Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Tích phân KNTT (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn phương án đúng

    Tích phân I = \int_{e}^{e^{2}}{\frac{x +
1}{x^{2}}dx} có giá trị là:

    Hướng dẫn:

    Ta có:

    I = \int_{e}^{e^{2}}{\frac{x +
1}{x^{2}}dx} = \int_{e}^{e^{2}}{\left( \frac{1}{x} + \frac{1}{x^{2}}
ight)dx}= \left. \ \left( \ln|x| - \frac{1}{x} ight)
ight|_{e}^{e^{2}} = 1 + \frac{1}{e} - \frac{1}{e^{2}}.

    Đáp án đúng là I = 1 + \frac{1}{e} - \frac{1}{{{e^2}}}.

  • Câu 2: Nhận biết
    Tìm khẳng định sai

    Cho hàm số f(x) liên tục trên Ka;b \in K, F(x) là một nguyên hàm của f(x) trên K. Chọn khẳng định sai trong các khẳng định sau?

    Hướng dẫn:

    Theo định nghĩa tích phân ta có: \int_{a}^{b}{f(x)dx} = F(b) - F(a).

  • Câu 3: Nhận biết
    Tính tích phân I

    Cho \int_{1}^{2}{f(x)dx} = - 3. Tính I = \int_{2}^{4}{f\left( \frac{x}{2}
\right)dx}.

    Hướng dẫn:

    Ta có:

    Đặt \frac{x}{2} = t \Rightarrow dx =
2dt

    \Rightarrow I = \int_{1}^{2}{2f(t)dt} =
2\int_{1}^{2}{f(t)dt} = 2.( - 3) = - 6

  • Câu 4: Nhận biết
    Tính tích phân I

    Giả sử \int_{- 1}^{1}{f(t)dt} =
5\int_{- 1}^{3}{f(r)dr} =
6. Tính I =
\int_{1}^{3}{f(u)du}

    Hướng dẫn:

    Ta có: I = \int_{1}^{3}{f(u)du} = \int_{-
1}^{3}{f(u)du} - \int_{- 1}^{1}{f(u)du} = 6 - 5 = 1

  • Câu 5: Thông hiểu
    Tính tích phân K

    Cho hàm số f(x);g(x) là các hàm số liên tục trên \lbrack 1;3brack và thỏa mãn \int_{1}^{3}{\left\lbrack f(x) +
3g(x) ightbrack dx} = 10\int_{1}^{3}{\left\lbrack 2f(x) - g(x)
ightbrack dx} = 6. Tính tích phân K = \int_{1}^{3}{\left\lbrack f(x) + g(x)
ightbrack dx}?

    Hướng dẫn:

    Theo bài ra ta có:

    \left\{ \begin{matrix}\int_{1}^{3}{\left\lbrack f(x) + 3g(x) ightbrack dx} = 10 \\\int_{1}^{3}{\left\lbrack 2f(x) - g(x) ightbrack dx} = 6 \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}\int_{1}^{3}{f(x)dx} + 3\int_{1}^{3}{g(x)dx} = 10 \\2\int_{1}^{3}{f(x)dx} - \int_{1}^{3}{g(x)dx} = 6 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\int_{1}^{3}{f(x)dx} = 4 \\\int_{1}^{3}{g(x)dx} = 2 \\\end{matrix} ight.\Rightarrow K = \int_{1}^{3}{\left\lbrack f(x) +g(x) ightbrack dx} = 4.2 = 6

  • Câu 6: Nhận biết
    Tìm giá trị tích phân lượng giác

    Tích phân I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx} có giá trị là:

    Hướng dẫn:

    Tích phân I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx} có giá trị là:

    Cách 1:I = \int_{-
\frac{\pi}{2}}^{\frac{\pi}{6}}{(\sin2x - \cos3x)dx}= \left. \ \left( -
\frac{1}{2}\cos2x - \frac{1}{3}\sin3x ight) ight|_{-
\frac{\pi}{2}}^{\frac{\pi}{6}} = - \frac{3}{4}.

    Đáp án đúng là I = -
\frac{3}{4}.

    Cách 2: Dùng máy tính cầm tay.

  • Câu 7: Nhận biết
    Tính tích phân I

    Biết \int_{0}^{1}{f(x)dx} = 2f(x) là hàm số lẻ. Khi đó I = \int_{- 1}^{0}{f(x)dx} có giá trị bằng

    Hướng dẫn:

    Ta có:

    f(x) là hàm số lẻ

    \Rightarrow \int_{- 1}^{0}{f(x)dx} = -
\int_{0}^{1}{f(x)dx} = - 2

  • Câu 8: Nhận biết
    Tìm quãng đường chuyển động

    Một vật chuyển động chậm dần với vận tốc v(t) = 150 - 15t(m/s). Hỏi rằng trong 5s trước khi dừng hẳn vật di chuyển được bao nhiêu mét?

    Hướng dẫn:

    Khi dừng hẳn v(t) = 150 - 15t = 0
\Rightarrow t = 10(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{(150 - 15t)dt} = \frac{375}{2}m.

  • Câu 9: Thông hiểu
    Tính tích phân I

    Tính tích phân I =
\int_{0}^{\frac{\pi}{2}}{x.\sin xdx}

    Hướng dẫn:

    Có hai cách để giải bài toán:

    Cách 1: Thử bằng máy tính

    Cách 2: Tích phân thành phần: \left\{ \begin{matrix}
\sin xdx = dv \\
x = u \\
\end{matrix} ight.

  • Câu 10: Nhận biết
    Tìm giá trị của I

    Cho tích phân I =
\int_{a}^{b}{f(x)dx}. Biết rằng F(x) là nguyên hàm của f(x). Giá trị của I là:

    Hướng dẫn:

    Cho tích phân I =
\int_{a}^{b}{f(x)dx}. Biết rằng F(x) là nguyên hàm của f(x). Giá trị của I là:

    Ta có ngay kết quả I = F(b) -
F(a).

    Đáp án đúng là F(b)-F(a).

  • Câu 11: Nhận biết
    Tìm giá trị của tích phân I

    Cho hai tích phân \int_{- a}^{a}{f(x)dx =
m}\int_{- a}^{a}{g(x)dx =
n}. Giá trị của tích phân \int_{-
a}^{a}\left\lbrack f(x) - g(x) \right\rbrack dx là:

    Hướng dẫn:

    Ta có ngay kết quả:

    \int_{-
a}^{a}\left\lbrack f(x) - g(x) ightbrack dx = \int_{- a}^{a}{f(x)dx
-}\int_{- a}^{a}{g(x)dx =}m - n.

    Đáp án đúng là m - n.

  • Câu 12: Thông hiểu
    Chọn khẳng định đúng

    Trong các khẳng định sau đây, khẳng định nào đúng?

    Hướng dẫn:

    Ta có: x^{4} - x^{2} + 1 = \left( x^{2} -
\frac{1}{2} ight)^{2} + \frac{3}{4} > 0;\forall x\mathbb{\in
R}

    Do \int_{- 1}^{2018}{\left| x^{4} - x^{2}
+ 1 ight|^{3}dx} = \int_{- 1}^{2018}{\left( x^{4} - x^{2} + 1
ight)^{3}dx}

  • Câu 13: Nhận biết
    Chọn đáp án đúng

    Cho \int_{0}^{\frac{\pi}{2}}{f(x)}dx =
5. Tính I =
\int_{0}^{\frac{\pi}{2}}\left\lbrack f(x) + 2sinx \right\rbrack
dx.

    Hướng dẫn:

    Ta có

    I = \int_{0}^{\frac{\pi}{2}}\left\lbrack
f(x) + 2sinx ightbrack dx = \int_{0}^{\frac{\pi}{2}}{f(x)}dx +
2\int_{0}^{\frac{\pi}{2}}{\sin x}dx

    = \left. \ 5 - 2cosxight|_{0}^{\frac{\pi}{2}} = 7

  • Câu 14: Nhận biết
    Tính giá trị biểu thức

    Cho hàm số g(x) có đạo hàm trên đoạn \lbrack - 1;1brack. Có g( - 1) = 3 và tích phân I = \int_{- 1}^{1}{g'(x)dx} = - 2. Tính g(1).

    Hướng dẫn:

    Ta có:

    I = \int_{- 1}^{1}{g'(x)dx} = - 2
\Leftrightarrow g(1) - g( - 1) = - 2

    \Rightarrow g(1) = - 2 + g( - 1) = - 2 +
3 = 1

  • Câu 15: Thông hiểu
    Tính quãng đường S của ô tô

    Một ô tô đang chuyển động đều với vận tốc 12m/s thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t) = 12 - 2t(m/s) (trong đó t là thời gian tính bằng giây, kể từ lúc đạp phanh). Hỏi trong thời gian 8 giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?

    Hướng dẫn:

    Khi dừng hẳn v(t) = 12 - 2t = 0
\Rightarrow t = 6(s)

    Khi đó trong 8s trước khi dừng hẳn vật di chuyển được (bao gồm 2s trước khi đạp phanh):

    S = 2.12 + \int_{0}^{6}{v(t)dt} = 24 +
\int_{0}^{6}{(12 - 2t)dt}

    = 24 + \left. \ \left( 12t - t^{2}
ight) ight|_{0}^{6} = 24 + 36 = 60(m)

  • Câu 16: Nhận biết
    Tính gia tốc của chuyển động

    Cho chuyển động thẳng xác định bởi phương trình S = 2t^{3} - t + 1, trong đó t được tính bằng giây và S được tính bằng mét. Gia tốc của chuyển động khi t = 2s là:

    Hướng dẫn:

    v = s' = 6{t^2} - 1

    a = v'' = 12t

    Khi t = 2 \Rightarrow a = 24\left( {m/{s^2}} ight)

  • Câu 17: Nhận biết
    Tính tích phân

    Cho \int_{0}^{1}{f(x)dx = 2}\int_{0}^{1}{g(x)dx = 5}, khi đó \int_{0}^{1}{\left\lbrack f(x) - 2g(x)
\right\rbrack dx} bằng

    Hướng dẫn:

    Ta có:

    \int_{0}^{1}{\left\lbrack f(x) - 2g(x)
ightbrack dx}

    = \int_{0}^{1}{f(x)dx} -
2\int_{0}^{1}{g(x)dx}

    = 2 - 2.5 = - 8.

  • Câu 18: Nhận biết
    Chọn đáp án đúng

    Cho chuyển động thẳng xác định bởi phương trình S = 2t^{4} - t + 1, trong đó t được tính bằng giây và S được tính bằng mét. Vận tốc của chuyển động khi S = 2t^{4} - t + 1 là:

    Hướng dẫn:

    Ta có v = S' = 8t^{3} -
1

    Khi t = 1 \Rightarrow v = 8 - 1 =
7(m/s).

  • Câu 19: Nhận biết
    Xác định tích phân

    Tính tích phân I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x}?

    Hướng dẫn:

    Ta có: I =\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{dx}{\sin^{2}x} = \left. \  -\cot x ight|_{\frac{\pi}{4}}^{\frac{\pi}{3}}

    = - \left( \cot\frac{\pi}{3} -
\cot\frac{\pi}{4} ight) = - \cot\frac{\pi}{3} +
\cot\frac{\pi}{4}.

  • Câu 20: Nhận biết
    Tính tích phân

    Tích phân I =
\int_{0}^{1}{3^{x}dx} bằng:

    Hướng dẫn:

    Ta có:

    I = \int_{0}^{1}{3^{x}dx} = \left. \frac{3^{x}}{\ln3} ight|_{0}^{1} = \frac{2}{\ln3}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo