Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 2 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị của đạo hàm y = f'(x) như hình vẽ sau:

    Trên đoạn \lbrack - 3;4brack, hàm số g(x) = 2f(x) + (1 - x)^{2} đạt giá trị nhỏ nhất tại điểm nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) liên tục trên \mathbb{R} và có đồ thị của đạo hàm y = f'(x) như hình vẽ sau:

    Trên đoạn \lbrack - 3;4brack, hàm số g(x) = 2f(x) + (1 - x)^{2} đạt giá trị nhỏ nhất tại điểm nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu
    Tìm tham số m thỏa mãn điều kiện

    Cho hàm số f(x) = \frac{x - m^{2} + m}{x
+ 1} với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack bằng - 2.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{m^2 - m +1}{(x + 1)^{2}} > 0,\forall x \in \lbrack 0;1brack.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0;1brack

    \Rightarrow \min_{\lbrack
0;1brack}f(x) = f(0) = - m^{2} + m

    Theo bài ra:

    \min_{\lbrack 0;1brack}f(x) = - 2
\Leftrightarrow - m^{2} + m = - 2

    \Leftrightarrow m^{2} - m - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = 2 \\
\end{matrix} ight..

  • Câu 3: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Một chất điểm chuyển động theo phương trình S = - t^{3} + 9t^{2} + 21t + 9 trong đó t tính bằng giây (s)S tính bằng mét (m). Xét tính đúng sai của các khẳng định sau.

    a) v(t) = - 3t^{2} + 18t + 2. Sai||Đúng

    b) Vận tốc của chất điểm tại giây thứ 2 là 45\ m/s. Đúng||Sai

    c) Vận tốc của chất điểm tại thời điểm gia tốc triệt tiêu là 45\ m/s. Sai||Đúng

    d) Vận tốc chuyển động đạt giá trị lớn nhất tại thời điểm t = 3\ \ (s). Đúng||Sai

    Đáp án là:

    Một chất điểm chuyển động theo phương trình S = - t^{3} + 9t^{2} + 21t + 9 trong đó t tính bằng giây (s)S tính bằng mét (m). Xét tính đúng sai của các khẳng định sau.

    a) v(t) = - 3t^{2} + 18t + 2. Sai||Đúng

    b) Vận tốc của chất điểm tại giây thứ 2 là 45\ m/s. Đúng||Sai

    c) Vận tốc của chất điểm tại thời điểm gia tốc triệt tiêu là 45\ m/s. Sai||Đúng

    d) Vận tốc chuyển động đạt giá trị lớn nhất tại thời điểm t = 3\ \ (s). Đúng||Sai

    a) v(t) = S'(t) = - 3t^{2} + 18t +
21 nên a sai.

    b) Ta có: v(t) = S'(t) = - 3t^{2} +
18t + 2\overset{}{ightarrow}v(2) = 45\ m/s. nên b) đúng

    c) Ta có: a(t) = v'(t) = - 6t + 18 =
0 \Leftrightarrow t = 3\overset{}{ightarrow}v(3) = 48\ m/s. nên c) sai

    Vận tốc v(t) = S'(t) = - 3t^{2} + 18t
+ 21 = - 3(t - 3)^{2} + 48 \leq 48.

    Vậy \max v(t) = 48 khi t = 3.

    Vận tốc chuyển động đạt giá trị lớn nhất khi t = 3\ \ (s). nên d) đúng.

  • Câu 4: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như hình vẽ.

    a) Hàm số nghịch biến trên khoảng (0;2). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} =
2. Đúng||Sai

    c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng ( - 1;0). Đúng||Sai

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;0brack bằng 0. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và đồ thị như hình vẽ.

    a) Hàm số nghịch biến trên khoảng (0;2). Đúng||Sai

    b) Hàm số đạt cực tiểu tại điểm x_{0} =
2. Đúng||Sai

    c) Đạo hàm của hàm số nhận giá trị không âm trên khoảng ( - 1;0). Đúng||Sai

    d) Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1;0brack bằng 0. Sai||Đúng

    Theo hình vẽ, hàm số nghịch biến trên khoảng (0\ ;\ 2) và đạt cực tiểu tại điểm x_{o} = 2.

    Vì hàm số đồng biến trên khoảng ( - 1\ \
;\ 0) nên đạo hàm của hàm số nhận giá trị không âm trên khoảng đó.

    Giá trị lớn nhất của hàm số trên đoạn \lbrack - 1\ ;\ 0brack bằng 2.

  • Câu 5: Thông hiểu
    Chọn mệnh đề đúng

    Xét hàm số f(x) = x^{3} + x - \cos x -
4 trên nửa khoảng \lbrack 0; +
\infty). Mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Ta có f'(x) = 3x^{2} + 1 + \sin x
> 0,\forall x\mathbb{\in R}.

    Suy ra hàm số f(x) đồng biến trên \lbrack 0; + \infty).

    Khi đó hàm số không có giá trị lớn nhất nhưng có giá trị nhỏ nhất là \min_{\lbrack 0; + \infty)}f(x) = f(0) = -
5.

  • Câu 6: Vận dụng
    Tính tổng các giá trị của tham số m

    Tổng các giá trị nguyên âm của tham số m để hàm số y
= x^{3} + mx - \frac{1}{5x^{5}} đồng biến trên khoảng (0; + \infty) bằng:

    Hướng dẫn:

    Hàm số đồng biến trên khoảng (0; +
\infty)

    \Leftrightarrow y' = 3x^{2} + m +
\frac{1}{x^{6}} \geq 0;\forall x \in (0; + \infty)

    Theo bất đẳng thức Cauchy ta có:

    \Leftrightarrow y' = 3x^{2} +
\frac{1}{x^{6}} + m = \left( x^{2} + x^{2} + x^{2} + \frac{1}{x^{6}}
ight) + m

    \geq
4\sqrt[4]{x^{2}.x^{2}.x^{2}.\frac{1}{x^{6}}} = 4 + m;\forall x \in (0; +
\infty)

    (*) \Leftrightarrow m + 4 \geq 0
\Leftrightarrow m \geq - 4

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 4; - 3; - 2; - 1 ight\}

    Vậy tổng các giá trị của tham số m là -
10.

  • Câu 7: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trong đoạn \lbrack -
1;3\rbrack như hình.

    Các mệnh đề sau đúng hay sai?

    a) Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3\rbrack5. Đúng||Sai

    b) Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3\rbrack bằng 6. Sai||Đúng

    c) Hàm số y = f(x) đạt giá trị nhỏ nhất trên đoạn \lbrack
0;1\rbrack khi x = 0. Sai||Đúng

    d) Hàm số g(x) = f(4 - x)g(3) < 4 đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack
1;3\rbrack bằng a,b. Khi đó giá trị của a^{2} + b^{2} = 13. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) liên tục và có bảng biến thiên trong đoạn \lbrack -
1;3\rbrack như hình.

    Các mệnh đề sau đúng hay sai?

    a) Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3\rbrack5. Đúng||Sai

    b) Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3\rbrack bằng 6. Sai||Đúng

    c) Hàm số y = f(x) đạt giá trị nhỏ nhất trên đoạn \lbrack
0;1\rbrack khi x = 0. Sai||Đúng

    d) Hàm số g(x) = f(4 - x)g(3) < 4 đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack
1;3\rbrack bằng a,b. Khi đó giá trị của a^{2} + b^{2} = 13. Sai||Đúng

    a) Đúng. Giá trị lớn nhất của hàm số y =
f(x) trên đoạn \lbrack -
1;3\rbrack5 khi x = 0. Mệnh đề đúng.

    b) Sai.Tổng của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = f(x) trên đoạn \lbrack - 1;3\rbrack bằng 5. Mệnh đề sai.

    c) Sai. Hàm số y = f(x) đạt giá trị nhỏ nhất trên đoạn \lbrack
0;1\rbrack khi x = 1. Mệnh đề sai.

    d) Sai. Xét Hàm số g(x) = f(4 -
x) trên đoạn \lbrack
1;3\rbrack.

    Ta có g'(x) = - f'(4 -
x)

    g'(x) = 0 \Leftrightarrow f'(4 -
x) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
4 - x = 0 \\
4 - x = 2
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 4 \notin \lbrack 1;3\rbrack \\
x = 2 \in \lbrack 1;3\rbrack
\end{matrix} \right.

    g(1) = f(3) = 4;g(2) = f(2) = 1;1 <
g(3) = f(1) < 4

    Do đó y = g(x) đạt giá trị nhỏ nhất và giá trị lớn nhất trên đoạn \lbrack
1;3\rbrack bằng 14. Hay a =
1,b = 4. Khi đó giá trị của a^{2} +
b^{2} = 17. Mệnh đề sai.

  • Câu 8: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}. Đồ thị của hàm số y = f'(x) trên đoạn \lbrack - 2;2brack là đường cong hình bên. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Dựa vào thị của hàm số y =
f^{'}(x) trên đoạn \lbrack -
2;2brack ta thấy f'(x) = 0\Leftrightarrow x = 1.

    Ta có bảng BBT:

    Do đó \max_{\lbrack - 2;2brack}f(x) =f(1).

  • Câu 9: Thông hiểu
    Xác định giá trị tham số m thỏa mãn yêu cầu

    Cho hàm số y = - x^{3} + 6(m + 2)x^{2} -
m + 1 với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho đồng biến trên ( - 2; - 1)?

    Hướng dẫn:

    Ta có: y' = - 3x^{2} + 12(m +
2)x

    Hàm số y = - x^{3} + 6(m + 2)x^{2} - m +
1 đồng biến trên khoảng ( - 2; -
1) khi và chỉ khi:

    y' = - 3x^{2} + 12(m + 2)x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow - x^{2} + 4mx + 8x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow 4mx \geq x^{2} -
8x;\forall x \in ( - 2; - 1)

    \Leftrightarrow m \leq \frac{x}{4} - 2
\Leftrightarrow m \leq \frac{- 2}{4} - 2 = - \frac{5}{2}

    Vậy đáp án cần tìm là m \in \left( -
\infty; - \frac{5}{2} ightbrack.

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x) = \frac{x^{2} -3x+6}{x-1} trên đoạn [2,4]. Khi đó M + m bằng:

  • Câu 11: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = \frac{mx - m^{2} - 2}{- x
+ 1}với m là tham số thực lớn hơn - 3 thỏa mãn \max_{\lbrack - 4; - 2brack}y = -
\frac{1}{3}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: y' = \frac{- m^{2} + m - 2}{(
- x + 1)^{2}} < 0;x \in \lbrack - 4; - 2brack

    Do đó y = \frac{mx - m^{2} - 2}{- x +
1} nghịch biến trên \lbrack - 4; -
2brack.

    Từ đó suy ra

    \max_{\lbrack - 4; - 2brack}y = -
\frac{1}{3} \Leftrightarrow \frac{- m^{2} - 4m - 2}{5} = -
\frac{1}{3}

    \Leftrightarrow 3m^{2} + 12m + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = \dfrac{- 6 + \sqrt{33}}{3}(TM) \\m = \dfrac{- 6 - \sqrt{33}}{3}(L) \\\end{matrix} ight.

    Vậy đáp án đúng là - \frac{1}{2} < m
< 0.

  • Câu 12: Vận dụng
    Tìm các giá trị nguyên của tham số m

    Có bao nhiêu giá trị nguyên của tham số m để giá trị lớn nhất của hàm số y = \frac{m\sin x + 1}{\cos x + 2} nhỏ hơn 2?

    Hướng dẫn:

    Ta có: y = \frac{m\sin x + 1}{\cos x + 2}\Leftrightarrow m\sin x + 1 = y\cos x + 2y

    \Leftrightarrow m\sin x - y\cos x = 2y -
1

    Phương trình có nghiệm khi

    m^{2} + y^{2} \geq (2y - 1)^{2}
\Leftrightarrow m^{2} + y^{2} \geq 4y^{2} - 4y + 1

    \Leftrightarrow 3y^{2} - 4y + 1 - m^{2}
\leq 0

    Xét phương trình 3y^{2} - 4y + 1 - m^{2}
= 0\Delta' = ( - 2)^{2} -
3\left( 1 - m^{2} ight) = 3m^{2} + 1 > 0;\forall m

    Suy ra phương trình 3y^{2} - 4y + 1 -
m^{2} = 0 luôn có hai nghiệm phân biệt. Do đó:

    \Leftrightarrow \frac{2 - \sqrt{3m^{2} +
1}}{3} \leq \frac{2 + \sqrt{3m^{2} + 1}}{3}

    Suy ra \max y = \frac{2 + \sqrt{3m^{2} +
1}}{3}. Theo yêu cầu bài toán ta có:

    \max y < 2 \Leftrightarrow \frac{2 +
\sqrt{3m^{2} + 1}}{3} < 2

    \Leftrightarrow \sqrt{3m^{2} + 1} < 4
\Leftrightarrow 3m^{2} + 1 < 16 \Leftrightarrow - \sqrt{5} < m
< \sqrt{5}

    m\mathbb{\in Z} suy ra m \in \left\{ - 2; - 1;0;1;2 ight\}

    Vậy có tất cả 5 giá trị nguyên của tham số m thỏa mãn.

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết 8m^{2} kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết 8m^{2} kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Cho hàm số f(x) = x^{3} - 3x +
e^{m} với m là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên \lbrack 0;2brack bằng 0. Khi đó giá trị lớn nhất của hàm số đó là:

    Hướng dẫn:

    Ta có: f'(x) = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight. do xét trên \lbrack 0;2brack nên nhận x = 1

    \left\{ \begin{matrix}
f(1) = e^{m} - 2 \\
f(0) = e^{m} \\
f(2) = e^{m} + 2 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}f(x) = e^{m}
- 2 = 0 \Leftrightarrow e^{m} = 2

    Từ đó \max_{\lbrack 0;2brack}f(x) =
e^{m} + 2 = 4.

  • Câu 15: Vận dụng cao
    Ghi đáp án vào ô trống

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Vận dụng cao
    Tìm số phần tử của tập hợp S

    Cho hàm số f(x) = x^{3} - 3x^{2} + m^{2}
- 2m với m là tham số. Gọi S tập hợp tất cả các giá trị nguyên của tham số m thỏa mãn 3\max_{\lbrack - 3;1brack}f\left( |x| ight) +
2\min_{\lbrack - 3;1brack}f\left( |x| ight) \leq 112. Số phần tử của tập hợp S bằng:

    Hướng dẫn:

    Ta có: f\left( |x| ight) = f\left( | -
x| ight);\forall x\mathbb{\in R}

    \Rightarrow \left\{ \begin{matrix}
\max_{\lbrack - 3;1brack}f\left( |x| ight) = \max_{0;3}f(x) \\
\min_{\lbrack - 3;1brack}f\left( |x| ight) = \min_{\lbrack
0;3brack}f(x) \\
\end{matrix} ight.

    Đạo hàm f'(x) = 3x^{2} - 6x =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow f(0) = m^{2} - 2m \\
x = 2 \Rightarrow f(2) = m^{2} - 2m - 4 \\
\end{matrix} ight.f(3) =
m^{2} - 2m

    Suy ra 3\max_{\lbrack -
3;1brack}f\left( |x| ight) + 2\min_{\lbrack - 3;1brack}f\left( |x|
ight) \leq 112

    \Leftrightarrow 3\left( m^{2} - 2m
ight) + 2\left( m^{2} - 2m - 4 ight) \leq 112

    \Leftrightarrow m^{2} - 2m - 24 \leq 0
\Leftrightarrow - 4 \leq m \leq 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 4; - 3;...;5;6 ight\}

    Vậy có tất cả 11 giá trị nguyên của tham số m.

  • Câu 17: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Đường dây điện 110KV kéo từ trạm phát trong đất liền ra Côn Đảo. Biết BC =
60km, AB = 100km, góc \widehat{ABC} = 90{^\circ}, như hình vẽ. Mỗi km dây điện dưới nước chi phí là 5000\ USD, chi phí cho mỗi km dây điện trên bờ là 3000\ USD. Đặt x = AG.

    a) Khi x = 20\ km thì đường dây điện nối từ C về G dài 100km. Đúng||Sai

    b) Khi x = 20\ km thì tổng chi phí mắc điện là 560.000USD. Đúng||Sai

    c) Tổng chi phí mắc điện nhỏ nhất khi x =
50km. Sai||Đúng

    d) Tổng chi phí mắc điện nhỏ nhất là 540.000USD.Đúng||Sai

    Đáp án là:

    Đường dây điện 110KV kéo từ trạm phát trong đất liền ra Côn Đảo. Biết BC =
60km, AB = 100km, góc \widehat{ABC} = 90{^\circ}, như hình vẽ. Mỗi km dây điện dưới nước chi phí là 5000\ USD, chi phí cho mỗi km dây điện trên bờ là 3000\ USD. Đặt x = AG.

    a) Khi x = 20\ km thì đường dây điện nối từ C về G dài 100km. Đúng||Sai

    b) Khi x = 20\ km thì tổng chi phí mắc điện là 560.000USD. Đúng||Sai

    c) Tổng chi phí mắc điện nhỏ nhất khi x =
50km. Sai||Đúng

    d) Tổng chi phí mắc điện nhỏ nhất là 540.000USD.Đúng||Sai

    Tổng quan đáp án bài tập:

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

    a) Có AG = x \Rightarrow BG = 100 -
x với 0 \leq x \leq
100.

    Xét tam giác CBG vuông tại BCG =
\sqrt{CB^{2} + BG^{2}} = \sqrt{3600 + (100 - x)^{2}}.

    Khi x = 20\ km \Rightarrow CG = 100\
km.

    b) Chi phí tiền mắc điện là f(x) = 3000x
+ 5000.\sqrt{3600 + (100 - x)^{2}}

    Khi x = 20\ km \Rightarrow CG = 100\
km và tổng chi phí mắc điện là T =
f(20) = 560.000\ USD.

    c) Để chi phí mắc điện ít nhất thì f(x) đạt giá trị nhỏ nhất.

    Ta có f'(x) = 3000 - 5000\frac{(100 -
x)}{\sqrt{3600 + (100 - x)^{2}}}

    \Rightarrow f'(x) = 0 \Rightarrow f'(x) = 0

    \Leftrightarrow 3000 = 5000\frac{(100 - x)}{\sqrt{3600 +(100 - x)^{2}}}\Leftrightarrow \left\lbrack \begin{matrix}x = 55 \\x = 145(l)\end{matrix} \right..

    Ta có

    \begin{matrix}
f(0) = 583095,1895USD \\
f(55) = 540.000USD \\
f(100) = 600.000USD
\end{matrix}

    Vậy chi phí mắc điện nhỏ nhất khi x =
55km.

    d) chi phí mắc điện nhỏ nhất là 540.000USD

  • Câu 18: Thông hiểu
    Tìm m để hàm số đồng biến trên R

    Tìm tất cả các giá trị thực của tham số m để hàm số y = x^{4} - 2(m - 1)x^{2} + m + 2020 đồng biến trên khoảng ( - 3; - 1)?

    Hướng dẫn:

    Ta có: y' = 4x^{3} - 4(m -
1)x

    Hàm số đồng biến trên khoảng ( - 3; -
1) \Leftrightarrow y' \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow 4x^{3} - 4(m - 1)x \geq
0;\forall x \in ( - 3; - 1)

    \Leftrightarrow x^{2} \leq m - 1;\forall
x \in ( - 3; - 1)

    \Leftrightarrow m - 1 \geq \max_{\lbrack
- 3; - 1brack}x^{2} \Leftrightarrow m - 1 \geq 9 \Leftrightarrow m
\geq 10

    Vậy đáp án cần tìm là: m \geq
10.

  • Câu 19: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm f'(x) = x^{2}(x - 2)\left( x^{2} - 6x + might) với mọi x\mathbb{\inR}. Có bao nhiêu số nguyên m \in\lbrack - 2019;2019brack để hàm số g(x) = f(1 - x) nghịch biến trên khoảng ( - \infty; - 1)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm f'(x) = x^{2}(x - 2)\left( x^{2} - 6x + might) với mọi x\mathbb{\inR}. Có bao nhiêu số nguyên m \in\lbrack - 2019;2019brack để hàm số g(x) = f(1 - x) nghịch biến trên khoảng ( - \infty; - 1)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng cao
    Xét tính đúng sai của các nhậnđịnh

    Một tấm bìa cứng hình chữ nhật có kích thước 3m \times 8m. Người ta cắt mỗi góc của tấm bìa một hình vuông có cạnh là x để tạo ra hình hộp chữ nhật không nắp. Xét tính đúng, sai của các mệnh đề sau:

    a) Điều kiện của x0 < x < \frac{3}{2}. Đúng||Sai

    b) Diện tích mặt đáy của chiếc hộp là (8
- 2x)(3 - 2x). Đúng||Sai

    c) Thể tích của chiếc hộp là (8 -
2x)^{2}(3 - 2x). Sai||Đúng

    d) Với x = \frac{2}{3}(m) thì chiếc hộp có thể tích lớn nhất. Đúng||Sai

    Đáp án là:

    Một tấm bìa cứng hình chữ nhật có kích thước 3m \times 8m. Người ta cắt mỗi góc của tấm bìa một hình vuông có cạnh là x để tạo ra hình hộp chữ nhật không nắp. Xét tính đúng, sai của các mệnh đề sau:

    a) Điều kiện của x0 < x < \frac{3}{2}. Đúng||Sai

    b) Diện tích mặt đáy của chiếc hộp là (8
- 2x)(3 - 2x). Đúng||Sai

    c) Thể tích của chiếc hộp là (8 -
2x)^{2}(3 - 2x). Sai||Đúng

    d) Với x = \frac{2}{3}(m) thì chiếc hộp có thể tích lớn nhất. Đúng||Sai

    Hình vẽ minh họa

    a) Ta có chiều dài, chiều rộng, chiều cao của chiếc hộp lần lượt là 8 - 2x;3 - 2x;\ x.

    Suy ra điều kiện của x0 < x < \frac{3}{2}. Vậy a) Đúng.

    b) Đáy của chiếc hộp là hình chữ nhật có diện tích là S = (8 - 2x)(3 - 2x). Vậy b) Đúng.

    c) Thể tích của chiếc hộp là: V = x(8 -
2x)(3 - 2x). Vậy c) Sai.

    d) Xét hàm số: V(x) = x(3 - 2x)(8 - 2x) =
4x^{3} - 22x^{2} + 24x trên \left(
0;\frac{3}{2} \right).

    Ta có: V'(x) = 12x^{2} - 44x + 24 =
4\left( 3x^{2} - 11x + 6 \right).

    Khi đó: V'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 3 \\
x = \frac{2}{3}
\end{matrix} \right..

    Bảng biến thiên:

    Từ BBT ta thấy hàm số đạt giá trị lớn nhất trên \left( 0;\frac{3}{2} \right) khi x = \frac{2}{3}. Vậy d) Đúng

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (50%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo