Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân KNTT (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính giá trị tích phân

    Giả sử \int_{0}^{9}{f(x)dx} = 37\int_{9}^{0}{g(x)dx} = 16. Khi đó I = \int_{0}^{9}{\left\lbrack 2f(x) +
3g(x) ightbrack dx} bằng

    Hướng dẫn:

    Ta có: \int_{9}^{0}{g(x)dx} = 16
\Rightarrow \int_{0}^{9}{g(x)dx} = - 16

    \Rightarrow I =
\int_{0}^{9}{\left\lbrack 2f(x) + 3g(x) ightbrack dx} =
\int_{0}^{9}{2f(x)dx} + \int_{0}^{9}{3g(x)dx}

    = 2.37 + 3.( - 16) = 26

  • Câu 2: Nhận biết
    Chọn khẳng định sai

    Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Ta có: \int_{a}^{b}{f(x)dx} = -
\int_{b}^{a}{f(x)dx} nên khẳng định \int_{a}^{b}{f(x)dx} =
\int_{b}^{a}{f(x)dx} sai.

  • Câu 3: Nhận biết
    Tính tích phân

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 5;3brackF(x) là một nguyên hàm của f(x). Biết rằng F( - 5) = 3;F(3) = \frac{15}{7}. Xác định tích phân I = \int_{- 5}^{3}{\left\lbrack
7f(x) - x ightbrack dx}?

    Hướng dẫn:

    Ta có: I = \int_{- 5}^{3}{\left\lbrack
7f(x) - x ightbrack dx} = \left. \ \left( 7F(x) ight) ight|_{-
5}^{3} - \left. \ \frac{x^{2}}{2} ight|_{- 5}^{3} = 2.

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Tích phân \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = a - \ln b với a;b\mathbb{\in Z}. Giá trị của a + b bằng:

    Hướng dẫn:

    Ta có: \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = \int_{0}^{1}{\left( 1 - \frac{2x}{x^{2} + 1}
ight)dx}

    = \left. \ x ight|_{0}^{1} - \left. \
\ln\left( x^{2} + 1 ight) ight| = 1 - ln2

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
\end{matrix} ight.\  \Rightarrow a + b = 3

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Cho \int_{0}^{\frac{\pi}{2}}{f(x)}dx =
5. Tính I =
\int_{0}^{\frac{\pi}{2}}\left\lbrack f(x) + 2sinx \right\rbrack
dx.

    Hướng dẫn:

    Ta có

    I = \int_{0}^{\frac{\pi}{2}}\left\lbrack
f(x) + 2sinx ightbrack dx = \int_{0}^{\frac{\pi}{2}}{f(x)}dx +
2\int_{0}^{\frac{\pi}{2}}{\sin x}dx

    = \left. \ 5 - 2cosxight|_{0}^{\frac{\pi}{2}} = 7

  • Câu 6: Thông hiểu
    Tìm giá trị tham số a thỏa mãn điều kiện

    Cho \int_{0}^{1}{\frac{x^{2}}{x^{3} +
1}dx} = \frac{1}{3}\ln a,a là các số hữu tỉ. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\frac{x^{2}}{x^{3} + 1}dx} =
... = \int_{1}^{2}{\frac{1}{3t}dt} = \frac{1}{3}\left. \ \left( \ln|t|
ight) ight|_{1}^{2} = \frac{1}{3}ln2 \Rightarrow a = 2.

  • Câu 7: Nhận biết
    Chọn đáp án đúng

    Cho chuyển động thẳng xác định bởi phương trình S = 2t^{4} - t + 1, trong đó t được tính bằng giây và S được tính bằng mét. Vận tốc của chuyển động khi S = 2t^{4} - t + 1 là:

    Hướng dẫn:

    Ta có v = S' = 8t^{3} -
1

    Khi t = 1 \Rightarrow v = 8 - 1 =
7(m/s).

  • Câu 8: Thông hiểu
    Tính tích phân I

    Tính tích phân I =
\int_{0}^{\frac{\pi}{2}}{x.\sin xdx}

    Hướng dẫn:

    Có hai cách để giải bài toán:

    Cách 1: Thử bằng máy tính

    Cách 2: Tích phân thành phần: \left\{ \begin{matrix}
\sin xdx = dv \\
x = u \\
\end{matrix} ight.

  • Câu 9: Nhận biết
    Tính tích phân

    Cho \int_{0}^{1}{f(x)dx = 2}\int_{0}^{1}{g(x)dx = 5}, khi đó \int_{0}^{1}{\left\lbrack f(x) - 2g(x)
\right\rbrack dx} bằng

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\left\lbrack f(x) - 2g(x)
ightbrack dx}

    = \int_{0}^{1}{f(x)dx} -
2\int_{0}^{1}{g(x)dx}

    = 2 - 2.5 = - 8.

  • Câu 10: Thông hiểu
    Tính tích phân

    Cho hàm số f(x) = x^{4} - 4x^{3} + 2x^{2}
- x + 1;\forall x\mathbb{\in R}. Tính I =
\int_{0}^{1}{f^{2}(x).f'(x)dx}

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{1}{f^{2}(x).f'(x)dx} =
\int_{0}^{1}{f^{2}(x)d\left( f(x) ight)} = \left. \ \frac{f^{3}(x)}{3}
ight|_{0}^{1} = - \frac{2}{3}.

  • Câu 11: Nhận biết
    Tính giá trị biểu thức

    Cho hàm số g(x) có đạo hàm trên đoạn \lbrack - 1;1brack. Có g( - 1) = 3 và tích phân I = \int_{- 1}^{1}{g'(x)dx} = - 2. Tính g(1).

    Hướng dẫn:

    Ta có:

    I = \int_{- 1}^{1}{g'(x)dx} = - 2
\Leftrightarrow g(1) - g( - 1) = - 2

    \Rightarrow g(1) = - 2 + g( - 1) = - 2 +
3 = 1

  • Câu 12: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) liên tục trên \mathbb{R} thỏa mãn \int_{0}^{2}{f(x)dx}\  = 5,\int_{1}^{2}{f(x)dx\ }
= 3. Giá trị của biểu thức \int_{0}^{1}{f(x)dx} bằng

    Hướng dẫn:

    Ta có: \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx}

    \Rightarrow \int_{0}^{1}{f(x)dx} =
\int_{0}^{2}{f(x)dx} - \int_{1}^{2}{f(x)dx} = 5 - 3 = 2

  • Câu 13: Nhận biết
    Chọn kết luận đúng

    Tích phân \int_{a}^{b}{f(x)}dx được phân tích thành:

    Hướng dẫn:

    Ta có: \int_{a}^{b}{f(x)}dx =
\int_{c}^{b}{f(x)}dx + \int_{a}^{c}{f(x)}dx = \int_{c}^{b}{f(x)}dx -
\int_{c}^{a}{f(x)}dx.

    Đáp án đúng là \int_{c}^{b}{f(x)} +
\int_{c}^{a}{- f(x)}dx.

  • Câu 14: Nhận biết
    Tính tích phân

    Tính tích phân I =\int_{0}^{\frac{\pi}{2}}{\left( \sin2x + \sin x ight)dx}?

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{\frac{\pi}{2}}{\left(\sin2x + \sin x ight)dx} = \left. \ \left( - \frac{1}{2}\cos2x - \cos xight) ight|_{0}^{\frac{\pi}{2}} = 2

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Tích phân \int_{1}^{8}\sqrt[3]{x}dx bằng:

    Hướng dẫn:

    Ta có:

    \int_{1}^{8}\sqrt[3]{x}dx = \left. \
\left( \frac{3}{4}x\sqrt[3]{x} ight) ight|_{1}^{8} =
\frac{45}{4}.

  • Câu 16: Thông hiểu
    Tính giá trị biểu thức

    Biết tích phân I = \int_{0}^{1}{(2x +
1)e^{x}dx} = a + be \left(
a\mathbb{\in Q};b\mathbb{\in Q} \right). Khi đó tích a.b có giá trị bằng

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{1}{(2x + 1)e^{x}dx} =
\int_{0}^{1}{2xe^{x}dx} + \int_{0}^{1}{e^{x}dx}

    = \int_{0}^{1}{2xe^{x}dx} + e -
1

    Đặt \left\{ \begin{matrix}
e^{x}dx = dv \\
x = u \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
v = e^{x} \\
dx = du \\
\end{matrix} ight.

    I = 2\int_{0}^{1}{udv} + e - 1 = \left. \
2uv ight|_{0}^{1} - 2\int_{0}^{1}{vdu} + e - 1

    = \left. \ 2x.e^{x} ight|_{0}^{1} -
e\int_{0}^{1}{e^{x}dx} + e - 1 = e + 1

    \Rightarrow a = b = 1 \Rightarrow ab =
1.

  • Câu 17: Nhận biết
    Tính gia tốc của chuyển động

    Cho chuyển động thẳng xác định bởi phương trình S = 2t^{3} - t + 1, trong đó t được tính bằng giây và S được tính bằng mét. Gia tốc của chuyển động khi t = 2s là:

    Hướng dẫn:

    v = s' = 6{t^2} - 1

    a = v'' = 12t

    Khi t = 2 \Rightarrow a = 24\left( {m/{s^2}} ight)

  • Câu 18: Nhận biết
    Chọn đáp án thích hợp

    Tích phân I = \int_{0}^{1}\left( ax^{2} +
bx \right)dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{0}^{1}\left( ax^{2} +
bx ight)dx có giá trị là:

    I = \int_{0}^{1}\left( ax^{2} + bx
ight)dx = \left. \ \left( \frac{a}{3}x^{3} + \frac{b}{2}x^{2} ight)
ight|_{0}^{1} = \frac{a}{3} + \frac{b}{2}.

    Đáp án đúng là I = \frac{a}{3} + \frac{b}{2}.

  • Câu 19: Nhận biết
    Tìm giá trị tích phân lượng giác

    Tích phân I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx} có giá trị là:

    Cách 1:I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx}= \left. \ \left( -
\frac{1}{2}\cos2x - \frac{1}{3}\sin3x ight) ight|_{-
\frac{\pi}{2}}^{\frac{\pi}{6}} = - \frac{3}{4}.

    Đáp án đúng là I = -
\frac{3}{4}.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 20: Nhận biết
    Tính thể tích hình phẳng

    Cho hàm số y = f(x) liên tục, nhận giá trị dương trên đoạn \lbracka;bbrack. Xét hình phẳng (H) giới hạn bởi đồ thị hảm số y = f(x), trục hoảnh và hai đường thảng x = a,x = b. Khối tròn xoay được tạo thành khi quay hình phẳng (H) quanh trục Ox có thế tích là:

    Hướng dẫn:

    Ta có: V = \pi\int_{a}^{b}{\left\lbrackf(x) ightbrack^{2}dx}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo