Trong không gian , cho hai vectơ
và
. Xác định giá trị tham số
để
?
Ta có:
Vậy m = 5 là giá trị cần tìm.
Trong không gian , cho hai vectơ
và
. Xác định giá trị tham số
để
?
Ta có:
Vậy m = 5 là giá trị cần tìm.
Trong không gian hệ trục tọa độ , cho
và
là điểm đối xứng cới điểm
qua
. Khi đó
bằng:
Gọi là hình chiếu của M trên
ta có
. Do
đối xứng với
qua
, khi đó
là trung điểm của
Suy ra từ đó
.
Trong không gian , cho hai vectơ
. Tìm tọa độ vectơ
?
Ta có: do đó
Vậy đáp án cần tìm là .
Trong không gian với hệ tọa độ , cho điểm
và
Biết tọa độ điểm
để tứ giác
là hình bình hành. Tính
Hình vẽ minh họa
Ta có
Để tứ giác là hình bình hành
Vậy
Trong không gian với hệ trục tọa độ , cho ba vectơ
. Khi đó giá trị của
bằng bao nhiêu?
Ta có: .
Khi đó
Vậy đáp án cần tìm là:
Trong không gian , cho
có
, gọi
là trung điểm
. Độ dài đoạn
là:
Ta có
Suy ra:
Trong không gian hệ trục tọa độ , cho tam giác
có tọa các điểm
và tam giác đó nhận điểm
làm trọng tâm. Xác định giá trị biểu thức
?
Vì tam giác ABC nhận điểm G làm trọng tâm nên ta có hệ phương trình:
Sự chuyển động của máy bay A được thể hiện trong không gian như sau: Máy bay khởi hành từ
chuyển động thẳng đều (Tính theo phút) với vận tốc được biểu thị theo véc tơ
. Sau khi khởi hành được 30 phút, máy bay ở vị trí
. Tính
Đáp án: 362
Sự chuyển động của máy bay A được thể hiện trong không gian như sau: Máy bay khởi hành từ
chuyển động thẳng đều (Tính theo phút) với vận tốc được biểu thị theo véc tơ
. Sau khi khởi hành được 30 phút, máy bay ở vị trí
. Tính
Đáp án: 362
Ta có:
Quãng đường máy bay di chuyển là:
Khi đó:
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cách 1. Gọi là trung điểm
,
,
,
.
Ta có .
Lại có .
Mặt khác .
Dễ thấy
.
Suy ra với
;
.
Vậy .
Cách 2. Đặt các trục ,
và
vào hình như sau
Ta có ,
,
và
.
Ta có ,
và
.
Khi đó :
.
Trong không gian có điểm
. Tìm tọa độ điểm
thỏa mãn đẳng thức
?
Ta có: . Khi đó
Vậy giá trị cần tìm là .
Trong không gian , cho điểm
. Tìm tọa độ điểm
đối xứng với
qua trục
?
Gọi H là hình chiếu vuông góc của lên
suy ra
Khi đó là trung điểm của
nên
Trong không gian hệ trục tọa độ , cho tọa độ ba điểm
. Tính tích vô hướng của
?
Ta có:
Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. Trong cùng một thời điểm, vị trí của một điểm trong không gian sẽ được xác định bởi bốn vệ tịnh cho truớc nhờ các bộ thu phát tín hiệu đặt trên các vệ tinh. Giả sử trong không gian với hệ tọa độ
, có bốn vệ tinh lần lượt đặt tại các điểm
,
; vị trí
thỏa mãn
. Khoảng cách từ điểm
đến điểm
bằng bao nhiêu?
Đáp án: 3
Hệ thống định vị toàn cầu GPS là một hệ thống cho phép xác định vị trí của một vật thể trong không gian. Trong cùng một thời điểm, vị trí của một điểm trong không gian sẽ được xác định bởi bốn vệ tịnh cho truớc nhờ các bộ thu phát tín hiệu đặt trên các vệ tinh. Giả sử trong không gian với hệ tọa độ
, có bốn vệ tinh lần lượt đặt tại các điểm
,
; vị trí
thỏa mãn
. Khoảng cách từ điểm
đến điểm
bằng bao nhiêu?
Đáp án: 3
Ta có, vị trí thỏa mãn
Vậy OM = 3
Trong không gian với hệ trục tọa độ , cho tọa độ ba điểm
. Thể tích tứ diện
bằng:
Ta có: . Dễ thấy tứ diện
vuông tại
nên
Vậy đáp án đúng là: .
Trong không gian tọa độ , cho hai mặt phẳng
và
a) Vectơ có tọa độ là một vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
b) Vectơ có toạ độ là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
c) Côsin của góc giữa hai vectơ và
bằng
. Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
Trong không gian tọa độ , cho hai mặt phẳng
và
a) Vectơ có tọa độ là một vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
b) Vectơ có toạ độ là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
c) Côsin của góc giữa hai vectơ và
bằng
. Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
a) nên mệnh đề sai
b) nên mệnh đề đúng
c) mệnh đề đúng
d) Góc hai mặt phẳng không thể tù nên mệnh đề sai
Trong không gian vói hệ trục tọa độ , cho hình thang cân
có hai đáy
,
thỏa mãn
và diện tích bằng
, đỉnh
, phương trình đường thẳng chứa cạnh
là
. Tìm tọa độ điểm
biết hoành độ điểm
lớn hơn hoành độ điểm
.
Hình vẽ minh họa
Gọi điểm là hình chiếu vuông góc của
lên đường thẳng
.
Khi đó .
Đường thẳng có vtcp là:
. Ta có:
.
Đường thẳng đi qua
và song song với
phương trình
là:
Theo bài ra ta có:
Với . Với
Ta có:
Trong không gian , cho điểm
. Điểm đối xứng với
qua mặt phẳng
có tọa độ là:
Giữ nguyên y, z và đổi dấu x nên ta suy ra điểm đối xứng với A qua có tọa độ là
.
Cho hệ trục tọa độ mặt phẳng
trùng với mặt đất với trục Ox hướng về phía Đông, trục Oy hướng về phía Nam và trục Oz hướng thẳng đứng lên trời (như hình minh họa bên dưới), đơn vị đo lấy theo kilomet. Hai khinh khí cầu bay lên cùng thời điểm chiếc thứ nhất xuất phát tại điểm
, chiếc thứ hai xuất phát từ điểm
. Sau 20 phút chiếc thứ nhất cách điểm xuất phát 1km về phía Nam và
về phía Đông, đồng thời cách mặt đất
. Chiếc thứ hai cách điểm xuất phát
về phía Bắc và
về phía Đông, đồng thời cách mặt đất
. Hỏi nếu giữ nguyên vận tốc và hướng bay thì sau 10 phút nữa 2 khinh khí cầu cách nhau bao
? (kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 4,7
Cho hệ trục tọa độ mặt phẳng
trùng với mặt đất với trục Ox hướng về phía Đông, trục Oy hướng về phía Nam và trục Oz hướng thẳng đứng lên trời (như hình minh họa bên dưới), đơn vị đo lấy theo kilomet. Hai khinh khí cầu bay lên cùng thời điểm chiếc thứ nhất xuất phát tại điểm
, chiếc thứ hai xuất phát từ điểm
. Sau 20 phút chiếc thứ nhất cách điểm xuất phát 1km về phía Nam và
về phía Đông, đồng thời cách mặt đất
. Chiếc thứ hai cách điểm xuất phát
về phía Bắc và
về phía Đông, đồng thời cách mặt đất
. Hỏi nếu giữ nguyên vận tốc và hướng bay thì sau 10 phút nữa 2 khinh khí cầu cách nhau bao
? (kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 4,7
Gọi vị trí chiếc khinh khí cầu thứ nhất và thứ hai sau khi bay phút lần lượt là
và
Gọi là vị trí của khinh khí cầu thứ nhất, thứ hai sau khi bay 10 phút tiếp theo.
Ta có
Ta có
Trong không gian hệ trục tọa độ , cho hai vectơ
và
. Tính độ dài vectơ
?
Ta có:
Khi đó
Trong không gian tọa độ , cho hai mặt phẳng
,
. Xét các vectơ
,
.
a) là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
b) không là vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
c) . Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
Trong không gian tọa độ , cho hai mặt phẳng
,
. Xét các vectơ
,
.
a) là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
b) không là vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
c) . Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
a) là một vectơ pháp tuyến của mặt phẳng
.
Ta có: có vectơ pháp tuyến
.
b) là một vectơ pháp tuyến của mặt phẳng
.
Ta có: có vectơ pháp tuyến
.
c) .
d) Gọi là góc giữa hai mặt phẳng
và
.
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: