Trong không gian , cho
. Tọa độ vectơ
là:
Ta có:
Trong không gian , cho
. Tọa độ vectơ
là:
Ta có:
Trong không gian hệ trục tọa độ , cho tam giác
có
. Tính diện tích tam giác
?
Ta có:
Suy ra . Lại có:
Suy ra diện tích tam giác là:
Sự chuyển động của máy bay A được thể hiện trong không gian như sau: Máy bay khởi hành từ
chuyển động thẳng đều (Tính theo phút) với vận tốc được biểu thị theo véc tơ
. Sau khi khởi hành được 30 phút, máy bay ở vị trí
. Tính
Đáp án: 362
Sự chuyển động của máy bay A được thể hiện trong không gian như sau: Máy bay khởi hành từ
chuyển động thẳng đều (Tính theo phút) với vận tốc được biểu thị theo véc tơ
. Sau khi khởi hành được 30 phút, máy bay ở vị trí
. Tính
Đáp án: 362
Ta có:
Quãng đường máy bay di chuyển là:
Khi đó:
Trong không gian , cho
, điểm
và
điểm sao cho
là trọng tâm tam giác
. Khi đó
bằng
Ta có:
Trong không gian tọa độ Oxyz, cho . Có tất cả bao nhiêu điểm M trong không gian thỏa mãn M không trùng với các điểm A, B, C và
Gọi
Ta có:
.
Trong không gian , cho hình hộp
biết
,
,
,
. Tọa độ của điểm
là:
Gọi
là hình hộp
,
,
⇒
. Vậy:
.
Trong không gian , cho hai vectơ
và
. Xác định giá trị tham số
để
?
Ta có:
Vậy m = 5 là giá trị cần tìm.
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Trong không gian , cho các điểm
. Xác định tọa độ điểm
thỏa mãn
?
Ta có:
Trong không gian hệ trục tọa độ , cho các điểm
. Gọi
lần lượt là hình chiếu của
lên mặt phẳng
. Khi đó độ dài đoạn thẳng
bằng:
Vì lần lượt là hình chiếu của
lên mặt phẳng
nên
suy ra
.
Trong không gian hệ trục tọa độ , cho ba điểm
. Tìm điểm
sao cho
đạt giá trị nhỏ nhất?
Vì suy ra
. Ta có:
Theo bài ra:
Vậy nhỏ nhất bằng
khi
. Hay
Cho hai điểm và
. Tọa độ điểm
đối xứng với
qua
là:
Vì điểm đối xứng với
qua
nên
là trung điểm của
Trong không gian , cho hai vectơ
và
. Toạ độ của vectơ
là:
Ta có .
Trong không gian hệ trục tọa độ , cho các vectơ
. Đẳng thức nào dưới đây đúng?
Đặt
Vậy là đẳng thức đúng.
Trong không gian với hệ trục tọa độ , cho ba vectơ
. Tọa độ vectơ
là:
Ta có:
Vậy
Trong không gian , cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Trong không gian , cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Ta có .
Suy ra .
.
Vậy
Trong không gian với hệ trục tọa độ , cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tính tỉ số
?
Ta có:
Lại có và ba điểm
thẳng hàng
Vậy đáp án đúng là .
Trong không gian với hệ trục tọa độ , cho hình hộp
có
. Tọa độ trọng tâm tam giác
là
Hình vẽ minh họa
Gọi I là trung điểm của đoạn BD’ suy ra
Gọi là trọng tâm tam giác
Ta có: với
Do đó:
Vậy tọa độ trọng tâm tam giác cần tìm là
Trong không gian với hệ trục tọa độ , cho các điểm
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Ta có: suy ra
và
không vuông góc với nhau.
Vậy mệnh đề sai là: “”.
Trong không gian vói hệ trục tọa độ , cho hình thang cân
có hai đáy
,
thỏa mãn
và diện tích bằng
, đỉnh
, phương trình đường thẳng chứa cạnh
là
. Tìm tọa độ điểm
biết
.
Hình vẽ minh họa
Gọi điểm là hình chiếu vuông góc của
lên đường thẳng
.
Khi đó .
Đường thẳng có vtcp là:
.
Ta có:
.
Đường thẳng đi qua
và song song với
phương trình
là:
Theo bài ra ta có:
Với .
Với
Ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: