Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CD Biểu thức tọa độ của các phép toán vectơ (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Trong không gian Oxyz, cho tam giác ABCA(2, - 2,1),B( - 4,2,4),C( - 4,0,1). Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?

    a) M\left( - 1,0,\frac{5}{2}
ight) là trung điểm của BC. Sai||Đúng

    b) G(-2,0,2) là trọng tâm tam giác ABC. Đúng||Sai

    c) N(8; - 6; - 2) là điểm đối xứng của B qua A. Đúng||Sai

    d) Tọa độ điểm E( - 14;8;11) thỏa B là trọng tâm tam giác AOE. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz, cho tam giác ABCA(2, - 2,1),B( - 4,2,4),C( - 4,0,1). Các khẳng định dưới đây, khẳng định nào đúng, khẳng định nào sai?

    a) M\left( - 1,0,\frac{5}{2}
ight) là trung điểm của BC. Sai||Đúng

    b) G(-2,0,2) là trọng tâm tam giác ABC. Đúng||Sai

    c) N(8; - 6; - 2) là điểm đối xứng của B qua A. Đúng||Sai

    d) Tọa độ điểm E( - 14;8;11) thỏa B là trọng tâm tam giác AOE. Đúng||Sai

    a) Sai: Do tọa độ trung điểm M của đoạn thẳng AB

    M\left( \frac{- 4 + ( - 4)}{2};\frac{2 +0}{2};\frac{4 + 1}{2} ight) hay M\left( - 4;1;\frac{5}{2}ight)

    b) Đúng: Do tọa độ trọng tâm G của tam giác ABC

    G\left( \frac{2 + ( - 4) + ( -4)}{3};\frac{- 2 + 2 + 0}{3};\frac{1 + 4 + 1}{3} ight) hay G(- 2;0;2)

    c) Đúng: N là điểm đối xứng của B qua A thì B là trung điểm AN.

    \left\{ \begin{matrix}x_{B} = \dfrac{x_{A} + x_{N}}{2} \\y_{B} = \dfrac{y_{A} + y_{N}}{2} \\z_{B} = \dfrac{z_{A} + z_{N}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{N} = 2x_{B} - x_{A} \\y_{N} = 2y_{B} - y_{A} \\z_{N} = 2z_{B} - z_{A} \\\end{matrix} ight.\  ight.

     \Leftrightarrow \left\{ \begin{matrix}
x_{N} = 8 \\
y_{N} = - 6 \\
z_{N} = - 2 \\
\end{matrix} ight. \Rightarrow N(8; - 6; - 2) 

    d) Đúng: B là trọng tâm tam giác AOE.

     \left\{ \begin{matrix}x_{B} = \dfrac{x_{A} + x_{O} + x_{E}}{3} \\y_{B} = \dfrac{y_{A} + y_{O} + y_{E}}{3} \\z_{B} = \dfrac{z_{A} + z_{O} + z_{E}}{3} \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x_{E} = 3x_{B} - x_{A} - x_{O} \\
y_{E} = 2y_{B} - y_{A} - y_{O} \\
z_{E} = 3z_{B} - z_{A} - z_{O} \\
\end{matrix} ight. 

    \Leftrightarrow \left\{ \begin{matrix}
x_{E} = - 14 \\
y_{E} = 8 \\
z_{E} = 11 \\
\end{matrix} \Rightarrow E( - 14;8;11) ight.

  • Câu 2: Thông hiểu
    Tìm tọa độ điểm D

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(3; - 4;0),B( - 1;1;3),C(3;1;0). Xác định tọa độ điểm D \in Ox sao cho AD = BC?

    Hướng dẫn:

    Ta có: D(x;0;0) \in Ox

    AD = BC \Leftrightarrow \sqrt{(x -
3)^{2} + 16} = 5

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow D(0;0;0) \\
x = 6 \Rightarrow D(6;0;0) \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: D(0;0;0) hoặc D(6;0;0)

  • Câu 3: Thông hiểu
    Định điều kiện tọa độ điểm E

    Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A(2;3;2), B(
- 2; - 1;4). Tìm tọa độ điểm E thuộc trục Oz sao cho E cách đều hai điểm A,B.

    Hướng dẫn:

    Gọi E(0;\ 0;\ t)\  \in Oz. Ta có:

    AE = BE

    \Leftrightarrow \sqrt{t^{2} - 4t + 17} =
\sqrt{t^{2} - 8t + 21}

    \Leftrightarrow t = 1 \Rightarrow
E(0;0;1)

  • Câu 4: Thông hiểu
    Xác định chu vi tam giác

    Trong không gian với hệ trục tọa độ Oxyz, cho tọa độ hai điểm A(3;0;0),B(0;0;4). Tính chu vi tam giác OAB?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{OA} = (3;0;0) \Rightarrow OA = 3 \\
\overrightarrow{OB} = (0;0;4) \Rightarrow OB = 4 \\
\overrightarrow{AB} = ( - 3;0;4) \Rightarrow AB = 5 \\
\end{matrix} ight.

    Chu vi tam giác OAB là:

    C = OA + OB + AB = 3 + 4 + 5 =
12

    Vậy đáp án đúng là: 12.

  • Câu 5: Thông hiểu
    Xác định tọa độ vectơ

    Trong không gian Oxyz, véctơ \overrightarrow{u} vuông góc với hai véctơ \overrightarrow{a} = (1 ; 1 ;1) và \overrightarrow{b} = (1\ ; -
1\ ;3); đồng thời \overrightarrow{u} tạo với tia Oz một góc tù và độ dài véctơ \overrightarrow{u} bằng 3. Tìm véctơ \overrightarrow{u}.

    Hướng dẫn:

    Ta có \overrightarrow{a}\overrightarrow{b} không cùng phương đồng thời

    \left\{ \begin{matrix}
\overrightarrow{\mathbf{u}}\mathbf{\bot}\overrightarrow{\mathbf{a}} \\
\overrightarrow{\mathbf{u}}\mathbf{\bot}\overrightarrow{\mathbf{b}} \\
\end{matrix} ight.\mathbf{\Rightarrow}\overrightarrow{\mathbf{u}}\mathbf{\
}\mathbf{//}\mathbf{\ }\left\lbrack \overrightarrow{\mathbf{a}}\mathbf{\
}\mathbf{,}\mathbf{\ }\overrightarrow{\mathbf{b}}
ightbrack\mathbf{=}\left( \mathbf{4}\mathbf{\
}\mathbf{;}\mathbf{\  -}\mathbf{2}\mathbf{\
}\mathbf{;}\mathbf{\  -}\mathbf{2}
ight)\mathbf{\Rightarrow}\overrightarrow{\mathbf{u}}\mathbf{=}\left(
\mathbf{2}\mathbf{k\ }\mathbf{;}\mathbf{\  - k\ }\mathbf{;}\mathbf{\  -
k} ight).

    Do \left| \overrightarrow{u} ight| = 3\Leftrightarrow \sqrt{4k^{2} + k^{2} + k^{2}} = 3\Leftrightarrow k =\pm \frac{\sqrt{6}}{2}.

    Mặt khác \overrightarrow{u} tạo với tia Oz một góc tù nên

    \cos\left(
\overrightarrow{u},\overrightarrow{k} ight) < 0 \Leftrightarrow
\overrightarrow{u}.\overrightarrow{k} < 0\Leftrightarrow 2k.0 + ( -
k).1 < 0 \Leftrightarrow ( - k).1 < 0 \Leftrightarrow k >
0.

    Suy ra k =
\frac{\sqrt{6}}{2}.

    Vậy \overrightarrow{u} = \left( \sqrt{6}\
;\  - \frac{\sqrt{6}}{2}\ ;\ \frac{\sqrt{6}}{2} ight).

  • Câu 6: Nhận biết
    Tìm điều kiện tham số m thỏa mãn yêu cầu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (2; -
1;1)\overrightarrow{v} = (0; -
3; - m). Xác định giá trị tham số m để \overrightarrow{u}.\overrightarrow{v} =
1?

    Hướng dẫn:

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1
\Leftrightarrow 3 - m = 1 \Leftrightarrow m = 2

    Vậy m = 2 là giá trị cần tìm.

  • Câu 7: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm B(1;2; - 3),C(7;4 - 2). Tìm tọa độ điểm E thỏa mãn đẳng thức \overrightarrow{CE} =
2\overrightarrow{EB}?

    Hướng dẫn:

    Gọi E(x;y;z)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CE} = (x - 7;y - 4;z + 2) \\
2\overrightarrow{EB} = (2 - 2x;4 - 2y; - 6 - 2z) \\
\end{matrix} ight.

    Theo bài ra ta có:

    \overrightarrow{CE} =2\overrightarrow{EB} \Leftrightarrow \left\{ \begin{matrix}x - 7 = 2 - 2x \\y - 4 = 4 - 2y \\z + 2 = - 6 - 2z \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}x = 3 \\y = \dfrac{8}{3} \\z = - \dfrac{8}{3} \\\end{matrix} ight.\  \Rightarrow E\left( 3;\frac{8}{3}; - \dfrac{8}{3}ight)

    Vậy điểm E có tọa độ là E\left(
3;\frac{8}{3}; - \frac{8}{3} ight).

  • Câu 8: Thông hiểu
    Tính độ dài đoạn thẳng

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm M(3; - 2;1),N(1;0; - 3). Gọi M';N' lần lượt là hình chiếu của M;N lên mặt phẳng (Oxy). Khi đó độ dài đoạn thẳng M'N' bằng:

    Hướng dẫn:

    M';N' lần lượt là hình chiếu của M;N lên mặt phẳng (Oxy) nên M'(3; - 2;0),N'(1;0;0) suy ra \overrightarrow{M'N'} = ( -
2;2;0)

    \Rightarrow M'N' =
2\sqrt{2}.

  • Câu 9: Nhận biết
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} =
(1;2;1);\overrightarrow{b} = ( - 1;3;0). Vectơ \overrightarrow{c} = 2\overrightarrow{a} +
\overrightarrow{b} có tọa độ là:

    Hướng dẫn:

    Ta có: 2\overrightarrow{a} =
(2;4;2). Khi đó \overrightarrow{c}
= 2\overrightarrow{a} + \overrightarrow{b} = \left( 2 + ( - 1);4 + 3;2 +
0 ight) = (1;7;2)

    Vậy \overrightarrow{c} =
(1;7;2)

  • Câu 10: Thông hiểu
    Chọn phương án đúng

    Trong không gian với hệ tọa độ Oxyz, cho véc tơ \overrightarrow{u} = (1;1; - 2),\ \
\overrightarrow{v} = (1;0;m). Tìm tất cả giá trị của m để góc giữa \overrightarrow{u}, \overrightarrow{v} bằng 45^{{^\circ}}.

    Hướng dẫn:

    Ta có:

    \left(
\overrightarrow{u},\overrightarrow{v} ight) = 45{^\circ}
\Leftrightarrow \cos\left( \overrightarrow{u},\overrightarrow{v} ight)
= \frac{\sqrt{2}}{2}

    \Leftrightarrow
\frac{\overrightarrow{u}.\overrightarrow{v}}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{v} ight|} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{1 -
2m}{\sqrt{6}.\sqrt{1 + m^{2}}} = \frac{1}{\sqrt{2}}

    \Leftrightarrow \sqrt{3\left( m^{2} + 1
ight)} = 1 - 2m

    \Leftrightarrow \left\{ \begin{matrix}
1 - 2m \geq 0 \\
3m^{2} + 3 = 1 - 4m + 4m^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \leq \frac{1}{2} \\
m^{2} - 4m - 2 = 0 \\
\end{matrix} ight. \Leftrightarrow m = 2 - \sqrt{6}.

  • Câu 11: Thông hiểu
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm A(1;3; - 1),B(3; - 1;5). Tìm tọa độ điểm M thỏa mãn hệ thức \overrightarrow{MA} =
3\overrightarrow{MB}?

    Hướng dẫn:

    Ta có: \overrightarrow{MA} =3\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} - 3x_{B}}{1 - 3} = 4 \\y_{M} = \dfrac{y_{A} - 3y_{B}}{1 - 3} = - 3 \\z_{M} = \dfrac{z_{A} - 3z_{B}}{1 - 3} = 8 \\\end{matrix} ight.\  \Rightarrow M(4; - 3;8)

  • Câu 12: Thông hiểu
    Tìm tọa độ điểm M thỏa mãn yêu cầu

    Trong không gian hệ trục tọa độ Oxyz, cho ba điểm A(3;1; - 4),B(2;1; - 2),C(1;1; - 3). Tìm điểm M \in Ox sao cho \left| \overrightarrow{MA} + \overrightarrow{MB} +
\overrightarrow{MC} ight| đạt giá trị nhỏ nhất?

    Hướng dẫn:

    M \in Ox suy ra M(m;0;0). Ta có: \left\{ \begin{matrix}
\overrightarrow{MA} = (3 - m;1; - 4) \\
\overrightarrow{MB} = (2 - m;1; - 2) \\
\overrightarrow{MC} = (1 - m;1; - 3) \\
\end{matrix} ight.

    Theo bài ra:

    \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| = \sqrt{(6 - 3m)^{2} +
3^{2} + ( - 9)^{2}}

    = \sqrt{9m^{2} - 36m + 126} = \sqrt{9(m
- 2)^{2} + 90} \geq 3\sqrt{10};\forall m\mathbb{\in R}

    Vậy \left| \overrightarrow{MA} +
\overrightarrow{MB} + \overrightarrow{MC} ight| nhỏ nhất bằng 3\sqrt{10} khi m - 2 = 0 \Leftrightarrow m = 2. Hay M(2;0;0)

  • Câu 13: Thông hiểu
    Tìm tọa độ điểm cách đều A và B

    Trong không gian Oxyz, tìm tọa độ điểm M trên trục Ox cách đều hai điểm A(1;2; - 1)B(2;1;2)?

    Hướng dẫn:

    Ta có: M \in Ox \Rightarrow
M(m;0;0)

    Theo bài ra ta có:

    MA = MB \Leftrightarrow MA^{2} =
MB^{2}

    \Leftrightarrow (m - 1)^{2} + 2^{2} +
1^{2} = (m - 2)^{2} + 1^{2} + 2^{2}

    \Leftrightarrow (m - 1)^{2} = (m -
2)^{2} \Leftrightarrow \left\lbrack \begin{matrix}
m - 1 = m - 2 \\
m - 1 = 2 - m \\
\end{matrix} ight.

    \Leftrightarrow m = \frac{3}{2}
\Rightarrow M\left( \frac{3}{2};0;0 ight).

  • Câu 14: Vận dụng
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{OM} có độ dài \left| \overrightarrow{OM} ight| = 1, gọi \alpha;\beta;\gamma lần lượt là góc tạo bởi ba vectơ đơn vị \overrightarrow{i};\overrightarrow{j};\overrightarrow{k} trên ba trục Ox;Oy;Oz và vectơ \overrightarrow{OM}. Khi đó tọa độ điểm M là:

    Hướng dẫn:

    Gọi M(x;y;z) \Rightarrow
\overrightarrow{OM} = (x;y;z)\overrightarrow{i} = (1;0;0),\overrightarrow{j} =
(0;1;0),\overrightarrow{k} = (0;0;1)

    \left\{ \begin{matrix}\cos\alpha = \dfrac{\overrightarrow{OM}.\overrightarrow{i}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{i} ight|} = x \\\cos\beta = \dfrac{\overrightarrow{OM}.\overrightarrow{j}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{j} ight|} = y \\\cos\gamma = \dfrac{\overrightarrow{OM}.\overrightarrow{k}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{k} ight|} = z \\\end{matrix} ight.\  \Rightarrow M\left( \cos\alpha;\cos\beta;\cos\gammaight)

  • Câu 15: Vận dụng
    Ghi đáp án đúng vào ô trống

    Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (91;75;0) và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 294,92 km.

    Đáp án là:

    Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (91;75;0) và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).

    Đáp án: 294,92 km.

    Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất.

    Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi OH ⊥ d.

    Vì H ∈ d nên H( -688 + 91t ; -185 +75t; 8)

    Ta có \overrightarrow{OH} = ( - 688 +
91t; - 185 + 75t;8)

    OH ⊥ d ⟺ (- 688 + 91t).91 + (- 185 +75t).75 +8.0 =0

    ⟺13906t - 76483 = 0 ⟺ t =
\frac{11}{2}.

    Suy ra H(\frac{-
375}{2};\frac{455}{2};8).

    Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:

    OH = \sqrt{\left( \frac{- 375}{2}
ight)^{2} + \left( \frac{455}{2} ight)^{2} + 8^{2})} \approx
294,92(km).

  • Câu 16: Thông hiểu
    Định các giá trị tham số m

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm M(2;3; - 1),N( - 1;1;1),P(1;m - 1;2). Tìm giá trị của tham số m để tam giác MNP vuông tại N?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{MN} = ( - 3; - 2;2) \\
\overrightarrow{NP} = (2;m - 2;1) \\
\end{matrix} ight..

    Tam giác MNP vuông tại N \Leftrightarrow
\overrightarrow{MN}.\overrightarrow{NP} = 0 \Leftrightarrow - 6 - 2(m -
2) + 2 = 0 \Leftrightarrow m = 0

    Vậy đáp án cần tìm là m = 0.

  • Câu 17: Nhận biết
    Tính độ dài AB

    Trong không gian Oxyz có điểm A(1; - 3;1),B(3;0; - 2). Tính độ dài AB?

    Hướng dẫn:

    Ta có: \overrightarrow{AB} = (3 - 1;0 +
3; - 2 - 1) = (2;3; - 3)

    Suy ra AB = \sqrt{2^{2} + 3^{2} + ( -
3)^{2}} = \sqrt{22}

    Vậy đáp án cần tìm là AB =
\sqrt{22}.

  • Câu 18: Thông hiểu
    Chọn phát biểu đúng

    Trong không gian tọa độ Oxyz, cho hai điểm A(1;0;0), B(5;0;0). Gọi (H) là tập hợp các điểm M trong không gian thỏa mãn \overrightarrow{MA}.\overrightarrow{MB} =
0. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Gọi I là trung điểmAB \Rightarrow I(3;0;0).

    Ta có :

    \overrightarrow{MA}.\overrightarrow{MB} =
0 \Leftrightarrow \left( \overrightarrow{MI} + \overrightarrow{IA}
ight).\left( \overrightarrow{MI} + \overrightarrow{IB} ight) =
0

    \Leftrightarrow \left(
\overrightarrow{MI} + \overrightarrow{IA} ight).\left(
\overrightarrow{MI} - \overrightarrow{IA} ight) = 0

    \Leftrightarrow MI^{2} - IA^{2} = 0
\Leftrightarrow MI^{2} = IA^{2} \Leftrightarrow MI = \frac{1}{2}AB =
\frac{1}{2}.|5 - 1| = 2.

    Suy ra tập hợp điểm M trong không gian là mặt cầu tâm I, bán kính bằng 2.

    Vậy (H) là một mặt cầu có bán kính bằng 2.

  • Câu 19: Vận dụng
    Tính độ dài đoạn thẳng

    Trong không gian Oxyz, cho đường thẳng d:\frac{x - 3}{2} = \frac{y + 1}{1} =
\frac{z - 1}{2} và điểm M(1\ ;2\
;\  - 3). Gọi M_{1} là hình chiếu vuông góc của M lên đường thẳng d. Độ dài đoạn thẳng OM_{1} bằng

    Hướng dẫn:

    Cách 1: Phương trình tham số của đường thẳng d là: \left\{
\begin{matrix}
x = 3 + 2t \\
y = - 1 + t \\
z = 1 + 2t \\
\end{matrix} ight..

    Một vtcp của d\overrightarrow{u} = (2\ ;\ 1\ ;\ 2).

    Gọi (\alpha) là mặt phẳng đi qua điểm M(1\ ;2\ ;\  - 3) và vuông góc với đường thẳng d. Khi đó (\alpha) có vtpt là \overrightarrow{n} = \overrightarrow{u} = (2\ ;\
1\ ;\ 2).

    Phương trình mặt phẳng (\alpha): 2(x - 1) + 1(y - 2) + 2(z + 3) = 0 \Leftrightarrow 2x + y + 2z + 2 =
0.

    M_{1} là hình chiếu vuông góc của M lên đường thẳng d nên M_{1} là giao điểm của d(\alpha).

    Xét hệ phương trình: \left\{
\begin{matrix}
x = 3 + 2t\ \ \ \ \ (1) \\
y = - 1 + t\ \ \ \ \ (2) \\
z = 1 + 2t\ \ \ \ \ \ (3) \\
2x + y + 2z + 2 = 0\ (4) \\
\end{matrix} ight.

    Thay (1),(2),(3) vào (4) ta được: 2(3 + 2t) - 1 + t + 2(1 + 2t) + 2 = 0

    \Leftrightarrow 9t + 9 = 0 \Leftrightarrow t = - 1.

    Suy ra \left\{ \begin{matrix}
x = 1 \\
y = - 2 \\
z = - 1 \\
\end{matrix} ight.\  \Rightarrow M_{1}(1\ ;\  - 2\ ;\  -1).

    Độ dài đoạn thẳng OM_{1} là: OM_{1} = \sqrt{1^{2} + ( - 2)^{2} + ( -1)^{2}} = \sqrt{6}.

    Cách 2: Phương trình tham số của đường thẳng d là: \left\{
\begin{matrix}
x = 3 + 2t \\
y = - 1 + t \\
z = 1 + 2t \\
\end{matrix} ight..

    Một vtcp của d\overrightarrow{u} = (2\ ;\ 1\ ;\ 2).

    M_{1} \in d \Rightarrow M_{1}(3 + 2t\
;\  - 1 + t\ ;\ 1 + 2t)

    \Rightarrow \overrightarrow{MM_{1}} = (2
+ 2t\ ;\  - 3 + t\ ;\ 4 + 2t).

    Ta có \overrightarrow{MM_{1}}\bot\overrightarrow{u}
\Leftrightarrow \overrightarrow{MM_{1}}.\overrightarrow{u} = 0\Leftrightarrow 4 + 4t - 3 + t + 8 + 4t = 0 \Leftrightarrow t = -
1.

    Suy ra M_{1}(1\ ;\  - 2\ ;\  -
1)

    Độ dài đoạn thẳng OM_{1} là: OM_{1} = \sqrt{1^{2} + ( - 2)^{2} + ( -1)^{2}} = \sqrt{6}.

  • Câu 20: Vận dụng
    Xác định mệnh đề đúng

    Trong không gian với hệ tọa độ Oxyz, cho hình thang ABCD có hai đáy AB,\ CD; có tọa độ ba đỉnh A(1;2;1),\ B(2;0; - 1),\ C(6;1;0). Biết hình thang có diện tích bằng 6\sqrt{2}. Giả sử đỉnh D(a;b;c), tìm mệnh đề đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    \overrightarrow{AB} = (1; - 2; -
2);\overrightarrow{AC} = (5; - 1; - 1);\overrightarrow{DC} = (6 - a;1 -
b; - c).

    Ta có S_{\Delta ABC} = \frac{1}{2}\left|
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} ightbrack
ight| = \frac{9\sqrt{2}}{2}

    \Rightarrow S_{ACD} = 6\sqrt{2} -
\frac{9\sqrt{2}}{2} = \frac{3\sqrt{2}}{2}.

    AB//CD nên \overrightarrow{AB}\overrightarrow{DC} cùng phương, cùng chiều \Leftrightarrow \frac{6 - a}{1} =
\frac{1 - b}{- 2} = \frac{c}{2} > 0

    \Leftrightarrow \left\{ \begin{matrix}
c = 12 - 2a \\
b = 13 - 2a \\
a < 6 \\
b > 1 \\
c > 0 \\
\end{matrix} ight.

    \left\lbrack
\overrightarrow{AC},\overrightarrow{AD} ightbrack = (0;9a - 54;54 -
9a).

    S_{\Delta ACD} = \frac{3\sqrt{2}}{2}
\Leftrightarrow \frac{1}{2}\left| \left\lbrack
\overrightarrow{AC},\overrightarrow{AD} ightbrack ight| =
\frac{3\sqrt{2}}{2}

    \Leftrightarrow |54 - 9a| = 3
\Leftrightarrow \left\lbrack \begin{matrix}
a = \frac{19}{3} \\
a = \frac{17}{3} \\
\end{matrix} ight.\ .

    So với điều kiện suy ra: a = \frac{17}{3}
\Rightarrow a + b + c = 8.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo