Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 2 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tính tổng min max của hàm số trên đoạn cho trước

    Cho hàm số y = f(x) liên tục và có đồ thị trên đoạn \lbrack - 2;\
4brack như hình vẽ bên. Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) trên đoạn \lbrack - 2;\ 4brack bằng

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta có

    m = \underset{x \in \lbrack - 2\ ;\
4brack}{Min}f(x) = - 4, M =
\underset{x \in \lbrack - 2\ ;\ 4brack}{Max}f(x) = 7

    Khi đó M + m = 3

  • Câu 2: Vận dụng
    Ghi đáp án vào ô trống

    Cho một tấm nhôm hình vuông có cạnh là 30\ cm. Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là x\ cm, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm x để thể tích chiếc hộp là lớn nhất.

    Đáp án: 5

    Đáp án là:

    Cho một tấm nhôm hình vuông có cạnh là 30\ cm. Người ta cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là x\ cm, sau đó gập tấm nhôm lại để tạo thành một chiếc hộp không nắp. Tìm x để thể tích chiếc hộp là lớn nhất.

    Đáp án: 5

    Chiều cao của chiếc hộp khi gập tấm nhôm là x\ cm.

    Kích thước đáy hai đáy của chiếc hộp là (30 - 2x)\ cm.

    Ta có \left\{ \begin{matrix}
x > 0 \\
30 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x > 0 \\
x < 15 \\
\end{matrix} ight.\  \Leftrightarrow 0 < x < 15.

    Thể tích chiếc hộp là V(x) = x(30 -
2x)^{2} = 4x^{3} - 120x^{2} + 900x.

    V'(x) = 12x^{2} - 240x +
900.

    V'(x) = 0 \Leftrightarrow 12x^{2} -
240x + 900 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 5 \\
x = 15 \\
\end{matrix} ight.

    Bài toán trở thành, tìm x (0 < x < 15) sao cho V(x) là lớn nhất.

    Vậy cần cắt bỏ ở bốn góc của tấm nhôm đó các hình vuông bằng nhau có cạnh là 5\ cmđể chiếc hộp tạo thành có thể tích lớn nhất.

  • Câu 3: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{x^{2} + mx +
1}{x + m}. Xét tính đúng sai của các khẳng định dưới đây:

    a) Khi m = 0, ta có \min_{(0; + \infty)}y = - 2. Sai||Đúng

    b) Hàm số đã cho luôn có 2 cực trị. Đúng||Sai

    c) Với mọi giá trị của m, ta luôn có \min_{( - m; + \infty)}y -
\underset{( - \infty; - m)}{max}y = 4. Đúng||Sai

    d) Khi m = - 3 thì giá trị lớn nhất của hàm số trên đoạn \lbrack -
1;2\rbrack bằng 1. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x^{2} + mx +
1}{x + m}. Xét tính đúng sai của các khẳng định dưới đây:

    a) Khi m = 0, ta có \min_{(0; + \infty)}y = - 2. Sai||Đúng

    b) Hàm số đã cho luôn có 2 cực trị. Đúng||Sai

    c) Với mọi giá trị của m, ta luôn có \min_{( - m; + \infty)}y -
\underset{( - \infty; - m)}{max}y = 4. Đúng||Sai

    d) Khi m = - 3 thì giá trị lớn nhất của hàm số trên đoạn \lbrack -
1;2\rbrack bằng 1. Đúng||Sai

    Tổng quan đáp án

    a. Sai

    b. Đúng

    c. Đúng

    d. Đúng

    a) Khi m = 0 thì giá trị nhỏ nhất của hàm số trên khoảng (0; +
\infty) bằng 2.

    Thay m = 0 vào y = \frac{x^{2} + mx + 1}{x + m}, ta có

    y = \frac{x^{2} + 1}{x} \Rightarrow y' = \frac{x^{2} - 1}{x^{2}} = 0\Leftrightarrow x^{2} - 1 = 0

    \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = - 1 \notin (0; + \infty)\end{matrix} \right..

    Ta có bảng biến thiên như sau:

    b) Ta có y = \frac{x^{2} + mx + 1}{x + m}
\Rightarrow y' = \frac{x^{2} + 2mx + m^{2} - 1}{(x +
m)^{2}}.

    + y' = 0 \Leftrightarrow x^{2} + 2mx
+ m^{2} - 1 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - m - 1;\ (\ x \neq - m) \\
x = - m + 1;\ (\ x \neq - m)
\end{matrix} \right..

    \Rightarrow y' = 0 luôn có 2 nghiệm phân biệt thỏa mãn x \neq - m,\ \
\forall m.

    Vậy hàm số luôn có 2 cực trị.

    c) + y' = 0 \Leftrightarrow x^{2} +2mx + m^{2} - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - m - 1 \\x = - m + 1\end{matrix} \right..

    Ta có bảng biến thiên:

    Từ bảng biến thiên ta có:

    \max_{( -\infty; - m)}y = - 2 - m;\min_{( - m; + \infty)}y = 2 - m

    \Rightarrow \min_{( - m; + \infty)}y - \underset{( - \infty; - m)}{max}y= 4

    d) Khi m = - 3thay vào y = \frac{x^{2} + mx + 1}{x + m}, ta có y = \frac{x^{2} - 3x + 1}{x -
3}.

    + Hàm số y = \frac{x^{2} - 3x + 1}{x -
3} là hàm phân thức hữu tỉ, liên tục trên các khoảng ( - \infty;3)(3; + \infty).

    Mặt khác \lbrack - 1;2\rbrack \subset ( -
\infty;3) \Rightarrow Hàm số liên tục trên đoạn \lbrack - 1;2\rbrack.

    + Ta có y' = \frac{x^{2} - 6x + 8}{(x
- 3)^{2}} > 0\ \ \forall x \in ( - 1;2)y(2) = 1.

    Vì hàm số tăng trên ( - 1;2) nên hàm số đạt giá trị lớn nhất \max_{\lbrack -
1;2\rbrack}y = y(2) = 1.

  • Câu 4: Thông hiểu
    Tìm Min của f(x) trên khoảng

    Tìm giá trị nhỏ nhất của hàm số f\left( x ight) = \frac{2}{{{x^2}}} - \frac{1}{{2x - 2}} trên khoảng (0; 1)

    Hướng dẫn:

    Hàm số xác định và liên tục trên (0; 1) ta có:

    \begin{matrix}  f'\left( x ight) = \dfrac{{ - 4}}{{{x^3}}} + \dfrac{1}{{2{{\left( {x - 1} ight)}^2}}} \hfill \\  f'\left( x ight) = 0 \hfill \\   \Leftrightarrow {x^3} - 8{x^2} + 16x - 8 = 0 \hfill \\   \Leftrightarrow \left( {x - 2} ight)\left( {{x^2} - 6x + 4} ight) = 0 \hfill \\   \Rightarrow x = 3 - \sqrt 5  \hfill \\ \end{matrix}

    Lập bảng biến thiên:

    Tìm Min của f(x) trên khoảng

    Từ bảng biến thiên ta có: \mathop {\min }\limits_{\left( {0;1} ight)} f\left( x ight) = \frac{{11 + 5\sqrt 5 }}{4}

  • Câu 5: Vận dụng
    Xét tính đúng sai của các nhận định

    Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá 30.000 đồng một chiếc và mỗi tháng cơ sở bán được trung bình 3000 chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá 30.000 đồng mà cứ tăng giá thêm 1000 đồng thì mỗi tháng sẽ bán ít hơn 100 chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là 18.000.

    a) Nếu cơ sở bán mỗi chiếc khăn với giá 37000 thì số tiền lãi sau 1 tháng là 44. Sai||Đúng

    b) Sau khi cơ sở tăng giá mỗi chiếc khăn thêm x thì tổng số lợi nhuận một tháng của cơ sở được tính theo công thứcf(x) = - 100x^{2}
+ 1800x + 36000. Đúng||Sai

    c) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm 800 chiếc. Sai||Đúng

    d) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá 39000 đồng. Đúng||Sai

    Đáp án là:

    Một cơ sở sản xuất khăn mặt đang bán mỗi chiếc khăn với giá 30.000 đồng một chiếc và mỗi tháng cơ sở bán được trung bình 3000 chiếc khăn. Cơ sở sản xuất đang có kế hoạch tăng giá bán để có lợi nhận tốt hơn. Sau khi tham khảo thị trường, người quản lý thấy rằng nếu từ mức giá 30.000 đồng mà cứ tăng giá thêm 1000 đồng thì mỗi tháng sẽ bán ít hơn 100 chiếc. Biết vốn sản xuất một chiếc khăn không thay đổi là 18.000.

    a) Nếu cơ sở bán mỗi chiếc khăn với giá 37000 thì số tiền lãi sau 1 tháng là 44. Sai||Đúng

    b) Sau khi cơ sở tăng giá mỗi chiếc khăn thêm x thì tổng số lợi nhuận một tháng của cơ sở được tính theo công thứcf(x) = - 100x^{2}
+ 1800x + 36000. Đúng||Sai

    c) Để đạt lợi nhuận lớn nhất thì số khăn bán ra giảm 800 chiếc. Sai||Đúng

    d) Để đạt lợi nhuận lớn nhất thì mỗi chiếc khăn cần bán với giá 39000 đồng. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    Gọi số tiền cần tăng giá mỗi chiếc khăn là x .

    Vì cứ tăng giá thêm 1 thì số khăn bán ra giảm 100 chiếc nên tăng x thì số khăn bán ra giảm 100x chiếc.

    Do đó tổng số khăn bán ra mỗi tháng là: 3000 - 100x chiếc.

    Lúc đầu bán với giá 30, mỗi chiếc khăn có lãi 12. Sau khi tăng giá, mỗi chiếc khăn thu được số lãi là: 12 +
x.

    Do đó tổng số lợi nhuận một tháng thu được sau khi tăng giá là:

    f(x) = (3000 - 100x)(12 +
x).

    Xét hàm số f(x) = (3000 - 100x)(12 +
x) trên (0; + \infty).

    Ta có:f(x) = - 100x^{2} + 1800x +
36000.

    f'(x) = - 200x + 1800

    f'(x) = 0 \Leftrightarrow - 200x +
1800 = 0 \Leftrightarrow x = 9

    Lập bảng biến thiên của hàm số f(x) trên (0;\  + \infty) ta thấy hàm số đạt giá trị lớn nhất khix = 9

    hư vậy, để thu được lợi nhuận cao nhất thì cơ sở sản xuất cần tăng giá bán mỗi chiếc khăn là 9.000 đồng, tức là mỗi chiếc khăn bán với giá mới là39.000 đồng.

  • Câu 6: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) = 2x^{2} +
\frac{500}{x}. Xét tính đúng sai của các mệnh đề sau

    a) f'(x) = 0 \Leftrightarrow x =
5. Đúng||Sai

    b) \lim_{x \rightarrow + \infty}f(x) =
0. Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số trên (0;5) là 150. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (0; +
\infty) là 150. Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = 2x^{2} +
\frac{500}{x}. Xét tính đúng sai của các mệnh đề sau

    a) f'(x) = 0 \Leftrightarrow x =
5. Đúng||Sai

    b) \lim_{x \rightarrow + \infty}f(x) =
0. Sai||Đúng

    b) Giá trị nhỏ nhất của hàm số trên (0;5) là 150. Sai||Đúng

    c) Giá trị nhỏ nhất của hàm số trên (0; +
\infty) là 150. Đúng||Sai

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

    Ta có:

    f'(x) = 4x - \frac{500}{x^{2}} =
\frac{4x^{3} - 500}{x^{2}}

    f'(x) = 0 \Leftrightarrow 4x^{3} -
500 = 0 \Leftrightarrow x = 5.

    Bảng biến thiên.

    .

    Vậy giá trị nhỏ nhất của hàm số trên khoảng (0; + \infty) 150 khi x =
5.

  • Câu 7: Thông hiểu
    Tìm tham số m thỏa mãn yêu cầu

    Gọi m là giá trị nhỏ nhất của hàm số y = x + \frac{4}{x} trên khoảng (0; + \infty). Tìm m.

    Hướng dẫn:

    Cách 1:

    Hàm số y = x + \frac{4}{x} liên tục và xác định trên (0; +
\infty).

    Ta có

    y' = 1 - \frac{4}{x^{2}} =
\frac{x^{2} - 4}{x^{2}} \Rightarrow y' = 0\Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \in (0; + \infty) \\
x = - 2 otin (0; + \infty) \\
\end{matrix} ight..

    Bảng biến thiên

    Vậy giá trị nhỏ nhất là m = 4 khi x = 2.

    Cách 2:

    Với x \in (0;\  + \infty) \Rightarrow x;\
\frac{4}{x} > 0.

    Áp dụng bất đẳng thức Cô si ta có: x + \frac{4}{x} \geq 2\sqrt{x.\frac{4}{x}} =
4.

    Dấu bằng xảy ra khi và chỉ khi \left\{
\begin{matrix}
x > 0 \\
x = \dfrac{4}{x} \\
\end{matrix} ight.\  \Leftrightarrow x = 2. Vậy m = 4 khi x =
2.

  • Câu 8: Thông hiểu
    Xác định giá trị tham số m thỏa mãn yêu cầu

    Cho hàm số y = - x^{3} + 6(m + 2)x^{2} -
m + 1 với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho đồng biến trên ( - 2; - 1)?

    Hướng dẫn:

    Ta có: y' = - 3x^{2} + 12(m +
2)x

    Hàm số y = - x^{3} + 6(m + 2)x^{2} - m +
1 đồng biến trên khoảng ( - 2; -
1) khi và chỉ khi:

    y' = - 3x^{2} + 12(m + 2)x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow - x^{2} + 4mx + 8x \geq
0;\forall x \in ( - 2; - 1)

    \Leftrightarrow 4mx \geq x^{2} -
8x;\forall x \in ( - 2; - 1)

    \Leftrightarrow m \leq \frac{x}{4} - 2
\Leftrightarrow m \leq \frac{- 2}{4} - 2 = - \frac{5}{2}

    Vậy đáp án cần tìm là m \in \left( -
\infty; - \frac{5}{2} ightbrack.

  • Câu 9: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất M của hàm số f(x) = sin^{3}x + cos2x + \sin x +
3.

    Hướng dẫn:

    Ta có f(x) = sin^{3}x + cos2x + \sin x +
3 = sin^{3}x - 2sin^{2}x + \sin x + 4.

    Đặt t = \sin x\ ;( - 1 \leq t \leq1).

    Khi đó, bài toán trở thành ''Tìm giá trị lớn nhất của hàm số g(t) = t^{3} - 2t^{2} + t + 4 trên đoạn \lbrack -
1;1brack''.

    Đạo hàm g'(t) = 3t^{2} - 4t +
1

    \Rightarrow g'(t) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \in \lbrack - 1;1brack \\
t = \frac{1}{3} \in \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
g( - 1) = 0 \\
g\left( \dfrac{1}{3} ight) = \dfrac{112}{27} \\
g(1) = 4 \\
\end{matrix} ight. \Rightarrow
\max_{\lbrack - 1;1brack}g(t) = g\left( \dfrac{1}{3} ight) =
\frac{112}{27}

    \Rightarrow \max_{x\mathbb{\in R}}f(x) =
\frac{112}{27}

  • Câu 10: Vận dụng cao
    Ghi đáp án vào ô trống

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Đáp án là:

    Một hòn đảo nằm trong một hồ nước. Biết rằng đường cong tạo nên hòn đảo được mô hình hóa vào hệ trục tọa độ Oxy là một phần của đồ thị hàm số bậc ba f(x).

    Vị trí điểm cực đại là (2;5) với đơn vị của hệ trục là 100m và vị trí điểm cực tiểu là (0;1). Mặt đường chạy trên một đường thẳng có phương trình y = 36 - 9x. Người ta muốn làm một cây cầu có dạng một đoạn thẳng nối từ hòn đảo ra mặt đường. Độ dài ngắn nhất của cây cầu bằng bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 88,3 m

    Gọi hàm số bậc ba y = f(x) = ax^{3} +
bx^{2} + cx + d

    \Rightarrow f'(x) = 3ax^{2} + 2bx +
c.

    Vì đồ thị hàm số đi qua hai điểm (0;1)
\Rightarrow d = 1.

    Vì đồ thị hàm số đi qua hai điểm A(2;5)
\Rightarrow 8a + 4b + 2c + 1 = 5.

    Vì hàm số có hai điểm cực trị x = 0;x =
2

    \Rightarrow \left\{ \begin{matrix}
f'(0) = 0 \\
f'(2) = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
c = 0 \\
12a + 4b = 0 \\
\end{matrix} ight. .

    \Rightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow f(x) = - x^{3} + 3x^{2} + 1f'(x) = - 3x^{2} + 6x.

    Gọi M\left( x_{0};y_{0} ight),\ x_{0}
> 0, là điểm nằm trên hòn đảo và nối với mặt đường và d là tiếp tuyến của đồ thị hàm số song song với mặt đường.

    Suy ra M là tiếp điểm của d với y = f(x).

    Đường thẳng y = 36 - 9x có hệ số góc k = - 9

    \Rightarrow f'\left( x_{0} ight) =
- 9 \Leftrightarrow - 3x_{0}^{2} + 6x_{0} = - 9

    \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = 3 \\
x_{0} = - 1 \\
\end{matrix} ight.\  \Rightarrow M(3;1).

    Độ dài cây cầu ngắn nhất bằng khoảng cách từ điểm M đến đường thẳng 9x + y - 36 = 0.

    h = \frac{|9.3 + 1 - 36|}{\sqrt{9^{2} +
1^{2}}} \approx 0,883.

    Vì đơn vị của hệ trục là 100m nên độ dài ngắn nhất của cây cầu là 88,3m.

  • Câu 11: Thông hiểu
    Tìm giá trị lớn nhất của hàm số

    Cho hàm số y = f(x) có đồ thị như hình bên.

    Giá trị lớn nhất của hàm số này trên đoạn \lbrack - 2;3brack bằng:

    Hướng dẫn:

    Nhận thấy trên đoạn \lbrack -
2;3brack đồ thị hàm số có điểm cao nhất có tọa độ (3;4).

    \overset{}{ightarrow} Giá trị lớn nhất của hàm số này trên đoạn \lbrack -
2;3brack bằng 4

  • Câu 12: Vận dụng cao
    Tổng GTLN và GTNN của biểu thức P

    Cho x, y là các số thực dương thỏa mãn điều kiện \left\{ {\begin{array}{*{20}{c}}  {{x^2} - xy + 3 = 0} \\   {2x + 3y - 14 \leqslant 0} \end{array}} ight.. Tổng giá trị lớn nhất và nhỏ nhất của biểu thức P = 3{x^2}y - x{y^2} - 2{x^3} + 2x bằng:

    Hướng dẫn:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {x > 0,y > 0} \\   {{x^2} - xy + 3 = 0} \end{array}} ight. \Rightarrow y = \frac{{{x^2} + 3}}{x} = x + \frac{3}{x}

    Lại có: 2x + 3y - 14 \leqslant 0

    \begin{matrix}   \Leftrightarrow 2x + 3\left( {x + \dfrac{3}{x} - 14} ight) \leqslant 0 \hfill \\   \Leftrightarrow 5{x^2} - 14x + 9 \leqslant 0 \Leftrightarrow x \in \left[ {1;\dfrac{9}{5}} ight] \hfill \\ \end{matrix}

    Từ đó P = 3{x^2}\left( {x + \frac{3}{x}} ight) - x\left( {x + \frac{3}{x}} ight) - 2{x^3} + 2x = 5x - \frac{9}{x}

    Xét hàm số f\left( x ight) = 5x - \frac{9}{x};\forall x \in \left[ {1;\frac{9}{5}} ight]

    f'\left( x ight) = 5 + \frac{9}{{{x^2}}} > 0;\forall x \in \left[ {1;\frac{9}{5}} ight]

    => Hàm số đồng biến trên \left[ {1;\frac{9}{5}} ight]

    => f\left( 1 ight) \leqslant f\left( x ight) \leqslant f\left( {\frac{9}{5}} ight) \Rightarrow  - 4 \leqslant f\left( x ight) \leqslant 4

    => \max P + \min P = 4 + \left( { - 4} ight) = 0

  • Câu 13: Thông hiểu
    Tìm m thỏa mãn bất phương trình

    Tìm giá trị của m để bất phương trình x + \frac{4}{x - 1} \geq m có nghiệm trên khoảng ( -
\infty;1)?

    Hướng dẫn:

    Bất phương trình x + \frac{4}{x - 1} \geq
m có nghiệm trên khoảng ( -
\infty;1)

    \Leftrightarrow m \leq \max_{( -
\infty;1brack}g(x)

    Với g(x) = x + \frac{4}{x - 1}
\Rightarrow g'(x) = 1 - \frac{4}{(x - 1)^{2}}

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 3 otin ( - \infty;1) \\
x = - 1 \in ( - \infty;1) \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Dựa vào bảng biến thiên ta suy ra m \leq
- 3.

  • Câu 14: Vận dụng cao
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = e^{-
\frac{1}{2}x^{2}}có đồ thị như hình vẽ.

    Biết ABCD là hình chữ nhật thay đổi sao cho hai điểm B, C luôn thuộc đồ thị hàm số đã cho. Hai điểm A,\ \ D nằm trên trục hoành (điểm A thuộc tia Ox).

    a) [NB] Hàm số y = f(x)
= e^{- \frac{1}{2}x^{2}} có tập xác định D\mathbb{= R}. Đúng||Sai

    b) [TH] Hàm số y = f(x)
= e^{- \frac{1}{2}x^{2}} có đạo hàm là y' = f'(x) = xe^{-
\frac{1}{2}x^{2}}.Sai||Đúng

    c) [TH] Khi điểm B có toạ độ \left( x;e^{- \frac{1}{2}x^{2}} \right) với x > 0 thì diện tích ABCDS(x)
= xe^{- \frac{1}{2}x^{2}}. Sai||Đúng

    d) [VD] Diện tích hình chữ nhật ABCD đạt giá trị lớn nhất khi AD = 2. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = e^{-
\frac{1}{2}x^{2}}có đồ thị như hình vẽ.

    Biết ABCD là hình chữ nhật thay đổi sao cho hai điểm B, C luôn thuộc đồ thị hàm số đã cho. Hai điểm A,\ \ D nằm trên trục hoành (điểm A thuộc tia Ox).

    a) [NB] Hàm số y = f(x)
= e^{- \frac{1}{2}x^{2}} có tập xác định D\mathbb{= R}. Đúng||Sai

    b) [TH] Hàm số y = f(x)
= e^{- \frac{1}{2}x^{2}} có đạo hàm là y' = f'(x) = xe^{-
\frac{1}{2}x^{2}}.Sai||Đúng

    c) [TH] Khi điểm B có toạ độ \left( x;e^{- \frac{1}{2}x^{2}} \right) với x > 0 thì diện tích ABCDS(x)
= xe^{- \frac{1}{2}x^{2}}. Sai||Đúng

    d) [VD] Diện tích hình chữ nhật ABCD đạt giá trị lớn nhất khi AD = 2. Đúng||Sai

    a) Hàm số mũ y = f(x) = e^{-
\frac{1}{2}x^{2}} có tập xác định D\mathbb{= R}.

    Suy ra mệnh đề đúng.

    b) Hàm số y = f(x) = e^{-
\frac{1}{2}x^{2}} có đạo hàm là y'\  = \left( - \frac{1}{2}x^{2}
ight)^{'}e^{- \frac{1}{2}x^{2}} = - xe^{-
\frac{1}{2}x^{2}}.

    Suy ra mệnh đề sai.

    c) Khi điểm B có toạ độ \left( x;e^{- \frac{1}{2}x^{2}} ight) với x > 0 thì cạnh AD = 2x, cạnh AB = e^{- \frac{1}{2}x^{2}}

    Diện tích hình chữ nhật ABCD được tính theo công thức S(x) = 2xe^{-
\frac{1}{2}x^{2}}.

    Suy ra mệnh đề sai.

    d) Xét hàm số S(x) = 2xe^{-
\frac{1}{2}x^{2}} trên khoảng (0; +
\infty)

    S'(x) = 2e^{- \frac{1}{2}x^{2}} -
2x^{2}e^{- \frac{1}{2}x^{2}} = 2e^{- \frac{1}{2}x^{2}}\left( 1 - x^{2}
ight)

    S'(x) = 0 \Leftrightarrow 1 - x^{2}
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1\ (Loai) \\
\end{matrix} ight.

    Bảng biến thiên

    Hàm số S(x) đạt giá trị lớn nhất khi x = 1. Khi đó AD = 2

    Suy ra mệnh đề đúng.

  • Câu 15: Vận dụng
    Tìm m để hàm số đạt giá trị lớn nhất

    Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y = \frac{{{x^2} - {m^2} - 2}}{{x - m}} trên đoạn [0; 4] bằng -1?

    Hướng dẫn:

    Ta có: f'\left( x ight) = \frac{{{m^2} - m + 2}}{{{{\left( {x - m} ight)}^2}}} > 0;\forall m e 0

    Với x = m e \left[ {0;4} ight] \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m > 4} \\   {m < 0} \end{array}} ight. ta được hàm số f(x) đồng biến trên khoảng (0; 4)

    => \mathop {\max }\limits_{\left[ {0;4} ight]} f\left( x ight) = f\left( 4 ight) = \frac{{2 - {m^2}}}{{4 - m}}

    Theo bài ra ta có: \frac{{2 - {m^2}}}{{4 - m}} =  - 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 2} \\   {m =  - 3} \end{array}} ight.

    Kết hợp với điều kiện \left[ {\begin{array}{*{20}{c}}  {m > 4} \\   {m < 0} \end{array}} ight. => m = -3 là giá trị cần tìm

    Vậy có 1 giá trị của tham số m thỏa mãn yêu bài toán đề bài.

  • Câu 16: Vận dụng
    Tìm m để bất phương trình có nghiệm

    Giá trị của tham số m để bất phương trình (x - 2 - m)\sqrt{x - 1} \leq m - 4 có nghiệm là:

    Hướng dẫn:

    Đặt t = \sqrt{x - 1};(t \geq
0)

    Khi đó bất phương trình ban đầu trở thành:

    \left( t^{2} - m - 1 ight).t \leq m - 4
\Leftrightarrow m \geq \frac{t^{3} - t + 4}{t + 1}

    Xét hàm số f(t) = \frac{t^{3} - t + 4}{t
+ 1} trên \lbrack 0; +
\infty)

    Ta có: f'(t) = \frac{2t^{3} + 3t^{2}
- 5}{(t + 1)^{2}} = \frac{(t - 1)\left( 2t^{2} + 5t + 5 ight)}{(t +
1)^{2}}

    f'(t) = 0 \Leftrightarrow t =
1

    Bảng biến thiên của f(t) = \frac{t^{3} -
t + 4}{t + 1};t \in \lbrack 0; + \infty)

    Từ bảng biến thiên suy ra để bất phương trình có nghiệm thì m \geq 2.

  • Câu 17: Vận dụng
    Xác định m để hàm số đồng biến trên nửa khoảng

    Hàm số y = \frac{1}{3}x^{3} +
\frac{m}{2}x^{2} + x + 6 đồng biến trên nửa khoảng \lbrack 1; + \infty) khi:

    Hướng dẫn:

    Ta có: y' = x^{2} + mx +
1

    Để hàm số đã cho đồng biến trên nửa khoảng \lbrack 1; + \infty) khi đó:

    \Leftrightarrow y' \geq 0;\forall x
\in \lbrack 1; + \infty)

    \Leftrightarrow x^{2} + mx + 1 \geq
0;\forall x \in \lbrack 1; + \infty)

    \Leftrightarrow m \geq - x -
\frac{1}{x};\forall x \in \lbrack 1; + \infty)

    Xét hàm số g(x) = - x -
\frac{1}{x} trên nửa khoảng \lbrack
1; + \infty) ta có:

    g'(x) = - 1 + \frac{1}{x^{2}} =
\frac{1 - x^{2}}{x^{2}}

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Bảng biến thiên của hàm số g(x) = - x -
\frac{1}{x} trên nửa khoảng \lbrack
1; + \infty) là:

    Từ bảng biến thiên suy ra \max_{\lbrack
1; + \infty)}g(x) = g(1) = - 2

    Vậy m \geq g(x);\forall x \in \lbrack 1;
+ \infty) khi và chỉ khi m \geq -
2.

  • Câu 18: Vận dụng
    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]

    Hướng dẫn:

     Từ đồ thị ta có: f’(x) = 0 => \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện

  • Câu 19: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = \frac{mx - m^{2} - 2}{- x
+ 1}với m là tham số thực lớn hơn - 3 thỏa mãn \max_{\lbrack - 4; - 2brack}y = -
\frac{1}{3}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: y' = \frac{- m^{2} + m - 2}{(
- x + 1)^{2}} < 0;x \in \lbrack - 4; - 2brack

    Do đó y = \frac{mx - m^{2} - 2}{- x +
1} nghịch biến trên \lbrack - 4; -
2brack.

    Từ đó suy ra

    \max_{\lbrack - 4; - 2brack}y = -
\frac{1}{3} \Leftrightarrow \frac{- m^{2} - 4m - 2}{5} = -
\frac{1}{3}

    \Leftrightarrow 3m^{2} + 12m + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = \dfrac{- 6 + \sqrt{33}}{3}(TM) \\m = \dfrac{- 6 - \sqrt{33}}{3}(L) \\\end{matrix} ight.

    Vậy đáp án đúng là - \frac{1}{2} < m
< 0.

  • Câu 20: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số

    Tìm giá trị nhỏ nhất của hàm số f(x) =
\frac{x^{2} + 3}{x - 1} trên đoạn \lbrack 2;4brack.

    Hướng dẫn:

    Đạo hàm f'(x) = \frac{x^{2} - 2x -
3}{(x - 1)^{2}}

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 otin [ 2;4] \\
x = 3 \in \lbrack 2;4brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f(2) = 7 \\
f(3) = 6 \\
f(4) = \frac{19}{3} \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 2;4brack}f(x) =
6.

    Cách 2: Sử dụng công cụ TABLE (MODE 7).

    Bước 1: Bấm tổ hợp phím MODE 7.

    Bước 2: Nhập f(X) = \frac{X^{2} + 3}{X -
1}.

    Sau đó ấn phím = (nếu có g(X) thì ấn tiếp phím =) sau đó nhập \left\{ \begin{matrix}
Start = 2 \\
End = 4 \\
Step = 0.2 \\
\end{matrix} ight.

    (Chú ý: Thường ta chọn Step = \frac{End -Start}{10})

    Bước 3: Tra bảng nhận được và tìm GTNN:

    Dựa vào bảng giá trị ở trên, ta thấy \min_{\lbrack 2;4brack}f(x) = f(3) =
6.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (50%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo