của hàm số g(x) = f(x) - \frac{(x + 1)^{2}}{2} trên đoạn \lbrack - 3;3brack là một số dương. Sai|||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn \lbrack -
3;3brack và đồ thị hàm số y =
f'(x) như hình vẽ dưới đây.

    Biết f(1) = 6g(x) = f(x) - \frac{(x + 1)^{2}}{2}.

    a) [NB] g(1) = 4 Đúng||Sai

    b) [TH] g'(x) = f'(x) - (x +
1). Đúng||Sai

    c) [TH] Phương trình g'(x) =
0 có ba nghiệm phân biệt. Đúng||Sai

    d) [VD, VDC] Giá trị nhỏ nhất của hàm số g(x) = f(x) - \frac{(x + 1)^{2}}{2} trên đoạn \lbrack - 3;3brack là một số dương. Sai|||Đúng

    a) [NB] g(1) = 4

    Ta có g(1) = f(1) - \frac{(1 + 1)^{2}}{2}
= f(1) - 2 = 4 \Rightarrow Khẳng định đúng

    b) [TH] g'(x) = f'(x) - (x +
1).

    g'(x) = f'(x) - (x + 1) \Rightarrow Khẳng định đúng

    c) [TH] Phương trình g'(x) =
0 có ba nghiệm phân biệt.

    Từ đồ thị hàm số y = f'(x)y = x + 1 ta có g'(x) = 0 \Leftrightarrow f'(x) = x + 1
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 3 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.\  \Rightarrow Khẳng định đúng.

    d) [VD, VDC] Giá trị nhỏ nhất của hàm số g(x) = f(x) - \frac{(x + 1)^{2}}{2} trên đoạn \lbrack - 3;3brack là một số dương.

    Qua đồ thị hình lưới

    Xét hình phẳng giới hạn bởi đồ thị y =
f'(x);\ y = x + 1;\ x = - 3;x = 1 có diện tích S_{1} > 4 \Leftrightarrow \int_{- 3}^{1}{\left|
f'(x) - (x + 1) ight|dx > 4 \Leftrightarrow \int_{-
3}^{1}{\left| g'(x) ight|dx > 4}}\

    \Leftrightarrow g(1) - g( - 3) > 4 \Rightarrow
g( - 3) < g(1) - 4 = 0

    Xét hình phẳng giới hạn bởi đồ thị y =
f'(x);\ y = x + 1;\ x = 1;x = 3 có diện tích S_{2} < 4

    \Leftrightarrow \int_{1}^{3}{\left|
f'(x) - (x + 1) ight|dx < 4 \Leftrightarrow \int_{1}^{3}{\left|
g'(x) ight|dx < 4}}

    \Leftrightarrow - g(3) + g(1) < 4
\Rightarrow g(3) > g(1) - 4 = 0.

    Dựa vào đồ thị ta có bảng biến thiên của hàm y = g(x) trên \lbrack - 3;3brack

    Từ bảng biến thiên suy ra giá trị nhỏ nhất của hàm số g(x) = f(x) - \frac{(x + 1)^{2}}{2} trên đoạn \lbrack - 3;3brack\min_{\lbrack - 3;3brack}g(x) = g( - 3) <
0.\Rightarrow Khẳng định sai.

  • Câu 4: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số f(x) có bảng biến thiên của hàm số y = f^{'}(x) như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m \in ( - 10;10) để hàm số y = f(3x - 1) + x^{3} - 3mx đồng biến trên khoảng ( - 2;1)?

    Đáp án: 6

    Đáp án là:

    Cho hàm số f(x) có bảng biến thiên của hàm số y = f^{'}(x) như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số m \in ( - 10;10) để hàm số y = f(3x - 1) + x^{3} - 3mx đồng biến trên khoảng ( - 2;1)?

    Đáp án: 6

    Để hàm số y = f(3x - 1) + x^{3} -
3mx đồng biến trên khoảng ( -
2;1)

    \Leftrightarrow y' \geq 0,\forall x
\in ( - 2;1)

    \Leftrightarrow 3f'(3x - 1) + 3x^{2}
- 3m \geq 0,\forall x \in ( - 2;1)

    \Leftrightarrow m \leq f^{'}(3x - 1)
+ x^{2},\forall x \in ( - 2;1)(*)

    Đặt k(x) = f^{'}(3x - 1),h(x) =
x^{2}g(x) = f^{'}(3x - 1) +
x^{2} = k(x) + h(x).

    Ta có: \min_{( - 2;1)}k(x) = k(0) = -
4.

    Do đó, ta có: \min_{( - 2;1)}f^{'}(3x
- 1) = f^{'}( - 1) = - 4 khi 3x
- 1 = - 1 \Leftrightarrow x = 0.

    \Rightarrow \min_{( - 2;1)}k(x) = k(0) =
- 4.

    Do đó, \min_{( - 2;1)}g(x) = g(0) = k(0)
+ h(0) = 0 - 4 = - 4.

    Từ (*) ta có m \leq f^{'}(3x - 1) + x^{2},\forall x \in ( -
2;1)

    \Leftrightarrow m \leq \min_{( -
2;1)}g(x) \Leftrightarrow m \leq - 4.

    m \in ( - 10;10) \Rightarrow m \in \{- 9;\ldots; - 4\}.

    Vậy có tất cả 6 số nguyên thỏa mãn.

  • Câu 5: Thông hiểu
    Tìm m thỏa mãn điều kiện

    Gọi m là giá trị nhỏ nhất của hàm số y = x - 1 + \frac{4}{x - 1} trên khoảng (1; + \infty). Tìm m?

    Hướng dẫn:

    Tập xác định D = R\backslash\left\{ 1
ight\}.

    y' = \frac{x^{2} - 2x - 3}{(x -
1)^{2}}\ \ ,\ y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight..

    Bảng biến thiên:

    \Rightarrow m = \min_{(1; + \ \infty)}y =
4 khi x = 3

  • Câu 6: Vận dụng cao
    Ghi đáp án vào ô trống

    Một doanh nghiệp dự định sản xuất không quá 500 sản phẩm. Nếu doanh nghiệp sản xuất x sản phẩm (1 \leq x \leq 500) thì doanh thu nhận được khi bán hết số sân phẩm đó là F(x) =
x^{3} - 1999x^{2} + 1001000x + 250000 (đồng), trong khi chi phí sản xuất bình quân cho một sản phẩm là G(x)
= x + 1000 + \frac{250000}{x} (đồng). Doanh nghiệp cần sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất?

    Đáp án: 333

    Đáp án là:

    Một doanh nghiệp dự định sản xuất không quá 500 sản phẩm. Nếu doanh nghiệp sản xuất x sản phẩm (1 \leq x \leq 500) thì doanh thu nhận được khi bán hết số sân phẩm đó là F(x) =
x^{3} - 1999x^{2} + 1001000x + 250000 (đồng), trong khi chi phí sản xuất bình quân cho một sản phẩm là G(x)
= x + 1000 + \frac{250000}{x} (đồng). Doanh nghiệp cần sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất?

    Đáp án: 333

    Chi phí sản xuất khi sản xuất x sản phẩm là

    C(x) = x.G(x)

    = x\left( x + 1000 + \frac{250000}{x}
ight)

    = x^{2} + 1000x + 250000

    Do đó lợi nhận L(x)là:

    L(x) = F(x) - C(x)

    = \left( x^{3} - 1999x^{2} + 1001000x +
250000 ight) - \left( x^{2} + 1000x + 250000 ight)

    = x^{3} - 1999x^{2} + 1001000x + 250000
- x^{2} - 1000x - 250000

    = x^{3} - 2000x^{2} +
1000000x

    Ta có:

    L'(x) = 3x^{2} - 4000x +
1000000

    L'(x) = 0 \Leftrightarrow 3x^{2} -
4000x + 1000000 = 0 với 1 \leq x
\leq 500

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1000(L) \\
x = \frac{1000}{3}(tm) \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vây doanh nghiệp nên sản xuất khoảng 333 sản phẩm để lợi nhuận đạt mức lớn nhất

  • Câu 7: Thông hiểu
    Chọn mệnh đề đúng

    Xét hàm số f(x) = x^{3} + x - \cos x -
4 trên nửa khoảng \lbrack 0; +
\infty). Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Ta có f'(x) = 3x^{2} + 1 + \sin x
> 0,\forall x\mathbb{\in R}.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0; + \infty).

    Khi đó hàm số không có giá trị lớn nhất nhưng có giá trị nhỏ nhất là \min_{\lbrack 0; + \infty)}f(x) = f(0) = -
5.

  • Câu 8: Vận dụng
    Xét tính đúng sai của các nhận định

    Để làm một cửa sổ có dạng một hình bán nguyệt và một hình chữ nhật ghép lại như hình vẽ bên dưới, người ta dùng 8m dây thép để làm các đường viền. Gọi x,y là độ dài cạnh của khung hình chữ nhật.

    A window with a diagramDescription automatically generated with medium confidence

    Xét tính đúng sai của các khẳng định sau:

    a) Chiều dài dây để uốn ra bán nguyệt là \frac{\pi x}{2}. Đúng||Sai

    b) Giá trị của y tính theo x4 -
\frac{x(4 + \pi)}{4}. Đúng||Sai

    c) Diện tích của cửa sổ là S = 4x -
x^{2}. Sai||Đúng

    d) Khi diện tích của cửa sổ lớn nhất thì y = \frac{16}{8 + \pi}. Đúng||Sai

    Đáp án là:

    Để làm một cửa sổ có dạng một hình bán nguyệt và một hình chữ nhật ghép lại như hình vẽ bên dưới, người ta dùng 8m dây thép để làm các đường viền. Gọi x,y là độ dài cạnh của khung hình chữ nhật.

    A window with a diagramDescription automatically generated with medium confidence

    Xét tính đúng sai của các khẳng định sau:

    a) Chiều dài dây để uốn ra bán nguyệt là \frac{\pi x}{2}. Đúng||Sai

    b) Giá trị của y tính theo x4 -
\frac{x(4 + \pi)}{4}. Đúng||Sai

    c) Diện tích của cửa sổ là S = 4x -
x^{2}. Sai||Đúng

    d) Khi diện tích của cửa sổ lớn nhất thì y = \frac{16}{8 + \pi}. Đúng||Sai

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

    a) Bán kính của hình bán nguyệt là \frac{x}{2} nên nửa chu vi bán nguyệt là \frac{\pi x}{2}

    b) Ta có 2(x + y) + \frac{\pi x}{2} = 8
\Leftrightarrow y = 4 - \frac{x(4 + \pi)}{4}.

    c) Diện tích của cửa sổ:

    S = xy +\frac{1}{2}\pi\left( \frac{x}{2} \right)^{2}= x\left( 4 - x - \frac{\pi x}{4} \right) + \frac{\pi x^{2}}{8}= 4x - x^{2} - \frac{\pi x^{2}}{8}.

    d) S đạt giá trị lớn nhất khi x = \frac{4}{2 + \frac{\pi}{4}} =
\frac{16}{8 + \pi} nên y = 4 - x -
\frac{\pi x}{4} = \frac{16}{8 + \pi}.

  • Câu 9: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = \frac{x + m}{x^{2} +
1}. Biết \min_{\mathbb{R}}y = -
2. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: \min_{\mathbb{R}}y = - 2\Leftrightarrow \left\{ \begin{matrix}\forall x\mathbb{\in R}:\dfrac{x + m}{x^{2} + 1} \geq - 2(*) \\\exists x_{0}:\dfrac{x_{0} + m}{{x_{0}}^{2} + 1} = - 2(**) \\\end{matrix} ight.

    Từ (*) \Leftrightarrow \frac{x + m}{x^{2}
+ 1} \geq - 2 \Leftrightarrow 2x^{2} + x + m + 2 \geq 0;\forall
x\mathbb{\in R}

    \Leftrightarrow 1 - 4.2.(m + 2) \leq 0
\Leftrightarrow m \geq \frac{- 15}{8}

    Từ (**) suy ra m = \frac{- 15}{8} \in ( -
2;0).

    Vậy - 2 < m < 0 là đáp án cần tìm.

  • Câu 10: Thông hiểu
    Tính giá trị của biểu thức

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;3brack và có đồ thị như hình vẽ bên. Gọi Mm lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn \lbrack
- 1;3brack. Giá trị của M -
m bằng

    Hướng dẫn:

    Dựa và đồ thị suy ra M = f(3) = 3;\ \ \ m
= f(2) = - 2

    Vậy M - m = 5

  • Câu 11: Vận dụng
    Chọn phương án thích hợp

    Tìm giá trị lớn nhất M của hàm số f(x) = \left| - x^{2} - 4x + 5
\right| trên đoạn \lbrack -
6;6\rbrack.

    Hướng dẫn:

    Xét hàm số g(x) = - x^2- 4x +
5 liên tục trên đoạn \lbrack -
6;6brack.

    Đạo hàm g'(x) = - 2x - 4

    \Rightarrow g'(x) = 0
\Leftrightarrow x = - 2 \in \lbrack - 6;6brack

    Lại có g(x) = 0 \Leftrightarrow - x^2 - 4x + 5 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in \lbrack - 6;6brack \\
x = - 5 \in \lbrack - 6;6brack \\
\end{matrix} ight..

    Ta có \left\{ \begin{matrix}
g( - 6) = - 7 \\
g( - 2) = 9 \\
g(6) = - 55 \\
g(1) = \ g( - 5) = 0 \\
\end{matrix} ight.

    \Rightarrow \max_{\lbrack -
6;6brack}f(x) = \max_{\lbrack - 6;6brack}\left\{ \left| g( - 6)
ight|;\left| g( - 2) ight|;\left| g(6) ight|;\left| g(1)
ight|;\left| g( - 5) ight| ight\} = 55.

    Nhận xét. Bài này rất dễ sai lầm vì không để ý hàm trị tuyệt đối không âm.

  • Câu 12: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x^{3} - 3x + 2. Khi đó nhận định nào đúng, nhận định nào sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x^{3} - 3x + 2. Khi đó nhận định nào đúng, nhận định nào sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) SAI vì Tập xác định của hàm số đã cho là \mathbb{R}.

    b) ĐÚNG. Thay x =
0 ta được y = 2.

    c) SAI. Ta có y' =
3x^{2} - 3. Ta thấy y'(0) = - 3
\neq 0. Suy ra hàm số không đạt cực trị tại điểm x = 0.

    d) ĐÚNG. Ta có y' =
3x^{2} - 3.Suy ra y' = 0
\Leftrightarrow x = 1\ (TM);x = - 1\ (KTM).

    y(0) = 2;y(2) = 4;y(1) = 0. Vậy giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4.

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Bác H cần xây dựng một bể nước mưa có thể tích V = 8\left( m^{3} ight) dạng hình hộp chữ nhật với chiều dài gấp \frac{4}{3} lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là 980000 đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng \frac{2}{9} diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bác H cần xây dựng một bể nước mưa có thể tích V = 8\left( m^{3} ight) dạng hình hộp chữ nhật với chiều dài gấp \frac{4}{3} lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là 980000 đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng \frac{2}{9} diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Khi đó, giá trị lớn nhất của hàm số g(x)
= f\left( 2 - x^{2} ight) trên \left\lbrack 0;\sqrt{2} ightbrack là:

    Hướng dẫn:

    Đặt t = 2 - x^{2};t' = - 2x \leq
0;\forall x \in \left\lbrack 0;\sqrt{2} ightbrack \Rightarrow t \in
\lbrack 0;2brack

    \Rightarrow \max_{\left\lbrack
0;\sqrt{2} ightbrack}g(x) = \max_{\lbrack 0;2brack}f(t) =
f(0)

  • Câu 15: Vận dụng cao
    Xét tính đúng sai của các nhậnđịnh

    Một tấm bìa cứng hình chữ nhật có kích thước 3m \times 8m. Người ta cắt mỗi góc của tấm bìa một hình vuông có cạnh là x để tạo ra hình hộp chữ nhật không nắp. Xét tính đúng, sai của các mệnh đề sau:

    a) Điều kiện của x0 < x < \frac{3}{2}. Đúng||Sai

    b) Diện tích mặt đáy của chiếc hộp là (8
- 2x)(3 - 2x). Đúng||Sai

    c) Thể tích của chiếc hộp là (8 -
2x)^{2}(3 - 2x). Sai||Đúng

    d) Với x = \frac{2}{3}(m) thì chiếc hộp có thể tích lớn nhất. Đúng||Sai

    Đáp án là:

    Một tấm bìa cứng hình chữ nhật có kích thước 3m \times 8m. Người ta cắt mỗi góc của tấm bìa một hình vuông có cạnh là x để tạo ra hình hộp chữ nhật không nắp. Xét tính đúng, sai của các mệnh đề sau:

    a) Điều kiện của x0 < x < \frac{3}{2}. Đúng||Sai

    b) Diện tích mặt đáy của chiếc hộp là (8
- 2x)(3 - 2x). Đúng||Sai

    c) Thể tích của chiếc hộp là (8 -
2x)^{2}(3 - 2x). Sai||Đúng

    d) Với x = \frac{2}{3}(m) thì chiếc hộp có thể tích lớn nhất. Đúng||Sai

    Hình vẽ minh họa

    a) Ta có chiều dài, chiều rộng, chiều cao của chiếc hộp lần lượt là 8 - 2x;3 - 2x;\ x.

    Suy ra điều kiện của x0 < x < \frac{3}{2}. Vậy a) Đúng.

    b) Đáy của chiếc hộp là hình chữ nhật có diện tích là S = (8 - 2x)(3 - 2x). Vậy b) Đúng.

    c) Thể tích của chiếc hộp là: V = x(8 -
2x)(3 - 2x). Vậy c) Sai.

    d) Xét hàm số: V(x) = x(3 - 2x)(8 - 2x) =
4x^{3} - 22x^{2} + 24x trên \left(
0;\frac{3}{2} \right).

    Ta có: V'(x) = 12x^{2} - 44x + 24 =
4\left( 3x^{2} - 11x + 6 \right).

    Khi đó: V'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 3 \\
x = \frac{2}{3}
\end{matrix} \right..

    Bảng biến thiên:

    Từ BBT ta thấy hàm số đạt giá trị lớn nhất trên \left( 0;\frac{3}{2} \right) khi x = \frac{2}{3}. Vậy d) Đúng

  • Câu 16: Vận dụng
    Xác định giá trị lớn nhất của hàm số

    Cho hàm số f\left( x ight) = \frac{{x - {m^2}}}{{x + 8}} (với m là tham số thực). Tìm giá trị lớn nhất của tham số m để hàm số có giá trị nhỏ nhất bằng -2 trên đoạn [0; 3].

    Hướng dẫn:

    Xét hàm số f\left( x ight) = \frac{{x - {m^2}}}{{x + 8}} trên đoạn [0; 3] ta có:

    f'\left( x ight) = \frac{{8 + {m^2}}}{{{{\left( {x + 8} ight)}^2}}} > 0;\forall x \in \left[ {0;3} ight]

    => Hàm số f(x) đồng biến trên (0; 3)

    => \mathop {\min }\limits_{\left[ {0;3} ight]} f\left( x ight) = f\left( 0 ight) = \frac{{ - {m^2}}}{8}

    Theo bài ra ta có:

    \begin{matrix}  \mathop {\min }\limits_{\left[ {0;3} ight]} f\left( x ight) =  - 2 \hfill \\   \Leftrightarrow  - \dfrac{{{m^2}}}{8} =  - 2 \hfill \\   \Leftrightarrow {m^2} = 16 \Leftrightarrow m =  \pm 4 \hfill \\   \Rightarrow {m_{\max }} = 4 \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu
    Giá trị lớn nhất của hàm số

    Giá trị lớn nhất của hàm số y = \sqrt {3 - 2x - {x^2}}

    Hướng dẫn:

    Điều kiện xác định 3 - 2x - {x^2} \geqslant 0 \Leftrightarrow  - 3 \leqslant x \leqslant 1

    Xét hàm số f\left( x ight) = \sqrt {3 - 2x - {x^2}} trên \left[ { - 3;1} ight] ta có:

    f'\left( x ight) = \frac{{ - 2 - 2x}}{{2\sqrt {3 - 2x - {x^2}} }} =  - \frac{{x + 1}}{{\sqrt {3 - 2x - {x^2}} }}

    Phương trình f'\left( x ight) = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 3 < x < 1} \\   {x + 1 = 0} \end{array}} ight. \Rightarrow x =  - 1

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 3} ight) = 0} \\   {f\left( { - 1} ight) = 2} \\   {f\left( 1 ight) = 0} \end{array}} ight.

    \Rightarrow \mathop {\max f\left( x ight)}\limits_{\left[ { - 3;1} ight]}  = f\left( { - 1} ight) = 2

  • Câu 18: Thông hiểu
    Xét tính đúng sai của mỗi ý hỏi

    Mỗi đợt xuất khẩu gạo của tỉnh A kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ t được xác định bởi công thức: s(t) = - t^{3} + 27t^{2} + 262144 (tấn) với 1 \leq t \leq 60;t \in\mathbb{N}^{*}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Số lượng gạo xuất khẩu của tỉnh A ngày thứ 12 là 264304 (tấn).Đúng||Sai

    b) Ngày thứ 30 của tỉnh A có lượng gạo xuất khẩu cao nhất. Sai||Đúng

    c) Ngày thứ 1 của tỉnh A có lượng gạo xuất khẩu thấp nhất. Sai||Đúng

    d) Ngày thứ 60 của tỉnh A có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.

    Đáp án là:

    Mỗi đợt xuất khẩu gạo của tỉnh A kéo dài trong 60 ngày. Người ta thấy lượng gạo xuất khẩu theo ngày thứ t được xác định bởi công thức: s(t) = - t^{3} + 27t^{2} + 262144 (tấn) với 1 \leq t \leq 60;t \in\mathbb{N}^{*}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Số lượng gạo xuất khẩu của tỉnh A ngày thứ 12 là 264304 (tấn).Đúng||Sai

    b) Ngày thứ 30 của tỉnh A có lượng gạo xuất khẩu cao nhất. Sai||Đúng

    c) Ngày thứ 1 của tỉnh A có lượng gạo xuất khẩu thấp nhất. Sai||Đúng

    d) Ngày thứ 60 của tỉnh A có sản lượng xuất khẩu gạo thấp nhất là 143344 . Đúng|||Sai.

    a) Đúng. s(20)=264304

    b) Sai.

    Ta có s^{'}(t) = - 3t^{2} +54t;s^{'}(t) = 0 \Leftrightarrow - 3t^{2} + 54t = 0 \Leftrightarrow\left\lbrack \begin{matrix}t = 0 \\t = 18 \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy ngày thứ 18 của tỉnh A có lượng gạo xuất khẩu cao nhất là 265060.

    c) Sai. Ta có ngày thứ 60 tinh A có lượng gạo xuất khẩu thấp nhất là 143344.

    d) Đúng. Ta có ngày thứ 60 tỉnh A có lượng gạo xuất khẩu thấp nhất là 143344.

  • Câu 19: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = e^{-
\frac{1}{2}x^{2}}có đồ thị như hình vẽ.

    Biết ABCD là hình chữ nhật thay đổi sao cho hai điểm B, C luôn thuộc đồ thị hàm số đã cho. Hai điểm A,\ \ D nằm trên trục hoành (điểm A thuộc tia Ox).

    a) [NB] Hàm số y = f(x)
= e^{- \frac{1}{2}x^{2}} có tập xác định D\mathbb{= R}. Đúng||Sai

    b) [TH] Hàm số y = f(x)
= e^{- \frac{1}{2}x^{2}} có đạo hàm là y' = f'(x) = xe^{-
\frac{1}{2}x^{2}}.Sai||Đúng

    c) [TH] Khi điểm B có toạ độ \left( x;e^{- \frac{1}{2}x^{2}} \right) với x > 0 thì diện tích ABCDS(x)
= xe^{- \frac{1}{2}x^{2}}. Sai||Đúng

    d) [VD] Diện tích hình chữ nhật ABCD đạt giá trị lớn nhất khi AD = 2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = e^{-
\frac{1}{2}x^{2}}có đồ thị như hình vẽ.

    Biết ABCD là hình chữ nhật thay đổi sao cho hai điểm B, C luôn thuộc đồ thị hàm số đã cho. Hai điểm A,\ \ D nằm trên trục hoành (điểm A thuộc tia Ox).

    a) [NB] Hàm số y = f(x)
= e^{- \frac{1}{2}x^{2}} có tập xác định D\mathbb{= R}. Đúng||Sai

    b) [TH] Hàm số y = f(x)
= e^{- \frac{1}{2}x^{2}} có đạo hàm là y' = f'(x) = xe^{-
\frac{1}{2}x^{2}}.Sai||Đúng

    c) [TH] Khi điểm B có toạ độ \left( x;e^{- \frac{1}{2}x^{2}} \right) với x > 0 thì diện tích ABCDS(x)
= xe^{- \frac{1}{2}x^{2}}. Sai||Đúng

    d) [VD] Diện tích hình chữ nhật ABCD đạt giá trị lớn nhất khi AD = 2. Đúng||Sai

    a) Hàm số mũ y = f(x) = e^{-
\frac{1}{2}x^{2}} có tập xác định D\mathbb{= R}.

    Suy ra mệnh đề đúng.

    b) Hàm số y = f(x) = e^{-
\frac{1}{2}x^{2}} có đạo hàm là y'\  = \left( - \frac{1}{2}x^{2}
ight)^{'}e^{- \frac{1}{2}x^{2}} = - xe^{-
\frac{1}{2}x^{2}}.

    Suy ra mệnh đề sai.

    c) Khi điểm B có toạ độ \left( x;e^{- \frac{1}{2}x^{2}} ight) với x > 0 thì cạnh AD = 2x, cạnh AB = e^{- \frac{1}{2}x^{2}}

    Diện tích hình chữ nhật ABCD được tính theo công thức S(x) = 2xe^{-
\frac{1}{2}x^{2}}.

    Suy ra mệnh đề sai.

    d) Xét hàm số S(x) = 2xe^{-
\frac{1}{2}x^{2}} trên khoảng (0; +
\infty)

    S'(x) = 2e^{- \frac{1}{2}x^{2}} -
2x^{2}e^{- \frac{1}{2}x^{2}} = 2e^{- \frac{1}{2}x^{2}}\left( 1 - x^{2}
ight)

    S'(x) = 0 \Leftrightarrow 1 - x^{2}
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1\ (Loai) \\
\end{matrix} ight.

    Bảng biến thiên

    Hàm số S(x) đạt giá trị lớn nhất khi x = 1. Khi đó AD = 2

    Suy ra mệnh đề đúng.

  • Câu 20: Thông hiểu
    Tính Min, Max của hàm số

    Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là:

    Hướng dẫn:

    Tập xác định D = \left[ {1;9} ight]

    Ta có:

    \begin{matrix}  y' = \dfrac{1}{{2\sqrt {x - 1} }} - \dfrac{1}{{2\sqrt {9 - x} }} \hfill \\  y' = 0 \Rightarrow \sqrt {x - 1}  = \sqrt {9 - x}  \Rightarrow x = 5\left( {tm} ight) \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 1 ight) = y\left( 9 ight) = 2\sqrt 2 } \\   {y\left( 5 ight) = 4} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\min y = 2\sqrt 2 } \\   {\max y = 4} \end{array}} ight. \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (50%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo