Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 5 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{2x^{2} - x +
4}{x - 1} có đồ thị (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là \mathbb{R}\backslash\{ 1\}. Đúng||Sai

    b) Tiệm cận xiên của đồ thị (C)là đường thẳng y = 2x + 1. Đúng||Sai

    c) Điểm I(1;2) là tâm đối xứng của đồ thị(C). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{2x^{2} - x +
4}{x - 1} có đồ thị (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là \mathbb{R}\backslash\{ 1\}. Đúng||Sai

    b) Tiệm cận xiên của đồ thị (C)là đường thẳng y = 2x + 1. Đúng||Sai

    c) Điểm I(1;2) là tâm đối xứng của đồ thị(C). Sai||Đúng

    a) Tập xác định của hàm số là \mathbb{R}\backslash\{ 1\}suy ra mệnh đề đúng.

    b) Ta cóy = f(x) = \frac{2x^{2} - x +
4}{x - 1} = 2x + 1 + \frac{5}{x - 1}

    \lim_{x \rightarrow +
\infty}\left\lbrack y - (2x + 1) \right\rbrack = \lim_{x \rightarrow +
\infty}\frac{5}{x - 1} = 0

    Do đó đường thẳng y = 2x + 1là tiệm cận xiên của đồ thị suy ra mệnh đề đúng.

    c) Đồ thị hàm số nhận x = 1 làm tiệm cận đứng.

    Tọa độ giao điểm của hai đường tiệm cận là I(1;3). Do đó I(1;3)là tâm đối xứng của (C) suy ra mệnh đề sai.

  • Câu 2: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = log_{2}\left( x^{2}
- 3x + 2 \right). Xét tính đúng sai của các nhận định sau:

    a) Hàm số có giá trị lớn nhất trên khoảng (2; + \infty). Sai||Đúng

    b) Hàm số luôn có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn \lbrack - 1;0\rbrack. Đúng||Sai

    c) Trên đoạn \lbrack -
1;0\rbrack hàm số có giá trị nhỏ nhất bằng 1. Đúng||Sai

    d) Gọi m_{0} là giá trị của tham số m để hàm số g(x) = 2^{f(x)} + m có giá trị nhỏ nhất trên đoạn \lbrack 3;4\rbrack bằng - 3. Khi đó m_{0} \in ( - 5;0). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = log_{2}\left( x^{2}
- 3x + 2 \right). Xét tính đúng sai của các nhận định sau:

    a) Hàm số có giá trị lớn nhất trên khoảng (2; + \infty). Sai||Đúng

    b) Hàm số luôn có giá trị lớn nhất và giá trị nhỏ nhất trên đoạn \lbrack - 1;0\rbrack. Đúng||Sai

    c) Trên đoạn \lbrack -
1;0\rbrack hàm số có giá trị nhỏ nhất bằng 1. Đúng||Sai

    d) Gọi m_{0} là giá trị của tham số m để hàm số g(x) = 2^{f(x)} + m có giá trị nhỏ nhất trên đoạn \lbrack 3;4\rbrack bằng - 3. Khi đó m_{0} \in ( - 5;0). Sai||Đúng

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) SAI

    Hàm số có tập xác định D = ( - \infty;1)
\cup (2; + \infty).

    Ta có \lim_{x \rightarrow + \infty}f(x) =
+ \infty.

    b) ĐÚNG

    \lbrack - 1;0\rbrack \subset
D và hàm số liên tục trên \lbrack -
1;0\rbrack nên luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn này.

    c) ĐÚNG

    f(x) = log_{2}\left( x^{2} - 3x + 2
\right) \Rightarrow f'(x) = \frac{2x - 3}{\left( x^{2} - 3x + 2
\right)ln2}

    f'(x) = 0 \Leftrightarrow x = -
\frac{3}{2} \notin \lbrack - 1;0\rbrack.

    \begin{matrix}
f( - 1) = log_{2}6 \\
f(0) = 1 < log_{2}6
\end{matrix}

    Vậy \min_{\lbrack - 1;0\rbrack}f(x) =
1.

    d) SAI

    TXĐ D = ( - \infty;1) \cup (2; +
\infty) chứa \lbrack
3;4\rbrack.

    g(x) = 2^{f(x)} + m = 2^{log_{2}\left(
x^{2} - 3x + 2 \right)} + m = x^{2} - 3x + 2 + m.

    g'(x) = 2x - 3,g'(x) = 0
\Leftrightarrow x = \frac{3}{2} \notin \lbrack 3;4\rbrack. Mà hàm số đồng biến trên \lbrack
3;4\rbrack nên \min_{\lbrack
0;1\rbrack}g(x) = g(3) = 2 + m.

    Theo đề ta có 2 + m = - 3 \Leftrightarrow
m = - 5

    Vậy m_{0} = - 5 \in ( - 5;0) là sai.

  • Câu 3: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} - 3x + 1}{x +
2}\ \ \ (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là D =
\mathbb{R}\backslash\left\{ - 2 \right\}. Đúng||Sai

    b) Đồ thị (C) có tiệm cận ngang y = - 2. Sai||Đúng

    c) Đồ thị (C) có tiệm cận xiên y = x - 5. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị (C) cắt hai trục tọa độ tại điểm A,B. Diện tích tam giác OAB bằng \frac{25}{2}. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{x^{2} - 3x + 1}{x +
2}\ \ \ (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là D =
\mathbb{R}\backslash\left\{ - 2 \right\}. Đúng||Sai

    b) Đồ thị (C) có tiệm cận ngang y = - 2. Sai||Đúng

    c) Đồ thị (C) có tiệm cận xiên y = x - 5. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị (C) cắt hai trục tọa độ tại điểm A,B. Diện tích tam giác OAB bằng \frac{25}{2}. Đúng||Sai

    a) Hàm số xác định khi x + 2 \neq 0
\Leftrightarrow x \neq - 2. Tập xác định D = \mathbb{R}\backslash\left\{ - 2
\right\}.

    Do đó mệnh đề đúng.

    b) Ta có: \lim_{x \rightarrow + \infty}y
= \lim_{x \rightarrow + \infty}\frac{x^{2} - 3x + 1}{x + 2} = +
\infty\lim_{x \rightarrow -
\infty}y = \lim_{x \rightarrow - \infty}\frac{x^{2} - 3x + 1}{x + 2} = -
\infty.

    Suy ra đồ thị hàm số không có tiệm cận ngang. Do đó mệnh đề sai.

    c) Ta có \lim_{x \rightarrow +
\infty}\left\lbrack \frac{x^{2} - 3x + 1}{x + 2} - (x - 5) \right\rbrack
= 0

    \lim_{x \rightarrow - \infty}\left\lbrack
\frac{x^{2} - 3x + 1}{x + 2} - (x - 5) \right\rbrack = 0

    Vậy đồ thị có đường tiệm cận xiên là y =
x - 5. Do đó mệnh đề đúng.

    d) Đường tiệm cận xiên y = x - 5 cắt hai trục tọa độ O\ x,Oy lần lượt tại A(5;0);\ B(0; - 5).

    Tam giác OAB vuông tại O, có

    OA = \left| \overrightarrow{OA} \right| =
\sqrt{5^{2} + 0^{2}} = 5

    OB = \left| \overrightarrow{OB} \right| =
\sqrt{0^{2} + ( - 5)^{2}} = 5.

    Diện tích tam giác OAB bằng: \frac{1}{2}.OA.OB = \frac{1}{2}.5.5 =
\frac{25}{2}. Do đó mệnh đề đúng.

  • Câu 4: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x^{3} - 3x + 2. Khi đó các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x^{3} - 3x + 2. Khi đó các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) SAI vì Tập xác định của hàm số đã cho là \mathbb{R}.

    b) ĐÚNG. Thay x =
0 ta được y = 2.

    c) SAI. Ta có y' =
3x^{2} - 3. Ta thấy y'(0) = - 3
\neq 0. Suy ra hàm số không đạt cực trị tại điểm x = 0.

    d) ĐÚNG. Ta có y' =
3x^{2} - 3. Suy ra y' = 0
\Leftrightarrow x = 1\ (TM);x = - 1\ (KTM).

    y(0) = 2;y(2) = 4;y(1) = 0. Vậy giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4.

  • Câu 5: Thông hiểu
    Tính vận tốc tức thời của viên đạn

    Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động s(t) = 2 + 196t -
4,9t^{2}, trong đó t \geq
0, t(s)là thời gian chuyển động, s(m)là độ cao so với mặt đất. Tính vận tốc tức thời của viên đạn khi viên đạn đạt được độ cao 1962m.

    Hướng dẫn:

    Vận tốc tức thời của viên đạn tại thời điểm tlà: v(t) =
s'(t) = 196 - 9,8t

    Viên đạn đạt được độ cao1962mvào thời điểm t = 20(s) kể từ lúc bắn, khi đó vận tốc tức thời của viên đạn là:

    v(20) = 196 - 9,8.20 = 0(m/s).

  • Câu 6: Thông hiểu
    Chọn kết luận đúng

    Để điều chỉnh nhiệt độ trong phòng, một hệ thống điều hòa không khí được phép hoạt động trong 10 phút. Gọi T là nhiệt độ phòng ở phút thứ t được cho bởi công thức T = - 0,008t^{3} - 0,16t + 28 với t \in \lbrack 1;10\rbrack. Trong thời gian 10 phút kể từ khi hệ thống điều hòa không khí bắt đầu hoạt động, nhiệt độ trong phòng tăng hay giảm?

    Hướng dẫn:

    Xét hàm số T = - 0,008t^{3} - 0,16t +
28 với t \in \lbrack
1;10\rbrack.

    T' = - 0,024t^{2} - 0,16 <
0,\forall t \in \lbrack 1;10\rbrack.

    Suy ra hàm số T nghịch biến trên đoạn \lbrack 1;10\rbrack. Vậy trong thời gian 10 phút kể từ khi hệ thống làm mát bắt đầu hoạt động, nhiệt độ trong phòng giảm.

  • Câu 7: Vận dụng
    Chọn đáp án đúng

    Số dân của một thị trấn sau tnăm kể từ đầu năm 2020 được tính bởi công thức f(t) = t + \frac{9}{t + 1},\ f(t) được tính bằng vạn người. Xem f(t)là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) và đạo hàm của hàm số f(t) biểu thị tốc độ tăng dân số của thị trấn. Trong khoảng thời gian nào dưới đây thì dân số của thị trấn này giảm?

    Hướng dẫn:

    Tốc độ tăng dân số của thị trấn là f'(t) = 1 - \frac{9}{(t + 1)^{2}}

    Ta cần tìm t \geq 0 sao cho f'(t) = 1 - \frac{9}{(t + 1)^{2}} \leq
0.

    Ta có f'(t) \leq 0 \Leftrightarrow
t^{2} + 2t - 8 \leq 0 \Leftrightarrow - 4 \leq t \leq 2

    Kết hợp với điều kiện t \geq 0 ta có 0 \leq t \leq 2.

    Do đó dân số của thị trấn giảm trong khoảng thời gian từ đầu năm 2020 đến hết năm 2021.

  • Câu 8: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{x^{2} + 3x}{x
- 1}.. Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số f(x) đồng biến trên khoảng ( - \infty;1). Sai||Đúng

    b) Cực đại của hàm số f(x)1. Đúng||Sai

    c) Hàm số f(x) có ba điểm cực trị. Sai||Đúng

    d) Hàm số f(x) nghịch biến trên khoảng ( - 1;3). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x^{2} + 3x}{x
- 1}.. Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số f(x) đồng biến trên khoảng ( - \infty;1). Sai||Đúng

    b) Cực đại của hàm số f(x)1. Đúng||Sai

    c) Hàm số f(x) có ba điểm cực trị. Sai||Đúng

    d) Hàm số f(x) nghịch biến trên khoảng ( - 1;3). Sai||Đúng

    a) Sai

    b) Đúng

    c) Sai

    d) Sai

    Tập xác định: D\mathbb{=
R}\backslash\left\{ 1 \right\}.

    y' = f'(x) = \frac{x^{2} - 2x -
3}{(x - 1)^{2}}.

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3
\end{matrix} \right..

    Bảng biến thiên:

    A graph with arrows and numbersDescription automatically generated with medium confidence

    a) Từ bảng biến thiên suy ra mệnh đề sai.

    b) Mệnh đề đúng.

    c) Hàm số chỉ có hai điểm cực trị là x =
- 1x = 3. Vậy mệnh đề sai.

    d) Do hàm số không xác định tại x =
1 thuộc ( - 1;3) nên mệnh đề sai.

  • Câu 9: Thông hiểu
    Viết biểu thức tính L(x) theo x

    Một hộ làm nghề dệt vải lụa tơ tằm sản xuất mỗi ngày được xmét vải lụa 1 \leq x \leq 18.Tổng chi phí sản xuất xmét vải lụa, tính bằng nghìn đồng, cho bởi hàm chi phí:

    C(x) = x^{3} - 6x^{2} + 20x +
500

    Giả sử hộ làm nghề dệt này bán hết sản phẩm mỗi ngày với giá 320 nghìn đồng/mét. Gọi L(x)là lợi nhuận thu được khi bán xmét vải lụa. Hãy viết biểu thức tính L(x)theo\
x?

    Hướng dẫn:

    Khi bán x mét vải lụa

    Số tiền thu được là: B(x) = 320x .

    Lợi nhuận thu được là: L(x) = B(x) - C(x)
= - x^{3} + 6x^{2} + 300x - 500.

  • Câu 10: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ sau

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;3).Đúng||Sai

    b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số y = f(x) là 2. Sai||Đúng

    c) Hàm số y = f(x)có hai cực trị trái dấu. Sai||Đúng

    d) Phương trình đường thẳng qua 2 điểm cực trị của đồ thị hàm số y = f(x)d:y = - 3x. Đúng||Sai

    Đáp án là:

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ sau

    Mỗi khẳng định sau đây đúng hay sai?

    a) Hàm số y = f(x) đồng biến trên khoảng ( - \infty;3).Đúng||Sai

    b) Tổng giá trị cực đại và giá trị cực tiểu của hàm số y = f(x) là 2. Sai||Đúng

    c) Hàm số y = f(x)có hai cực trị trái dấu. Sai||Đúng

    d) Phương trình đường thẳng qua 2 điểm cực trị của đồ thị hàm số y = f(x)d:y = - 3x. Đúng||Sai

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

    a) Hàm số y = f(x) đồng biến trên các khoảng ( - \infty; - 1)(1; + \infty).

    b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1. Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là 3 - 1 = 2.

    c) Hàm số y = f(x) có hai cực trị là x = \pm 1.

    d) Gọi d:y = ax + b là đường thẳng qua hai điểm cực trị A( - 1;3),B(1; -
1).

    A,B \in d \Rightarrow \left\{\begin{matrix}- a + b = 3 \\a + b = - 1\end{matrix} \right.\Rightarrow \left\{ \begin{matrix}a = - 2 \\b = 1\end{matrix} \right.\  \Rightarrow d:y = - 2x + 1

  • Câu 11: Vận dụng
    Tìm hàm chi phí biên

    Giả sử chi phí C(USD)để sản xuất Q máy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Hỏi chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 90 sản phẩm lên 91 sản phẩm bằng bao nhiêu?

    Hướng dẫn:

    Xét \Delta Q là số gia của biến số tại điểm Q.

    Ta có:

    \Delta C = C(Q + \Delta Q) - C(Q)

    = (Q + \Delta Q)^{2} + 80(Q + \Delta Q) + 3500 - Q^{2} - 80Q -3500

    = 2Q.\Delta Q + (\Delta Q)^{2} + 80\Delta
Q.

    Ta thấy: \lim_{\Delta Q \rightarrow
0}\frac{\Delta C}{\Delta Q} = \lim_{\Delta Q \rightarrow 0}(2Q + \Delta
Q + 80) = 2Q + 80.

    Vậy hàm chi phí biên là: C'(Q) = 2Q +
80.

    Ta có:C'(90) = 2.90 + 80 =
260.

    Dựa vào kết quả đó, ta thấy chi phí gia tăng để sản xuất thêm 1 sản phẩm từ 90 sản phẩm lên 91 sản phẩm là 260\
USD.

  • Câu 12: Thông hiểu
    Chọn phương án thích hợp

    Một cửa hàng trà sữa có đồ thị biểu diễn số ly trà sữa bán được trong một tuần như sau. Số ly trà sữa cửa hàng đó bán được nhiều nhất trong một ngày là bao nhiêu

    Hướng dẫn:

    Từ đồ thị ta thấy vào thứ 7 cửa hàng bán được nhiều nhất là 58 ly trà sữa.

  • Câu 13: Thông hiểu
    Tính vận tốc tức thời của chất điểm

    Một chất điểm chuyển động của phương trình s(t) = 6sin\left( 3t + \frac{\pi}{4}
\right) trong đó t > 0, ttính bằng giây, s(t) tính bằng centimét. Tính vận tốc tức thời của chất điểm tại thời điểm t =
\frac{\pi}{6}(s).

    Hướng dẫn:

    Vận tốc tức thời của chất điểm tại thời điểm t(s)là: v(t)
= s'(t) = 18cos\left( 3t + \frac{\pi}{4} \right).

    Vậy vận tốc tức thời của chất điểm tại thời điểm t = \frac{\pi}{6}(s)là: v\left( \frac{\pi}{6} \right) = 18cos\left(
3.\frac{\pi}{6} + \frac{\pi}{4} \right) = - 9\sqrt{2}(cm/s)

  • Câu 14: Thông hiểu
    Xác định tốc độ thay đổi dân số

    Người ta ước tính rằng sau x tháng tính từ bây giờ, dân số của một huyện nào đó sẽ là P(x) = x^{2} + 20x + 8000 người. Dân số sẽ thay đổi với tốc độ bao nhiêu sau 12 tháng?

    Hướng dẫn:

    Tốc độ thay đổi dân số tương ứng với thời gian là đạo hàm của hàm dân số. Tức là:

    Tốc độ thay đổi: P'(x) = 2x +
20

    Tốc độ thay đổi dân số sau 12 tháng sẽ là: P'(12) = 2.12 + 20 =
44 người/tháng.

  • Câu 15: Thông hiểu
    Tìm hàm chi phí biên

    Giả sử chi phí C(USD)để sản xuất Qmáy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1sản phẩm. Giả sử chi phí biên được xác định bởi hàm số C'(Q). Tìm hàm chi phí biên.

    Hướng dẫn:

    Xét \Delta Q là số gia của biến số tại điểm Q.

    Ta có:

    \Delta C = C(Q + \Delta Q) - C(Q)

    = (Q + \Delta Q)^{2} + 80(Q + \Delta Q) + 3500 - Q^{2} - 80Q -3500

    = 2Q.\Delta Q + (\Delta Q)^{2} + 80\Delta
Q.

    Ta thấy: \lim_{\Delta Q \rightarrow
0}\frac{\Delta C}{\Delta Q} = \lim_{\Delta Q \rightarrow 0}(2Q + \Delta
Q + 80) = 2Q + 80.

    Vậy hàm chi phí biên là: C'(Q) = 2Q +
80.

  • Câu 16: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = 2^{x^{2} - 3x +
\frac{13}{4}}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Hàm số nghịch biến trên khoảng ( - 1;\
0). Đúng||Sai

    b) Hàm số đồng biến trên khoảng (0;\
1). Sai||Đúng

    c) Hàm số có giá trị cực tiểu y_{CT} =
2. Đúng||Sai

    d) Hàm số có 2 điểm cực trị. Sai||Đúng

    Đáp án là:

    Cho hàm số y = 2^{x^{2} - 3x +
\frac{13}{4}}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Hàm số nghịch biến trên khoảng ( - 1;\
0). Đúng||Sai

    b) Hàm số đồng biến trên khoảng (0;\
1). Sai||Đúng

    c) Hàm số có giá trị cực tiểu y_{CT} =
2. Đúng||Sai

    d) Hàm số có 2 điểm cực trị. Sai||Đúng

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

    y = f(x) = 2^{x^{2} - 3x +
\frac{13}{4}}.

    Tập xác định: D\mathbb{= R}.

    Ta có y' = (2x - 3).2^{x^{2} - 3x +\frac{13}{4}}.ln2\ ;y' = 0 \Leftrightarrow x = \frac{3}{2} \in D;f\left( \frac{3}{2} \right) = 2.

    Bảng biến thiên của hàm số y = 2^{x^{2} -
3x + 2}

    Từ bảng biến thiên ta có: Các mệnh đề a) và c) đúng.

    Các mệnh đề b) và d) sai.

  • Câu 17: Thông hiểu
    Xác định hàm số v(t)

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250\
km so với bể mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính (gẩn đúng) bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t (giây) kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Xác định hàm số v(t).

    Hướng dẫn:

    Vận tốc tức thời của con tàu ở thời điểm t, v(t), là đạo hàm của hàm số h(t) theo thời gian t. Hàm số h(t) đã cho là: h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250

    Để tìm v(t), ta lấy đạo hàm của h(t): v(t) = h^{'}(t) = - 0,03t^{2} + 2,2t -
30

    Vậy hàm số v(t)biểu diễn vận tốc tức thời của con tàu ở thời điểm t là:

    v(t) = - 0,03t^{2} + 2,2t -
30

  • Câu 18: Thông hiểu
    Tính thời gian số vi khuẩn đạt max

    Một loại vi khuẩn được tiêm một loại thuốc kích thích sự sinh sản. Sau t phút, số vi khuẩn được xác định theo công thức N(t) = 1000 + 30t^{2} - t^{3}\ (0 \leq t \leq
30). Hỏi sau bao giây thì số vi khuẩn lớn nhất?

    Hướng dẫn:

    Xét hàm số N(t) = 1000 + 30t^{2} - t^{3}\
(0 \leq t \leq 30).

    N'(t) = 60t - 3t^{2}.

    N'(t) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 0 \\
t = 20 \\
\end{matrix} \right..

    Description: A picture containing chartDescription automatically generated

    Với t = 20 giây thì số vi khuẩn lớn nhất.

  • Câu 19: Vận dụng
    Chọn kết luận đúng

    Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250\
km so với bể mặt của Mặt Trăng. Trong khoảng 50 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính (gẩn đúng) bởi hàm h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250, trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét. Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t (giây) kể từ khi đốt cháy các tên lửa hãm với 0 \leq t \leq
50. Tại thời điểm t = 25 (giây), vận tốc tức thời của con tàu vẫn giảm hay đang tăng trở lại?

    Hướng dẫn:

    Vận tốc tức thời của con tàu ở thời điểm t, v(t), là đạo hàm của hàm số h(t) theo thời gian t. Hàm số h(t) đã cho là: h(t) = - 0,01t^{3} + 1,1t^{2} - 30t +
250

    Để tìm v(t), ta lấy đạo hàm của h(t): v(t) = h^{'}(t) = - 0,03t^{2} + 2,2t -
30

    Vậy hàm số v(t)biểu diễn vận tốc tức thời của con tàu ở thời điểm t là:

    v(t) = - 0,03t^{2} + 2,2t -
30

    Để xác định liệu vận tốc của con tàu tại thời điểm t = 25 giây có đang tăng hay giảm, chúng ta cần xem xét đạo hàm bậc hai của hàm số h(t), tức là gia tốc của con tàu.

    Gia tốc a(t)là đạo hàm của vận tốc v(t), tức là đạo hàm bậc hai của h(t):

    a(t) = v^{'}(t) = - 0,06t +
2,2

    Tại thời điểm t = 25 giây, gia tốc của con tàu là: a(25) = - 0,06.25 + 2,2
= - 1,3\ km/s^{2}

    Vi gia tốc a(25) < 0, nên vận tốc của con tàu tại thời điểm t =
25 giây đang giảm

  • Câu 20: Thông hiểu
    Xét tính đúng sai của các nhận định

    Dân số của một quốc gia sau t bắt đầu từ năm 2023 được tính theo công thức N(t) = 100e^{0,012t} . Các khẳng định dưới đây đúng hay sai?

    a) Dân số của quốc gia này ở năm 2030 vượt mức 110 triệu người. Sai||Đúng

    b) Dân số của quốc gia này ở năm 2035 vượt mức 115 triệu người. Đúng||Sai

    c) Vào năm 2030 thì tốc độ tăng dân số là 1,6 triệu người/năm. Sai||Đúng

    d) Vào năm 2026 thì tốc độ tăng dân số là 1,6 triệu người/năm. Đúng||Sai

    Đáp án là:

    Dân số của một quốc gia sau t bắt đầu từ năm 2023 được tính theo công thức N(t) = 100e^{0,012t} . Các khẳng định dưới đây đúng hay sai?

    a) Dân số của quốc gia này ở năm 2030 vượt mức 110 triệu người. Sai||Đúng

    b) Dân số của quốc gia này ở năm 2035 vượt mức 115 triệu người. Đúng||Sai

    c) Vào năm 2030 thì tốc độ tăng dân số là 1,6 triệu người/năm. Sai||Đúng

    d) Vào năm 2026 thì tốc độ tăng dân số là 1,6 triệu người/năm. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Dân số của quốc gia này ở năm 2030N(7)
= 100e^{0,012.7} \approx 108,8 triệu người.

    b) Dân số của quốc gia này ở năm 2035N(12)
= 100e^{0,012.12} \approx 115,5 triệu người.

    c) Hàm tốc độ tăng dân số là N'(t) =
1,2e^{0,012t}. Ta có:

    1,2e^{0,012t} = 1,6 \Leftrightarrow t
\approx 2,34.

    Vậy thời vào năm 2026, tốc độ tăng dân số là 1,6 triệu người/năm

    d) Hàm tốc độ tăng dân số là N'(t) =
1,2e^{0,012t}. Ta có:

    1,2e^{0,012t} = 1,6 \Leftrightarrow t
\approx 2,34.

    Vậy thời vào năm 2026, tốc độ tăng dân số là 1,6 triệu người/năm.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo