Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân KNTT (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Tích phân I = \int_{0}^{1}{x\sqrt{x^{2} +
1}dx} có giá trị bằng

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{1}{x\sqrt{x^{2} +
1}dx}

    Ta thử bằng máy tính để tìm ra kết quả.

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Cho \int_{0}^{\frac{\pi}{2}}{f(x)}dx =
5. Tính I =
\int_{0}^{\frac{\pi}{2}}\left\lbrack f(x) + 2sinx \right\rbrack
dx.

    Hướng dẫn:

    Ta có

    I = \int_{0}^{\frac{\pi}{2}}\left\lbrack
f(x) + 2sinx ightbrack dx = \int_{0}^{\frac{\pi}{2}}{f(x)}dx +
2\int_{0}^{\frac{\pi}{2}}{\sin x}dx

    = \left. \ 5 - 2cosxight|_{0}^{\frac{\pi}{2}} = 7

  • Câu 3: Nhận biết
    Tính tích phân

    Cho các hàm số f(x)F(x) liên tục trên \mathbb{R} thỏa mãn F'(x) = f(x) với \forall x\mathbb{\in R}. Tính I = \int_{0}^{1}{f(x)dx}, biết rằng F(0) = 2;F(1) = 5?

    Hướng dẫn:

    Ta có: I = \int_{0}^{1}{f(x)dx} = F(1) -
F(0) = 3.

  • Câu 4: Nhận biết
    Chọn kết luận đúng

    Cho tích phân I_{1} =
\int_{a}^{b}{f(x)dx} = mI_{2} =
\int_{c}^{a}{f(x)dx} = n. Tích phân I = \int_{c}^{b}{f(x)}dx có giá trị là:

    Hướng dẫn:

    Quy tắc “nối đuôi” cho ta:

    I =
\int_{c}^{b}{f(x)}dx = \int_{a}^{b}{f(x)}dx + \int_{c}^{a}{f(x)}dx = m +
n.

    Đáp án đúng là m + n.

  • Câu 5: Thông hiểu
    Tìm giá trị tham số a thỏa mãn điều kiện

    Cho \int_{0}^{1}{\frac{x^{2}}{x^{3} +
1}dx} = \frac{1}{3}\ln a,a là các số hữu tỉ. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\frac{x^{2}}{x^{3} + 1}dx} =
... = \int_{1}^{2}{\frac{1}{3t}dt} = \frac{1}{3}\left. \ \left( \ln|t|
ight) ight|_{1}^{2} = \frac{1}{3}ln2 \Rightarrow a = 2.

  • Câu 6: Nhận biết
    Tính tích phân

    Tích phân \int_{0}^{1}\frac{dx}{2x +
5} bằng:

    Hướng dẫn:

    Ta có: \int_{0}^{1}\frac{dx}{2x + 5} =
\frac{1}{2}\int_{0}^{1}\frac{d(2x + 5)}{2x + 5}

    = \left. \ \frac{1}{2}\ln(2x + 5)
ight|_{0}^{1} = \frac{1}{2}\ln\frac{7}{5}

  • Câu 7: Thông hiểu
    Tính quãng đường xe phải đi

    Một chiếc ôtô sẽ chạy trên đường với vận tốc tăng dần đều với vận tốc v = 10t (m/s) t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu chạy. Hỏi quãng đường xe phải đi là bao nhiêu từ lúc xe bắt đầu chạy đến khi đạt vận tốc 20 (m/s)?

    Hướng dẫn:

    Ta có: s = \int_{}^{}{10t.dt} \Rightarrow
s = 5t^{2}.

    Khi v = 20m/s \Rightarrow t = 2
\Rightarrow s = 5.2^{2} = 20(m).

  • Câu 8: Nhận biết
    Tìm giá trị của tích phân I

    Cho hai tích phân \int_{- a}^{a}{f(x)dx =
m}\int_{- a}^{a}{g(x)dx =
n}. Giá trị của tích phân \int_{-
a}^{a}\left\lbrack f(x) - g(x) \right\rbrack dx là:

    Hướng dẫn:

    Ta có ngay kết quả:

    \int_{-
a}^{a}\left\lbrack f(x) - g(x) ightbrack dx = \int_{- a}^{a}{f(x)dx
-}\int_{- a}^{a}{g(x)dx =}m - n.

    Đáp án đúng là m - n.

  • Câu 9: Nhận biết
    Tìm tích phân

    Tính tích phân \int_{1}^{2}{\frac{x -
1}{x}dx}?

    Hướng dẫn:

    Ta có: \int_{1}^{2}{\frac{x - 1}{x}dx} =
\int_{1}^{2}{\left( 1 - \frac{1}{x} ight)dx} = \left. \ \left( x -
\ln|x| ight) ight|_{1}^{2}

    = (2 - \ln2) - (1 - \ln1) = 1 -\ln2

  • Câu 10: Nhận biết
    Chọn kết luận đúng

    Tích phân \int_{a}^{b}{f(x)}dx được phân tích thành:

    Hướng dẫn:

    Ta có: \int_{a}^{b}{f(x)}dx =
\int_{c}^{b}{f(x)}dx + \int_{a}^{c}{f(x)}dx = \int_{c}^{b}{f(x)}dx -
\int_{c}^{a}{f(x)}dx.

    Đáp án đúng là \int_{c}^{b}{f(x)} +
\int_{c}^{a}{- f(x)}dx.

  • Câu 11: Nhận biết
    Tính giá trị biểu thức

    Cho hàm số g(x) có đạo hàm trên đoạn \lbrack - 1;1brack. Có g( - 1) = 3 và tích phân I = \int_{- 1}^{1}{g'(x)dx} = - 2. Tính g(1).

    Hướng dẫn:

    Ta có:

    I = \int_{- 1}^{1}{g'(x)dx} = - 2
\Leftrightarrow g(1) - g( - 1) = - 2

    \Rightarrow g(1) = - 2 + g( - 1) = - 2 +
3 = 1

  • Câu 12: Nhận biết
    Chọn đáp án chính xác

    Một ô tô đang chạy thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) =
- 12t + 24(m/s) trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

    Hướng dẫn:

    Khi dừng hẳn v(t) = - 12t + 24 = 0
\Rightarrow t = 2(s)

    Do đó từ lúc đạp phanh đến khi dừng hẳn, ô tô đi được:

    S = \int_{0}^{2}{v(t)dt} =
\int_{0}^{2}{( - 12t + 24)dt} = 24m

  • Câu 13: Nhận biết
    Tìm khẳng định sai

    Cho hàm số f(x) liên tục trên Ka;b \in K, F(x) là một nguyên hàm của f(x) trên K. Chọn khẳng định sai trong các khẳng định sau?

    Hướng dẫn:

    Theo định nghĩa tích phân ta có: \int_{a}^{b}{f(x)dx} = F(b) - F(a).

  • Câu 14: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Một chất điểm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật v(t)
= \frac{1}{225}t^{2} + \frac{2}{25}t\ (m/s), trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 10 giây so với A và có gia tốc bằng a\ \left( m/s^{2} \right) (a là hằng số). Sau khi B xuất phát được 15 giây thì đuổi kịp A.

    a) Vận tốc V_{B}(t) của chất điểm B đi được trong thời gian t (giây) là một nguyên hàm của gia tốc a\ \left( m/s^{2}
\right).Đúng||Sai

    b) V_{B}(t) = at.Đúng||Sai

    c) Quãng đường chất điểm A đi được trong 25 giây là 44,44(m),kết quả làm tròn đến hàng phần trăm. Sai||Đúng

    d) Vận tốc của chất điểm Btại thời điểm đuổi kịp A6,42(m/s), kết quả làm tròn đến hàng phần trăm.Đúng||Sai

    Đáp án là:

    Một chất điểm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật v(t)
= \frac{1}{225}t^{2} + \frac{2}{25}t\ (m/s), trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 10 giây so với A và có gia tốc bằng a\ \left( m/s^{2} \right) (a là hằng số). Sau khi B xuất phát được 15 giây thì đuổi kịp A.

    a) Vận tốc V_{B}(t) của chất điểm B đi được trong thời gian t (giây) là một nguyên hàm của gia tốc a\ \left( m/s^{2}
\right).Đúng||Sai

    b) V_{B}(t) = at.Đúng||Sai

    c) Quãng đường chất điểm A đi được trong 25 giây là 44,44(m),kết quả làm tròn đến hàng phần trăm. Sai||Đúng

    d) Vận tốc của chất điểm Btại thời điểm đuổi kịp A6,42(m/s), kết quả làm tròn đến hàng phần trăm.Đúng||Sai

    a) Ta có v_{B}(t) = \int_{}^{}{a.dt} = at
+ C.

    b)v_{B}(0) = 0 \Rightarrow C = 0 \Rightarrow v_{B}(t) = at

    c)Quãng đường chất điểm A đi được trong 25 giây là

    S_{A} = \int_{0}^{25}{\ \left(
\frac{1}{225}t^{2} + \frac{2}{25}t\  \right)dt} = \left( \frac{1}{675}t^{3} + \frac{1}{25}t^{2}
\right)\ \left| \ _{\begin{matrix}
\\
0
\end{matrix}}^{\begin{matrix}
25 \\

\end{matrix}} \right.\  = 48,15(m).

    d)Quãng đường chất điểm B đi được trong 15 giây là

    S_{B} = \int_{0}^{15}{at.dt} = \frac{at^{2}}{2}|_{0}^{15} =
\frac{225a}{2}.

    Ta có 48,15 = \frac{225a}{2}
\Leftrightarrow a = 0,428.

    Vận tốc của B tại thời điểm đuổi kịp Av_{B}(15) = 0,428.15 = 6,42(m/s).

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Nếu \int_{1}^{2}{f(x)dx} =
5;\int_{2}^{5}{f(x)dx} = - 1 thì \int_{1}^{5}{f(x)dx} bằng:

    Hướng dẫn:

    Ta có:

    \int_{1}^{5}{f(x)dx} =
\int_{1}^{2}{f(x)dx} + \int_{2}^{5}{f(x)dx} = 5 + ( - 1) =
4

  • Câu 16: Thông hiểu
    Chọn giá trị gần nhất với tích ab

    Cho giá trị của tích phân I_{1} = \int_{-
\frac{\pi}{3}}^{\frac{2\pi}{3}}{(\sin3x + \cos3x)dx} = a, I_{2} = \int_{e}^{2e}{\left( \frac{1}{x} +
\frac{1}{x^{2}} - \frac{1}{x + 1} \right)dx} = b. Giá trị a.b gần nhất với giá trị nào sau đây?

    Hướng dẫn:

    Ta có:

    I_{1} = \int_{-
\frac{\pi}{3}}^{\frac{2\pi}{3}}{(\sin3x + \cos3x)dx}

    = \left. \ \left( - \frac{1}{3}\cos3x +
\frac{1}{3}\sin3x ight) ight|_{- \frac{\pi}{3}}^{\frac{2\pi}{3}} = -
\frac{2}{3}

    \Rightarrow a = -
\frac{2}{3}

    I_{2} = \int_{e}^{2e}{\left( \frac{1}{x}
+ \frac{1}{x^{2}} - \frac{1}{x + 1} ight)dx} = \left. \ \left( \ln|x|
- \frac{1}{x} - \ln|x + 1| ight) ight|_{e}^{2e}

    = ln2 - \frac{1}{2e} + \frac{1}{e} -
\ln(2e + 1) + \ln(e + 1)

    \Rightarrow b = - \frac{1}{2e} +
\frac{1}{e} + ln2 - \ln(2e + 1) + \ln(e + 1)

    \Rightarrow a.b \approx -
0,2198.

  • Câu 17: Nhận biết
    Tìm tích phân I

    Tích phân I = \int_{1}^{2}{\left( ax^{2}
+ \frac{b}{x} \right)dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{1}^{2}{\left( ax^{2}
+ \frac{b}{x} ight)dx} có giá trị là:

    I = \int_{1}^{2}{\left( ax^{2} +
\frac{b}{x} ight)dx} = \left. \ \left( \frac{a}{3}x^{3} + b\ln|x|
ight) ight|_{1}^{2} = \frac{7a}{3} + bln2.

    Đáp án đúng là I = \frac{7}{3}a +
bln2.

  • Câu 18: Thông hiểu
    Tìm tích phân I

    Tích phân I =
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{\sin x}{\sin x + \cos
x}dx} có giá trị là:

    Hướng dẫn:

    Tích phân I =
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{\sin x}{\sin x + \cos
x}dx} có giá trị là:

    Xét I_{1} =
\int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{\frac{\cos x}{\sin x + \cos
x}dx}

    Ta có: \left\{ \begin{matrix}
I_{2} = I + I_{1} = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}}{dx} \\
I_{3} = I_{1} - I = \int_{\frac{1}{2} +
\frac{\sqrt{3}}{2}}^{1}{\frac{1}{t}dt} \\
\end{matrix} ight.

    \Rightarrow I = \frac{I_{2} - I_{3}}{2}
= \frac{\pi}{12} - \frac{\ln\frac{1 + \sqrt{3}}{2}}{2},\ t = \sin x +
\cos x

    Đáp án đúng là I = \frac{\pi }{{12}} - \frac{{\ln \left( {\frac{{\sqrt 3  + 1}}{2}} ight)}}{2}.

  • Câu 19: Nhận biết
    Chọn phương án đúng

    Tích phân I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{2}}{\left( \sin x - \cos x
\right)dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{2}}{\left( \sin x - \cos x
ight)dx} có giá trị là:

    Cách 1:I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{2}}{\left( \sin x - \cos x ight)dx} =
\left. \ \left( - \cos x - \sin x ight) ight|_{-
\frac{\pi}{2}}^{\frac{\pi}{2}} = - 2.

    Đáp án đúng là I = - 2.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 20: Nhận biết
    Tính tích phân

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 5;3brackF(x) là một nguyên hàm của f(x). Biết rằng F( - 5) = 3;F(3) = \frac{15}{7}. Xác định tích phân I = \int_{- 5}^{3}{\left\lbrack
7f(x) - x ightbrack dx}?

    Hướng dẫn:

    Ta có: I = \int_{- 5}^{3}{\left\lbrack
7f(x) - x ightbrack dx} = \left. \ \left( 7F(x) ight) ight|_{-
5}^{3} - \left. \ \frac{x^{2}}{2} ight|_{- 5}^{3} = 2.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo