Trong không gian , cho
có
, gọi
là trung điểm
. Độ dài đoạn
là:
Ta có
Suy ra:
Trong không gian , cho
có
, gọi
là trung điểm
. Độ dài đoạn
là:
Ta có
Suy ra:
Trong không gian , cho các vectơ
và
. Xác định giá trị của
để hai vectơ đã cho có cùng hướng?
Ta có: Hai vectơ và
cùng hướng nên
Vậy là đáp án cần tìm.
Trong không gian với hệ trục tọa độ , cho tọa độ hai điểm
. Tính chu vi tam giác
?
Ta có:
Chu vi tam giác là:
Vậy đáp án đúng là: .
Trong không gian với hệ trục tọa độ , cho hai vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
.
Vậy
Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. Trong cùng một thời điểm, vị trí của một điểm trong không gian sẽ được xác định bởi bốn vệ tịnh cho truớc nhờ các bộ thu phát tín hiệu đặt trên các vệ tinh. Giả sử trong không gian với hệ tọa độ
, có bốn vệ tinh lần lượt đặt tại các điểm
,
; vị trí
thỏa mãn
. Khoảng cách từ điểm
đến điểm
bằng bao nhiêu?
Đáp án: 3
Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. Trong cùng một thời điểm, vị trí của một điểm trong không gian sẽ được xác định bởi bốn vệ tịnh cho truớc nhờ các bộ thu phát tín hiệu đặt trên các vệ tinh. Giả sử trong không gian với hệ tọa độ
, có bốn vệ tinh lần lượt đặt tại các điểm
,
; vị trí
thỏa mãn
. Khoảng cách từ điểm
đến điểm
bằng bao nhiêu?
Đáp án: 3
Ta có, vị trí thỏa mãn
Vậy OM = 3
Trong không gian hệ trục tọa độ , cho hai vectơ
và
. Tính độ dài vectơ
?
Ta có:
Khi đó
Trong không gian tọa độ Oxyz, cho hình hộp với các điểm
,
,
và
. Tìm tọa độ đỉnh
.
Quy tắc hình hộp: .
Hình vẽ minh họa
.
Theo quy tắc hình hộp ta có: .
Trong không gian với hệ tọa độ , cho tam giác
, biết
,
,
. Bán kính đường tròn nội tiếp tam giác
bằng:
Ta có Tam giác
vuông tại
.
Suy ra:
Trong không gian hệ trục tọa độ , cho hai điểm
. Điểm
thuộc đoạn
sao cho
, tọa độ điểm
là:
Gọi tọa độ độ điểm . Vì điểm
nên
Vậy đáp án cần tìm là: .
Trong không gian có điểm
. Tìm tọa độ điểm
thỏa mãn đẳng thức
?
Ta có: . Khi đó
Vậy giá trị cần tìm là .
Trong không gian với hệ tọa độ , cho các điểm
và điểm
thỏa mãn
lớn nhất. Tính
.
Đáp án: 13
Trong không gian với hệ tọa độ , cho các điểm
và điểm
thỏa mãn
lớn nhất. Tính
.
Đáp án: 13
Ta có:
Dấu bằng xảy ra khi và chỉ khi. Khi đó
.
Trong không gian hệ trục tọa độ , cho tọa độ ba điểm
thẳng hàng. Khi đó giá trị của biểu thức
là:
Ta có: . Vì A; B; C thẳng hàng nên
cùng phương
Trong không gian tọa độ , góc giữa hai vectơ
và
là:
Ta có:
Trong không gian, với mọi vectơ ta có
Công thức tích vô hướng của hai vectơ .
Trong không gian với hệ tọa độ , cho mặt phẳng
có phương trình
và hai điểm
. Khi đó:
a) [NB] Mặt phẳng có vec tơ pháp tuyến
.Đúng||Sai
b) [TH] . Đúng||Sai
c) [TH] Khoảng cách từ điểm A đến là
. Đúng||Sai
d) [VD] Cho điểm di động trên
. Khi đó giá trị nhỏ nhất của biểu thức
bằng
. Sai||Đúng
Trong không gian với hệ tọa độ , cho mặt phẳng
có phương trình
và hai điểm
. Khi đó:
a) [NB] Mặt phẳng có vec tơ pháp tuyến
.Đúng||Sai
b) [TH] . Đúng||Sai
c) [TH] Khoảng cách từ điểm A đến là
. Đúng||Sai
d) [VD] Cho điểm di động trên
. Khi đó giá trị nhỏ nhất của biểu thức
bằng
. Sai||Đúng
a) Đúng.
Ta có: .
b) Đúng.
Ta có: .
c) Đúng.
Khoảng cách từ điểm A đến là:
.
d) Sai.
Gọi là điểm sao cho
ta có
.
Ta có:
nhỏ nhất khi
nhỏ nhất
là hình chiếu vuông góc của
lên mặt phẳng
.
giá trị nhỏ nhất của biểu thức
là:
.
Trong không gian cho
,
,
sao cho
nhỏ nhất. Tọa độ của
bằng
Hình vẽ minh họa
Gọi là trung điểm
.
Gọi là hình chiếu của
xuống mặt phẳng
.
Ta có
.
Do không đổi nên
nhỏ nhất khi
nhỏ nhất
.
Gọi là đường thẳng đi qua
và vuông góc với mặt phẳng
.
Khi đó nhận
làm vectơ chỉ phương.
Do đó có phương trình
.
.
.
Vậy .
Trong không gian , cho vectơ
. Xét sự đúng sai của các khẳng định sau:
a) Tọa độ của điểm là
. Đúng||Sai
b) Gọi thỏa mãn
nhận
làm trọng tâm. Khi đó
. Đúng||Sai
c) Nếu thẳng hàng thì tổng
. Đúng||Sai
d) Cho để
vuông cân tại
. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng
Trong không gian , cho vectơ
. Xét sự đúng sai của các khẳng định sau:
a) Tọa độ của điểm là
. Đúng||Sai
b) Gọi thỏa mãn
nhận
làm trọng tâm. Khi đó
. Đúng||Sai
c) Nếu thẳng hàng thì tổng
. Đúng||Sai
d) Cho để
vuông cân tại
. Tổng hoành độ và tung độ của điểm N bằng 3. Sai||Đúng
a) Ta có:
Tọa độ của điểm là
.
b) G là trọng tâm tam giác ABC
c) Ta có:
Ba điểm A, B, M thằng hàng khi và chỉ khi
Suy ra
d) Ta có:
Ta có ∆ABN vuông cân tại A
Từ (*)
Từ (**)
Vậy
Trong không gian , cho hai vectơ
và
. Xác định giá trị tham số
để
?
Ta có:
Vậy m = 5 là giá trị cần tìm.
Trong không gian với hệ tọa độ , cho vectơ
và
. Tính tích vô hướng
.
Ta có .
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cách 1. Gọi là trung điểm
,
,
,
.
Ta có .
Lại có .
Mặt khác .
Dễ thấy
.
Suy ra với
;
.
Vậy .
Cách 2. Đặt các trục ,
và
vào hình như sau
Ta có ,
,
và
.
Ta có ,
và
.
Khi đó :
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: