Trong không gian với hệ tọa độ , cho hai điểm
và
. Tìm tọa độ trung điểm
của đoạn thẳng
.
Tọa độ trung điểm của đoạn
với
và
được tính bởi
.
Trong không gian với hệ tọa độ , cho hai điểm
và
. Tìm tọa độ trung điểm
của đoạn thẳng
.
Tọa độ trung điểm của đoạn
với
và
được tính bởi
.
Trong không gian, với mọi vectơ ta có
Công thức tích vô hướng của hai vectơ .
Trong không gian , cho hai điểm
,
. Điểm
thuộc đoạn
sao cho
, tọa độ điểm
là
Gọi .
Vì điểm thuộc đoạn
sao cho
Vậy .
Trong không gian hệ trục tọa độ , cho tam giác
có tọa các điểm
và tam giác đó nhận điểm
làm trọng tâm. Xác định giá trị biểu thức
?
Vì tam giác ABC nhận điểm G làm trọng tâm nên ta có hệ phương trình:
Trong không gian hệ trục tọa độ , cho hai điểm
. Tìm tọa độ điểm
sao cho
?
Gọi tọa độ độ điểm .
Ta có:
Lại có:
Vậy đáp án cần tìm là: .
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cách 1. Gọi là trung điểm
,
,
,
.
Ta có .
Lại có .
Mặt khác .
Dễ thấy
.
Suy ra với
;
.
Vậy .
Cách 2. Đặt các trục ,
và
vào hình như sau
Ta có ,
,
và
.
Ta có ,
và
.
Khi đó :
.
Trong không gian , cho các vec tơ
và
. Có bao nhiêu giá trị nguyên dương của
để góc giữa hai vec tơ
và
là góc tù?
Ta có .
Góc giữa hai vec tơ và
là góc tù khi và chỉ khi
.
Vì nguyên dương nên
.
Vậy có 2 giá trị thỏa mãn yêu cầu bài toán.
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?
Đáp án: 1223
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?
Đáp án: 1223
Gọi là tọa độ của máy bay sau 5 phút tiếp theo.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ gấp 4 lần thời gian bay từ
nên
Mặt khác, máy bay giữ nguyên hướng bay nên và
cùng hướng.
Suy ra
Tọa độ của máy bay sau 5 phút tiếp theo là .
Do đó,
Trong không gian hệ trục tọa độ , cho tam giác
có tọa các điểm
. Tính số đo góc
?
Ta có:
Sự chuyển động của máy bay A được thể hiện trong không gian như sau: Máy bay khởi hành từ
chuyển động thẳng đều (Tính theo phút) với vận tốc được biểu thị theo véc tơ
. Sau khi khởi hành được 30 phút, máy bay ở vị trí
. Tính
Đáp án: 362
Sự chuyển động của máy bay A được thể hiện trong không gian như sau: Máy bay khởi hành từ
chuyển động thẳng đều (Tính theo phút) với vận tốc được biểu thị theo véc tơ
. Sau khi khởi hành được 30 phút, máy bay ở vị trí
. Tính
Đáp án: 362
Ta có:
Quãng đường máy bay di chuyển là:
Khi đó:
Trong không gian hệ trục tọa độ , cho hai điểm
. Điểm
thuộc đoạn
sao cho
, tọa độ điểm
là:
Gọi tọa độ độ điểm . Vì điểm
nên
Vậy đáp án cần tìm là: .
Trong không gian , cho điểm
. Điểm đối xứng với
qua mặt phẳng
có tọa độ là:
Giữ nguyên y, z và đổi dấu x nên ta suy ra điểm đối xứng với A qua có tọa độ là
.
Trong không gian với hệ tọa độ , cho véc tơ
. Tìm tất cả giá trị của
để góc giữa
,
bằng
.
Ta có:
.
Trong không gian , cho các vectơ
và
. Xác định giá trị của
để hai vectơ đã cho có cùng hướng?
Ta có: Hai vectơ và
cùng hướng nên
Vậy là đáp án cần tìm.
Trong không gian , cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Trong không gian , cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Trong không gian , cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Ta có .
Suy ra .
.
Vậy
Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều , có cạnh bên bằng cạnh đáy và dài
mét. Kiến trúc sư muốn xây dựng một cây cầu
bắc xuyên tòa nhà (điểm đầu thuộc cạnh
, điểm cuối thuộc cạnh
) và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho
ngắn nhất (như hình vẽ).
Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 72
Một kiến trúc sư muốn xây dựng 1 tòa nhà biểu tượng độc lạ cho thành phố. Trên bản thiết kế tòa nhà có hình dạng là một khối lăng trụ tam giác đều , có cạnh bên bằng cạnh đáy và dài
mét. Kiến trúc sư muốn xây dựng một cây cầu
bắc xuyên tòa nhà (điểm đầu thuộc cạnh
, điểm cuối thuộc cạnh
) và cây cầu này sẽ được dát vàng với đơn giá 5 tỷ đồng trên 1 mét dài. Vì vậy để đáp ứng bài toán kinh tế, kiến trúc sư phải chọn vị trí cây cầu sao cho
ngắn nhất (như hình vẽ).
Khi đó giá xây cây cầu này hết bao nhiêu tỷ đồng? (Kết quả làm tròn đến hàng đơn vị).
Đáp án: 72
Để độ dài cây cầu ngắn nhất thì
là đoạn vuông góc chung của hai đường thẳng
và
.
Đặt hệ trục Oxyz như hình vẽ:
Khi đó ,
Do đó
Số tiền cần làm cây cầu ngắn nhất là (tỷ đồng)
Trong không gian với hệ tọa độ , cho mặt phẳng
có phương trình
và hai điểm
. Khi đó:
a) [NB] Mặt phẳng có vec tơ pháp tuyến
.Đúng||Sai
b) [TH] . Đúng||Sai
c) [TH] Khoảng cách từ điểm A đến là
. Đúng||Sai
d) [VD] Cho điểm di động trên
. Khi đó giá trị nhỏ nhất của biểu thức
bằng
. Sai||Đúng
Trong không gian với hệ tọa độ , cho mặt phẳng
có phương trình
và hai điểm
. Khi đó:
a) [NB] Mặt phẳng có vec tơ pháp tuyến
.Đúng||Sai
b) [TH] . Đúng||Sai
c) [TH] Khoảng cách từ điểm A đến là
. Đúng||Sai
d) [VD] Cho điểm di động trên
. Khi đó giá trị nhỏ nhất của biểu thức
bằng
. Sai||Đúng
a) Đúng.
Ta có: .
b) Đúng.
Ta có: .
c) Đúng.
Khoảng cách từ điểm A đến là:
.
d) Sai.
Gọi là điểm sao cho
ta có
.
Ta có:
nhỏ nhất khi
nhỏ nhất
là hình chiếu vuông góc của
lên mặt phẳng
.
giá trị nhỏ nhất của biểu thức
là:
.
Trong không gian cho hai điểm
,
và đường thẳng
. Điểm
thuộc đường thẳng
sao cho chu vi tam giác
nhỏ nhất. Khi đó biểu thức
bằng
Ta có không đổi.
Do đó chu vi tam giác nhỏ nhất khi
đạt giá trị nhỏ nhất.
.
,
.
Chọn .
Chọn
.
Theo tính chất vecto .
Dấu xảy ra khi và chỉ khi
cùng hướng với
.
Suy ra .
Do đó đạt giá trị nhỏ nhất bằng
khi
.
Vậy .
Trong không gian , cho hình hộp
biết
,
,
,
. Tọa độ của điểm
là:
Gọi
là hình hộp
,
,
⇒
. Vậy:
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: