Trong không gian , cho hai vectơ
và
. Toạ độ của vectơ
là:
Ta có .
Trong không gian , cho hai vectơ
và
. Toạ độ của vectơ
là:
Ta có .
Trong hệ trục tọa độ Oxyz, cho điểm . Gọi các điểm
lần lượt ở trên các trục tọa độ
sao cho
là trực tâm của tam giác
. Khi đó hoành độ điểm
là:
Giả sử .
Khi đó mặt phẳng
Ta có:
Vì là trực tâm của tam giác
nên
Vậy
Trong không gian , cho điểm
. Tìm tọa độ điểm
đối xứng với
qua trục
?
Gọi H là hình chiếu vuông góc của lên
suy ra
Khi đó là trung điểm của
nên
Trong không gian , cho các vectơ
và
(với
là tham số thực). Có bao nhiêu giá trị của
để
?
Ta có:
Khi đó
Do đó
Vậy có 2 giá trị tham số m thỏa mãn yêu cầu bài toán.
Trong không gian , cho ba điểm
. Tọa độ chân đường phân giác của góc
trong tam giác
là:
Ta có:
Gọi là chân đường phân giác kẻ từ
lên
của tam giác
.
Suy ra
Ta có:
Trong không gian với hệ tọa độ , cho tam giác
, biết
,
,
. Bán kính đường tròn nội tiếp tam giác
bằng:
Ta có Tam giác
vuông tại
.
Suy ra:
Trong không gian , cho hai vectơ
và
. Xác định giá trị tham số
để
?
Ta có:
Vậy m = 5 là giá trị cần tìm.
Trong không gian cho các điểm
,
,
. Điểm
là tâm đường tròn ngoại tiếp tam giác
. Tính
?
Ta có: ,
.
Gọi ,
lần lượt là trung điểm
,
.
Gọi là véc tơ pháp tuyến của mặt phẳng
.
.
là tâm đường tròn ngoại tiếp tam giác
.
Vậy .
Trong không gian hệ trục tọa độ , cho hai điểm
. Tìm tọa độ điểm
sao cho
?
Gọi tọa độ độ điểm .
Ta có:
Lại có:
Vậy đáp án cần tìm là: .
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian , cho hai vectơ
. Có tất cả bao nhiêu giá trị nguyên dương của tham số
để góc giữa hai vectơ
là góc tù?
Ta có:
Góc giữa hai vectơ là góc tù khi và chỉ khi
Mà
Suy ra có 2 giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán.
Vậy đáp án cần tìm là .
Trong không gian hệ trục tọa độ , cho ba điểm
. Tìm điểm
sao cho
đạt giá trị nhỏ nhất?
Vì suy ra
. Ta có:
Theo bài ra:
Vậy nhỏ nhất bằng
khi
. Hay
Trong không gian với hệ trục tọa độ , cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tính tỉ số
?
Ta có:
Lại có và ba điểm
thẳng hàng
Vậy đáp án đúng là .
Trong không gian với hệ tọa độ , biết
;
và góc giữa hai vectơ
và
bằng
. Tìm
để vectơ
vuông góc với vectơ
.
Ta có: .
Vectơ vuông góc với vectơ
khi và chỉ khi:
.
Trong không gian , cho hai vectơ
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án cần tìm là .
Trong không gian với hệ trục tọa độ , cho tọa độ hai điểm
. Tính chu vi tam giác
?
Ta có:
Chu vi tam giác là:
Vậy đáp án đúng là: .
Trong không gian với hệ tọa độ , cho mặt phẳng
và đường thẳng
. Gọi
là hình chiếu vuông góc của
trên
và
là một vectơ chỉ phương của
với
. Tính tổng
.
Ta có mặt phẳng nhận vectơ
là vectơ pháp tuyến, đường thẳng
đi qua điểm
và nhận
là vectơ chỉ phương
Gọi là mặt phẳng chứa đường thẳng
và vuông góc với mặt phẳng
.
Ta có .
Khi đó đường thẳng là giao tuyến của hai mặt phẳng
và
.
Do đó một vectơ chỉ phương của đường thẳng là
.
Mà nên
,
. Vậy
.
Trong không gian với hệ tọa độ , cho điểm
và
Biết tọa độ điểm
để tứ giác
là hình bình hành. Tính
Hình vẽ minh họa
Ta có
Để tứ giác là hình bình hành
Vậy
Trong không gian với hệ tọa độ , cho các vectơ
. Tìm
để các vectơ
cùng hướng.
Ta có: và
cùng hướng
.
Vậy
Trong không gian, với mọi vectơ ta có
Công thức tích vô hướng của hai vectơ .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: