Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 2 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm m để giá trị nhỏ nhất hàm số trên đoạn cho trước

    Giá trị nhỏ nhất của hàm số y = \frac{x +
m^{2}}{x - 1} trên đoạn \lbrack -
1;0brack bằng:

    Hướng dẫn:

    Đạo hàm y' = \frac{- 1 - m^{2}}{(x -
1)^{2}} < 0,\forall x \in \lbrack - 1;0brack.

    Suy ra hàm số f(x) nghịch biến trên \lbrack - 1;0brack

    \Rightarrow \min_{\lbrack -
1;0brack}f(x) = f(0) = - m^{2}.

  • Câu 2: Vận dụng
    Xác định vận tốc lớn nhất

    Người ta khảo sát gia tốc a(t) của một vật thể chuyển động (t là khoảng thời gian tính bằng giâu từ lúc vật thể chuyển động) từ giây thứ nhất đến giây thứ ba ghi nhận được a(t) là một hàm số liên tục có đồ thị như hình bên:

    Xác định vận tốc lớn nhất

    Hỏi trong thời gian từ giây thứ nhất đến giây thứ ba được khảo sát đó, thời điểm nào vận tốc lớn nhất?

    Gợi ý:

     Gợi ý: Mối quan hệ giữa gia tốc và vận tốc

    a\left( t ight) = v'\left( t ight)

    Hướng dẫn:

    Từ đồ thị ta có: a(t) = 0 => v’(t) = 0 = > t = 2

    Ta có bảng biến thiên:

    Xác định vận tốc lớn nhất

    => Vận tốc lớn nhất đạt được khi t = 2

  • Câu 3: Vận dụng cao
    Ghi đáp án vào ô trống

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đáp án là:

    Hai thành phố AB cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)

    Đáp án: 16 km

    Đặt HE = x_{}và_{}FK = y, với x,\ y > 0

    Ta có: HE + KF = 24 \Rightarrow x + y =24 \Rightarrow y = 24 - x

    \left\{ \begin{matrix}AE = \sqrt{25 + x^{2}} \\BF = \sqrt{49 + y^{2}} = \sqrt{49 + (24 - x)^{2}} \\\end{matrix} ight.

    Nhận định AB ngắn nhất khi AE + BF nhỏ nhất ( vì EF không đổi).

    Xét hàm số f(x) = \sqrt{x^{2} + 25} +\sqrt{(24 - x)^{2} + 49}

    f'(x) = \frac{x}{\sqrt{x^{2} + 25}} +\frac{x - 24}{\sqrt{x^{2} - 48x + 625}},\ \forall x \in(0;24).

    Cho f'(x) = 0 \Rightarrow x =10

    Bảng biến thiên

    Vậy\underset{(0;24)\ \ \ \ \ \ \ \ \ \}{\min f(x)} = f(10) = 12\sqrt{5}

    Khi đó BF = \sqrt{49 + (24 - 10)^{2}} =7\sqrt{5} \approx 16\ km

  • Câu 4: Thông hiểu
    Tính GTNN của hàm số trên khoảng

    Giả sử m là giá trị nhỏ nhất của hàm số y = x + \frac{4}{x} trên khoảng \left( {0; + \infty } ight). Tính giá trị của m.

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' = 1 - \dfrac{4}{{{x^2}}} \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2\left( {tm} ight)} \\   {x =  - 2\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Tính GTNN của hàm số trên khoảng

    => Giá trị nhỏ nhất của hàm số bằng 4

    => y(2) = 4

    => m = 4

  • Câu 5: Vận dụng
    Tìm max của hàm số trên đoạn

    Tìm giá trị lớn nhất M của hàm số f(x) = \left| x^{2} - 3x + 2 \right| -
x trên đoạn \lbrack -
4;4\rbrack.

    Hướng dẫn:

    Hàm số f(x) xác định và liên tục trên đoạn \lbrack - 4;4brack.

    Nếu x \in \lbrack 1;2brack thì x^{2} - 3x + 2 \leq 0 nên suy ra f(x) = - x^{2} + 2x - 2.

    Đạo hàm f'(x) = - 2x + 2

    \Rightarrow f'(x) = 0 \Leftrightarrow
x = 1 \in \lbrack 1;2brack

    Ta có \left\{ \begin{matrix}
f(1) = - 1 \\
\ f(2) = - 2 \\
\end{matrix} ight.\ .

    Nếu x \in \lbrack - 4;1brack \cup
\lbrack 2;4brack thì x^{2} - 3x +
2 \geq 0 nên suy ra f(x) = x^{2} -
4x + 2.

    Đạo hàm f'(x) = 2x - 4

    \Rightarrow f'(x) = 0
\Leftrightarrow x = 2 \in [ - 4;1] \cup \lbrack
2;4brack

    Ta có \left\{ \begin{matrix}
f( - 4) = 34 \\
\ f(1) = - 1 \\
f(2) = - 2 \\
f(4) = 2 \\
\end{matrix} ight..

    So sánh hai trường hợp, ta được \max_{\lbrack - 4;4brack}f(x) = f( - 4) =
34

  • Câu 6: Thông hiểu
    Chọn đáp án chính xác

    Tìm tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số f(x) = - x^{3} - 3x^{2} + m trên \lbrack - 1;1brack bằng 0?

    Hướng dẫn:

    Ta có: f'(x) = - 3x^{2} -
6x

    Xét f'(x) = 0 \Leftrightarrow -
3x^{2} - 6x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 2 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f( - 1) = m - 2 \\
f(0) = m \\
f(1) = m - 4 \\
\end{matrix} ight.m - 4
< m - 2 < m

    Khi đó \min_{\lbrack - 1;1brack}f(x) =
f(1) = m - 4

    Theo đề bài ra ta có:

    \min_{\lbrack - 1;1brack}f(x) = 0
\Leftrightarrow m - 4 = 0 \Leftrightarrow m = 4

    Vậy đáp án cần tìm là m = 4.

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Tìm giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \frac{2x + m}{x
+ 1} trên đoạn \lbrack
0;4brack bằng 5?

    Hướng dẫn:

    Ta có: y' = \frac{2 - m}{(x +
1)^{2}};y(0) = m;y(4) = \frac{8 + m}{5}

    \mathop {\min }\limits_{\left[ {0;4} ight]} f\left( x ight) = 5 \Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  y' < 0 \hfill \\
  y\left( 4 ight) = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  y' > 0 \hfill \\
  y\left( 0 ight) = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  2 - m < 0 \hfill \\
  \frac{{8 + m}}{5} = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  2 - m > 0 \hfill \\
  m = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  m > 2 \hfill \\
  m = 17 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  m < 2 \hfill \\
  m = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow m = 17

    Vậy giá trị cần tìm là m =
17.

  • Câu 8: Vận dụng
    Định giá trị m thỏa mãn bất phương trình

    Cho hàm số f(x) có đạo hàm trên \mathbb{R} và thỏa mãn f(x) > f'(x) + 1;\forall x\mathbb{\in
R}. Bất phương trình f(x) <
me^{x} + 1 nghiệm đúng với mọi x
\in (0; + \infty) khi và chỉ khi

    Hướng dẫn:

    Ta có:

    f(x) < me^{x} + 1 \Leftrightarrow
f(x) - 1 < me^{x}

    \Leftrightarrow \frac{f(x) - 1}{e^{x}}
< m.

    Xét hàm số g(x) = \frac{f(x) -
1}{e^{x}}

    g'(x) = \frac{f'(x) -
\left\lbrack f(x) - 1 ightbrack}{e^{x}} < 0;\forall x \in (0; +
\infty)

    Bảng biến thiên

    Vậy bất phương trình f(x) < me^{x} +
1 nghiệm đúng với mọi x \in (0; +
\infty) khi và chỉ khi m \geq f(0)
- 1.

  • Câu 9: Vận dụng cao
    Tính GTNN của biểu thức

    Cho hai số thực a, b dương thỏa mãn 2\left( {{a^2} + {b^2}} ight) + ab = \left( {a + b} ight)\left( {ab + 2} ight). Giá trị nhỏ nhất của biểu thức T = 4\left( {\frac{{{a^3}}}{{{b^3}}} + \frac{{{b^3}}}{{{a^3}}}} ight) - 9\left( {\frac{{{a^2}}}{{{b^2}}} + \frac{{{b^2}}}{{{a^2}}}} ight) bằng:

    Hướng dẫn:

    Ta có:

    2\left( {\frac{a}{b} + \frac{b}{a}} ight) + 1 = \left( {a + b} ight)\left( {1 + \frac{2}{{ab}}} ight) = a + b + \frac{2}{a} + \frac{2}{b}

    \geqslant 2\sqrt {2\left( {a + b} ight)\left( {\frac{1}{a} + \frac{1}{b}} ight)}  = 2\sqrt {2\left( {2 + \frac{a}{b} + \frac{b}{a}} ight)}

    Đặt t = \frac{a}{b} + \frac{b}{a} \Rightarrow t \geqslant \frac{5}{2}

    \Rightarrow P = 4\left( {{t^3} - 3t} ight) - 9\left( {{t^2} - 2} ight) = 4{t^3} - 9{t^2} - 12t + 18 = f\left( t ight)

    \begin{matrix}  f'\left( t ight) = 12{t^2} - 18t - 12 > 0,\forall t > \dfrac{5}{2} \hfill \\   \Rightarrow f\left( t ight) \geqslant f\left( {\dfrac{5}{2}} ight) =  - \dfrac{{23}}{4} \hfill \\ \end{matrix}

  • Câu 10: Vận dụng
    Tính tổng các phần tử của S

    Cho hàm số y = {x^3} + m{x^2} - \left( {{m^2} + m + 1} ight)x. Gọi S là tập hợp các giá trị thực của tham số m sao cho giá trị nhỏ nhất của hàm số trên đoạn \left[ { - 1;1} ight] bằng -6. Tính tổng các phần tử của S.

    Hướng dẫn:

    Ta có: f'\left( x ight) =  - 3{x^2} + 2mx - {m^2} - m - 1;\forall x \in \mathbb{R}

    \Delta ' =  - 2{m^2} - 3m - 3 < 0,\forall m \in \mathbb{R}

    => y' < 0;\forall x \in \left[ { - 1;1} ight]

    Do đó hàm số f\left( x ight) nghịch biến trên \left( { - 1;1} ight)

    => \mathop {\min y}\limits_{\left[ { - 1;1} ight]}  = y\left( 1 ight) =  - 6

    Ta lại có:

    \begin{matrix}  y\left( 1 ight) =  - 2 - {m^2} \hfill \\   \Rightarrow  - 2 - {m^2} =  - 6 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 2} \\   {m =  - 2} \end{array}} ight. \Rightarrow \sum m  = 0 \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ sau:

    Khi đó, giá trị lớn nhất của hàm số g(x)
= f\left( 2 - x^{2} ight) trên \left\lbrack 0;\sqrt{2} ightbrack là:

    Hướng dẫn:

    Đặt t = 2 - x^{2};t' = - 2x \leq
0;\forall x \in \left\lbrack 0;\sqrt{2} ightbrack \Rightarrow t \in
\lbrack 0;2brack

    \Rightarrow \max_{\left\lbrack
0;\sqrt{2} ightbrack}g(x) = \max_{\lbrack 0;2brack}f(t) =
f(0)

  • Câu 12: Vận dụng cao
    Xét tính đúng sai của các kết luận

    Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn \lbrack -
3;3brack và đồ thị hàm số y =
f'(x) như hình vẽ dưới đây.

    Biết f(1) = 6g(x) = f(x) - \frac{(x + 1)^{2}}{2}.

    a) [NB] g(1) = 4 Đúng||Sai

    b) [TH] g'(x) = f'(x) - (x +
1). Đúng||Sai

    c) [TH] Phương trình g'(x) =
0 có ba nghiệm phân biệt. Đúng||Sai

    d) [VD, VDC] Giá trị nhỏ nhất của hàm số g(x) = f(x) - \frac{(x + 1)^{2}}{2} trên đoạn \lbrack - 3;3brack là một số dương. Sai|||Đúng

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn \lbrack -
3;3brack và đồ thị hàm số y =
f'(x) như hình vẽ dưới đây.

    Biết f(1) = 6g(x) = f(x) - \frac{(x + 1)^{2}}{2}.

    a) [NB] g(1) = 4 Đúng||Sai

    b) [TH] g'(x) = f'(x) - (x +
1). Đúng||Sai

    c) [TH] Phương trình g'(x) =
0 có ba nghiệm phân biệt. Đúng||Sai

    d) [VD, VDC] Giá trị nhỏ nhất của hàm số g(x) = f(x) - \frac{(x + 1)^{2}}{2} trên đoạn \lbrack - 3;3brack là một số dương. Sai|||Đúng

    a) [NB] g(1) = 4

    Ta có g(1) = f(1) - \frac{(1 + 1)^{2}}{2}
= f(1) - 2 = 4 \Rightarrow Khẳng định đúng

    b) [TH] g'(x) = f'(x) - (x +
1).

    g'(x) = f'(x) - (x + 1) \Rightarrow Khẳng định đúng

    c) [TH] Phương trình g'(x) =
0 có ba nghiệm phân biệt.

    Từ đồ thị hàm số y = f'(x)y = x + 1 ta có g'(x) = 0 \Leftrightarrow f'(x) = x + 1
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 3 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.\  \Rightarrow Khẳng định đúng.

    d) [VD, VDC] Giá trị nhỏ nhất của hàm số g(x) = f(x) - \frac{(x + 1)^{2}}{2} trên đoạn \lbrack - 3;3brack là một số dương.

    Qua đồ thị hình lưới

    Xét hình phẳng giới hạn bởi đồ thị y =
f'(x);\ y = x + 1;\ x = - 3;x = 1 có diện tích S_{1} > 4 \Leftrightarrow \int_{- 3}^{1}{\left|
f'(x) - (x + 1) ight|dx > 4 \Leftrightarrow \int_{-
3}^{1}{\left| g'(x) ight|dx > 4}}\

    \Leftrightarrow g(1) - g( - 3) > 4 \Rightarrow
g( - 3) < g(1) - 4 = 0

    Xét hình phẳng giới hạn bởi đồ thị y =
f'(x);\ y = x + 1;\ x = 1;x = 3 có diện tích S_{2} < 4

    \Leftrightarrow \int_{1}^{3}{\left|
f'(x) - (x + 1) ight|dx < 4 \Leftrightarrow \int_{1}^{3}{\left|
g'(x) ight|dx < 4}}

    \Leftrightarrow - g(3) + g(1) < 4
\Rightarrow g(3) > g(1) - 4 = 0.

    Dựa vào đồ thị ta có bảng biến thiên của hàm y = g(x) trên \lbrack - 3;3brack

    Từ bảng biến thiên suy ra giá trị nhỏ nhất của hàm số g(x) = f(x) - \frac{(x + 1)^{2}}{2} trên đoạn \lbrack - 3;3brack\min_{\lbrack - 3;3brack}g(x) = g( - 3) <
0.\Rightarrow Khẳng định sai.

  • Câu 13: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x^{3} - 3x + 2. Khi đó nhận định nào đúng, nhận định nào sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x^{3} - 3x + 2. Khi đó nhận định nào đúng, nhận định nào sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) SAI vì Tập xác định của hàm số đã cho là \mathbb{R}.

    b) ĐÚNG. Thay x =
0 ta được y = 2.

    c) SAI. Ta có y' =
3x^{2} - 3. Ta thấy y'(0) = - 3
\neq 0. Suy ra hàm số không đạt cực trị tại điểm x = 0.

    d) ĐÚNG. Ta có y' =
3x^{2} - 3.Suy ra y' = 0
\Leftrightarrow x = 1\ (TM);x = - 1\ (KTM).

    y(0) = 2;y(2) = 4;y(1) = 0. Vậy giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4.

  • Câu 14: Thông hiểu
    Tìm GTLN của hàm số f(x)

    Giá trị lớn nhất của hàm số y =  - {x^3} + 3x + 1 trên khoảng \left( {0; + \infty } ight)

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1\left( {tm} ight)} \\   {x =  - 1\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => Giá trị lớn nhất của hàm số trên khoảng đã cho bằng 3 khi x = 1

  • Câu 15: Thông hiểu
    Chọn phương án đúng

    Trên đoạn \lbrack 0;3brack, hàm số y = - x^{3} + 3x đại giá trị lớn nhất tại điểm

    Hướng dẫn:

    Tập xác định: \mathbb{R}.

    y' = - 3x^{2} + 3

    y' = 0 \Leftrightarrow - 3x^{2} + 3
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \in (0;3) \\
x = - 1 otin (0;3) \\
\end{matrix} ight.

    Ta có y(0) = 0;y(1) = 2;y(3) = -
18.

    Vậy max_{\lbrack 0;3brack}y = y(1) =
2.

  • Câu 16: Vận dụng
    Xác định tính đúng sai của từng phương án

    Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v = 10(km/h) thì phần thứ hai bằng 30 nghìn đồng/giờ.

    Xét tính đúng sai của các mệnh đề sau:

    a) Khi vận tốc v = 10(km/h) thì chi phí nguyên liệu cho phần thứ nhất trên 1 km đường sông là 48000 đồng. Đúng||Sai

    b) Hàm số xác định tổng chi phí nguyên liệu trên 1 km đường sông với vận tốc x (km/h)f(x) = \frac{480}{x} +
0,03x^{3}. Sai||Đúng

    c) Khi vận tốc v = 30 (km/h) thì tổng chi phí nguyên liệu trên 1 km đường sông là 43000 đồng. Đúng||Sai

    d) Vận tốc của tàu để tổng chi phí nguyên liệu trên 1 km đường sông nhỏ nhất là v=20(km/h). Đúng||Sai

    Đáp án là:

    Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v = 10(km/h) thì phần thứ hai bằng 30 nghìn đồng/giờ.

    Xét tính đúng sai của các mệnh đề sau:

    a) Khi vận tốc v = 10(km/h) thì chi phí nguyên liệu cho phần thứ nhất trên 1 km đường sông là 48000 đồng. Đúng||Sai

    b) Hàm số xác định tổng chi phí nguyên liệu trên 1 km đường sông với vận tốc x (km/h)f(x) = \frac{480}{x} +
0,03x^{3}. Sai||Đúng

    c) Khi vận tốc v = 30 (km/h) thì tổng chi phí nguyên liệu trên 1 km đường sông là 43000 đồng. Đúng||Sai

    d) Vận tốc của tàu để tổng chi phí nguyên liệu trên 1 km đường sông nhỏ nhất là v=20(km/h). Đúng||Sai

    a) Đúng: Thời gian tàu chạy quãng đường 1 km là: \frac{1}{10} (giờ)

    Chi phí tiền nhiên liệu cho phần thứ nhất là: \frac{1}{10}.480000 = 48000 (đồng).

    b) Sai: Gọi x (km/h) là vận tốc của tàu, x > 0

    Thời gian tàu chạy quãng đường 1 km là: \frac{1}{x} (giờ)

    Chi phí tiền nhiên liệu cho phần thứ nhất là: \frac{1}{x}.480 = \frac{480}{x} (nghìn đồng)

    Hàm chi phí cho phần thứ hai là p =
k.x^{3} (nghìn đồng/ giờ)

    Khi x = 10 \Rightarrow p = 30 \Rightarrow
k = 0,03 \Rightarrow p = 0,03x^{3} (nghìn đồng/ giờ)

    Do đó chi phí phần 2 để chạy 1 km là: \frac{1}{x}.0,03x^{3} = 0,03x^{2} (nghìn đồng)

    Vậy tổng chi phí f(x) = \frac{480}{x} +
0,03x^{3},

    c) Đúng. Tổng chi phí f(x) =
\frac{480}{x} + 0,03x^{3}

    Thay x = v = 30 ta được f(30) = \frac{480}{30} + 0,03(30)^{3} =
43(nghìn đồng).

    d) Đúng f(x) = \frac{480}{x} + 0,03x^{3}
= \frac{240}{x} + \frac{240}{x} + 0,03x^{2} \geq 3\sqrt[3]{1728} =
36

    Dấu ’’=’’ xảy ra khi x = 20.

  • Câu 17: Vận dụng cao
    Ghi đáp án vào ô trống

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một con cá hồi bơi ngược dòng để vượt khoảng cách là 100 km. Vận tốc dòng nước là 5(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là v(km/h),(v > 5) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v) =
c.v^{3}.t, trong đó c là hằng số dương, E được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng (a;b) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của b -
a (kết quả làm tròn tới hàng phần mười).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Thông hiểu
    Xác định min max của hàm số trên đoạn

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}, có đồ thị như hình vẽ bên.

    Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số y = f(x) trên đoạn \lbrack - 2;2brack.

    Hướng dẫn:

    Nhận thấy trên đoạn \lbrack -
2;2brack

    Đồ thị hàm số có điểm thấp nhất có tọa độ ( - 2; - 5)(1; - 5)

    \overset{}{ightarrow} Giá trị nhỏ nhất của hàm số này trên đoạn \lbrack -
2;2brack bằng - 5.

    Đồ thị hàm số có điểm cao nhất có tọa độ ( - 1; - 1)(2; - 1)

    \overset{}{ightarrow} Giá trị lớn nhất của hàm số này trên đoạn \lbrack -
2;2brack bằng - 1.

  • Câu 19: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = \frac{mx - m^{2} - 2}{- x
+ 1}với m là tham số thực lớn hơn - 3 thỏa mãn \max_{\lbrack - 4; - 2brack}y = -
\frac{1}{3}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: y' = \frac{- m^{2} + m - 2}{(
- x + 1)^{2}} < 0;x \in \lbrack - 4; - 2brack

    Do đó y = \frac{mx - m^{2} - 2}{- x +
1} nghịch biến trên \lbrack - 4; -
2brack.

    Từ đó suy ra

    \max_{\lbrack - 4; - 2brack}y = -
\frac{1}{3} \Leftrightarrow \frac{- m^{2} - 4m - 2}{5} = -
\frac{1}{3}

    \Leftrightarrow 3m^{2} + 12m + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = \dfrac{- 6 + \sqrt{33}}{3}(TM) \\m = \dfrac{- 6 - \sqrt{33}}{3}(L) \\\end{matrix} ight.

    Vậy đáp án đúng là - \frac{1}{2} < m
< 0.

  • Câu 20: Vận dụng
    Ghi đáp án vào ô trống

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một công ty sản xuất dụng cụ thể thao nhận được một đơn đặt hàng sản xuất 8000 quả bóng tennis. Công ty này sở hữu một số máy móc, mỗi máy có thể sản xuất 30 quả bóng trong một giờ. Chi phí thiết lập các máy này là 200 nghìn đồng cho mỗi máy. Khi được thiết lập, hoạt động sản xuất sẽ hoàn toàn diễn ra tự động dưới sự giám sát. Số tiền phải trả cho người giám sát là 192 nghìn đồng một giờ. Số máy móc công ty nên sử dụng là bao nhiêu để chi phí hoạt động là thấp nhất?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (50%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo