Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 2 (Mức độ Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Định giá trị m thỏa mãn bất phương trình

    Cho hàm số f(x) có đạo hàm trên \mathbb{R} và thỏa mãn f(x) > f'(x) + 1;\forall x\mathbb{\in
R}. Bất phương trình f(x) <
me^{x} + 1 nghiệm đúng với mọi x
\in (0; + \infty) khi và chỉ khi

    Hướng dẫn:

    Ta có:

    f(x) < me^{x} + 1 \Leftrightarrow
f(x) - 1 < me^{x}

    \Leftrightarrow \frac{f(x) - 1}{e^{x}}
< m.

    Xét hàm số g(x) = \frac{f(x) -
1}{e^{x}}

    g'(x) = \frac{f'(x) -
\left\lbrack f(x) - 1 ightbrack}{e^{x}} < 0;\forall x \in (0; +
\infty)

    Bảng biến thiên

    Vậy bất phương trình f(x) < me^{x} +
1 nghiệm đúng với mọi x \in (0; +
\infty) khi và chỉ khi m \geq f(0)
- 1.

  • Câu 2: Vận dụng cao
    Xét tính đúng sai của các nhậnđịnh

    Một tấm bìa cứng hình chữ nhật có kích thước 3m \times 8m. Người ta cắt mỗi góc của tấm bìa một hình vuông có cạnh là x để tạo ra hình hộp chữ nhật không nắp. Xét tính đúng, sai của các mệnh đề sau:

    a) Điều kiện của x0 < x < \frac{3}{2}. Đúng||Sai

    b) Diện tích mặt đáy của chiếc hộp là (8
- 2x)(3 - 2x). Đúng||Sai

    c) Thể tích của chiếc hộp là (8 -
2x)^{2}(3 - 2x). Sai||Đúng

    d) Với x = \frac{2}{3}(m) thì chiếc hộp có thể tích lớn nhất. Đúng||Sai

    Đáp án là:

    Một tấm bìa cứng hình chữ nhật có kích thước 3m \times 8m. Người ta cắt mỗi góc của tấm bìa một hình vuông có cạnh là x để tạo ra hình hộp chữ nhật không nắp. Xét tính đúng, sai của các mệnh đề sau:

    a) Điều kiện của x0 < x < \frac{3}{2}. Đúng||Sai

    b) Diện tích mặt đáy của chiếc hộp là (8
- 2x)(3 - 2x). Đúng||Sai

    c) Thể tích của chiếc hộp là (8 -
2x)^{2}(3 - 2x). Sai||Đúng

    d) Với x = \frac{2}{3}(m) thì chiếc hộp có thể tích lớn nhất. Đúng||Sai

    Hình vẽ minh họa

    a) Ta có chiều dài, chiều rộng, chiều cao của chiếc hộp lần lượt là 8 - 2x;3 - 2x;\ x.

    Suy ra điều kiện của x0 < x < \frac{3}{2}. Vậy a) Đúng.

    b) Đáy của chiếc hộp là hình chữ nhật có diện tích là S = (8 - 2x)(3 - 2x). Vậy b) Đúng.

    c) Thể tích của chiếc hộp là: V = x(8 -
2x)(3 - 2x). Vậy c) Sai.

    d) Xét hàm số: V(x) = x(3 - 2x)(8 - 2x) =
4x^{3} - 22x^{2} + 24x trên \left(
0;\frac{3}{2} \right).

    Ta có: V'(x) = 12x^{2} - 44x + 24 =
4\left( 3x^{2} - 11x + 6 \right).

    Khi đó: V'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 3 \\
x = \frac{2}{3}
\end{matrix} \right..

    Bảng biến thiên:

    Từ BBT ta thấy hàm số đạt giá trị lớn nhất trên \left( 0;\frac{3}{2} \right) khi x = \frac{2}{3}. Vậy d) Đúng

  • Câu 3: Vận dụng cao
    Ghi đáp án vào ô trống

    Cho hai số thực x \geq 0;1 \leq y \leq
3 thỏa mãn 2^{x - 2y}.(2x + 1) = 4y
+ 2x + 4. Tìm giá trị nhỏ nhất của biểu thức P = 2^{x - y - 2} - x - y^{2} + 2037?

    Đáp án: 2025

    Đáp án là:

    Cho hai số thực x \geq 0;1 \leq y \leq
3 thỏa mãn 2^{x - 2y}.(2x + 1) = 4y
+ 2x + 4. Tìm giá trị nhỏ nhất của biểu thức P = 2^{x - y - 2} - x - y^{2} + 2037?

    Đáp án: 2025

    Giả thiết cho 2^{x - 2y}.(2x + 1) = 4y +
2x + 4

    \Leftrightarrow 2^{x}.(2x + 1) = 2(2y +
x + 2)2^{2y}

    \Leftrightarrow 2^{x}.(2x + 1) = 2^{2y +
1}(2y + x + 2)

    \Leftrightarrow 2^{2x}.(2x + 1) = 2^{2y
+ x + 1}(2y + x + 1 + 1)

    Xét hàm số f(t) = 2^{t}.(t + 1) trên (0\ ; + \infty)

    Suy ra f'(t) = 2^{t}.(t + 1)ln2 + 2^{t} > 0,\
\forall t \in (0\ ; + \infty)

    Vậy hàm số f(t) luôn đồng biến trên (0\ ; + \infty) nên ta có:

    \Leftrightarrow 2^{2x}.(2x + 1) = 2^{2y
+ x + 1}(2y + x + 1 + 1)

    \Leftrightarrow 2x = 2y + x + 1
\Leftrightarrow x = 2y + 1

    Suy ra: P = 2^{x - y - 2} - x - y^{2} +
2037

    = 2^{y - 1} - \left( y^{2} + 2y + 1
ight) + 2037

    = \frac{1}{4}.2^{y + 1} - (y + 1)^{2} +
2037

    Xét hàm số g(a) = \frac{1}{4}.2^{a} -
a^{2};\ a \in \lbrack 2\ ;4brack

    g^{'(a)} = \frac{2^{a}.ln2}{4} -
2a

    \Rightarrow g''(a) =
\frac{2^{a}.ln^{2}2}{4} - 2 < 0,\forall\ a \in \lbrack 2\
;4brack

    \Rightarrow g'(a) luôn nghịch biến trên \lbrack 2\
;4brack

    \Rightarrow \max_{\lbrack 2\
;4brack}g'(a) = g'(2) = ln2 - 4 < 0

    \Rightarrow g(a) luôn nghịch biến trên \lbrack 2\ ;4brack

    \Rightarrow \min g(a) = g(4) = -
12

    Vậy \min P = - 12 + 2037 = 2025 khi y + 1 = 4 \Rightarrow y = 3\ ;x =
7.

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Tìm giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \frac{2x + m}{x
+ 1} trên đoạn \lbrack
0;4brack bằng 5?

    Hướng dẫn:

    Ta có: y' = \frac{2 - m}{(x +
1)^{2}};y(0) = m;y(4) = \frac{8 + m}{5}

    \mathop {\min }\limits_{\left[ {0;4} ight]} f\left( x ight) = 5 \Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  y' < 0 \hfill \\
  y\left( 4 ight) = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  y' > 0 \hfill \\
  y\left( 0 ight) = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  2 - m < 0 \hfill \\
  \frac{{8 + m}}{5} = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  2 - m > 0 \hfill \\
  m = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}
  \left\{ \begin{gathered}
  m > 2 \hfill \\
  m = 17 \hfill \\ 
\end{gathered}  ight. \hfill \\
  \left\{ \begin{gathered}
  m < 2 \hfill \\
  m = 5 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow m = 17

    Vậy giá trị cần tìm là m =
17.

  • Câu 5: Vận dụng
    Ghi đáp án vào ô trống

    Ông A dự định sử dụng hết 8\ \
m^{2} kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu m^{3}? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 2,1

    Đáp án là:

    Ông A dự định sử dụng hết 8\ \
m^{2} kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu m^{3}? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 2,1

    Gọi x,h (m) lần lượt là chiều rộng và chiều cao của bể cá.

    Ta có thể tích bể cá V =
2x^{2}h.

    Theo đề bài ta có:

    2xh + 2.2xh + 2x^{2} = 8

    \Leftrightarrow 6xh + 2x^{2} =
8

    \Leftrightarrow h = \frac{8 -
2x^{2}}{6x}

    V = 2x^{2}\frac{8 - 2x^{2}}{6x} =
\frac{8x - 2x^{3}}{3}

    \Rightarrow V' = \frac{8 -
6x^{2}}{3}

    \Rightarrow V' = 0

    \Leftrightarrow 8 - 6x^{2} = 0
\Leftrightarrow x^{2} = \frac{4}{3} \Leftrightarrow x =
\frac{2\sqrt{3}}{3}

    Ta có bảng biển thiên

    \Rightarrow V_{\max} =
\frac{32\sqrt{3}}{27} \approx 2,1\ \ m^{3}

  • Câu 6: Vận dụng
    Ghi đáp án vào ô trống

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Đáp án là:

    Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa, và các suối nước đổ về hồ. Từ lúc 8h sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian t (giờ) trong ngày cho bởi công thức h(t) = 24t +5t^{2} - \frac{t^{3}}{3}. Biết rằng phải thông báo cho các hộ dân di dời trước khi xả nước theo quy định trước 5 tiếng. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước lúc mấy giờ. Biết rằng mực nước trong hồ phải lên cao nhất mới xả nước.

    Đáp án: 15

    Ta có:

    h'(t) = 24 + 10t -t^{2}

    h'(t) = 0

    \Leftrightarrow 24 + 10t - t^{2} = 0\Leftrightarrow \left\lbrack \begin{matrix}t = - 2(ktm) \\t = 12(tm) \\\end{matrix} ight.

    Bảng biến thiên:

    Mực nước lên cao nhất thì phải mất 12 giờ.

    Hay mực nước lên cao nhất là lúc 20 giờ.

    Vậy phải thông báo cho dân di dời vào 15giờ chiều cùng ngày.

  • Câu 7: Thông hiểu
    Tìm m thỏa mãn yêu cầu đề bài

    Gọi m là giá trị nhở nhất của hàm số y = x + \frac{4}{x} trên khoảng (0; + \infty). Tìm m

    Hướng dẫn:

    \begin{matrix}
y' = 1 - \frac{4}{x^{2}} \\
y' = 0 \Leftrightarrow x = \pm 2;\ \ \ \ \ x = 2 \in (0; + \infty).
\\
\\
\end{matrix}

    Bảng biến thiên:

    Suy ra giá trị nhỏ nhất của hàm số bằng y(2) = 4 \Rightarrow m = 4.

  • Câu 8: Vận dụng cao
    Tính GTNN của biểu thức

    Cho x, y là các số thực thỏa mãn {\left( {x - 3} ight)^2} + {\left( {y - 1} ight)^2} = 5. Giá trị nhỏ nhất của biểu thức P = \frac{{3{y^2} + 4xy + 7x + 4y - 1}}{{x + 2y + 1}} bằng:

    Hướng dẫn:

    \begin{matrix}  {\left( {x - 3} ight)^2} + {\left( {y - 1} ight)^2} = 5 \hfill \\   \Rightarrow {x^2} + {y^2} - 6x - 2y + 5 = 0 \hfill \\  P = \dfrac{{\left( {3{y^2} + 4xy + 7x - 4y - 1} ight) + \left( {{x^2} + {y^2} - 6x - 2y + 5} ight)}}{{x + 2y + 1}} \hfill \\  P = \dfrac{{4{y^2} + 4xy + {x^2} + x + 2y + 4}}{{x + 2y + 1}} \hfill \\  P = \dfrac{{{{\left( {2y + x} ight)}^2} + \left( {x + 2y} ight) + 4}}{{x + 2y + 1}} \hfill \\ \end{matrix}

    Đặt t = x + 2y

    \begin{matrix}  \left( {{1^2} + {2^2}} ight)\left[ {{{\left( {x - 3} ight)}^2} + {{\left( {y - 1} ight)}^2}} ight] \geqslant {\left[ {\left( {x - 3} ight) + \left( {2y - 2} ight)} ight]^2} \hfill \\   \Rightarrow {\left( {x + 2y - 5} ight)^2} \leqslant 25 \hfill \\   \Leftrightarrow 0 \leqslant x + 2y \leqslant 10 \hfill \\ \end{matrix}

    Ta được P = f\left( t ight) = \frac{{{t^2} + t + 4}}{{1 + 4}} = t + \frac{4}{{t + 1}};0 \leqslant t \leqslant 10

    Xét f'\left( t ight) = 1 - \frac{4}{{{{\left( {t + 1} ight)}^2}}} = 0 \Rightarrow {\left( {t + 1} ight)^2} = 4 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {t = 1\left( {tm} ight)} \\   {t =  - 3\left( L ight)} \end{array}} ight.

    f\left( 0 ight) = 4;f\left( {10} ight) = \frac{{114}}{{11}};f\left( 1 ight) = 3 \Rightarrow \min P = 3{\text{  khi t  =  1}}

  • Câu 9: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}. Đồ thị của hàm số y = f'(x) trên đoạn \lbrack - 2;2brack là đường cong hình bên. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Dựa vào thị của hàm số y =
f^{'}(x) trên đoạn \lbrack -
2;2brack ta thấy f'(x) = 0\Leftrightarrow x = 1.

    Ta có bảng BBT:

    Do đó \max_{\lbrack - 2;2brack}f(x) =f(1).

  • Câu 10: Vận dụng
    Ghi đáp án vào ô trống

    Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là f\left( x ight) = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} ight| trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là f\left( x ight) = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} ight| trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu
    Tìm giá trị thực của tham số

    Tìm giá trị thực của tham số a để hàm số f(x) = - x^{3} - 3x^{2} +
a có giá trị nhỏ nhất trên đoạn \lbrack - 1;1brack bằng 0.

    Hướng dẫn:

    Đạo hàm f'(x) = - 3x^{2} -
6x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \in \lbrack - 1;1brack \\
x = - 2 otin \lbrack - 1;1brack \\
\end{matrix} ight.

    Ta có \left\{ \begin{matrix}
f( - 1) = a - 2 \\
f(0) = a \\
f(1) = a - 4 \\
\end{matrix} ight. \Rightarrow
\min_{\lbrack - 1;1brack}f(x) = f(1) = a - 4

    Theo bài ra: \min_{\lbrack -
1;1brack}f(x) = 0 \Leftrightarrow a - 4 = 0 \Leftrightarrow a =
4

  • Câu 12: Vận dụng cao
    Ghi đáp án vào ô trống

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Anh Hùng đang ở trong rừng để đào vàng và tìm thấy vàng ở điểm X cách điểm A một khoảng 3 km. Điểm A nằm trên đường bờ biển (đường bờ biển là đường thẳng). Trại của anh Hùng nằm ở vị trí Y cách điểm B một khoảng 3 km. Điểm B cũng thuộc đường bờ biển. Biết rằng AB = 3(km),AM = NB = x(km)AX = BY = 3(km) (minh hoạ như hình vẽ sau).

    Khi đang đào vàng, anh Hùng không may bị rắn cắn, chất độc lan vào máu. Sau khi bị cắn, nồng độ chất độc trong máu tăng theo thời gian được tính theo phương trình y = 50\log(t +2). Trong đó, y là nồng độ, t là thời gian tính bằng giờ sau khi bị rắn cắn. Anh cần quay trở lại trại để lấy thuốc giải độc. Anh ấy chạy trong rừng và trên bãi biển với vận tốc lần lượt là 5km/h13km/h. Để về đến trại anh Hùng cần chạy từ trong rừng qua điểm M,N trên bãi biển. Tính nồng độ chất độc trong máu thấp nhất khi anh Hùng về đến trại (làm tròn đáp án đến hàng phần chục).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Thông hiểu
    Tìm các giá trị nguyên của tham số m

    Số các giá trị nguyên của tham số m để hàm số y
= \frac{1}{3}x^{3} - x^{2} - 3x + 2m + 7 có giá trị nhỏ nhất trên đoạn \lbrack 2;4brack thuộc khoảng ( - 5;8) là:

    Hướng dẫn:

    Xét hàm số y = \frac{1}{3}x^{3} - x^{2} -
3x + 2m + 7 trên \lbrack
2;4brack ta có:

    y' = x^{2} - 2x - 3 \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}y(2) = - \dfrac{1}{3} + 2m \\y(4) = \dfrac{1}{3} + 2m \\y(3) = - 2 + 2m \\\end{matrix} ight.\  \Rightarrow \min_{\lbrack 2;4brack}y = - 2 + 2m\in ( - 5;8)

    \Leftrightarrow - 5 < - 2 + 2m < 8
\Leftrightarrow - 3 < 2m < 10 \Leftrightarrow - \frac{3}{2} < m
< 5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1;2;3;4 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu.

  • Câu 14: Vận dụng
    Xác định giá trị nhỏ nhất của biểu thức P

    Xác định giá trị nhỏ nhất của biểu thức P = 4\left( {{m^2} + {n^2}} ight) - m - n, biết y = {\left( {x + m} ight)^3} + {\left( {x + n} ight)^3} - {x^3} với m,n là tham số và hàm số đồng biến trên \left( { - \infty ; + \infty } ight).

    Hướng dẫn:

    Ta có:

    \begin{matrix}  y' = 3{\left( {x + m} ight)^2} + 3{\left( {x + n} ight)^2} - 3{x^2} \hfill \\   = 3\left[ {{x^2} + 2\left( {m + n} ight)x + {m^2} + {n^2}} ight] \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên \mathbb{R}

    \begin{matrix} y' \geqslant 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \Delta ' = {\left( {m + n} ight)^2} - {m^2} - {n^2} \leqslant 0 \hfill \\   \Rightarrow mn \leqslant 0 \hfill \\ \end{matrix}

    Ta lại có:

    \begin{matrix}  P = 4\left( {{m^2} + {n^2}} ight) - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 8mn - \left( {m + n} ight) \hfill \\   \geqslant 4{\left( {m + n} ight)^2} - \left( {m + n} ight) \hfill \\   = 4{\left( {m + n} ight)^2} - 2.2\left( {m + n} ight).\dfrac{1}{4} + \dfrac{1}{{16}} - \dfrac{1}{{16}} \hfill \\   = {\left[ {2\left( {m + n} ight) - \dfrac{1}{4}} ight]^2} - \dfrac{1}{{16}} \geqslant  - \dfrac{1}{{16}} \hfill \\   \Rightarrow {P_{\min }} =  - \dfrac{1}{{16}} \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên tập xác định

    Giá trị nhỏ nhất của hàm số y = \sqrt{4 -
x} + \sqrt{3} trên tập xác định của nó là

    Hướng dẫn:

    Tập xác định của hàm số là: D = ( -
\infty;4brack.

    Ta có y' = \frac{- 1}{2\sqrt{4 - x}}
< 0,\ \forall x \in D

    Bảng biến thiên

    Từ bảng biến thiên suy ra \min_{( -
\infty;4brack}y = \sqrt{3} khi x
= 4.

  • Câu 16: Thông hiểu
    Ghi đáp án vào ô trống

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f(x) =
\frac{1}{2}x - \sqrt{x + 1} trên đoạn \lbrack 0;3brack. Tổng S = 2M - m bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Thông hiểu
    Chọn đáp án đúng:

    Xét hàm số y = f(x) = x + 1 - \frac{3}{x+2} trên đoạn [-1;1]. Mệnh đề nào sau đây đúng?

  • Câu 18: Thông hiểu
    Tìm giá trị nhỏ nhất của hàm số trên khoảng

    Với giá trị nào của x thì hàm số y = x^{2} + \frac{1}{x} đạt giá trị nhỏ nhất trên khoảng (0; +
\infty)?

    Hướng dẫn:

    TXD: D\mathbb{= R}\backslash\left\{ 0
ight\}.

    y' = 2x - \frac{1}{x^{2}}, y' = 0 \Leftrightarrow x =
\frac{1}{\sqrt[3]{2}}.

    Dựa vào BBT thì x =
\frac{1}{\sqrt[3]{2}} hàm số đạt giá trị nhỏ nhất trên (0; + \infty).

  • Câu 19: Vận dụng
    Xác định m thỏa mãn yêu cầu đề bài

    Cho hàm số y = f(x) có bảng biến thiên trên đoạn \lbrack -
4;4brack như hình vẽ:

    Có bao nhiêu giá trị của tham số m trên đoạn \lbrack - 4;4brack sao cho giá trị lớn nhất của hàm số y = f\left( \left| x^{3}
ight| + 3|x| ight) + f(m) trên đoạn \lbrack - 1;1brack bằng 1?

    Hướng dẫn:

    Ta có: x \in \lbrack - 1;1brack
\Rightarrow |x| \in \lbrack 0;1brack \Rightarrow \left| x^{3} ight|
\in \lbrack 0;1brack

    Suy ra t = \left| x^{3} ight| + 3|x|
\in \lbrack 0;4brack

    Khi đó f\left( \left| x^{3} ight| +
3|x| ight) \in \lbrack - 3;3brack hay f\left( \left| x^{3} ight| + 3|x| ight) + f(m)
\in \left\lbrack - 3 + f(m);3 + f(m) ightbrack

    Theo yêu cầu bài toán \Leftrightarrow 3 +
f(m) = 1 \Leftrightarrow f(m) = - 2

    Nhìn vào bảng biến thiên ta thấy f(m) = -
2 có ba nghiệm

    Vậy có 3 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 20: Thông hiểu
    Xác định thời điểm số lượng cá thể giảm

    Sự ảnh hưởng khi sử dụng một loại thuốc với cá thể X được một nhà sinh học mô tả bởi hàm số P(t) = \frac{t + 1}{t^{2} + t + 4}, trong đó P(t) là số lượng cá thể sau t giờ sử dụng thuốc. Vào thời điểm nào thì số lượng cá thể X bắt đầu giảm?

    Hướng dẫn:

    Xét P(t) = \frac{t + 1}{t^{2} + t +
4} ta có: P'(t) = \frac{- t^{2}
- 2t + 3}{\left( t^{2} + t + 4 ight)^{2}} = \frac{(t - 1)( - t -
3)}{\left( t^{2} + t + 4 ight)^{2}}

    P'(t) = 0 \Leftrightarrow \frac{(t -
1)( - t - 3)}{\left( t^{2} + t + 4 ight)^{2}} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = - 3 \\
t = 1 \\
\end{matrix} ight.

    Ta thấy hàm số đạt cực đại tại t =
1P'(t) < 0;\forall t \in
(1; + \infty) nên sau 1 giờ thì cá thể bắt đầu giảm.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (50%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo