Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CD Biểu thức tọa độ của các phép toán vectơ (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm điều kiện tham số m thỏa mãn yêu cầu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1; -
1)\overrightarrow{b} =
(1;3;m). Xác định giá trị tham số m để \left(
\overrightarrow{a};\overrightarrow{b} ight) = 90^{0}?

    Hướng dẫn:

    Ta có: \left(
\overrightarrow{a};\overrightarrow{b} ight) = 90^{0} \Leftrightarrow
\overrightarrow{a}.\overrightarrow{b} = 0 \Leftrightarrow 5 - m = 0
\Leftrightarrow m = 5

    Vậy m = 5 là giá trị cần tìm.

  • Câu 2: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian hệ trục tọa độ Oxyz, cho M(2;1;4)M'(a;b;c) là điểm đối xứng cới điểm M qua Oy. Khi đó a
+ b + c bằng:

    Hướng dẫn:

    Gọi H là hình chiếu của M trên Oy ta có H(0;1;0). Do M' đối xứng với M qua Oy, khi đó H là trung điểm của M'M

    Suy ra M'( - 2;1; - 4) từ đó a + b + c = - 5.

  • Câu 3: Nhận biết
    Tìm tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (1; -
4;0);\overrightarrow{v} = ( - 1; - 2;1). Tìm tọa độ vectơ \overrightarrow{u} +
3\overrightarrow{v}?

    Hướng dẫn:

    Ta có: 3\overrightarrow{v} = ( - 3; -
6;3) do đó \overrightarrow{u} +
3\overrightarrow{v} = ( - 2; - 10;3)

    Vậy đáp án cần tìm là ( - 2; -
10;3).

  • Câu 4: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ tọa độ Oxyz, cho điểm A( - 1;2;0),\ B(3;4; - 2)C(1;0; - 3). Biết tọa độ điểm D\left( x_{0};y_{0};z_{0} ight) để tứ giác BACD là hình bình hành. Tính x_{0} + y_{0} + z_{0}?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có \left\{ \begin{matrix}
\overrightarrow{BA} = ( - 4; - 2;2) \\
\overrightarrow{DC} = \left( 1 - x_{0}; - y_{0}; - 3 - z_{0} ight) \\
\end{matrix} ight.

    Để tứ giác BACD là hình bình hành

    \Leftrightarrow \overrightarrow{BA} =
\overrightarrow{DC} \Leftrightarrow \left\{ \begin{matrix}
1 - x_{0} = - 4 \\
- y_{0} = - 2 \\
- 3 - z_{0} = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{0} = 5 \\
y_{0} = 2 \\
z_{0} = - 5 \\
\end{matrix} ight.

    Vậy x_{0} + y_{0} + z_{0} = 5 + 2 + ( -
5) = 2.

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = ( - 2;2;0);\overrightarrow{b}
= (2;2;0);\overrightarrow{c} = (2;2;2). Khi đó giá trị của \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| bằng bao nhiêu?

    Hướng dẫn:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} = ( - 2 + 2 + 2;2 + 2 + 2;0 + 0
+ 2) = (2;6;2).

    Khi đó \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| = \sqrt{2^{2} + 6^{2} +
2^{2}} = 2\sqrt{11}

    Vậy đáp án cần tìm là: 2\sqrt{11}

  • Câu 6: Thông hiểu
    Tính độ dài đoạn thẳng AM

    Trong không gian (Oxyz), cho \Delta ABC\overrightarrow{AB} = (4; - 1; -
5),\overrightarrow{BC} = (2; - 4; - 2), gọi M là trung điểm BC. Độ dài đoạn AM là:

    Hướng dẫn:

    Ta có

    \overrightarrow{AC} =
\overrightarrow{AB} + \overrightarrow{BC} = (6; - 5; - 7)

    \overrightarrow{AM} = \frac{1}{2}\left(
\overrightarrow{AB} + \overrightarrow{AC} ight) = (5; - 3; -
6)

    Suy ra: AM = \sqrt{25 + 9 + 36} =
\sqrt{70}

  • Câu 7: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian hệ trục tọa độ Oxyz, cho tam giác ABC có tọa các điểm A(1; - 3;3),B(2; - 4;5),C(a; - 2;b) và tam giác đó nhận điểm G(1;c;3) làm trọng tâm. Xác định giá trị biểu thức P = a
+ b + c?

    Hướng dẫn:

    Vì tam giác ABC nhận điểm G làm trọng tâm nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{1 + 2 + a}{3} = 1 \\\dfrac{- 3 - 4 - 2}{3} = c \\\dfrac{3 + 5 + b}{3} = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 0 \\b = 1 \\c = - 3 \\\end{matrix} ight.\  \Rightarrow P = a + b + c = - 2

  • Câu 8: Thông hiểu
    Ghi đáp án vào ô trống

    Sự chuyển động của máy bay A được thể hiện trong không gian Oxyz như sau: Máy bay khởi hành từ B(0;0;2) chuyển động thẳng đều (Tính theo phút) với vận tốc được biểu thị theo véc tơ \overrightarrow{v}(1;4;5). Sau khi khởi hành được 30 phút, máy bay ở vị trí M(x;y;z). Tính P = 3x + y + z

    Đáp án: 362

    Đáp án là:

    Sự chuyển động của máy bay A được thể hiện trong không gian Oxyz như sau: Máy bay khởi hành từ B(0;0;2) chuyển động thẳng đều (Tính theo phút) với vận tốc được biểu thị theo véc tơ \overrightarrow{v}(1;4;5). Sau khi khởi hành được 30 phút, máy bay ở vị trí M(x;y;z). Tính P = 3x + y + z

    Đáp án: 362

    Ta có:

    Quãng đường máy bay di chuyển là:

    BM = \left| \overrightarrow{v} ight|.t
\Rightarrow \overrightarrow{BM} = \overrightarrow{v}.30 =
(30;120;150)

    \Rightarrow \left\{ \begin{matrix}
x = 30 \\
y = 120 \\
z - 2 = 150 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
x = 30 \\
y = 120 \\
z = 152 \\
\end{matrix} ight.\  ight.

    Khi đó: P = 3.30 + 120 + 152 =
362

  • Câu 9: Vận dụng
    Ghi đáp án vào ô trống

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = 2CC' = 4. Gọi MN lần lượt là trung điểm của cạnh BCAA'. Khoảng cách giữa hai đường thẳng B'D'MN bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)

    Đáp án: 2,43

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = 2CC' = 4. Gọi MN lần lượt là trung điểm của cạnh BCAA'. Khoảng cách giữa hai đường thẳng B'D'MN bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)

    Đáp án: 2,43

    Cách 1. Gọi P là trung điểm CD, I = MP \cap AD, J = IN \cap DD', K = AC \cap MP.

    Ta có MP//BD \Rightarrow MP//B'D'
\Rightarrow d(B'D';MN) = d\left\lbrack B'D';(MNP)
ightbrack = d\left\lbrack D';(MNP) ightbrack.

    Lại có d\left\lbrack D';(MNP)
ightbrack = \frac{D'J}{DJ}d\left\lbrack D;(MNP) ightbrack =
5.d\left\lbrack D;(MNP) ightbrack.

    Mặt khác d\left\lbrack D;(MNP)
ightbrack = \frac{DI}{AI}d\left\lbrack A;(MNP) ightbrack =
\frac{1}{3}d\left\lbrack A;(MNP) ightbrack.

    Dễ thấy \left\{ \begin{matrix}
(NAK)\bot(MNP) \\
(NAK) \cap (MNP) = AK \\
AH\bot NK\ (H \in NK)\ trong\ (NAK) \\
\end{matrix} ight.

    \Rightarrow AH\bot(MNP) \Rightarrow
d\left\lbrack A;(MNP) ightbrack = AH.

    Suy ra d(MN;B'D') =
\frac{5}{3}d\left\lbrack A;(MNP) ightbrack = \frac{5}{3}AH với AN = \frac{AA'}{2} = 2 ; AK = \frac{3}{4}\sqrt{2}AB =
\frac{3\sqrt{2}}{2}.

    Vậy d(MN;B'D') = \frac{5}{3}AH =
\frac{5}{3}.\frac{AN.AK}{\sqrt{AN^{2} + AK^{2}}} =
\frac{5}{3}.\frac{\frac{3\sqrt{2}}{2}.2}{\sqrt{\left(
\frac{3\sqrt{2}}{2} ight)^{2} + 2^{2}}} = \frac{10.\sqrt{17}}{17}
\simeq 2,43.

    Cách 2. Đặt các trục Ox, OyOz vào hình như sau

    Ta có M(1;2;0), N(0;0;2), B'(0;2;4)D'(2;0;4).

    Ta có \overrightarrow{MN} = ( - 1; -
2;2), \overrightarrow{B'D'}
= (2; - 2;0)\overrightarrow{MB'} = ( - 1;0;4) \Rightarrow
\left\lbrack \overrightarrow{MN},\overrightarrow{B'D'}
ightbrack = (4;4;6).

    Khi đó :

    d\left( MN;B^{'}D^{'} ight) =
\frac{\left| \left\lbrack
\overrightarrow{MN};\overrightarrow{B^{'}D^{'}}
ightbrack.\overrightarrow{MB^{'}} ight|}{\left| \left\lbrack
\overrightarrow{MN};\overrightarrow{B^{'}D^{'}} ightbrack
ight|}

    = \frac{\left| ( - 1).4 + 0.4 + 4.6
ight|}{\sqrt{4^{2} + 4^{2} + 6^{2}}} = \frac{10\sqrt{17}}{17} \simeq
2,43.

  • Câu 10: Thông hiểu
    Tính tọa độ điểm M

    Trong không gian Oxyz có điểm A(4;2;1),B( - 2; - 1;4). Tìm tọa độ điểm M thỏa mãn đẳng thức \overrightarrow{AM} =
2\overrightarrow{MB}?

    Hướng dẫn:

    Ta có: M(x;y;z). Khi đó \overrightarrow{AM} =
2\overrightarrow{MB}

    \overrightarrow{AM} =
2\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}
x - 4 = 2( - 2 - x) \\
y - 2 = 2( - 1 - y) \\
z - 1 = 2(4 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 0 \\
z = 3 \\
\end{matrix} ight.\  \Rightarrow M(0;0;3)

    Vậy giá trị cần tìm là M(0;0;3).

  • Câu 11: Thông hiểu
    Tìm tọa độ điểm A’

    Trong không gian Oxyz, cho điểm A(2; - 3;5). Tìm tọa độ điểm A' đối xứng với A qua trục Oy?

    Hướng dẫn:

    Gọi H là hình chiếu vuông góc của A(2; -
3;5) lên Oy suy ra H(0; - 3;0)

    Khi đó H là trung điểm của AA' nên

    \left\{ \begin{matrix}
x_{A'} = 2x_{H} - x_{A} \\
y_{A'} = 2y_{H} - y_{A} \\
z_{A'} = 2z_{H} - z_{A} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{A'} = 2 \\
y_{A'} = - 3 \\
z_{A'} = - 5 \\
\end{matrix} ight.\  \Rightarrow A'( - 2; - 3; - 5)

  • Câu 12: Nhận biết
    Tính tích vô hướng hai vectơ

    Trong không gian hệ trục tọa độ Oxyz, cho tọa độ ba điểm A(1;2;3),B( - 1;2;1),C(3; - 1; - 2). Tính tích vô hướng của \overrightarrow{AB}.\overrightarrow{AC}?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 2;0; - 2) \\
\overrightarrow{AC} = (2; - 3; - 5) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{AC} = 6

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. Trong cùng một thời điểm, vị trí của một điểm M trong không gian sẽ được xác định bởi bốn vệ tịnh cho truớc nhờ các bộ thu phát tín hiệu đặt trên các vệ tinh. Giả sử trong không gian với hệ tọa độ Oxyz, có bốn vệ tinh lần lượt đặt tại các điểm A(3;1;0),B(3;6;6), C(4;6;2),D(6;2;14); vị trí M(a;b;c) thỏa mãn MA = 3,MB = 6,MC = 5,MD = 13. Khoảng cách từ điểm M đến điểm O bằng bao nhiêu?

    Đáp án: 3

    Đáp án là:

    Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. Trong cùng một thời điểm, vị trí của một điểm M trong không gian sẽ được xác định bởi bốn vệ tịnh cho truớc nhờ các bộ thu phát tín hiệu đặt trên các vệ tinh. Giả sử trong không gian với hệ tọa độ Oxyz, có bốn vệ tinh lần lượt đặt tại các điểm A(3;1;0),B(3;6;6), C(4;6;2),D(6;2;14); vị trí M(a;b;c) thỏa mãn MA = 3,MB = 6,MC = 5,MD = 13. Khoảng cách từ điểm M đến điểm O bằng bao nhiêu?

    Đáp án: 3

    Ta có, vị trí M(a;b;c) thỏa mãn \left\{ \begin{matrix}
MA = 3 \\
MB = 6 \\
MC = 5 \\
MD = 13 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} + c^{2} - 6a - 2b = - 1 \\
a^{2} + b^{2} + c^{2} - 6a - 12b - 12c = - 45 \\
a^{2} + b^{2} + c^{2} - 8a - 12b - 4c = - 31 \\
a^{2} + b^{2} + c^{2} - 12a - 4b - 28c = - 67 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
- 10b - 12c = - 44 \\
- 2a - 10b - 4c = - 30 \\
- 6a - 2b - 28c = - 66 \\
\end{matrix} ight.

    Vậy OM = 3

  • Câu 14: Thông hiểu
    Tính thể tích tứ diện

    Trong không gian với hệ trục tọa độ Oxyz, cho tọa độ ba điểm A(1;0;0),B(0;2;0),C(0;0;3). Thể tích tứ diện OABC bằng:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{OA} = (1;0;0) \Rightarrow OA = 1 \\
\overrightarrow{OB} = (0;2;0) \Rightarrow OB = 2 \\
\overrightarrow{OC} = (0;0;3) \Rightarrow OC = 3 \\
\end{matrix} ight.. Dễ thấy tứ diện OABC vuông tại O nên

    V_{OABC} = \frac{1}{6}.OA.OB.OC =
\frac{1}{6}.1.2.3 = 1

    Vậy đáp án đúng là: V = 1.

  • Câu 15: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng \left( P_{1} ight):x +
2y - z - 5 = 0\left( P_{2}
ight): - 2x + y + z - 4 = 0

    a) Vectơ có tọa độ (1\ ;\ 2\ ;1) là một vectơ pháp tuyến của mặt phẳng \left(
P_{1} ight). Sai||Đúng

    b) Vectơ có toạ độ ( - 2;\ 1\ ;\
1) là một vectơ pháp tuyến của mặt phẳng \left( P_{2} ight). Đúng||Sai

    c) Côsin của góc giữa hai vectơ {\overrightarrow{n}}_{1} = (1;\ 2\ ;\  -
1){\overrightarrow{n}}_{2} = (
- 2\ ;\ 1\ ;\ 1) bằng -
\frac{1}{6}. Đúng||Sai

    d) Góc giữa hai mặt phẳng \left( P_{1}
ight)\left( P_{2}
ight) bằng 100{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{\left( P_{1}
ight)}} = (1;2; - 1) nên mệnh đề sai

    b) \overrightarrow{n_{\left( P_{1}
ight)}} = ( - 2;1;1) nên mệnh đề đúng

    c) \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) = \frac{1.( - 2) +
2.1 + ( - 1)1}{\sqrt{6}\sqrt{6}} = - \frac{1}{6} mệnh đề đúng

    d) Góc hai mặt phẳng không thể tù nên mệnh đề sai

  • Câu 16: Vận dụng
    Tìm tọa độ điểm D

    Trong không gian vói hệ trục tọa độ Oxyz, cho hình thang cân ABCD có hai đáy AB, CD thỏa mãn CD = 2AB và diện tích bằng 27, đỉnh A( -
1; - 1;0), phương trình đường thẳng chứa cạnh CD\frac{x
- 2}{2} = \frac{y + 1}{2} = \frac{z - 3}{1} . Tìm tọa độ điểm D biết hoành độ điểm B lớn hơn hoành độ điểm A .

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi điểm H là hình chiếu vuông góc của A lên đường thẳng CD.

    Khi đó H(2 + 2t; - 1 + 2t;3 + t)
\Rightarrow \overrightarrow{AH}(3 + 2t;2t;3 + t) .

    Đường thẳng CDcó vtcp là: \overrightarrow{u}(2;2;1). Ta có:

    \overrightarrow{AH}\bot\overrightarrow{u}
\Rightarrow \overrightarrow{AH}.\overrightarrow{u} = 0 \Rightarrow 2(3 +
2t) + 2.2t + 3 + t = 0 \Leftrightarrow t = - 1 \Rightarrow H(0; - 3;2)
\Rightarrow AH = 3.

    Đường thẳng AB đi qua A và song song với CD \Rightarrow phương trình ABlà: \frac{x
+ 1}{2} = \frac{y + 1}{2} = \frac{z}{1}

    B \in AB \Rightarrow B( - 1 + 2a; - 1 +
2a;a) \Rightarrow AB = 3|a| \Rightarrow CD = 6|a|

    Theo bài ra ta có: S_{ABCD} = \frac{AB +
CD}{2}.AH\Leftrightarrow \frac{3|a| + 6|a|}{2}.3 = 27\Leftrightarrow
|a| = 2 \Leftrightarrow \left\lbrack \begin{matrix}
a = 2 \\
a = - 2 \\
\end{matrix} ight.

    Với a = - 2 \Rightarrow B( - 5; - 5; -
2) . Với a = 2 \Rightarrow B(3;3; -
2)

    Ta có: \overrightarrow{DH} =
2\overrightarrow{AB} \Rightarrow D( - 2; - 5;1)

  • Câu 17: Thông hiểu
    Tìm tọa độ điểm đối xứng

    Trong không gian Oxyz, cho điểm A(3; - 1;1). Điểm đối xứng với A qua mặt phẳng (Oyz) có tọa độ là:

    Hướng dẫn:

    Giữ nguyên y, z và đổi dấu x nên ta suy ra điểm đối xứng với A qua (Oyz) có tọa độ là ( - 3; - 1;1).

  • Câu 18: Vận dụng
    Ghi đáp án đúng vào ô trống

    Cho hệ trục tọa độ Oxyz mặt phẳng Oxy trùng với mặt đất với trục Ox hướng về phía Đông, trục Oy hướng về phía Nam và trục Oz hướng thẳng đứng lên trời (như hình minh họa bên dưới), đơn vị đo lấy theo kilomet. Hai khinh khí cầu bay lên cùng thời điểm chiếc thứ nhất xuất phát tại điểm O, chiếc thứ hai xuất phát từ điểm I(1;\ 0;\ 0). Sau 20 phút chiếc thứ nhất cách điểm xuất phát 1km về phía Nam và 1km về phía Đông, đồng thời cách mặt đất 0,5km. Chiếc thứ hai cách điểm xuất phát 2km về phía Bắc và 2km về phía Đông, đồng thời cách mặt đất 0,8m. Hỏi nếu giữ nguyên vận tốc và hướng bay thì sau 10 phút nữa 2 khinh khí cầu cách nhau bao km? (kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 4,7

    Đáp án là:

    Cho hệ trục tọa độ Oxyz mặt phẳng Oxy trùng với mặt đất với trục Ox hướng về phía Đông, trục Oy hướng về phía Nam và trục Oz hướng thẳng đứng lên trời (như hình minh họa bên dưới), đơn vị đo lấy theo kilomet. Hai khinh khí cầu bay lên cùng thời điểm chiếc thứ nhất xuất phát tại điểm O, chiếc thứ hai xuất phát từ điểm I(1;\ 0;\ 0). Sau 20 phút chiếc thứ nhất cách điểm xuất phát 1km về phía Nam và 1km về phía Đông, đồng thời cách mặt đất 0,5km. Chiếc thứ hai cách điểm xuất phát 2km về phía Bắc và 2km về phía Đông, đồng thời cách mặt đất 0,8m. Hỏi nếu giữ nguyên vận tốc và hướng bay thì sau 10 phút nữa 2 khinh khí cầu cách nhau bao km? (kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 4,7

    Gọi vị trí chiếc khinh khí cầu thứ nhất và thứ hai sau khi bay 20 phút lần lượt là M(1\ ;\ 1\ ;\ 0,5)N(2\ ;\  - 2\ ;\ 0,8)

    Gọi A\left( x_{A};y_{A};z_{A} ight)\ ,\
B\left( x_{B};y_{B};z_{B} ight) là vị trí của khinh khí cầu thứ nhất, thứ hai sau khi bay 10 phút tiếp theo.

    Ta có \overrightarrow{OA}\ \  = \
\frac{3}{2}\overrightarrow{OM} \Rightarrow A\left(
\frac{3}{2};\frac{3}{2};\frac{1}{4} ight)

    \overrightarrow{IB}\  = \
\frac{3}{2}\overline{IN} \Rightarrow B\left( \frac{5}{2}; - 3;1,2
ight)

    Ta có AB\  = \ {\sqrt{\left( \frac{5}{2}
- \frac{3}{2} ight)^{2} + \left( - 3 - \frac{3}{2} ight)^{2} +
\left( 1,2 - \frac{1}{4} ight)^{2}}}^{} \approx 4,7

  • Câu 19: Thông hiểu
    Tính độ dài vectơ

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{u} = ( - 2;3;0)\overrightarrow{v} = (2; - 2;1). Tính độ dài vectơ \overrightarrow{w} =
\overrightarrow{u} - 2\overrightarrow{v}?

    Hướng dẫn:

    Ta có: \overrightarrow{w} =
\overrightarrow{u} - 2\overrightarrow{v} = ( - 2;3;0) - 2(2; - 2;1) = (
- 6;7; - 2)

    Khi đó \left| \overrightarrow{w} ight|
= \sqrt{89}

  • Câu 20: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):y = 0, (Q):\sqrt{3}x - y - 2024 = 0. Xét các vectơ \overrightarrow{n_{1}} =
(0;1;0), \overrightarrow{n_{2}} =
\left( \sqrt{3}; - 1;0 ight).

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P). Đúng||Sai

    b) \overrightarrow{n_{2}} không là vectơ pháp tuyến của mặt phẳng (Q). Sai||Đúng

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = -
1. Đúng||Sai

    d) Góc giữa hai mặt phẳng (P)(Q) bằng 30{^\circ}. Sai||Đúng

    Đáp án là:

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):y = 0, (Q):\sqrt{3}x - y - 2024 = 0. Xét các vectơ \overrightarrow{n_{1}} =
(0;1;0), \overrightarrow{n_{2}} =
\left( \sqrt{3}; - 1;0 ight).

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P). Đúng||Sai

    b) \overrightarrow{n_{2}} không là vectơ pháp tuyến của mặt phẳng (Q). Sai||Đúng

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} = -
1. Đúng||Sai

    d) Góc giữa hai mặt phẳng (P)(Q) bằng 30{^\circ}. Sai||Đúng

    a) \overrightarrow{n_{1}} là một vectơ pháp tuyến của mặt phẳng (P).

    Ta có: (P):y = 0 \Leftrightarrow 0x + 1y
+ 0z = 0 có vectơ pháp tuyến \overrightarrow{n_{1}} = (0;1;0).

    b) \overrightarrow{n_{2}} là một vectơ pháp tuyến của mặt phẳng (P).

    Ta có: (Q):\sqrt{3}x - y - 2024 = 0
\Leftrightarrow \sqrt{3}x - y + 0z - 2024 = 0 = 0 có vectơ pháp tuyến \overrightarrow{n_{2}} = \left(
\sqrt{3}; - 1;0 ight).

    c) \overrightarrow{n_{1}}.\overrightarrow{n_{2}} =
0.\sqrt{3} + 1.( - 1) + 0.0 = - 1.

    d) Gọi \varphi là góc giữa hai mặt phẳng (P)(Q)

    \cos\varphi = \left| \cos\left(
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ight) ight| =
\frac{\left| \overrightarrow{n_{1}}.\overrightarrow{n_{2}}
ight|}{\left| \overrightarrow{n_{1}} ight|.\left|
\overrightarrow{n_{2}} ight|}

    = \frac{| - 1|}{\sqrt{0^{2} + 1^{2} +
0^{2}}.\sqrt{\left( \sqrt{3} ight)^{2} + ( - 1)^{2} + 0^{2}}} =
\frac{1}{2} \Rightarrow \varphi = 60{^\circ}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo