Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 5 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Vận dụng
    Tìm hàm chi phí biên

    Giả sử chi phí C(USD)để sản xuất Q máy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Hỏi chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 90 sản phẩm lên 91 sản phẩm bằng bao nhiêu?

    Hướng dẫn:

    Xét \Delta Q là số gia của biến số tại điểm Q.

    Ta có:

    \Delta C = C(Q + \Delta Q) - C(Q)

    = (Q + \Delta Q)^{2} + 80(Q + \Delta Q) + 3500 - Q^{2} - 80Q -3500

    = 2Q.\Delta Q + (\Delta Q)^{2} + 80\Delta
Q.

    Ta thấy: \lim_{\Delta Q \rightarrow
0}\frac{\Delta C}{\Delta Q} = \lim_{\Delta Q \rightarrow 0}(2Q + \Delta
Q + 80) = 2Q + 80.

    Vậy hàm chi phí biên là: C'(Q) = 2Q +
80.

    Ta có:C'(90) = 2.90 + 80 =
260.

    Dựa vào kết quả đó, ta thấy chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 90 sản phẩm lên 91 sản phẩm là 260\
USD.

  • Câu 2: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = log_{2}\left( x^{2} - 4x +
5 \right) có đồ thị là (C). Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định là D\mathbb{=
R}. Đúng||Sai

    b) Hàm số đồng biến trên \mathbb{R}. Sai||Đúng

    c) Hàm số đạt cực tiểu tại x =
2. Đúng||Sai

    d) Giả sử đồ thị hàm số (C) cắt đường thẳng (d):y = 1 tại hai điểm A,\ \ B và có điểm cực trị là M. Bán kính đường tròn ngoại tiếp tam giác MAB bằng 2. Sai||Đúng

    Đáp án là:

    Cho hàm số y = log_{2}\left( x^{2} - 4x +
5 \right) có đồ thị là (C). Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định là D\mathbb{=
R}. Đúng||Sai

    b) Hàm số đồng biến trên \mathbb{R}. Sai||Đúng

    c) Hàm số đạt cực tiểu tại x =
2. Đúng||Sai

    d) Giả sử đồ thị hàm số (C) cắt đường thẳng (d):y = 1 tại hai điểm A,\ \ B và có điểm cực trị là M. Bán kính đường tròn ngoại tiếp tam giác MAB bằng 2. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    a) Điều kiện xác định: x^{2} - 4x + 5
> 0 .

    Vậy hàm số có tập xác định là D\mathbb{=
R}.

    b) Ta có y' = \frac{2x - 4}{\left(
x^{2} - 4x + 5 \right)ln2}.

    Do y' > 0 \Leftrightarrow x >
2 nên hàm số đồng biến trên khoảng (2\ ;\  + \infty).

    c) Ta có bảng biến thiên

    Suy ra hàm số đạt cực tiểu tại x =
2.

    d) Đồ thị hàm số (C) có điểm cực tiểu là M(2\ ;\ 0) và cắt đường thẳng (d):y = 1 tại hai điểm A\left( x_{1};1 \right),\ \ B\left( x_{2};1
\right) với x_{1},\ x_{2} là nghiệm của phương trình:

    log_{2}\left( x^{2} - 4x + 5 \right) = 1
\Leftrightarrow x^{2} - 4x + 5 = 2

    \Leftrightarrow x^{2} - 4x + 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 3
\end{matrix} \right.

    \Rightarrow A(1;1),\ \
B(3;1).

    Khi đó \overrightarrow{MA} = ( - 1\ ;\
1),\ \overrightarrow{MB} = (1\ ;\ 1) \Rightarrow
\overrightarrow{MA}.\overrightarrow{MB} = 0.

    Suy ra tam giác MAB vuông tại M.

    Do đó, bán kính đường tròn ngoại tiếp tam giác MABR =
\frac{AB}{2} = 1.

  • Câu 3: Thông hiểu
    Tính thời gian số vi khuẩn đạt max

    Một loại vi khuẩn được tiêm một loại thuốc kích thích sự sinh sản. Sau t phút, số vi khuẩn được xác định theo công thức N(t) = 1000 + 30t^{2} - t^{3}\ (0 \leq t \leq
30). Hỏi sau bao giây thì số vi khuẩn lớn nhất?

    Hướng dẫn:

    Xét hàm số N(t) = 1000 + 30t^{2} - t^{3}\
(0 \leq t \leq 30).

    N'(t) = 60t - 3t^{2}.

    N'(t) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 0 \\
t = 20 \\
\end{matrix} \right..

    Description: A picture containing chartDescription automatically generated

    Với t = 20 giây thì số vi khuẩn lớn nhất.

  • Câu 4: Thông hiểu
    Tìm hàm chi phí biên

    Giả sử chi phí C(USD)để sản xuất Qmáy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1sản phẩm. Giả sử chi phí biên được xác định bởi hàm số C'(Q). Tìm hàm chi phí biên.

    Hướng dẫn:

    Xét \Delta Q là số gia của biến số tại điểm Q.

    Ta có:

    \Delta C = C(Q + \Delta Q) - C(Q)

    = (Q + \Delta Q)^{2} + 80(Q + \Delta Q) + 3500 - Q^{2} - 80Q -3500

    = 2Q.\Delta Q + (\Delta Q)^{2} + 80\Delta
Q.

    Ta thấy: \lim_{\Delta Q \rightarrow
0}\frac{\Delta C}{\Delta Q} = \lim_{\Delta Q \rightarrow 0}(2Q + \Delta
Q + 80) = 2Q + 80.

    Vậy hàm chi phí biên là: C'(Q) = 2Q +
80.

  • Câu 5: Thông hiểu
    Chọn đáp án đúng

    Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động s(t) = 2 + 196t -
4,9t^{2}, trong đó t \geq
0, t(s) là thời gian chuyển động, s(m) là độ cao so với mặt đất. Tại thời điểm viên đạn đạt vận tốc tức thời bằng 98\ m/sthì viên đạn đang ở độ cao bao nhiêu mét so với mặt đất?

    Hướng dẫn:

    Viên đạn đạt vận tốc tức thời bằng 98\
m/s ta có phương trình: 

    v(t) = 196 -
9,8t = 98 \Leftrightarrow t = 10

    Khi đó viên đạn đang ở độ cao là:

    s(10) =
2 + 196.10 - 4,9.10^{2} = 1472(m).

  • Câu 6: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{2x^{2} - x +
4}{x - 1} có đồ thị (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là \mathbb{R}\backslash\{ 1\}. Đúng||Sai

    b) Tiệm cận xiên của đồ thị (C)là đường thẳng y = 2x + 1. Đúng||Sai

    c) Điểm I(1;2) là tâm đối xứng của đồ thị(C). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{2x^{2} - x +
4}{x - 1} có đồ thị (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là \mathbb{R}\backslash\{ 1\}. Đúng||Sai

    b) Tiệm cận xiên của đồ thị (C)là đường thẳng y = 2x + 1. Đúng||Sai

    c) Điểm I(1;2) là tâm đối xứng của đồ thị(C). Sai||Đúng

    a) Tập xác định của hàm số là \mathbb{R}\backslash\{ 1\}suy ra mệnh đề đúng.

    b) Ta cóy = f(x) = \frac{2x^{2} - x +
4}{x - 1} = 2x + 1 + \frac{5}{x - 1}

    \lim_{x \rightarrow +
\infty}\left\lbrack y - (2x + 1) \right\rbrack = \lim_{x \rightarrow +
\infty}\frac{5}{x - 1} = 0

    Do đó đường thẳng y = 2x + 1là tiệm cận xiên của đồ thị suy ra mệnh đề đúng.

    c) Đồ thị hàm số nhận x = 1 làm tiệm cận đứng.

    Tọa độ giao điểm của hai đường tiệm cận là I(1;3). Do đó I(1;3)là tâm đối xứng của (C) suy ra mệnh đề sai.

  • Câu 7: Thông hiểu
    Chọn kết luận đúng

    Để điều chỉnh nhiệt độ trong phòng, một hệ thống điều hòa không khí được phép hoạt động trong 10 phút. Gọi T là nhiệt độ phòng ở phút thứ t được cho bởi công thức T = - 0,008t^{3} - 0,16t + 28 với t \in \lbrack 1;10\rbrack. Trong thời gian 10 phút kể từ khi hệ thống điều hòa không khí bắt đầu hoạt động, nhiệt độ trong phòng tăng hay giảm?

    Hướng dẫn:

    Xét hàm số T = - 0,008t^{3} - 0,16t +
28 với t \in \lbrack
1;10\rbrack.

    T' = - 0,024t^{2} - 0,16 <
0,\forall t \in \lbrack 1;10\rbrack.

    Suy ra hàm số T nghịch biến trên đoạn \lbrack 1;10\rbrack. Vậy trong thời gian 10 phút kể từ khi hệ thống làm mát bắt đầu hoạt động, nhiệt độ trong phòng giảm.

  • Câu 8: Thông hiểu
    Xác định vận tốc của vật khi chạm đất

    Một vật được phóng theo phương thẳng đứng lên trên từ mặt đất với vận tốc ban đầu là 19,6m/s thì độ cao h của nó (tính bằng m) sau t giây được cho bởi công thức h = 19,6t - 4,9t^{2}. Tìm vận tốc của vật khi nó chạm đất.

    Hướng dẫn:

    Tại thời điểm mà vật đạt độ cao bằng 0, ta có: 0 = 19,6t - 4,9t^{2} \Leftrightarrow 0 = t(19,6 -
4,9t) \Leftrightarrow \left\lbrack \begin{matrix}
t = 0 \\
t = 4 \\
\end{matrix} \right.

    Khi t = 4 (thời điểm vật chạm đất), ta có:19,6 - 9,8(4) = -
19,6.

    Vậy vận tốc của vật khi nó chạm đất là 19,6 m/s.

  • Câu 9: Thông hiểu
    Tính vận tốc cực đại của hại

    Chuyển động của một hạt trên một dây rung được cho bởi công thức s(t) = 10 + \sqrt{2}\sin\left( 4\pi t +
\frac{\pi}{6} \right), trong đó s tính bằng centimét và t tính bằng giây. Vận tốc của hạt sau t giây là v(t). Vận tốc cực đại của hạt là bao nhiêu (làm tròn kết quả đến chữ số thập thứ nhất)?

    Hướng dẫn:

    Vận tốc của hạt sau t giây là: v(t) = s'(t) = 4\pi\sqrt{2}\cos\left(
4\pi t + \frac{\pi}{6} \right).

    Vận tốc cực đại của hạt là: v_{\max} =
4\pi\sqrt{2} \approx 17,8m/s, đạt được khi

    \left| \cos\left( 4\pi t + \frac{\pi}{6} \right)
\right| = 1 hay t = \frac{5}{24} +
\frac{k}{4},k\mathbb{\in N}.

  • Câu 10: Thông hiểu
    Tìm vận tốc tức

    Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát, có phương trình chuyển động x
= 4cos\left( \pi t - \frac{2\pi}{3} \right) + 3, trong đó \ t tính bằng giây và x tính bằng centimet. Vận tốc tức thời và gia tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s) lần lượt là:

    Hướng dẫn:

    Ta có:

    v = x' = - 4\pi\sin\left( \pi t -
\frac{2\pi}{3} \right)

    a = v' = - 4\pi^{2}\cos\left( \pi t
- \frac{2\pi}{3} \right)

    a) Vận tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s)là:

    v = - 4\pi\sin\left( \pi.3 -
\frac{2\pi}{3} \right) = - 2\sqrt{3}\pi(cm/s)

    Gia tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s)là:

    a = - 4\pi^{2}\cos\left( 3\pi -
\frac{2\pi}{3} \right) = - 2\pi^{2}\left( cm/s^{2} \right)

  • Câu 11: Thông hiểu
    Xác định hàm chi phí biên

    Giả sử chi phí để sản xuất x đơn vị hàng hóa nào đó là C(x) = 27900 + 100x -
1,5x^{2} + 0,025x^{3}. Khi đó hàm chi phí biên tương ứng là

    Hướng dẫn:

    Hàm chi phí biên tương ứng là: C'(x)
= 100 - 3x + 0,075x^{2}.

  • Câu 12: Thông hiểu
    Chọn đáp án chính xác nhất

    Giả sử một công ty du lịch bán tour với giá là x/khách thì doanh thu sẽ được biểu diễn qua hàm số f(x) = - 200x^{2} +
550x. Công ty phải bán giá tour cho một khách là bao nhiêu để doanh thu từ tour xuyên Việt là lớn nhất.

    Hướng dẫn:

    Doanh thu là f(x) = - 200x^{2} +
550x.

    Ta có f'(x) = - 400x + 550, tính được f'(x) = 0 \Leftrightarrow x =
\frac{11}{8}.

    Bảng biến thiên

    A math equations with numbers and arrowsDescription automatically generated with medium confidence

    Dựa vào bảng biến thiên ta thấy f(x) đạt giá trị lớn nhất khi x = \frac{11}{8} = 1,375

    Vậy công ty cần bán tour với giá 1,38 triệu đồng/khách thì doanh thu sẽ cao nhất.

  • Câu 13: Thông hiểu
    Tính vận tốc cực đại

    Chuyển động của một hạt trên một dây rung được cho bởi s(t) = 12 + 0,5sin(4\pi t), trong đó s tính bằng centimét và t tính bằng giây. Tính vận tốc của hạt sau t giây. Vận tốc cực đại của hạt là bao nhiêu?

    Hướng dẫn:

    Đạo hàm của hàm s(t) theo thời gian t:

    v(t) = \frac{ds}{dt} = 2\pi cos(4\pi
t)4

    Ta thấy rằng hàm v(t) là một hàm cosin với biên độ bằng 2\pi, do đó giá trị lớn nhất của hàm này là 2\pi.

    Vậy vận tốc cực đại của hạt là 2\pi
cm/s.

  • Câu 14: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{x^{2} + 3x}{x
- 1}.. Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số f(x) đồng biến trên khoảng ( - \infty;1). Sai||Đúng

    b) Cực đại của hàm số f(x)1. Đúng||Sai

    c) Hàm số f(x) có ba điểm cực trị. Sai||Đúng

    d) Hàm số f(x) nghịch biến trên khoảng ( - 1;3). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x^{2} + 3x}{x
- 1}.. Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số f(x) đồng biến trên khoảng ( - \infty;1). Sai||Đúng

    b) Cực đại của hàm số f(x)1. Đúng||Sai

    c) Hàm số f(x) có ba điểm cực trị. Sai||Đúng

    d) Hàm số f(x) nghịch biến trên khoảng ( - 1;3). Sai||Đúng

    a) Sai

    b) Đúng

    c) Sai

    d) Sai

    Tập xác định: D\mathbb{=
R}\backslash\left\{ 1 \right\}.

    y' = f'(x) = \frac{x^{2} - 2x -
3}{(x - 1)^{2}}.

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3
\end{matrix} \right..

    Bảng biến thiên:

    A graph with arrows and numbersDescription automatically generated with medium confidence

    a) Từ bảng biến thiên suy ra mệnh đề sai.

    b) Mệnh đề đúng.

    c) Hàm số chỉ có hai điểm cực trị là x =
- 1x = 3. Vậy mệnh đề sai.

    d) Do hàm số không xác định tại x =
1 thuộc ( - 1;3) nên mệnh đề sai.

  • Câu 15: Thông hiểu
    Tính vận tốc tức thời của chất điểm

    Một chất điểm chuyển động của phương trình s(t) = 6sin\left( 3t + \frac{\pi}{4}
\right) trong đó t > 0, ttính bằng giây, s(t) tính bằng centimét. Tính vận tốc tức thời của chất điểm tại thời điểm t =
\frac{\pi}{6}(s).

    Hướng dẫn:

    Vận tốc tức thời của chất điểm tại thời điểm t(s)là: v(t)
= s'(t) = 18cos\left( 3t + \frac{\pi}{4} \right).

    Vậy vận tốc tức thời của chất điểm tại thời điểm t = \frac{\pi}{6}(s)là: v\left( \frac{\pi}{6} \right) = 18cos\left(
3.\frac{\pi}{6} + \frac{\pi}{4} \right) = - 9\sqrt{2}(cm/s)

  • Câu 16: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số f(x) có đạo hàm f'(x) = - x(x - 2)^{2}(x - 3),\forall x\mathbb{\in R}. Xét tính đúng sai của các nhận định dưới đây:

    a) Hàm số có ba điểm cực trị. Sai||Đúng

    b) \min_{x \in ( - \infty;2)}f(x) =
f(0). Đúng||Sai

    c) \max_{x \in \lbrack 0;4\rbrack}f(x) =
f(3). Đúng||Sai

    d) \max_{}f\left( e^{x} + e^{- x} \right)
= f(3). Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) có đạo hàm f'(x) = - x(x - 2)^{2}(x - 3),\forall x\mathbb{\in R}. Xét tính đúng sai của các nhận định dưới đây:

    a) Hàm số có ba điểm cực trị. Sai||Đúng

    b) \min_{x \in ( - \infty;2)}f(x) =
f(0). Đúng||Sai

    c) \max_{x \in \lbrack 0;4\rbrack}f(x) =
f(3). Đúng||Sai

    d) \max_{}f\left( e^{x} + e^{- x} \right)
= f(3). Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Đúng

    Ta có f'(x) = - x(x - 2)^{2}(x - 3) =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
x = 3
\end{matrix} \right..

    BBT:

    Từ bảng biến thiên ta thấy giá trị lớn nhất của hàm số f(x) trên đoạn \lbrack 0\ ;\ 4\rbrackf(3).

    d) Ta có: e^{x} + e^{- x} \geq
2\sqrt{e^{x}.e^{- x}} = 2\overset{}{\rightarrow}\max_{}f\left( e^{x} +
e^{- x} \right) = f(3).

  • Câu 17: Vận dụng
    Chọn kết luận đúng

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250\
km so với bể mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính (gẩn đúng) bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t (giây) kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Tại thời điểm t = 25 (giây), vận tốc tức thời của con tàu vẫn giảm hay đang tăng trở lại?

    Hướng dẫn:

    Vận tốc tức thời của con tàu ở thời điểm t, v(t), là đạo hàm của hàm số h(t) theo thời gian t. Hàm số h(t) đã cho là: h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250

    Để tìm v(t), ta lấy đạo hàm của h(t): v(t) = h^{'}(t) = - 0,03t^{2} + 2,2t -
30

    Vậy hàm số v(t)biểu diễn vận tốc tức thời của con tàu ở thời điểm t là:

    v(t) = - 0,03t^{2} + 2,2t -
30

    Để xác định liệu vận tốc của con tàu tại thời điểm t = 25 giây có đang tăng hay giảm, chúng ta cần xem xét đạo hàm bậc hai của hàm số h(t), tức là gia tốc của con tàu.

    Gia tốc a(t)là đạo hàm của vận tốc v(t), tức là đạo hàm bậc hai của h(t):

    a(t) = v^{'}(t) = - 0,06t +
2,2

    Tại thời điểm t = 25 giây, gia tốc của con tàu là: a(25) = - 0,06.25 + 2,2
= - 1,3\ km/s^{2}

    Vi gia tốc a(25) < 0, nên vận tốc của con tàu tại thời điểm t =
25 giây đang giảm

  • Câu 18: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{2x^{2} + 5x}{x +
3} có đồ thị (C). Các khẳng định sau đúng hay sai?

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ 3 \right\}. Sai||Đúng

    b) Hàm số có hai cực trị có tổng hoành độ của cực trị bằng - 6. Đúng||Sai

    c) Đồ thị hàm số có tiệm cận ngang y = -
3. Sai||Đúng

    d) Khoảng cách từ điểm M(2;1) đến đường tiệm cận xiên của đồ thị (C) bằng \frac{4\sqrt{5}}{5}. Sai||Đúng

    Đáp án là:

    Cho hàm số y = \frac{2x^{2} + 5x}{x +
3} có đồ thị (C). Các khẳng định sau đúng hay sai?

    a) Tập xác định D\mathbb{=
R}\backslash\left\{ 3 \right\}. Sai||Đúng

    b) Hàm số có hai cực trị có tổng hoành độ của cực trị bằng - 6. Đúng||Sai

    c) Đồ thị hàm số có tiệm cận ngang y = -
3. Sai||Đúng

    d) Khoảng cách từ điểm M(2;1) đến đường tiệm cận xiên của đồ thị (C) bằng \frac{4\sqrt{5}}{5}. Sai||Đúng

    a) Sai: Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 \right\}.

    b) Đúng: Ta có y = \frac{2x^{2} + 5x}{x +
3} = 2x - 1 + \frac{3}{x + 3}.

    y' = 2 - \frac{3}{(x +
3)^{2}}

    y' = 0 \Leftrightarrow 2 -
\frac{3}{(x + 3)^{2}} = 0

    \Leftrightarrow \frac{2x^{2} + 12x + 15}{(x +
3)^{2}} = 0

    \Leftrightarrow 2x^{2}
+ 12x + 15 = 0 có hai nghiệm phân biệt.

    Vậy hàm số có hai cực trị có tổng hoành độ của cực trị bằng \frac{- 12}{2} = - 6.

    c) Sai: \lim_{x \rightarrow +
\infty}\frac{2x^{2} + 5x}{x + 3} = + \infty,\ \ \lim_{x \rightarrow -
\infty}\frac{2x^{2} + 5x}{x + 3} = - \infty, nên đồ thị hàm số không có tiệm cận ngang.

    d) Sai:

    Ta có \lim_{x \rightarrow +
\infty}\left\lbrack y - (2x - 1) \right\rbrack = \lim_{x \rightarrow +
\infty}\frac{3}{x + 3} = 0; \lim_{x
\rightarrow - \infty}\left\lbrack y - (2x - 1) \right\rbrack = \lim_{x
\rightarrow - \infty}\frac{3}{x + 3} = 0.

    Đồ thị hàm số có tiệm cận xiên là y = 2x
- 1 \Leftrightarrow 2x - y - 1 = 0\ \ \ (\Delta).

    Khoảng cách từ điểm M(2;1) đến \Deltad(M,\Delta) = \frac{|2.2 - 1 - 1|}{\sqrt{2^{2} + (
- 1)^{2}}} = \frac{2\sqrt{5}}{5}.

  • Câu 19: Thông hiểu
    Tìm doanh thu biên

    Doanh thu R (USD) từ việc cho thuê x căn hộ có thể được mô hình hoá bằng hàm số: R = 2x\left( 900 + 32x -
x^{2} \right). Tìm doanh thu biên khi x = 14.

    Hướng dẫn:

    Hàm doanh thu biên là R' = 1800 +
128x - 6x^{2}.

    Ta có doanh thu biên khi x = 14R'(14) = 2416.

  • Câu 20: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} + 2x + 5}{x +
1}. Các khẳng định dưới đây đúng hay sai?

    a) y' = \frac{x^{2} + 2x - 3}{(x +
1)^{2}}. Đúng||Sai

    b) Phương trình đường thẳng đi qua hai điểm cực trị của hàm số là y = 2x - 2. Sai||Đúng

    c) Đồ thị hàm số có đường tiệm cận xiên là y = x + 1. Đúng||Sai

    d) Đồ thị của hàm số có hình vẽ như sau

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{x^{2} + 2x + 5}{x +
1}. Các khẳng định dưới đây đúng hay sai?

    a) y' = \frac{x^{2} + 2x - 3}{(x +
1)^{2}}. Đúng||Sai

    b) Phương trình đường thẳng đi qua hai điểm cực trị của hàm số là y = 2x - 2. Sai||Đúng

    c) Đồ thị hàm số có đường tiệm cận xiên là y = x + 1. Đúng||Sai

    d) Đồ thị của hàm số có hình vẽ như sau

    Đúng||Sai

    a) Đúng

    b) Sai

    c) Đúng

    d) Đúng

    a) ĐÚNG

    y' = \frac{\left( x^{2} + 2x + 5\right)'(x + 1) - (x + 1)'\left( x^{2} + 2x + 5 \right)}{(x +1)^{2}}

    = \frac{(2x + 2)(x + 1) - \left( x^{2} + 2x + 5 \right)}{(x +1)^{2}}= \frac{x^{2} + 2x - 3}{(x + 1)^{2}}.

    b) SAI

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 3
\end{matrix} \right.\  \Rightarrow Hàm số có hai điểm cực trị là A(1;4), B( - 3; - 4).

    Gọi phương trình đường thẳng qua hai điểm cực trị có dạng y = ax + b.

    Khi đó ta có hệ phương trình \left\{
\begin{matrix}
a + b = 4 \\
- 3a + b = - 4
\end{matrix} \right.\  \Leftrightarrow \left\{ \begin{matrix}
a = 2 \\
b = 2
\end{matrix} \right..

    Phương trình đường thẳng ABy = 2x + 2.

    c) ĐÚNG

    y = x + 1 + \frac{4}{x + 1}

    \lim_{x \rightarrow \pm \infty}\left( y -
(x + 1) \right) = \lim_{x \rightarrow \pm \infty}\frac{4}{x + 1} = 0
\Rightarrow y = x + 1 là đường tiệm cận xiên của đồ thị hàm số.

    d) ĐÚNG

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo