Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 10 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho mẫu số liệu dưới dạng bảng sau

    Xét tính đúng/sai các mệnh đề sau:

    a. Giá trị đại diện của lớp \lbrack
36;41) là 38,5. Đúng||Sai

    b. Công thức tính số trung bình là \overline{x} = \frac{18,5.4 + 23,5.6 + 28,5.8 +
33,5.18 + 38,5.4}{40}. Đúng||Sai

    c. Số trung bình là 30. Đúng||Sai

    d. Phương sai của mẫu số liệu là S^2 = 32,75. Đúng||Sai

    Đáp án là:

    Cho mẫu số liệu dưới dạng bảng sau

    Xét tính đúng/sai các mệnh đề sau:

    a. Giá trị đại diện của lớp \lbrack
36;41) là 38,5. Đúng||Sai

    b. Công thức tính số trung bình là \overline{x} = \frac{18,5.4 + 23,5.6 + 28,5.8 +
33,5.18 + 38,5.4}{40}. Đúng||Sai

    c. Số trung bình là 30. Đúng||Sai

    d. Phương sai của mẫu số liệu là S^2 = 32,75. Đúng||Sai

    (a) giá trị đại diện của lớp \lbrack 36;41) là 38,5.

    » Chọn ĐÚNG.

    (b) Công thức tính số trung bình là

    \overline{x} = \frac{18,5.4 + 23,5.6 + 28,5.8 +
33,5.18 + 38,5.4}{40}.

    » Chọn ĐÚNG.

    (c) số trung bình là 30.

    số trung bình là \overline{x} =
\frac{18,5.4 + 23,5.6 + 28,5.8 + 33,5.18 + 38,5.4}{40} =
30.

    » Chọn ĐÚNG.

    (d) phương sai của mẫu số liệu là S^{2} = 32,75.

    Phương sai của mẫu số liệu là:

    S^{2} =\frac{1}{40}[4(18,5 - 30)^{2} + 6(23,5 - 30)^{2} + 8(28,5 -30)^{2}+ 18(33,5 - 30)^{2} + 4(38,5 - 30)^{2} ] =32,75

    » Chọn ĐÚNG.

  • Câu 2: Thông hiểu
    Tìm phương sai của mẫu số liệu

    Cho bảng thống kê điểm kiểm tra năng lực của một số học sinh như sau:

    Điểm

    Số học sinh

    [30; 40)

    3

    [40; 50)

    7

    [50; 60)

    12

    [60; 70)

    15

    [70; 80)

    8

    [80; 90)

    3

    [90; 100)

    2

    Phương sai của mẫu số liệu gần nhất với giá trị nào sau đây?

    Hướng dẫn:

    Ta có:

    Điểm

    Số học sinh

    (fi)

    Giá trị đại diện (xi)

    \left( x_{i} - \overline{x}
ight)^{2} f_{i}.\left( x_{i} - \overline{x}
ight)^{2}

    [30; 40)

    3

    35

    729

    2187

    [40; 50)

    7

    45

    289

    2023

    [50; 60)

    12

    55

    49

    588

    [60; 70)

    15

    65

    9

    135

    [70; 80)

    8

    75

    169

    1352

    [80; 90)

    3

    85

    529

    1589

    [90; 100)

    2

    95

    1089

    2187

     

    \sum_{}^{}f_{i} = 50

     

     

    Tổng: 10050

    Vậy phương sai của mẫu số liệu là:S^{2} =
\frac{1}{N}.\sum_{}^{}{f_{i}.\left( x_{i} - \overline{x} ight)^{2}} =
\frac{1}{50}.10050 = 201

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Một mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng:

    Hướng dẫn:

    Mẫu số liệu ghép nhóm có phương sai bằng 16 có độ lệch chuẩn bằng \sqrt{16} = 4.

  • Câu 4: Nhận biết
    Xác định chiều cao trung bình

    Cho biểu đồ

    Tính chiều cao trung bình của mẫu số liệu đã cho?

    Hướng dẫn:

    Ta có:

    Chiều cao

    [160; 164)

    [164; 168)

    [168; 172)

    [172; 176)

    [176; 180)

    Số học sinh

    3

    5

    8

    4

    1

    Giá trị đại diện

    162

    166

    170

    174

    178

    Chiều cao trung bình là:

    \overline{x} = \frac{3.162 + 5.166 +8.170 + 4.174 + 1.178}{21} \approx 169

  • Câu 5: Thông hiểu
    Tính độ lệch chuẩn của mẫu số liệu ghép nhóm

    Cho bảng phân bố tần số ghép lớp về độ dài của 60 lá dương xỉ trưởng thành như sau sau:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Tần số

    8 18 24 10

    Tính độ lệch chuẩn bảng phân bố tần số ghép lớp đã cho

    Hướng dẫn:

    Độ dài (cm)

    \lbrack 10;20) \lbrack 20;30) \lbrack 30;40) \lbrack 40;50\rbrack

    Giá trị đại diện

     15 25  35  45 

    Tần số

    8 18 24 10

    Trước hết ta có \overline{x} = \frac{15.8
+ 25.18 + 35.24 + 45.10}{60} = 31.

    Khi đó phương sai

    s_{x}^{2} = \lbrack 8.(15 - 31)^{2} + 18
\cdot (25 - 31)^{2} + 24.(35 - 31)^{2} + 10.(45 -
31)^{2}\rbrack.\frac{1}{60} = 84.

    s_{x} = \sqrt{s_{x}^{2}} = \sqrt{84}
\approx 9,2

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Nhiệt độ trong 55 ngày của một địa phương được cho trong bảng ghép lớp sau:

    Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất nằm trong khoảng

    Hướng dẫn:

    Nhiệt độ trung bình trong một ngày là:

    \overline{x} = \frac{20,5.5 + 23,5.7 +
26,5.8 + 29,5.16 + 32,5.12 + 35,5.7}{55} = 28,9

    Phương sai của mẫu số liệu là:

    S^{2} = \frac{1}{55}[20,5^{2}.5 + 23,5^{2}.7 +26,5^{2}.8+ 29,5^{2}.16 + 32,5^{2}.12 + 35,5^{2}.7] - 28,9^{2} =19,44

    Phương sai của mẫu số liệu được làm tròn đến chữ số thập phân thứ nhất là S^{2} = 19,4

  • Câu 7: Vận dụng
    Tính giá trị của biểu thức

    Một giống cây xoan đào được trồng tại hai địa điểm A và B. Người ta thống kê đường kính thân của một số cây xoan đào 5 năm tuổi ở bảng sau. Gọi phương sai đường kính thân của một số cây xoan đào 5 năm tuổi ở địa điểm A và địa điểm B lần lượt là S_{A}^{2} và S_{B}^{2}. Tính T = \left| S_{A}^{2} - S_{B}^{2} \right| bằng bao nhiêu?

    Đường kính (cm)

    \lbrack
30;32) \lbrack
32;34) \lbrack
34;36) \lbrack
36;38) \lbrack
38;40)

    Số cây trồng ở địa điểm A

    25

    38

    20

    10

    9

    Số cây trồng ở địa điểm B

    22

    27

    19

    14

    14

    Hướng dẫn:

    Ta lập bảng theo giá trị đại diện như sau:

    Đường kính (cm)

    \lbrack
30;32) \lbrack
32;34) \lbrack
34;36) \lbrack
36;38) \lbrack
38;40)

    Giá trị đại diện

    31

    33

    35

    37

    39

    Số cây trồng ở địa điểm A

    25

    38

    20

    10

    9

    Số cây trồng ở địa điểm B

    22

    27

    19

    14

    14

    Cỡ mẫu: n_{A} = 25 + 38 + 20 + 10 + 7 =
100; n_{B} = 22 + 27 + 19 + 18 + 14
= 100

    Đường kính trung bình của thân cây xoan đào trồng tại địa điểm A là:

    {\overline{x}}_{A} = \frac{25 \cdot 31 +
38 \cdot 33 + 20 \cdot 35 + 10 \cdot 37 + 7 \cdot 39}{100} =
33,72

    Phương sai của mẫu số liệu ghép nhóm vè̀ đường kính của thân cây xoan đào trồng tại địa điểm A là:

    S_{A}^{2} = \frac{1}{100}\left( 25 \cdot
31^{2} + 38 \cdot 33^{2} + 20 \cdot 35^{2} + 10 \cdot 37^{2} + 7 \cdot
39^{2} \right) - (33,72)^{2} \approx 5,40

    Đường kính trung bình của thân cây xoan đào trồng tại địa điểm B là:

    {\overline{x}}_{B} = \frac{22 \cdot 31 +
27 \cdot 33 + 19 \cdot 35 + 18 \cdot 37 + 14 \cdot 39}{100} =
34,5

    Phương sai của mẫu số liệu ghép nhóm về đường kính của thân cây xoan đào trồng tại địa điểm B là:

    S_{B}^{2} = \frac{1}{100}\left( 22 \cdot
31^{2} + 27 \cdot 33^{2} + 19 \cdot 35^{2} + 18 \cdot 37^{2} + 14 \cdot
39^{2} \right) - (34,5)^{2} = 7,31

    Vậy \left| S_{A}^{2} - S_{B}^{2} \right|
= |5,40 - 7,31| = 1,91

  • Câu 8: Vận dụng
    Xét tính đúng sai của các nhận định

    Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư và hai lĩnh vực A, B cho kết quả bằng biểu đồ dưới đây

    A graph on a gridDescription automatically generated A graph on a gridDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83 (làm tròn đến hàng phần trăm). Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01 (làm tròn đến hàng phần trăm). Đúng||Sai

    c. Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A. Sai||Đúng

    d. Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B. Sai||Đúng

    Đáp án là:

    Người ta ghi lại tiền lãi (đơn vị: triệu đồng) của một số nhà đầu tư (với số tiền đầu tư như nhau), khi đầu tư và hai lĩnh vực A, B cho kết quả bằng biểu đồ dưới đây

    A graph on a gridDescription automatically generated A graph on a gridDescription automatically generated

    Xét tính đúng/sai các mệnh đề sau:

    a. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83 (làm tròn đến hàng phần trăm). Đúng||Sai

    b. Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01 (làm tròn đến hàng phần trăm). Đúng||Sai

    c. Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A. Sai||Đúng

    d. Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B. Sai||Đúng

    Từ biểu đồ ta có bảng thống kê sau:

    (a) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực A là: 5,83(làm tròn đến hàng phần trăm).

    Xét mẫu số liệu của số nhà đầu tư vào lĩnh vực A:

    Cỡ mẫu là n_{1} = 2 + 4 + 7 + 5 +3 =21

    Số trung bình: {\overline{x}}_{1} =
\frac{7,5.2 + 12,5.4 + 17,5.7 + 22,5.5 + 27,5.3}{21} =
\frac{255}{14}

    Phương sai:

    S_{1}^{2} = \frac{1}{21}\left( 2.7,5^{2}
+ 4.12,5^{2} + 7.17,5^{2} + 5.22,5^{2} + 3.27,5^{2} \right) - \left(
\frac{255}{14} \right)^{2} = \frac{5000}{147}

    S_{1} = \sqrt{\frac{5000}{147}} \approx
5,83

    Chọn ĐÚNG.

    (b) Độ lệch chuẩn của mẫu số liệu số nhà đầu tư vào lĩnh vực B là: 7,01(làm tròn đến hàng phần trăm).

    Xét mẫu số liệu của số nhà đầu tư vào lĩnh vực B:

    Cỡ mẫu là n_{2} = 5 + 4 + 6 + 2 + 4 =
21

    Số trung bình: \overline{x_{2}} =
\frac{7,5.5 + 12,5.4 + 17,5.6 + 22,5.2 + 27,5.4}{21} =
\frac{695}{42}

    S_{2}^{2} = \frac{1}{21}\left( 5.7,5^{2}
+ 4.12,5^{2} + 6.17,5^{2} + 2.22,5^{2} + 4.27,5^{2} \right) - \left(
\frac{695}{42} \right)^{2} = \frac{21650}{441}

    S_{2} = \sqrt{\frac{21650}{441}} \approx
7,01

    Chọn ĐÚNG.

    (c) Về trung bình, đầu tư vào lĩnh vực B đem lại tiền lãi cao hơn lĩnh vực A.

    Số trung bình: \overline{x_{1}} =
\frac{7,5.2 + 12,5.4 + 17,5.7 + 22,5.5 + 27,5.3}{21} = \frac{255}{14}
\approx 18,21

    Số trung bình: \overline{x_{2}} = \frac{7,5.5 + 12,5.4 + 17,5.6 + 22,5.2 + 27,5.4}{21} = \frac{695}{42}\approx 16,55

    Về trung bình, đầu tư vào lĩnh vực A đem lại tiền lãi cao hơn lĩnh vực B.

    Chọn SAI.

    (d) Nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực A có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực B.

    Ta có: S_{1} < S_{2}

    Vậy nếu so sánh theo độ lệch chuẩn thì tiền lãi của các nhà đầu tư trong lĩnh vực B có xu hướng phân tán rộng hơn so với tiền lãi của các nhà đầu tư trong lĩnh vực A.

    Chọn SAI.

  • Câu 9: Nhận biết
    Tìm khoảng biến thiên

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm khoảng biến thiên của mẫu dữ liệu ghép nhóm?

    Hướng dẫn:

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Số xe

    3

    7

    4

    3

    3

    Vậy khoảng biến thiên của mẫu dữ liệu ghép nhóm là R = 62 - 42 = 20.

  • Câu 10: Thông hiểu
    Ghi đáp án vào ô trống

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    C li

    \lbrack 19;19,5)[19,5;20)\lbrack 20;20,5)\lbrack 20,5;21)\lbrack 21;21,5)

    Tn s

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \overline{a,b77}. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bảng dưới đây thống kê cự li ném tạ của một vận động viên.

    C li

    \lbrack 19;19,5)[19,5;20)\lbrack 20;20,5)\lbrack 20,5;21)\lbrack 21;21,5)

    Tn s

    13

    45

    24

    12

    6

    Phương sai của mẫu số liệu ghép nhóm trên là một số thập phân xấp xỉ có dạng \overline{a,b77}. Tính a + b.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Thông hiểu
    Tìm phương sai của mẫu số liệu

    Cho mẫu số liệu ghép nhóm về thống kê thời gian hoàn thành (phút) một bài kiểm tra trực tuyến của 100 học sinh, ta có bảng số liệu sau:

    Thời gian

    \lbrack 33;\ 35) \lbrack 35;\ 37) \lbrack 37;\ 39) \lbrack 39;\ 41) \lbrack 41;\ 43) \lbrack 43;\ 45)

    Số học sinh

    4

    13

    38

    27

    14

    4

    Phương sai của mẫu số liệu trên là

    Hướng dẫn:

    Giá trị đại diện của mỗi nhóm số liệu là trung bình cộng của hai đầu mút.

    Ta có bảng tần số ghép nhóm theo giá trị đại diện của mỗi nhóm:

    Thời gian

    \lbrack 33;\ 35) \lbrack 35;\ 37) \lbrack 37;\ 39) \lbrack 39;\ 41) \lbrack 41;\ 43) \lbrack 43;\ 45)

    Giá trị đại diện

    34

    36

    38

    40

    42

    44

    Số học sinh

    4

    13

    38

    27

    14

    4

    Thời gian trung bình để 100 học sinh hoàn thành bài kiểm tra là:

    \overline{x} = \frac{4.34 + 13.36 + 38.38
+ 27.40 + 14.42 + 4.44}{100} = 38,92 (phút).

    Phương sai của mẫu số liệu

    S_{x}^{2} = \frac{4.(34 - 38,92)^{2} +
13.(36 - 38,92)^{2}}{100} +
\frac{38.(38 - 38,92)^{2} + 27.(40 - 38,92)^{2}}{100}

    + \frac{14.(42 - 38,92)^{2} + 4.(44 -
38,92)^{2}}{100} = 5,0736

  • Câu 12: Thông hiểu
    Tính giá trị trung bình của mẫu số liệu

    Cho bảng thống kê kết quả cự li ném bóng của một người như sau:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Số lần

    13

    45

    24

    12

    6

    Độ lệch chuẩn của mẫu số liệu đã cho là:

    Hướng dẫn:

    Ta có:

    Cự li (m)

    [19; 19,5)

    [19,5; 20)

    [20; 20,5)

    [20,5; 21)

    [21; 21,5)

    Giá trị đại diện

    19,25

    19,75

    20,25

    20,75

    21,25

    Số lần

    13

    45

    24

    12

    6

    Cự li trung bình là:

    \overline{x} = \frac{13.19,25 + 45.19,75
+ 24.20,25 + 12.20,75 + 6.21,25}{100} = 20,015

    Phương sai của mẫu số liệu ghép nhóm là:

    S^{2} = \frac{1}{100}\left( 13.19,25^{2}
+ 45.19,75^{2} + 24.20,25^{2} + 12.20,75^{2} + 6.21,25^{2} ight) -
20,015^{2} \approx 0,277

    Độ lệch chuẩn của mẫu số liệu là:

    S = \sqrt{S^{2}} \approx \sqrt{0,277}
\approx 0,526

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Kết quả thống kê điểm trung bình năm học của hai lớp 12C và 12D như sau:

    Điểm trung bình

    [5; 6)

    [6; 7)

    [7; 8)

    [8; 9)

    [9; 10)

    Số học sinh lớp 12C

    4

    5

    3

    4

    2

    Số học sinh lớp 12D

    2

    5

    4

    3

    1

    Nếu so sánh theo khoảng tứ phân vị của mẫu số liệu ghép nhóm thì học sinh của lớp nào có điểm đồng đều hơn?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Nhận biết
    Tính số trung bình của mẫu số liệu ghép nhóm

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Tần số

    8

    9

    12

    10

    11

    Tính số trung bình của mẫu số liệu?

    Hướng dẫn:

    Cỡ mẫu N = 50

    Đối tượng

    [120; 122)

    [122; 124)

    [124; 126)

    [126; 128)

    [128; 130)

    Giá trị đại diện

    121

    123

    125

    127

    129

    Tần số

    8

    9

    12

    10

    11

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{8.121 + 9.123 +
12.125 + 10.127 + 11.129}{50} = 125,28

  • Câu 15: Nhận biết
    Tìm tốc độ trung bình của mẫu dữ liệu

    Thống kê tốc độ của các loại xe hơi (đơn vị: km/h) được ghi lại như sau:

    42

    43,4

    43,4

    46,5

    46,7

    46,8

    47,5

    47,7

    48,1

    48,4

    50,8

    51,1

    52,7

    53,9

    54,8

    57,6

    57,5

    59,6

    60,3

    61,1

    Lập bảng tần số ghép nhóm với nhóm đầu [42; 46) và độ dài mỗi nhóm bằng 4. Tìm tốc độ trung bình của mẫu dữ liệu ghép nhóm?

    Hướng dẫn:

    Ta lập được bảng tần số ghép nhóm như sau:

    Tốc độ

    [42; 46)

    [46; 50)

    [50; 54)

    [54; 58)

    [58; 62)

    Giá trị đại diện

    44

    48

    52

    56

    60

    Số xe

    3

    7

    4

    3

    3

    Tốc độ trung bình là:

    \overline{x} = \frac{3.44 + 7.48 + 4.52
+ 3.56 + 3.60}{20} = 51,2

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (33%):
    2/3
  • Thông hiểu (47%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo