Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 CD Biểu thức tọa độ của các phép toán vectơ (Mức Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm tọa độ điểm M

    Trong không gian hệ trục tọa độ Oxyz, cho hai điểm A(3;1; - 2),B(2; - 3;5). Điểm M thuộc đoạn AB sao cho MA
= 2MB, tọa độ điểm M là:

    Hướng dẫn:

    Gọi tọa độ độ điểm M(x;y;z). Vì điểm M \in AB nên

    \overrightarrow{MA} =2\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}3 - x = - 2(2 - x) \\1 - y = - 2( - 3 - y) \\- 2 - z = - 2(5 - z) \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}x = \dfrac{7}{3} \\y = - \dfrac{5}{3} \\z = \dfrac{8}{3} \\\end{matrix} ight.\  \Rightarrow M\left( \dfrac{7}{3}; -\dfrac{5}{3};\dfrac{8}{3} ight)

    Vậy đáp án cần tìm là: \left(
\frac{7}{3}; - \frac{5}{3};\frac{8}{3} ight).

  • Câu 2: Vận dụng
    Tìm tập hợp điểm M trong không gian

    Trong không gian tọa độ Oxyz, cho A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm M trong không gian thỏa mãn M không trùng với các điểm A, B, C và \widehat{AMB} = \widehat{BMC} =
\widehat{CMA} = 90^{0}

    Hướng dẫn:

    Gọi M(x;y;z)

    Ta có: \widehat{AMB} = \widehat{BMC} =
\widehat{CMA} = 90^{0}\Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{AM}.\overrightarrow{BM} = 0 \\
\overrightarrow{BM}.\overrightarrow{CM} = 0 \\
\overrightarrow{CM}.\overrightarrow{AM} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x(x - 2) + y(y - 2) + z^{2} = 0 \\
x^{2} + y(y - 2) + z(z - 2) = 0 \\
x(x - 2) + y^{2} + z(z - 2) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2x - 2y = 0 \\
x^{2} + y^{2} + z^{2} - 2y - 2z = 0 \\
x^{2} + y^{2} + z^{2} - 2x - 2z = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} - 2x - 2y = 0 \\
x = z \\
y = z \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
3x^{2} - 4x = 0 \\
x = y = z \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
M(0;0;0) \\
M\left( \dfrac{4}{3};\dfrac{4}{3};\dfrac{4}{3} ight) \\
\end{matrix} ight..

  • Câu 3: Thông hiểu
    Tìm tọa độ vectơ

    Trong không gian với hệ trục tọa độ Oxyz cho \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thỏa mãn \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.. Tìm tọa độ \overrightarrow{x}?

    Hướng dẫn:

    Giả sử \overrightarrow{x} =
(x;y;z), khi đó:

    \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = 4 \\
\overrightarrow{x}.\overrightarrow{b} = - 5 \\
\overrightarrow{x}.\overrightarrow{c} = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2x - y + 3z = 4 \\
x - 3y + 2z = - 5 \\
3x + 2y - 4z = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 3 \\
z = 1 \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{x} =
(2;3;1)

  • Câu 4: Vận dụng
    Tính tổng a và b

    Trong không gian Oxyz, cho mặt phẳng (P): x - y + 2 = 0 và hai điểm A(1;\ 2;\ 3), B(1;0;1). Điểm C(a;\ b;\  - 2) \in (P) sao cho tam giác ABC có diện tích nhỏ nhất. Tính a + b

    Hướng dẫn:

    C(a;\ b;\  - 2) \in (P) \Rightarrow a - b
+ 2 = 0 \Rightarrow b = a + 2 \Rightarrow C(a;\ a + 2;\  -
2).

    \overrightarrow{AB} = (0;\  - 2;\  -
2), \overrightarrow{AC} = (a - 1\
;\ a\ ;\  - 5) \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (10 + 2a\ ;\  -
2a + 2\ ;\ 2a - 2).

    S_{\Delta ABC} = \frac{1}{2}\left|
\left\lbrack \overrightarrow{AB},\overrightarrow{AC} ightbrack
ight| = \frac{\sqrt{(2a + 10)^{2} + 2(2a - 2)^{2}}}{2}

    = \frac{\sqrt{12a^{2} + 24a + 108}}{2} =
\sqrt{3\left( a^{2} + 2a + 9 ight)}

    = \sqrt{3(a + 1)^{2} + 24} \geq
2\sqrt{6} với \forall
a.

    Do đó \min S_{\Delta ABC} =
2\sqrt{6} khi a = - 1.

    Khi đó ta có C( - 1;\ 1; - 2) \Rightarrow
a + b = 0.

  • Câu 5: Thông hiểu
    Tính góc giữa hai vectơ

    Trong không gian tọa độ Oxyz, góc giữa hai vectơ \overrightarrow{i}\overrightarrow{u} = \left( - \sqrt{3};0;1
ight) là:

    Hướng dẫn:

    Ta có: \overrightarrow{i} =
(1;0;0)

    \Rightarrow \cos\left(
\overrightarrow{i};\overrightarrow{u} ight) =
\frac{\overrightarrow{i}.\overrightarrow{u}}{\left| \overrightarrow{i}
ight|.\left| \overrightarrow{u} ight|} = \frac{1.\left( - \sqrt{3} +
0.0 + 0.1 ight)}{1.\sqrt{\left( - \sqrt{3} ight)^{2} + 0^{2} +
1^{2}}} = \frac{- \sqrt{3}}{2}

    \Rightarrow \left(
\overrightarrow{i};\overrightarrow{u} ight) = 150^{0}

  • Câu 6: Thông hiểu
    Tính độ dài vectơ

    Cho tứ diện đều ABCD cạnh a. Tính \left| \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight| theo a?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi G là trọng tâm của \Delta BCD.

    Do đó \left| \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD} ight| = \left|
3\overrightarrow{AG} ight| = 3AG.

    Ta có BG = \frac{2}{3}BI =
\frac{2}{3}.\frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{3}.

    ABCD là tứ diện đều nên AG\bot(BCD) \Rightarrow AG\bot BG.

    Suy ra AG = \sqrt{AB^{2} - BG^{2}} =
\frac{a\sqrt{6}}{3}.

    Vậy \left| \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD} ight| =
3.\frac{a\sqrt{6}}{3} = a\sqrt{6}.

  • Câu 7: Nhận biết
    Tính độ dài đoạn thẳng OA

    Trong không gian Oxyz, cho điểm A(2;2;1). Tính độ dài đoạn thẳng OA?

    Hướng dẫn:

    Ta có: \overrightarrow{OA} = (2;2;1)
\Rightarrow OA = \sqrt{2^{2} + 2^{2} + 1^{2}} = 3

  • Câu 8: Thông hiểu
    Xác định tọa độ điểm A’

    Trong không gian Oxyz, cho hình hộp ABCD.A'B'C'D' biết A(1;0;1), B(2;1;2), D(1; - 1;1), C'(4;5; - 5). Tọa độ của điểm A' là:

    Hướng dẫn:

    Gọi A'(a;b;c)

    ABCD.A'B'C'D' là hình hộp \Rightarrow
\overrightarrow{AC'} = \overrightarrow{AB} + \overrightarrow{AD} +
\overrightarrow{AA'}

    \Leftrightarrow \overrightarrow{AA'}
= \overrightarrow{AC'} - \overrightarrow{AB} -
\overrightarrow{AD}

    \overrightarrow{AB} = (1;1;1), \overrightarrow{AD} = (0; - 1;0), \overrightarrow{AC'} = (3;5; -
6)

    \overrightarrow{AC'} -
\overrightarrow{AB} - \overrightarrow{AD} = (2;5; - 7)

    \overrightarrow{AA'} = (a - 1;b;c -
1)

    (1) \Leftrightarrow \left\{
\begin{matrix}
a - 1 = 2 \\
b = 5 \\
c - 1 = - 7 \\
\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 5 \\
c = - 6 \\
\end{matrix} ight.. Vậy: A'(3;5; - 6).

  • Câu 9: Thông hiểu
    Chọn mệnh đề đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho các vectơ \overrightarrow{a} = ( - 1;1;0),\overrightarrow{b}
= (1;1;0)\overrightarrow{c} =
(1;1;0). Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \cos\left(
\overrightarrow{b};\overrightarrow{c} ight) =
\frac{2}{\sqrt{2}.\sqrt{3}} = \frac{2}{\sqrt{6}}

    \overrightarrow{a}.\overrightarrow{c} =
0

    \overrightarrow{a};\overrightarrow{b} không cùng phương vì \frac{- 1}{1} eq
\frac{1}{1}

    \overrightarrow{a} + \overrightarrow{b}
+ \overrightarrow{c} = (1;2;1)

    Vậy mệnh đề đúng là \cos\left(
\overrightarrow{b};\overrightarrow{c} ight) =
\frac{2}{\sqrt{6}}

  • Câu 10: Thông hiểu
    Chọn mệnh đề đúng

    Trong không gian Oxyz, cho các vectơ \overrightarrow{a}(2;m - 1;3)\overrightarrow{b}(1;3; - 2n). Xác định giá trị của m;n để hai vectơ đã cho có cùng hướng?

    Hướng dẫn:

    Ta có: Hai vectơ \overrightarrow{a}(2;m -
1;3)\overrightarrow{b}(1;3; -
2n) cùng hướng nên

    \overrightarrow{a} =k.\overrightarrow{b};(k > 0) \Leftrightarrow \left\{ \begin{matrix}2 = k \\m - 1 = 3k \\3 = k( - 2n) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2 = k \\m = 7 \ = - \dfrac{3}{4} \\\end{matrix} ight.

    Vậy m = 7;n = - \frac{3}{4} là đáp án cần tìm.

  • Câu 11: Thông hiểu
    Xác định tọa độ vectơ

    Trong không gian Oxyz, cho hai điểm A(1;3; - 1),B(3; - 1;5). Tìm tọa độ điểm M thỏa mãn hệ thức \overrightarrow{MA} =
3\overrightarrow{MB}?

    Hướng dẫn:

    Ta có: \overrightarrow{MA} =3\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} - 3x_{B}}{1 - 3} = 4 \\y_{M} = \dfrac{y_{A} - 3y_{B}}{1 - 3} = - 3 \\z_{M} = \dfrac{z_{A} - 3z_{B}}{1 - 3} = 8 \\\end{matrix} ight.\  \Rightarrow M(4; - 3;8)

  • Câu 12: Thông hiểu
    Xác định tọa độ tổng hai vectơ

    Trong không gian Oxyz, cho ba điểm A(5;1;5),B(4;3;2),C( - 3; -
2;1) và điểm I(a;b;c) là tâm đường tròn ngoại tiếp tam giác ABC. Tính giá trị biểu thức H = a + 2b + c?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;2; - 3) \\
\overrightarrow{BC} = ( - 7; - 5; - 1) \\
\end{matrix} ight.\  \Rightarrow
\overrightarrow{AB}.\overrightarrow{BC} = 0 nên tam giác ABC vuông tại B

    Suy ra tâm I của đường tròn ngoại tiếp của tam giác ABC là trung điểm của cạnh huyền AC.

    \Rightarrow I\left( 1; - \frac{1}{2};3ight) \Rightarrow \left\{ \begin{matrix}a = 1 \\b = - \dfrac{1}{2} \\c = 3 \\\end{matrix} ight.\  \Rightarrow H = a + 2b + c = 3

    Vậy đáp án cần tìm là H = 3

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Thông hiểu
    Chọn phương án đúng

    Cho hình chóp S.ABCDABCD là hình chữ nhật có AB = 3,AD = 4, SA\bot(ABCD),SA = 5; giá trị của \overrightarrow{SA}.\overrightarrow{BC}

    Hướng dẫn:

    SA \bot \left( {ABCD} ight) \Rightarrow \overrightarrow {SA}  \bot \overrightarrow {BC}  \Rightarrow \overrightarrow {SA} .\overrightarrow {BC}  = 0

  • Câu 15: Nhận biết
    Xác định tích vô hướng

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (1; - 2;3)\overrightarrow{b} = ( - 2;1;2). Xác định tích vô hướng \left( \overrightarrow{a} +
\overrightarrow{b} ight).\overrightarrow{b}?

    Hướng dẫn:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} = ( - 1; - 1;5) nên \left( \overrightarrow{a} + \overrightarrow{b}
ight).\overrightarrow{b} = - 1.( - 2) + ( - 1).1 + 5.2 =
11

  • Câu 16: Thông hiểu
    Định các giá trị của x và y

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2; - 1;5),B(5; - 5;7) và điểm M \in (Oxy). Tìm tọa độ điểm M để ba điểm A;B;M thẳng hàng?

    Hướng dẫn:

    Ta có: M \in (Oxy) \Rightarrow
M(x;y;0)

    Lại có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 2;3;1) \\
\overrightarrow{AM} = (x - 2;y + 2; - 1) \\
\end{matrix} ight.

    Vì ba điểm A; B; M thẳng hàng nên \overrightarrow{AB};\overrightarrow{AM} cùng phương

    \Leftrightarrow \frac{x - 2}{- 2} =
\frac{y + 2}{3} = \frac{- 1}{1} \Leftrightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 5 \\
\end{matrix} ight.\  \Rightarrow M(4; - 5;0)

    Vậy đáp án cần tìm là M(4; -
5;0).

  • Câu 17: Thông hiểu
    Tìm tọa độ trọng tâm tam giác

    Cho tam giác ABCA(2;4;5),B( - 1;2;3),C(5;1;2). Tọa độ của trọng tâm G của tam giác ABC là:

    Hướng dẫn:

    Với G là trọng tâm tam giác ABC:

    \left\{ \begin{matrix}
x_{G} = \dfrac{x_{A} + x_{B} + x_{c}}{3} = 2 \\
y_{G} = \dfrac{y_{A} + y_{B} + y_{c}}{3} = \dfrac{7}{3} \\
z_{G} = \dfrac{z_{A} + z_{B} + z_{c}}{3} = \dfrac{10}{3} \\
\end{matrix} ight.\  \Rightarrow G\left( 2;\dfrac{7}{3};\dfrac{10}{3}
ight)

    Vậy tọa độ trọng tâm tam giác có tọa độ là \left( 2;\frac{7}{3};\frac{10}{3}
ight).

  • Câu 18: Nhận biết
    Tìm m thỏa mãn điều kiện

    Trong không gian Oxyz cho 2 véc tơ \overrightarrow{a} = (2;1; - 1); \overrightarrow{b} = (1;3;m). Tìm m để \left(
\overrightarrow{a};\overrightarrow{b} \right) = 90{^\circ}.

    Hướng dẫn:

    Ta có:

    \left(
\overrightarrow{a};\overrightarrow{b} ight) = 90{^\circ}
\Leftrightarrow \overrightarrow{a}.\overrightarrow{b} = 0

    \Leftrightarrow 5 - m = 0 \Leftrightarrow
m = 5.

  • Câu 19: Thông hiểu
    Chọn phương án đúng

    Trong không gian với hệ tọa độ Oxyz, cho véc tơ \overrightarrow{u} = (1;1; - 2),\ \
\overrightarrow{v} = (1;0;m). Tìm tất cả giá trị của m để góc giữa \overrightarrow{u}, \overrightarrow{v} bằng 45^{{^\circ}}.

    Hướng dẫn:

    Ta có:

    \left(
\overrightarrow{u},\overrightarrow{v} ight) = 45{^\circ}
\Leftrightarrow \cos\left( \overrightarrow{u},\overrightarrow{v} ight)
= \frac{\sqrt{2}}{2}

    \Leftrightarrow
\frac{\overrightarrow{u}.\overrightarrow{v}}{\left| \overrightarrow{u}
ight|.\left| \overrightarrow{v} ight|} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{1 -
2m}{\sqrt{6}.\sqrt{1 + m^{2}}} = \frac{1}{\sqrt{2}}

    \Leftrightarrow \sqrt{3\left( m^{2} + 1
ight)} = 1 - 2m

    \Leftrightarrow \left\{ \begin{matrix}
1 - 2m \geq 0 \\
3m^{2} + 3 = 1 - 4m + 4m^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \leq \frac{1}{2} \\
m^{2} - 4m - 2 = 0 \\
\end{matrix} ight. \Leftrightarrow m = 2 - \sqrt{6}.

  • Câu 20: Vận dụng
    Chọn phương án thíchhợp

    Trong không gian với hệ tọa độ Oxyz, cho A(1;0;2), B(3;1;4), C(3; - 2;1). Tìm tọa độ điểm S, biết SA vuông góc với (ABC), mặt cầu ngoại tiếp tứ diện S.ABC có bán kính bằng \frac{3\sqrt{11}}{2}S có cao độ âm.

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có \overrightarrow{AB} =
(2;1;2), \overrightarrow{AC} = (2;
- 2; - 1) \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (3;6; -
6).

    Do SA vuông góc với nên một VTCP của đường thẳng SA được chọn là \overrightarrow{u} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3;6; -
6).

    Đường thẳng SA qua A(1;0;2) và có VTCP \overrightarrow{u} = (3;6; - 6) nên có phương trình tham số là:

    \left\{ \begin{matrix}
x = 1 + 3t \\
y = 6t \\
z = 2 - 6t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

    Do \overrightarrow{AB}.\overrightarrow{AC} = 4 - 2 -
2 = 0 \Rightarrow AB\bot AC \Rightarrow \Delta ABC vuông tại A.

    Gọi M là trung điểm BC, khi đó M là tâm đường tròn ngoại tiếp tam giác ABC. Gọi d là đường thẳng qua M và song song với SA nên d\bot(ABC), suy ra d là trục đường tròn ngoại tiếp \Delta ABC.

    Trong mặt phẳng (SAM) vẽ đường trung trực của SA cắt d tại I và cắt SA tại N.

    Mặt phẳng (ABC) qua A và có một VTPT \overrightarrow{n} = \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3;6; -
6) nên có phương trình tổng quát là:

    3(x - 1) + 6y - 6(z - 2) = 0
\Leftrightarrow x + 2y - 2z + 3 = 0

    \overrightarrow{BC} = (0; - 3; - 3)
\Rightarrow BC = \sqrt{18} \Rightarrow BC^{2} = 18.

    Ta có R^{2} = IA^{2} + AM^{2}
\Leftrightarrow \frac{99}{4} = IM^{2} + \frac{1}{4}BC^{2} \Rightarrow IM
= \frac{9}{2}.

    Do S \in SA nên S(1 + 3t;6t;2 - 6t), mà SA = 2IM \Rightarrow SA = 9

    \Leftrightarrow d\left( S,(ABC) ight)
= 9

    \Leftrightarrow \frac{\left| 1 + 3t +
12t - 2(2 - 6t) + 3 ight|}{\sqrt{1^{2} + ( - 2)^{2} + 2^{2}}} =
9

    \Leftrightarrow |27t| = 27
\Leftrightarrow \left\lbrack \begin{matrix}
t = 1 \Rightarrow S(4;6; - 4) \\
t = - 1 \Rightarrow S( - 2; - 6;8) \\
\end{matrix} ight., mà cao độ của S âm nên S(4;6; - 4) thỏa mãn.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (65%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo