Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 5 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tìm hàm chi phí biên

    Giả sử chi phí C(USD)để sản xuất Q máy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Hỏi chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 90 sản phẩm lên 91 sản phẩm bằng bao nhiêu?

    Hướng dẫn:

    Xét \Delta Q là số gia của biến số tại điểm Q.

    Ta có:

    \Delta C = C(Q + \Delta Q) - C(Q)

    = (Q + \Delta Q)^{2} + 80(Q + \Delta Q) + 3500 - Q^{2} - 80Q -3500

    = 2Q.\Delta Q + (\Delta Q)^{2} + 80\Delta
Q.

    Ta thấy: \lim_{\Delta Q \rightarrow
0}\frac{\Delta C}{\Delta Q} = \lim_{\Delta Q \rightarrow 0}(2Q + \Delta
Q + 80) = 2Q + 80.

    Vậy hàm chi phí biên là: C'(Q) = 2Q +
80.

    Ta có:C'(90) = 2.90 + 80 =
260.

    Dựa vào kết quả đó, ta thấy chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 90 sản phẩm lên 91 sản phẩm là 260\
USD.

  • Câu 2: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) có đạo hàm f'(x) = - x(x - 2)^{2}(x - 3),\forall x\mathbb{\in R}. Xét tính đúng sai của các nhận định dưới đây:

    a) Hàm số có ba điểm cực trị. Sai||Đúng

    b) \min_{x \in ( - \infty;2)}f(x) =
f(0). Đúng||Sai

    c) \max_{x \in \lbrack 0;4\rbrack}f(x) =
f(3). Đúng||Sai

    d) \max_{}f\left( e^{x} + e^{- x} \right)
= f(3). Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) có đạo hàm f'(x) = - x(x - 2)^{2}(x - 3),\forall x\mathbb{\in R}. Xét tính đúng sai của các nhận định dưới đây:

    a) Hàm số có ba điểm cực trị. Sai||Đúng

    b) \min_{x \in ( - \infty;2)}f(x) =
f(0). Đúng||Sai

    c) \max_{x \in \lbrack 0;4\rbrack}f(x) =
f(3). Đúng||Sai

    d) \max_{}f\left( e^{x} + e^{- x} \right)
= f(3). Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Đúng

    Ta có f'(x) = - x(x - 2)^{2}(x - 3) =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
x = 3
\end{matrix} \right..

    BBT:

    Từ bảng biến thiên ta thấy giá trị lớn nhất của hàm số f(x) trên đoạn \lbrack 0\ ;\ 4\rbrackf(3).

    d) Ta có: e^{x} + e^{- x} \geq
2\sqrt{e^{x}.e^{- x}} = 2\overset{}{\rightarrow}\max_{}f\left( e^{x} +
e^{- x} \right) = f(3).

  • Câu 3: Thông hiểu
    Xét tính đúng sai của các nhận định

    Dân số của một quốc gia sau t bắt đầu từ năm 2023 được tính theo công thức N(t) = 100e^{0,012t} . Các khẳng định dưới đây đúng hay sai?

    a) Dân số của quốc gia này ở năm 2030 vượt mức 110 triệu người. Sai||Đúng

    b) Dân số của quốc gia này ở năm 2035 vượt mức 115 triệu người. Đúng||Sai

    c) Vào năm 2030 thì tốc độ tăng dân số là 1,6 triệu người/năm. Sai||Đúng

    d) Vào năm 2026 thì tốc độ tăng dân số là 1,6 triệu người/năm. Đúng||Sai

    Đáp án là:

    Dân số của một quốc gia sau t bắt đầu từ năm 2023 được tính theo công thức N(t) = 100e^{0,012t} . Các khẳng định dưới đây đúng hay sai?

    a) Dân số của quốc gia này ở năm 2030 vượt mức 110 triệu người. Sai||Đúng

    b) Dân số của quốc gia này ở năm 2035 vượt mức 115 triệu người. Đúng||Sai

    c) Vào năm 2030 thì tốc độ tăng dân số là 1,6 triệu người/năm. Sai||Đúng

    d) Vào năm 2026 thì tốc độ tăng dân số là 1,6 triệu người/năm. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Dân số của quốc gia này ở năm 2030N(7)
= 100e^{0,012.7} \approx 108,8 triệu người.

    b) Dân số của quốc gia này ở năm 2035N(12)
= 100e^{0,012.12} \approx 115,5 triệu người.

    c) Hàm tốc độ tăng dân số là N'(t) =
1,2e^{0,012t}. Ta có:

    1,2e^{0,012t} = 1,6 \Leftrightarrow t
\approx 2,34.

    Vậy thời vào năm 2026, tốc độ tăng dân số là 1,6 triệu người/năm

    d) Hàm tốc độ tăng dân số là N'(t) =
1,2e^{0,012t}. Ta có:

    1,2e^{0,012t} = 1,6 \Leftrightarrow t
\approx 2,34.

    Vậy thời vào năm 2026, tốc độ tăng dân số là 1,6 triệu người/năm.

  • Câu 4: Thông hiểu
    Tìm số dân cao nhát của thị trấn

    Số dân của một thị trấn sau t năm kể từ năm 2022 được ước tính bởi công thức f(t) = \frac{26t + 10}{t +
5} (f(t) được tính bằng nghìn người).

    Hỏi trong khoảng thời gian từ năm 2022 đến năm 2032 dân số của thị trấn đạt giá trị lớn nhất bằng bao nhiêu?

    Hướng dẫn:

    Xét hàm số f(t) = \frac{26t + 10}{t +
5} với t \in \lbrack
0;10\rbrack suy ra f'(t) =
\frac{120}{(t + 5)^{2}} > 0,\ \ \ \forall t \in \lbrack
0;10\rbrack.

    Suy ra hàm số f(t) đồng biến trên đoạn \lbrack 1;10\rbrack.

    Vậy dân số đạt giá trị lớn nhất bằng f(10) = 18.

  • Câu 5: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ sau

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;3).Đúng||Sai

    b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số y = f(x) là 2. Sai||Đúng

    c) Hàm số y = f(x)có hai cực trị trái dấu. Sai||Đúng

    d) Phương trình đường thẳng qua 2 điểm cực trị của đồ thị hàm số y = f(x)d:y = - 3x. Đúng||Sai

    Đáp án là:

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ sau

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;3).Đúng||Sai

    b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số y = f(x) là 2. Sai||Đúng

    c) Hàm số y = f(x)có hai cực trị trái dấu. Sai||Đúng

    d) Phương trình đường thẳng qua 2 điểm cực trị của đồ thị hàm số y = f(x)d:y = - 3x. Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) Hàm số y = f(x) đồng biến trên các khoảng ( - \infty; - 1)(1; + \infty).

    b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1. Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là 3 - 1 = 2.

    c) Hàm số y = f(x) có hai cực trị là x = \pm 1.

    d) Gọi d:y = ax + b là đường thẳng qua hai điểm cực trị A( - 1;3),B(1; -
1).

    A,B \in d \Rightarrow \left\{\begin{matrix}- a + b = 3 \\a + b = - 1\end{matrix} \right.\Rightarrow \left\{ \begin{matrix}a = - 2 \\b = 1\end{matrix} \right.\  \Rightarrow d:y = - 2x + 1

  • Câu 6: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{x^{2} + 3x}{x
- 1}.. Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số f(x) đồng biến trên khoảng ( - \infty;1). Sai||Đúng

    b) Cực đại của hàm số f(x)1. Đúng||Sai

    c) Hàm số f(x) có ba điểm cực trị. Sai||Đúng

    d) Hàm số f(x) nghịch biến trên khoảng ( - 1;3). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x^{2} + 3x}{x
- 1}.. Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số f(x) đồng biến trên khoảng ( - \infty;1). Sai||Đúng

    b) Cực đại của hàm số f(x)1. Đúng||Sai

    c) Hàm số f(x) có ba điểm cực trị. Sai||Đúng

    d) Hàm số f(x) nghịch biến trên khoảng ( - 1;3). Sai||Đúng

    a) Sai

    b) Đúng

    c) Sai

    d) Sai

    Tập xác định: D\mathbb{=
R}\backslash\left\{ 1 \right\}.

    y' = f'(x) = \frac{x^{2} - 2x -
3}{(x - 1)^{2}}.

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3
\end{matrix} \right..

    Bảng biến thiên:

    A graph with arrows and numbersDescription automatically generated with medium confidence

    a) Từ bảng biến thiên suy ra mệnh đề sai.

    b) Mệnh đề đúng.

    c) Hàm số chỉ có hai điểm cực trị là x =
- 1x = 3. Vậy mệnh đề sai.

    d) Do hàm số không xác định tại x =
1 thuộc ( - 1;3) nên mệnh đề sai.

  • Câu 7: Thông hiểu
    Tính vận tốc tức thời của chất điểm

    Một chất điểm chuyển động của phương trình s(t) = 6sin\left( 3t + \frac{\pi}{4}
\right) trong đó t > 0, ttính bằng giây, s(t) tính bằng centimét. Tính vận tốc tức thời của chất điểm tại thời điểm t =
\frac{\pi}{6}(s).

    Hướng dẫn:

    Vận tốc tức thời của chất điểm tại thời điểm t(s)là: v(t)
= s'(t) = 18cos\left( 3t + \frac{\pi}{4} \right).

    Vậy vận tốc tức thời của chất điểm tại thời điểm t = \frac{\pi}{6}(s)là: v\left( \frac{\pi}{6} \right) = 18cos\left(
3.\frac{\pi}{6} + \frac{\pi}{4} \right) = - 9\sqrt{2}(cm/s)

  • Câu 8: Thông hiểu
    Tính vận tốc cực đại của hại

    Chuyển động của một hạt trên một dây rung được cho bởi công thức s(t) = 10 + \sqrt{2}\sin\left( 4\pi t +
\frac{\pi}{6} \right), trong đó s tính bằng centimét và t tính bằng giây. Vận tốc của hạt sau t giây là v(t). Vận tốc cực đại của hạt là bao nhiêu (làm tròn kết quả đến chữ số thập thứ nhất)?

    Hướng dẫn:

    Vận tốc của hạt sau t giây là: v(t) = s'(t) = 4\pi\sqrt{2}\cos\left(
4\pi t + \frac{\pi}{6} \right).

    Vận tốc cực đại của hạt là: v_{\max} =
4\pi\sqrt{2} \approx 17,8m/s, đạt được khi

    \left| \cos\left( 4\pi t + \frac{\pi}{6} \right)
\right| = 1 hay t = \frac{5}{24} +
\frac{k}{4},k\mathbb{\in N}.

  • Câu 9: Thông hiểu
    Viết biểu thức tính L(x) theo x

    Một hộ làm nghề dệt vải lụa tơ tằm sản xuất mỗi ngày được xmét vải lụa 1 \leq x \leq 18.Tổng chi phí sản xuất xmét vải lụa, tính bằng nghìn đồng, cho bởi hàm chi phí:

    C(x) = x^{3} - 6x^{2} + 20x +
500

    Giả sử hộ làm nghề dệt này bán hết sản phẩm mỗi ngày với giá 320 nghìn đồng/mét. Gọi L(x)là lợi nhuận thu được khi bán xmét vải lụa. Hãy viết biểu thức tính L(x)theo\
x?

    Hướng dẫn:

    Khi bán x mét vải lụa

    Số tiền thu được là: B(x) = 320x .

    Lợi nhuận thu được là: L(x) = B(x) - C(x)
= - x^{3} + 6x^{2} + 300x - 500.

  • Câu 10: Thông hiểu
    Tìm hàm chi phí biên

    Giả sử chi phí C(USD)để sản xuất Qmáy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1sản phẩm. Giả sử chi phí biên được xác định bởi hàm số C'(Q). Tìm hàm chi phí biên.

    Hướng dẫn:

    Xét \Delta Q là số gia của biến số tại điểm Q.

    Ta có:

    \Delta C = C(Q + \Delta Q) - C(Q)

    = (Q + \Delta Q)^{2} + 80(Q + \Delta Q) + 3500 - Q^{2} - 80Q -3500

    = 2Q.\Delta Q + (\Delta Q)^{2} + 80\Delta
Q.

    Ta thấy: \lim_{\Delta Q \rightarrow
0}\frac{\Delta C}{\Delta Q} = \lim_{\Delta Q \rightarrow 0}(2Q + \Delta
Q + 80) = 2Q + 80.

    Vậy hàm chi phí biên là: C'(Q) = 2Q +
80.

  • Câu 11: Vận dụng
    Xác định hàm số v(t)

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250\
km so với bể mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính (gẩn đúng) bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t (giây) kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Vận tốc tức thời của con tàu lúc bắt đầu hãm phanh là bao nhiêu?

    Hướng dẫn:

    Vận tốc tức thời của con tàu ở thời điểm t, v(t), là đạo hàm của hàm số h(t) theo thời gian t. Hàm số h(t) đã cho là: h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250

    Để tìm v(t), ta lấy đạo hàm của h(t): v(t) = h^{'}(t) = - 0,03t^{2} + 2,2t -
30

    Vậy hàm số v(t)biểu diễn vận tốc tức thời của con tàu ở thời điểm t là:

    v(t) = - 0,03t^{2} + 2,2t -
30

    Tại thời điểm bắt đầu hãm phanh (t =
0), vận tốc của con tàu là:

    v(0) = - 0,030^{2} + 2,20 - 30 = - 30\
km/s

  • Câu 12: Thông hiểu
    Chọn kết luận đúng

    Để điều chỉnh nhiệt độ trong phòng, một hệ thống điều hòa không khí được phép hoạt động trong 10 phút. Gọi T là nhiệt độ phòng ở phút thứ t được cho bởi công thức T = - 0,008t^{3} - 0,16t + 28 với t \in \lbrack 1;10\rbrack. Trong thời gian 10 phút kể từ khi hệ thống điều hòa không khí bắt đầu hoạt động, nhiệt độ trong phòng tăng hay giảm?

    Hướng dẫn:

    Xét hàm số T = - 0,008t^{3} - 0,16t +
28 với t \in \lbrack
1;10\rbrack.

    T' = - 0,024t^{2} - 0,16 <
0,\forall t \in \lbrack 1;10\rbrack.

    Suy ra hàm số T nghịch biến trên đoạn \lbrack 1;10\rbrack. Vậy trong thời gian 10 phút kể từ khi hệ thống làm mát bắt đầu hoạt động, nhiệt độ trong phòng giảm.

  • Câu 13: Thông hiểu
    Chọn đáp án đúng

    Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động s(t) = 2 + 196t -
4,9t^{2}, trong đó t \geq
0, t(s)là thời gian chuyển động, s(m)là độ cao so với mặt đất. Sau bao lâu kể từ khi bắn thì viên đạn đạt được độ cao 1962m?

    Hướng dẫn:

    Khi viên đạn đạt được độ cao1962m, ta có phương trình:

    1962 = 2 + 196t - 4,9t^{2} \Leftrightarrow t =
20

    Vậy sau 20s kể từ khi bắn thì viên đạn đạt được độ cao 1962m.

  • Câu 14: Thông hiểu
    Tính vận tốc tức thời của viên đạn

    Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động s(t) = 2 + 196t -
4,9t^{2}, trong đó t \geq
0, t(s)là thời gian chuyển động, s(m)là độ cao so với mặt đất. Tính vận tốc tức thời của viên đạn khi viên đạn đạt được độ cao 1962m.

    Hướng dẫn:

    Vận tốc tức thời của viên đạn tại thời điểm tlà: v(t) =
s'(t) = 196 - 9,8t

    Viên đạn đạt được độ cao1962mvào thời điểm t = 20(s) kể từ lúc bắn, khi đó vận tốc tức thời của viên đạn là:

    v(20) = 196 - 9,8.20 = 0(m/s).

  • Câu 15: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) = \frac{x^{2} - 2x + 6}{-
x - 1}. Các mệnh đề sau đúng hay sai?

    a) Hàm số f(x) có tập xác định là \mathbb{R}. Sai||Đúng

    b) Hàm số f(x) có đạo hàm f'(x) = \frac{x^{2} + 2x - 8}{(x +
1)^{2}}. Sai||Đúng

    c) Hàm số f(x) có giá trị cực đại bằng 2. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 2
\right) có 3 điểm cực trị. Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \frac{x^{2} - 2x + 6}{-
x - 1}. Các mệnh đề sau đúng hay sai?

    a) Hàm số f(x) có tập xác định là \mathbb{R}. Sai||Đúng

    b) Hàm số f(x) có đạo hàm f'(x) = \frac{x^{2} + 2x - 8}{(x +
1)^{2}}. Sai||Đúng

    c) Hàm số f(x) có giá trị cực đại bằng 2. Đúng||Sai

    d) Hàm số y = f\left( x^{2} - 2
\right) có 3 điểm cực trị. Đúng||Sai

    a) Sai.Hàm số f(x) = \frac{x^{2} - 2x +
6}{- x - 1} xác định khi - x - 1
\neq 0 \Leftrightarrow x \neq - 1.

    Do đó hàm số f(x) có tập xác định là \mathbb{R}\backslash\left\{ - 1
\right\}. Suy ra mệnh đề sai.

    b) Sai. Ta có: f'(x) = \frac{\left(
x^{2} - 2x + 6 \right)'( - x - 1) - \left( x^{2} - 2x + 6 \right)( -
x - 1)'}{(x + 1)^{2}} = \frac{- x^{2} - 2x + 8}{(x +
1)^{2}}.

    Suy ra mệnh đề sai.

    c) Đúng. f^{'(x)} = 0 \Leftrightarrow\frac{- x^{2} - 2x + 8}{(x + 1)^{2}} = 0.

    Bảng biến thiên:

    Vậy hàm số f(x) có giá trị cực đại bằng 2.

    Suy ra mệnh đề đúng.

    d) Đúng. Hàm số y = f\left( x^{2} - 2
\right) xác định khi x^{2} - 2 \neq
- 1 \Leftrightarrow x \neq \pm 1

    \Rightarrow Tập xác định D\mathbb{= R}\backslash\left\{ \pm 1
\right\}.

    y' = 2xf'\left( x^{2} - 2
\right).

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
2x = 0 \\
f'\left( x^{2} - 2 \right) = 0
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 2 = 2 \\
x^{2} - 2 = - 4
\end{matrix} \right.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{2} = 4 \\
x^{2} = - 2\ (VN)
\end{matrix} \right.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2;x = - 2
\end{matrix} \right.

    Bảng biến thiên:

    Vậy hàm số y = f\left( x^{2} - 2
\right) có 3 điểm cực trị. Suy ra mệnh đề đúng.

  • Câu 16: Thông hiểu
    Tính thời gian số vi khuẩn đạt max

    Một loại vi khuẩn được tiêm một loại thuốc kích thích sự sinh sản. Sau t phút, số vi khuẩn được xác định theo công thức N(t) = 1000 + 30t^{2} - t^{3}\ (0 \leq t \leq
30). Hỏi sau bao giây thì số vi khuẩn lớn nhất?

    Hướng dẫn:

    Xét hàm số N(t) = 1000 + 30t^{2} - t^{3}\
(0 \leq t \leq 30).

    N'(t) = 60t - 3t^{2}.

    N'(t) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 0 \\
t = 20 \\
\end{matrix} \right..

    Description: A picture containing chartDescription automatically generated

    Với t = 20 giây thì số vi khuẩn lớn nhất.

  • Câu 17: Thông hiểu
    Tìm doanh thu biên

    Doanh thu R (USD) từ việc cho thuê x căn hộ có thể được mô hình hoá bằng hàm số: R = 2x\left( 900 + 32x -
x^{2} \right). Tìm doanh thu biên khi x = 14.

    Hướng dẫn:

    Hàm doanh thu biên là R' = 1800 +
128x - 6x^{2}.

    Ta có doanh thu biên khi x = 14R'(14) = 2416.

  • Câu 18: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} - 3x + 1}{x +
2}\ \ \ (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là D =
\mathbb{R}\backslash\left\{ - 2 \right\}. Đúng||Sai

    b) Đồ thị (C) có tiệm cận ngang y = - 2. Sai||Đúng

    c) Đồ thị (C) có tiệm cận xiên y = x - 5. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị (C) cắt hai trục tọa độ tại điểm A,B. Diện tích tam giác OAB bằng \frac{25}{2}. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{x^{2} - 3x + 1}{x +
2}\ \ \ (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là D =
\mathbb{R}\backslash\left\{ - 2 \right\}. Đúng||Sai

    b) Đồ thị (C) có tiệm cận ngang y = - 2. Sai||Đúng

    c) Đồ thị (C) có tiệm cận xiên y = x - 5. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị (C) cắt hai trục tọa độ tại điểm A,B. Diện tích tam giác OAB bằng \frac{25}{2}. Đúng||Sai

    a) Hàm số xác định khi x + 2 \neq 0
\Leftrightarrow x \neq - 2. Tập xác định D = \mathbb{R}\backslash\left\{ - 2
\right\}.

    Do đó mệnh đề đúng.

    b) Ta có: \lim_{x \rightarrow + \infty}y
= \lim_{x \rightarrow + \infty}\frac{x^{2} - 3x + 1}{x + 2} = +
\infty\lim_{x \rightarrow -
\infty}y = \lim_{x \rightarrow - \infty}\frac{x^{2} - 3x + 1}{x + 2} = -
\infty.

    Suy ra đồ thị hàm số không có tiệm cận ngang. Do đó mệnh đề sai.

    c) Ta có \lim_{x \rightarrow +
\infty}\left\lbrack \frac{x^{2} - 3x + 1}{x + 2} - (x - 5) \right\rbrack
= 0

    \lim_{x \rightarrow - \infty}\left\lbrack
\frac{x^{2} - 3x + 1}{x + 2} - (x - 5) \right\rbrack = 0

    Vậy đồ thị có đường tiệm cận xiên là y =
x - 5. Do đó mệnh đề đúng.

    d) Đường tiệm cận xiên y = x - 5 cắt hai trục tọa độ O\ x,Oy lần lượt tại A(5;0);\ B(0; - 5).

    Tam giác OAB vuông tại O, có

    OA = \left| \overrightarrow{OA} \right| =
\sqrt{5^{2} + 0^{2}} = 5

    OB = \left| \overrightarrow{OB} \right| =
\sqrt{0^{2} + ( - 5)^{2}} = 5.

    Diện tích tam giác OAB bằng: \frac{1}{2}.OA.OB = \frac{1}{2}.5.5 =
\frac{25}{2}. Do đó mệnh đề đúng.

  • Câu 19: Vận dụng
    Tính tốc độ chuyển hóa nồng độ cồn trong máu

    Sau khi uống đồ uống có cồn, nồng độ cồn trong máu tăng lên rồi giảm dần được xác định bằng hàm số C(t) =
1,35te^{- 2902t}, trong đó C(mg/ml) là nồng độ cồn, t(\ h) là thời điểm đo tính từ ngay sau khi uống 15ml đồ uống có cồn.

    (Nguồn: P. Wilkinson et al., Pharmacokinetics of Ethanol after Ora' Administration in the Fasting State, 1977)

    Giả sử một người uống hết nhanh 15ml đồ uống có cồn. Tính tốc độ chuyển hoá nồng độ cồn trong máu của người đó tại thời điểm t = 3 (h) (làm tròn kết quả đến hàng phần triệu).

    Hướng dẫn:

    Ta có: C'(t) = 1,35e^{- 2,802t} -
3,7827te^{- 2,802t}.

    Vậy tốc độ chuyển hoá nồng độ cồn tức thời trong máu của người đó tại thời điểm t = 3 (h) là:

    C'(3) = 1,35e^{- 2,802 \cdot 3} -
3,7827 \cdot 3e^{- 2,802.3} \approx - 0,002235\left( \frac{mg/ml}{h}
\right).

  • Câu 20: Thông hiểu
    Tính gia tốc tức thời của tàu con thoi

    Kính viễn vọng không gian Hubble được triển khai vào ngày 24 tháng 4 năm 1990, bởi tàu con thoi Discovery. Vận tốc của tàu con thoi trong nhiệm vụ này từ khi xuất phát tại t =
0 (s) cho đến khi tên lửa đẩy nhiên liệu rắn bị loại bỏ ở t = 126 (s) được xác định theo phương trình sau:

    v(t) = 0,001302t^{3} - 0,09029t^{2} +
23,61t - 3,083(f/s).

    (Nguồn: James Stewan, Calculus)

    Tính gia tốc tức thời của tàu con thoi trên tại thời điểm t = 100 (s) (làm tròn kết quả đến hàng phần nghìn).

    Hướng dẫn:

    Gia tốc tức thời của tàu con thoi tại thời điểm t (s) là:

    a(t) = v'(t) = 0,003906t^{2} -
0,18058t + 23,61\left( ft/s^{2} \right).

    Gia tốc tức thời của tàu con thoi tại thời điểm t = 100 (s) là:

    a(100) = 0,003906 \cdot 100^{2} -
0,18058 \cdot 100 + 23,61 = 44,612\left( ft/s^{2} \right).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo