Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân KNTT (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định tích phân

    Tính tích phân I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x}?

    Hướng dẫn:

    Ta có: I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x} = \left. \  -\cot x ight|_{\frac{\pi}{4}}^{\frac{\pi}{3}}

    = - \left( \cot\frac{\pi}{3} -
\cot\frac{\pi}{4} ight) = - \cot\frac{\pi}{3} +
\cot\frac{\pi}{4}.

  • Câu 2: Nhận biết
    Xác định giá trị S đúng nhất

    Một vật chuyển động với vận tốc v(t) =
\frac{6}{5} + \frac{t^{2} + 4}{t + 3}(m/s). Tính quãng đường vật đó đi được trong 4 giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?

    Hướng dẫn:

    Quãng đường vật đó đi được trong 4 giây đầu là:

    S = \int_{0}^{4}{v(t)dt} = \int_{0}^{4}{\left(
\frac{6}{5} + \frac{t^{2} + 4}{t + 3} ight)dt} \approx
11,81(m).

  • Câu 3: Thông hiểu
    Tìm giá trị của x

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t) = - 4t + x(m/s). Biết từ khi đạp phanh đến lúc dừng hẳn thì ô tô di chuyển được 50m. Tìm x?

    Hướng dẫn:

    Khi dừng hẳn v(t) = - 4t + x = 0
\Rightarrow t = \frac{x}{4}(s)

    Quãng đường xe đi được từ khi đạp phanh đến lúc dừng hẳn là:S = \int_{0}^{\frac{x}{4}}{v(t)dt} =
\int_{0}^{\frac{x}{4}}{( - 4t + x)dt}

    = \left. \ \left( - 2t^{2} + xt ight)
ight|_{0}^{\frac{x}{4}} = \frac{- x^{2}}{8} + \frac{x^{2}}{4} =
50

    \Leftrightarrow x^{2} = 400
\Leftrightarrow x = 20(m/s)

  • Câu 4: Nhận biết
    Chọn khẳng định không đúng

    Cho tích phân I = \int_{a}^{b}{\left(
x^{2} + 1 \right)dx}. Khẳng định nào dưới đây không đúng?

    Hướng dẫn:

    Ta có:

    I = \int_{a}^{b}{\left( x^{2} + 1
ight)dx} = \left. \ \left( \frac{1}{3}x^{3} + x ight)
ight|_{a}^{b} = \frac{1}{3}b^{3} + b - \frac{1}{3}a^{3} -
a.

    Phát biểu (I = \int_{a}^{b}{\left( x^{2}
+ 1 ight)dx} = \int_{a}^{b}{x^{2}dx + \int_{a}^{b}{dx}}): đúng.

    Phát biểu (I = \left. \ \left( x^{3} + x
ight) ight|_{a}^{b}): sai.

    Phát biểu (I = \frac{1}{3}b^{3} + b -
\frac{1}{3}a^{3} - a): đúng.

    Phát biểu (I = \int_{a}^{b}{\left( x^{2}
+ 1 ight)dx} = \int_{a}^{b}{x^{2}dx + \int_{a}^{b}{dx}}): đúng.

  • Câu 5: Nhận biết
    Tìm khẳng định sai

    Cho hàm số f(x) liên tục trên Ka;b \in K, F(x) là một nguyên hàm của f(x) trên K. Chọn khẳng định sai trong các khẳng định sau?

    Hướng dẫn:

    Theo định nghĩa tích phân ta có: \int_{a}^{b}{f(x)dx} = F(b) - F(a).

  • Câu 6: Thông hiểu
    Tính tích phân I

    Tính tích phân I =
\int_{0}^{\frac{\pi}{2}}{x.\sin xdx}

    Hướng dẫn:

    Có hai cách để giải bài toán:

    Cách 1: Thử bằng máy tính

    Cách 2: Tích phân thành phần: \left\{ \begin{matrix}
\sin xdx = dv \\
x = u \\
\end{matrix} ight.

  • Câu 7: Nhận biết
    Chọn kết luận đúng

    Cho tích phân I_{1} =
\int_{a}^{b}{f(x)dx} = mI_{2} =
\int_{c}^{a}{f(x)dx} = n. Tích phân I = \int_{c}^{b}{f(x)}dx có giá trị là:

    Hướng dẫn:

    Quy tắc “nối đuôi” cho ta:

    I =
\int_{c}^{b}{f(x)}dx = \int_{a}^{b}{f(x)}dx + \int_{c}^{a}{f(x)}dx = m +
n.

    Đáp án đúng là m + n.

  • Câu 8: Nhận biết
    Tính tích phân

    Cho \int_{0}^{1}{f(x)dx = 2}\int_{0}^{1}{g(x)dx = 5}, khi đó \int_{0}^{1}{\left\lbrack f(x) - 2g(x)
\right\rbrack dx} bằng

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\left\lbrack f(x) - 2g(x)
ightbrack dx}

    = \int_{0}^{1}{f(x)dx} -
2\int_{0}^{1}{g(x)dx}

    = 2 - 2.5 = - 8.

  • Câu 9: Nhận biết
    Chọn đáp án chính xác

    Một ô tô đang chạy thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) =
- 12t + 24(m/s) trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

    Hướng dẫn:

    Khi dừng hẳn v(t) = - 12t + 24 = 0
\Rightarrow t = 2(s)

    Do đó từ lúc đạp phanh đến khi dừng hẳn, ô tô đi được:

    S = \int_{0}^{2}{v(t)dt} =
\int_{0}^{2}{( - 12t + 24)dt} = 24m

  • Câu 10: Nhận biết
    Tìm giá trị tích phân lượng giác

    Tích phân I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx} có giá trị là:

    Cách 1:I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx}= \left. \ \left( -
\frac{1}{2}\cos2x - \frac{1}{3}\sin3x ight) ight|_{-
\frac{\pi}{2}}^{\frac{\pi}{6}} = - \frac{3}{4}.

    Đáp án đúng là I = -
\frac{3}{4}.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 11: Nhận biết
    Tính tích phân

    Tích phân \int_{0}^{1}\frac{dx}{2x +
5} bằng:

    Hướng dẫn:

    Ta có: \int_{0}^{1}\frac{dx}{2x + 5} =
\frac{1}{2}\int_{0}^{1}\frac{d(2x + 5)}{2x + 5}

    = \left. \ \frac{1}{2}\ln(2x + 5)
ight|_{0}^{1} = \frac{1}{2}\ln\frac{7}{5}

  • Câu 12: Nhận biết
    Chọn đáp án thích hợp

    Tích phân I = \int_{0}^{1}\left( ax^{2} +
bx \right)dx có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{0}^{1}\left( ax^{2} +
bx ight)dx có giá trị là:

    I = \int_{0}^{1}\left( ax^{2} + bx
ight)dx = \left. \ \left( \frac{a}{3}x^{3} + \frac{b}{2}x^{2} ight)
ight|_{0}^{1} = \frac{a}{3} + \frac{b}{2}.

    Đáp án đúng là I = \frac{a}{3} + \frac{b}{2}.

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Tích phân I =
\int_{0}^{1}{\frac{x}{(x + 1)^{3}}dx} có giá trị là

    Hướng dẫn:

    Ta có: Thử máy tính.

    Gợi ý: I = \int_{0}^{1}{\left\lbrack
\frac{1}{(x + 1)^{2}} - \frac{1}{(x + 1)^{3}} ightbrack d(x +
1)}

  • Câu 14: Thông hiểu
    Chọn đáp án đúng

    Tích phân \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = a - \ln b với a;b\mathbb{\in Z}. Giá trị của a + b bằng:

    Hướng dẫn:

    Ta có: \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = \int_{0}^{1}{\left( 1 - \frac{2x}{x^{2} + 1}
ight)dx}

    = \left. \ x ight|_{0}^{1} - \left. \
\ln\left( x^{2} + 1 ight) ight| = 1 - ln2

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
\end{matrix} ight.\  \Rightarrow a + b = 3

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Tích phân I = \int_{0}^{1}{\frac{1}{x +
1}dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{0}^{1}{\frac{1}{x +
1}dx} có giá trị là:

    Cách 1:I = \int_{0}^{1}{\frac{1}{x +
1}dx} = \left. \ \left( \ln|x + 1| ight) ight|_{0}^{1} =
ln2.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 16: Nhận biết
    Tìm giá trị tích phân

    Giá trị của \int_{0}^{3}{dx} bằng

    Hướng dẫn:

    Ta có: \int_{0}^{3}{dx} = \left. \ x
ight|_{0}^{3} = 3 - 0 = 3

  • Câu 17: Nhận biết
    Tìm giá trị của tích phân I

    Cho hai tích phân \int_{- a}^{a}{f(x)dx =
m}\int_{- a}^{a}{g(x)dx =
n}. Giá trị của tích phân \int_{-
a}^{a}\left\lbrack f(x) - g(x) \right\rbrack dx là:

    Hướng dẫn:

    Ta có ngay kết quả:

    \int_{-
a}^{a}\left\lbrack f(x) - g(x) ightbrack dx = \int_{- a}^{a}{f(x)dx
-}\int_{- a}^{a}{g(x)dx =}m - n.

    Đáp án đúng là m - n.

  • Câu 18: Nhận biết
    Tìm giá trị của I

    Cho tích phân I =
\int_{a}^{b}{f(x)dx}. Biết rằng F(x) là nguyên hàm của f(x). Giá trị của I là:

    Hướng dẫn:

    Cho tích phân I =
\int_{a}^{b}{f(x)dx}. Biết rằng F(x) là nguyên hàm của f(x). Giá trị của I là:

    Ta có ngay kết quả I = F(b) -
F(a).

    Đáp án đúng là F(b)-F(a).

  • Câu 19: Thông hiểu
    Tính vận tốc của chất điểm

    Một chất điểm chuyển động với gia tốc a(t) = 6t^{2} + 2t\left( m/s^{2} ight). Vận tốc ban đầu của chất điểm là 2(m/s). Hỏi vận tốc của chất điểm sau khi chuyển động với gia tốc đó được 2 giây bằng bao nhiêu?

    Hướng dẫn:

    Ta có: v(2) - v(0) =
\int_{0}^{2}{a(t)dt}

    \Rightarrow v(2) = \int_{0}^{2}{\left(
6t^{2} + 2t ight)dt} + v(0)

    \Rightarrow v(2) = \left. \ \left(
2t^{3} + t^{2} ight) ight|_{0}^{2} + 2 = 22

  • Câu 20: Nhận biết
    Chọn đáp án đúng

    Cho chuyển động thẳng xác định bởi phương trình S = 2t^{4} - t + 1, trong đó t được tính bằng giây và S được tính bằng mét. Vận tốc của chuyển động khi S = 2t^{4} - t + 1 là:

    Hướng dẫn:

    Ta có v = S' = 8t^{3} -
1

    Khi t = 1 \Rightarrow v = 8 - 1 =
7(m/s).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo