Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 KNTT Bài 5 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Tìm hàm chi phí biên

    Giả sử chi phí C(USD)để sản xuất Qmáy vô tuyến là C(Q) = Q^{2} + 80Q + 3500.

    Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1sản phẩm. Giả sử chi phí biên được xác định bởi hàm số C'(Q). Tìm hàm chi phí biên.

    Hướng dẫn:

    Xét \Delta Q là số gia của biến số tại điểm Q.

    Ta có:

    \Delta C = C(Q + \Delta Q) - C(Q)

    = (Q + \Delta Q)^{2} + 80(Q + \Delta Q) + 3500 - Q^{2} - 80Q -3500

    = 2Q.\Delta Q + (\Delta Q)^{2} + 80\Delta
Q.

    Ta thấy: \lim_{\Delta Q \rightarrow
0}\frac{\Delta C}{\Delta Q} = \lim_{\Delta Q \rightarrow 0}(2Q + \Delta
Q + 80) = 2Q + 80.

    Vậy hàm chi phí biên là: C'(Q) = 2Q +
80.

  • Câu 2: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x^{3} - 3x + 2. Khi đó các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x^{3} - 3x + 2. Khi đó các nhận định dưới đây đúng hay sai?

    a) Tập xác định của hàm số đã cho là (0\
;\  + \infty). Sai||Đúng

    b) Đồ thị của hàm số đã cho đi qua điểm (0\ ;2). Đúng||Sai

    c) Hàm số đạt cực trị tại x = 0. Sai||Đúng

    d) Giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) SAI vì Tập xác định của hàm số đã cho là \mathbb{R}.

    b) ĐÚNG. Thay x =
0 ta được y = 2.

    c) SAI. Ta có y' =
3x^{2} - 3. Ta thấy y'(0) = - 3
\neq 0. Suy ra hàm số không đạt cực trị tại điểm x = 0.

    d) ĐÚNG. Ta có y' =
3x^{2} - 3. Suy ra y' = 0
\Leftrightarrow x = 1\ (TM);x = - 1\ (KTM).

    y(0) = 2;y(2) = 4;y(1) = 0. Vậy giá trị lớn nhất của hàm số đã cho trên đoạn \lbrack 0;2\rbrack bằng 4.

  • Câu 3: Thông hiểu
    Chọn đáp án đúng

    Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động s(t) = 2 + 196t -
4,9t^{2}, trong đó t \geq
0, t(s)là thời gian chuyển động, s(m)là độ cao so với mặt đất. Sau bao lâu kể từ khi bắn thì viên đạn đạt được độ cao 1962m?

    Hướng dẫn:

    Khi viên đạn đạt được độ cao1962m, ta có phương trình:

    1962 = 2 + 196t - 4,9t^{2} \Leftrightarrow t =
20

    Vậy sau 20s kể từ khi bắn thì viên đạn đạt được độ cao 1962m.

  • Câu 4: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{x^{2} + 3x}{x
- 1}.. Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số f(x) đồng biến trên khoảng ( - \infty;1). Sai||Đúng

    b) Cực đại của hàm số f(x)1. Đúng||Sai

    c) Hàm số f(x) có ba điểm cực trị. Sai||Đúng

    d) Hàm số f(x) nghịch biến trên khoảng ( - 1;3). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{x^{2} + 3x}{x
- 1}.. Xét tính đúng sai của các nhận định dưới đây?

    a) Hàm số f(x) đồng biến trên khoảng ( - \infty;1). Sai||Đúng

    b) Cực đại của hàm số f(x)1. Đúng||Sai

    c) Hàm số f(x) có ba điểm cực trị. Sai||Đúng

    d) Hàm số f(x) nghịch biến trên khoảng ( - 1;3). Sai||Đúng

    a) Sai

    b) Đúng

    c) Sai

    d) Sai

    Tập xác định: D\mathbb{=
R}\backslash\left\{ 1 \right\}.

    y' = f'(x) = \frac{x^{2} - 2x -
3}{(x - 1)^{2}}.

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 1 \\
x = 3
\end{matrix} \right..

    Bảng biến thiên:

    A graph with arrows and numbersDescription automatically generated with medium confidence

    a) Từ bảng biến thiên suy ra mệnh đề sai.

    b) Mệnh đề đúng.

    c) Hàm số chỉ có hai điểm cực trị là x =
- 1x = 3. Vậy mệnh đề sai.

    d) Do hàm số không xác định tại x =
1 thuộc ( - 1;3) nên mệnh đề sai.

  • Câu 5: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{2x^{2} - x +
4}{x - 1} có đồ thị (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là \mathbb{R}\backslash\{ 1\}. Đúng||Sai

    b) Tiệm cận xiên của đồ thị (C)là đường thẳng y = 2x + 1. Đúng||Sai

    c) Điểm I(1;2) là tâm đối xứng của đồ thị(C). Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) = \frac{2x^{2} - x +
4}{x - 1} có đồ thị (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là \mathbb{R}\backslash\{ 1\}. Đúng||Sai

    b) Tiệm cận xiên của đồ thị (C)là đường thẳng y = 2x + 1. Đúng||Sai

    c) Điểm I(1;2) là tâm đối xứng của đồ thị(C). Sai||Đúng

    a) Tập xác định của hàm số là \mathbb{R}\backslash\{ 1\}suy ra mệnh đề đúng.

    b) Ta cóy = f(x) = \frac{2x^{2} - x +
4}{x - 1} = 2x + 1 + \frac{5}{x - 1}

    \lim_{x \rightarrow +
\infty}\left\lbrack y - (2x + 1) \right\rbrack = \lim_{x \rightarrow +
\infty}\frac{5}{x - 1} = 0

    Do đó đường thẳng y = 2x + 1là tiệm cận xiên của đồ thị suy ra mệnh đề đúng.

    c) Đồ thị hàm số nhận x = 1 làm tiệm cận đứng.

    Tọa độ giao điểm của hai đường tiệm cận là I(1;3). Do đó I(1;3)là tâm đối xứng của (C) suy ra mệnh đề sai.

  • Câu 6: Thông hiểu
    Tính tốc độ tăng trưởng của dân số

    Dân số P (tính theo nghìn người) của một thành phố nhỏ được cho bởi công thức P(t) = \frac{500t}{t^{2} + 9}, trong đó t là thời gian được tính bằng năm. Tìm tốc độ tăng dân số tại thời điểm t =
12.

    Hướng dẫn:

    Tốc độ tăng trưởng dân số là:

    P'(t) = \frac{(500t)^{'}\left(
t^{2} + 9 \right) - 500t\left( t^{2} + 9 \right)^{'}}{\left( t^{2} +
9 \right)^{2}}

    P'(t) = \frac{500.\left( t^{2} + 9
\right) - 500t.2t}{\left( t^{2} + 9 \right)^{2}}

    P'(t) = \frac{4500 -
500t^{2}}{\left( t^{2} + 9 \right)^{2}}

    Khi t\  = 12 thì

    P'(12) = \frac{4500 -
500.12^{2}}{\left( 12^{2} + 9 \right)^{2}} = - 2,88

  • Câu 7: Thông hiểu
    Xét tính đúng sai của các nhận định

    Cho hàm số y = \frac{x^{2} - 3x + 1}{x +
2}\ \ \ (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là D =
\mathbb{R}\backslash\left\{ - 2 \right\}. Đúng||Sai

    b) Đồ thị (C) có tiệm cận ngang y = - 2. Sai||Đúng

    c) Đồ thị (C) có tiệm cận xiên y = x - 5. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị (C) cắt hai trục tọa độ tại điểm A,B. Diện tích tam giác OAB bằng \frac{25}{2}. Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{x^{2} - 3x + 1}{x +
2}\ \ \ (C). Các mệnh đề sau đúng hay sai?

    a) Tập xác định của hàm số là D =
\mathbb{R}\backslash\left\{ - 2 \right\}. Đúng||Sai

    b) Đồ thị (C) có tiệm cận ngang y = - 2. Sai||Đúng

    c) Đồ thị (C) có tiệm cận xiên y = x - 5. Đúng||Sai

    d) Đường tiệm cận xiên của đồ thị (C) cắt hai trục tọa độ tại điểm A,B. Diện tích tam giác OAB bằng \frac{25}{2}. Đúng||Sai

    a) Hàm số xác định khi x + 2 \neq 0
\Leftrightarrow x \neq - 2. Tập xác định D = \mathbb{R}\backslash\left\{ - 2
\right\}.

    Do đó mệnh đề đúng.

    b) Ta có: \lim_{x \rightarrow + \infty}y
= \lim_{x \rightarrow + \infty}\frac{x^{2} - 3x + 1}{x + 2} = +
\infty\lim_{x \rightarrow -
\infty}y = \lim_{x \rightarrow - \infty}\frac{x^{2} - 3x + 1}{x + 2} = -
\infty.

    Suy ra đồ thị hàm số không có tiệm cận ngang. Do đó mệnh đề sai.

    c) Ta có \lim_{x \rightarrow +
\infty}\left\lbrack \frac{x^{2} - 3x + 1}{x + 2} - (x - 5) \right\rbrack
= 0

    \lim_{x \rightarrow - \infty}\left\lbrack
\frac{x^{2} - 3x + 1}{x + 2} - (x - 5) \right\rbrack = 0

    Vậy đồ thị có đường tiệm cận xiên là y =
x - 5. Do đó mệnh đề đúng.

    d) Đường tiệm cận xiên y = x - 5 cắt hai trục tọa độ O\ x,Oy lần lượt tại A(5;0);\ B(0; - 5).

    Tam giác OAB vuông tại O, có

    OA = \left| \overrightarrow{OA} \right| =
\sqrt{5^{2} + 0^{2}} = 5

    OB = \left| \overrightarrow{OB} \right| =
\sqrt{0^{2} + ( - 5)^{2}} = 5.

    Diện tích tam giác OAB bằng: \frac{1}{2}.OA.OB = \frac{1}{2}.5.5 =
\frac{25}{2}. Do đó mệnh đề đúng.

  • Câu 8: Thông hiểu
    Viết biểu thức tính L(x) theo x

    Một hộ làm nghề dệt vải lụa tơ tằm sản xuất mỗi ngày được xmét vải lụa 1 \leq x \leq 18.Tổng chi phí sản xuất xmét vải lụa, tính bằng nghìn đồng, cho bởi hàm chi phí:

    C(x) = x^{3} - 6x^{2} + 20x +
500

    Giả sử hộ làm nghề dệt này bán hết sản phẩm mỗi ngày với giá 320 nghìn đồng/mét. Gọi L(x)là lợi nhuận thu được khi bán xmét vải lụa. Hãy viết biểu thức tính L(x)theo\
x?

    Hướng dẫn:

    Khi bán x mét vải lụa

    Số tiền thu được là: B(x) = 320x .

    Lợi nhuận thu được là: L(x) = B(x) - C(x)
= - x^{3} + 6x^{2} + 300x - 500.

  • Câu 9: Thông hiểu
    Tính vận tốc cực đại của hại

    Chuyển động của một hạt trên một dây rung được cho bởi công thức s(t) = 10 + \sqrt{2}\sin\left( 4\pi t +
\frac{\pi}{6} \right), trong đó s tính bằng centimét và t tính bằng giây. Vận tốc của hạt sau t giây là v(t). Vận tốc cực đại của hạt là bao nhiêu (làm tròn kết quả đến chữ số thập thứ nhất)?

    Hướng dẫn:

    Vận tốc của hạt sau t giây là: v(t) = s'(t) = 4\pi\sqrt{2}\cos\left(
4\pi t + \frac{\pi}{6} \right).

    Vận tốc cực đại của hạt là: v_{\max} =
4\pi\sqrt{2} \approx 17,8m/s, đạt được khi

    \left| \cos\left( 4\pi t + \frac{\pi}{6} \right)
\right| = 1 hay t = \frac{5}{24} +
\frac{k}{4},k\mathbb{\in N}.

  • Câu 10: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = f(x) = \frac{nx + 1}{x^{2}
+ 3mx + 2n^{2}} có đồ thị có hình vẽ như hình dưới đây

    Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định D\mathbb{=
R}\backslash\left\{ 1;2 \right\}. Đúng||Sai

    b) Đồ thị hàm số có 2 tiệm cận đứng. Đúng||Sai

    c) Đồ thị hàm số y =
\frac{1}{f(x)} không có tiệm cận đứng. Đúng||Sai

    d) Với \left\{ \begin{matrix}
m = 1 \\
n = - 1
\end{matrix} \right.thì hàm số có đồ thị như hình vẽ. Đúng||Sai

    Đáp án là:

    Cho hàm số y = f(x) = \frac{nx + 1}{x^{2}
+ 3mx + 2n^{2}} có đồ thị có hình vẽ như hình dưới đây

    Các nhận định dưới đây đúng hay sai?

    a) Hàm số có tập xác định D\mathbb{=
R}\backslash\left\{ 1;2 \right\}. Đúng||Sai

    b) Đồ thị hàm số có 2 tiệm cận đứng. Đúng||Sai

    c) Đồ thị hàm số y =
\frac{1}{f(x)} không có tiệm cận đứng. Đúng||Sai

    d) Với \left\{ \begin{matrix}
m = 1 \\
n = - 1
\end{matrix} \right.thì hàm số có đồ thị như hình vẽ. Đúng||Sai

    Lời giải chi tiết bài toán, giải chi tiết từng ý

    a) Hàm số có tập xác định D\mathbb{=
R}\backslash\left\{ 1;2 \right\}. Mệnh đề đúng.

    b) Ta có \lim_{x \rightarrow 1^{+}}f(x) =
- \infty nên x = 1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x \rightarrow 2^{-}}f(x) = -
\infty nên x = 2 là tiệm cận đứng của đồ thị hàm số.

    suy ra mệnh đề đúng.

    c) Từ đồ thị hàm số ta có phương trình f(x) = 0 vô nghiệm nên hàm số y = \frac{1}{f(x)} không có tiệm cận đứng. Suy ra mệnh đề đúng.

    d) Từ đồ thị hàm số ta có hai tiệm cận đứng là x = 1x =
2, khi đó x = 1x = 2 là nghiệm bậc nhất của mẫu nhưng không là nghiệm của tử.

    Do đó ta có

    \left\{ \begin{matrix}
1 + 3m + 2n^{2} = 0 \\
4 + 6m + 2n^{2} = 0 \\
n + 1 \neq 0 \\
2n + 1 \neq 0
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
3m + 2n^{2} = - 1 \\
6m + 2n^{2} = - 4 \\
n + 1 \neq 0 \\
2n + 1 \neq 0
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
m = - 1 \\
n = \pm 1 \\
n \neq - 1 \\
2n + 1 \neq 0
\end{matrix} \right. \Leftrightarrow \left\{ \begin{matrix}
m = - 1 \\
n = 1
\end{matrix} \right.. Suy ra mệnh đề đúng

  • Câu 11: Thông hiểu
    Chọn đáp án đúng

    Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động s(t) = 2 + 196t -
4,9t^{2}, trong đó t \geq
0, t(s) là thời gian chuyển động, s(m) là độ cao so với mặt đất. Tại thời điểm viên đạn đạt vận tốc tức thời bằng 98\ m/sthì viên đạn đang ở độ cao bao nhiêu mét so với mặt đất?

    Hướng dẫn:

    Viên đạn đạt vận tốc tức thời bằng 98\
m/s ta có phương trình: 

    v(t) = 196 -
9,8t = 98 \Leftrightarrow t = 10

    Khi đó viên đạn đang ở độ cao là:

    s(10) =
2 + 196.10 - 4,9.10^{2} = 1472(m).

  • Câu 12: Thông hiểu
    Tính vận tốc tức thời của viên đạn

    Một viên đạn được bắn lên cao theo phương thẳng đứng có phương trình chuyển động s(t) = 2 + 196t -
4,9t^{2}, trong đó t \geq
0, t(s)là thời gian chuyển động, s(m)là độ cao so với mặt đất. Tính vận tốc tức thời của viên đạn khi viên đạn đạt được độ cao 1962m.

    Hướng dẫn:

    Vận tốc tức thời của viên đạn tại thời điểm tlà: v(t) =
s'(t) = 196 - 9,8t

    Viên đạn đạt được độ cao1962mvào thời điểm t = 20(s) kể từ lúc bắn, khi đó vận tốc tức thời của viên đạn là:

    v(20) = 196 - 9,8.20 = 0(m/s).

  • Câu 13: Thông hiểu
    Tính gia tốc tức thời của tàu con thoi

    Kính viễn vọng không gian Hubble được triển khai vào ngày 24 tháng 4 năm 1990, bởi tàu con thoi Discovery. Vận tốc của tàu con thoi trong nhiệm vụ này từ khi xuất phát tại t =
0 (s) cho đến khi tên lửa đẩy nhiên liệu rắn bị loại bỏ ở t = 126 (s) được xác định theo phương trình sau:

    v(t) = 0,001302t^{3} - 0,09029t^{2} +
23,61t - 3,083(f/s).

    (Nguồn: James Stewan, Calculus)

    Tính gia tốc tức thời của tàu con thoi trên tại thời điểm t = 100 (s) (làm tròn kết quả đến hàng phần nghìn).

    Hướng dẫn:

    Gia tốc tức thời của tàu con thoi tại thời điểm t (s) là:

    a(t) = v'(t) = 0,003906t^{2} -
0,18058t + 23,61\left( ft/s^{2} \right).

    Gia tốc tức thời của tàu con thoi tại thời điểm t = 100 (s) là:

    a(100) = 0,003906 \cdot 100^{2} -
0,18058 \cdot 100 + 23,61 = 44,612\left( ft/s^{2} \right).

  • Câu 14: Thông hiểu
    Tính vận tốc tức thời của chất điểm

    Một chất điểm chuyển động của phương trình s(t) = 6sin\left( 3t + \frac{\pi}{4}
\right) trong đó t > 0, ttính bằng giây, s(t) tính bằng centimét. Tính vận tốc tức thời của chất điểm tại thời điểm t =
\frac{\pi}{6}(s).

    Hướng dẫn:

    Vận tốc tức thời của chất điểm tại thời điểm t(s)là: v(t)
= s'(t) = 18cos\left( 3t + \frac{\pi}{4} \right).

    Vậy vận tốc tức thời của chất điểm tại thời điểm t = \frac{\pi}{6}(s)là: v\left( \frac{\pi}{6} \right) = 18cos\left(
3.\frac{\pi}{6} + \frac{\pi}{4} \right) = - 9\sqrt{2}(cm/s)

  • Câu 15: Vận dụng
    Chọn đáp án đúng

    Số dân của một thị trấn sau tnăm kể từ đầu năm 2020 được tính bởi công thức f(t) = t + \frac{9}{t + 1},\ f(t) được tính bằng vạn người. Xem f(t)là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) và đạo hàm của hàm số f(t) biểu thị tốc độ tăng dân số của thị trấn. Trong khoảng thời gian nào dưới đây thì dân số của thị trấn này giảm?

    Hướng dẫn:

    Tốc độ tăng dân số của thị trấn là f'(t) = 1 - \frac{9}{(t + 1)^{2}}

    Ta cần tìm t \geq 0 sao cho f'(t) = 1 - \frac{9}{(t + 1)^{2}} \leq
0.

    Ta có f'(t) \leq 0 \Leftrightarrow
t^{2} + 2t - 8 \leq 0 \Leftrightarrow - 4 \leq t \leq 2

    Kết hợp với điều kiện t \geq 0 ta có 0 \leq t \leq 2.

    Do đó dân số của thị trấn giảm trong khoảng thời gian từ đầu năm 2020 đến hết năm 2021.

  • Câu 16: Vận dụng
    Xét tính đúng sai của các nhận định

    Cho hàm số y = x - \frac{1}{x +
1} có đồ thị là (C). Em hãy xét tính đúng sai của các khẳng định dưới đây?

    a) Đồ thị hàm số có tiệm cận đứng là x =
1. Sai||Đúng

    b) Phương trình tiếp tuyến của đồ thị (C) tại điểm điểm có hoành độ M(0; - 1)y = 2x - 1. Đúng||Sai

    c) Tồn tại tiếp tuyến của đồ thị vuông góc với nhau. Sai||Đúng

    d) Để đường thẳng y = k cắt (C) tại hai điểm phân biệt A,B sao cho OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1 =0. Đúng||Sai

    Đáp án là:

    Cho hàm số y = x - \frac{1}{x +
1} có đồ thị là (C). Em hãy xét tính đúng sai của các khẳng định dưới đây?

    a) Đồ thị hàm số có tiệm cận đứng là x =
1. Sai||Đúng

    b) Phương trình tiếp tuyến của đồ thị (C) tại điểm điểm có hoành độ M(0; - 1)y = 2x - 1. Đúng||Sai

    c) Tồn tại tiếp tuyến của đồ thị vuông góc với nhau. Sai||Đúng

    d) Để đường thẳng y = k cắt (C) tại hai điểm phân biệt A,B sao cho OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1 =0. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Sai.

    Đồ thị (C) có tiệm cận đứng là x = - 1.

    b) Đúng.

    Đồ thị (C) cắt trục Oy tại M(0; -
1).

    Ta có y' = 1 + \frac{1}{(x + 1)^{2}}
\Rightarrow y'(0) = 2.

    Phương trình tiếp tuyến của (C) tại My = 2x - 1.

    c) Sai.

    Tiếp tuyến của đồ thị (C) tại tiếp điểm M_{1}\left( x_{1};y_{1}
\right) có hệ số góc k_{1} =
y'\left( x_{1} \right) = 1 + \frac{1}{\left( x_{1} + 1 \right)^{2}}
> 0.

    Tiếp tuyến của đồ thị (C) tại tiếp điểm M_{2}\left( x_{2};y_{2}
\right) có hệ số góc k_{2} =
y'\left( x_{2} \right) = 1 + \frac{1}{\left( x_{2} + 1 \right)^{2}}
> 0.

    Khi đó k_{1}k_{2} > 0 nên không tồn tại hai tiếp tuyến của đồ thị vuông góc với nhau.

    d) Đúng.

    Phương trình hoành độ giao điểm giữa đồ thị (C) và đường thẳng y = k

    x - \frac{1}{x + 1} = k \Leftrightarrow
\left\{ \begin{matrix}
x \neq - 1 \\
x^{2} + x - 1 = k(x + 1).\ \ \ (1)
\end{matrix} \right.\ \ (I)

    Nhận thấy x = - 1 không thỏa mãn nên (I) \Leftrightarrow x^{2} + (1 - k)x - 1
- k = 0.\ \ (2)

    Phương trình có \Delta = (1 - k)^{2} +
4(1 + k) = k^{2} + 2k + 5 = (k + 1)^{2} + 4 > 0,\forall
k.

    Do đó, đường thẳng y = k luôn cắt đồ thị (C) tại hai điểm phân biệt A\left( x_{A};k \right),B\left( x_{B};k
\right) với x_{A},x_{B} là nghiệm của phương trình.

    Theo Vi-et thì x_{A}x_{B} = - 1 -
k.

    Ta có OA\bot OB \Leftrightarrow
\overrightarrow{OA} \cdot \overrightarrow{OB} = 0 \Leftrightarrow
x_{A}x_{B} + k^{2} = 0 \Leftrightarrow - 1 - k + k^{2} = 0.

    Vậy OA\bot OB thì k là nghiệm của phương trình k^{2} - k - 1= 0.

  • Câu 17: Thông hiểu
    Tìm vận tốc tức

    Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát, có phương trình chuyển động x
= 4cos\left( \pi t - \frac{2\pi}{3} \right) + 3, trong đó \ t tính bằng giây và x tính bằng centimet. Vận tốc tức thời và gia tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s) lần lượt là:

    Hướng dẫn:

    Ta có:

    v = x' = - 4\pi\sin\left( \pi t -
\frac{2\pi}{3} \right)

    a = v' = - 4\pi^{2}\cos\left( \pi t
- \frac{2\pi}{3} \right)

    a) Vận tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s)là:

    v = - 4\pi\sin\left( \pi.3 -
\frac{2\pi}{3} \right) = - 2\sqrt{3}\pi(cm/s)

    Gia tốc tức thời của con xắc lò xo tại thời điểm t = 3\ \ (s)là:

    a = - 4\pi^{2}\cos\left( 3\pi -
\frac{2\pi}{3} \right) = - 2\pi^{2}\left( cm/s^{2} \right)

  • Câu 18: Vận dụng
    Tính khoảng cách theo yêu cầu

    Một viên đạn được bắn lên từ mặt đất theo phương thẳng đứng với tốc độ ban đầu v_{0} = 196\ m/s (bỏ qua sức cản của không khí). Tìm thời điểm tại đó tốc độ của viên đạn bằng 0. Khi đó viên đạn cách mặt đất bao nhiêu mét (lấy g = 9,8\ m/s^{2} )?

    Hướng dẫn:

    Phương trình của viên đạn đi theo phương thẳng đứng được cho bởi:

    y = - \frac{1}{2}gt^{2} - v_{o}t < =
> y = - 4,9t^{2} + 196t

    Vận tốc viên đạn tại thời điểm t là:

    v = y' = - 9,8t + 196

    Từ đó, ta nhận thấy:

    Thời điểm tại đó tốc độ của viên đạn bằng 0 được cho bởi:

    - 9,8t + 196 = 0 \Leftrightarrow t =
20s

    Khi đó viên đạn cách mặt đất một khoảng cho bởi:

    y = - 4,9.20^{2} + 196.20 =
1960m

  • Câu 19: Thông hiểu
    Xét tính đúng sai của các nhận định

    Dân số của một quốc gia sau t bắt đầu từ năm 2023 được tính theo công thức N(t) = 100e^{0,012t} . Các khẳng định dưới đây đúng hay sai?

    a) Dân số của quốc gia này ở năm 2030 vượt mức 110 triệu người. Sai||Đúng

    b) Dân số của quốc gia này ở năm 2035 vượt mức 115 triệu người. Đúng||Sai

    c) Vào năm 2030 thì tốc độ tăng dân số là 1,6 triệu người/năm. Sai||Đúng

    d) Vào năm 2026 thì tốc độ tăng dân số là 1,6 triệu người/năm. Đúng||Sai

    Đáp án là:

    Dân số của một quốc gia sau t bắt đầu từ năm 2023 được tính theo công thức N(t) = 100e^{0,012t} . Các khẳng định dưới đây đúng hay sai?

    a) Dân số của quốc gia này ở năm 2030 vượt mức 110 triệu người. Sai||Đúng

    b) Dân số của quốc gia này ở năm 2035 vượt mức 115 triệu người. Đúng||Sai

    c) Vào năm 2030 thì tốc độ tăng dân số là 1,6 triệu người/năm. Sai||Đúng

    d) Vào năm 2026 thì tốc độ tăng dân số là 1,6 triệu người/năm. Đúng||Sai

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

    a) Dân số của quốc gia này ở năm 2030N(7)
= 100e^{0,012.7} \approx 108,8 triệu người.

    b) Dân số của quốc gia này ở năm 2035N(12)
= 100e^{0,012.12} \approx 115,5 triệu người.

    c) Hàm tốc độ tăng dân số là N'(t) =
1,2e^{0,012t}. Ta có:

    1,2e^{0,012t} = 1,6 \Leftrightarrow t
\approx 2,34.

    Vậy thời vào năm 2026, tốc độ tăng dân số là 1,6 triệu người/năm

    d) Hàm tốc độ tăng dân số là N'(t) =
1,2e^{0,012t}. Ta có:

    1,2e^{0,012t} = 1,6 \Leftrightarrow t
\approx 2,34.

    Vậy thời vào năm 2026, tốc độ tăng dân số là 1,6 triệu người/năm.

  • Câu 20: Thông hiểu
    Chọn đáp án đúng

    Một con lắc lò xo dao động điều hòa theo phương ngang trên mặt phẳng không ma sát, có phương trình chuyển động x
= 4cos\left( \pi t - \frac{2\pi}{3} \right) + 3, trong đó \ t tính bằng giây và x tính bằng centimet. Tìm thời điểm mà vận tốc của con lắc bẳng 0.

    Hướng dẫn:

    Ta có: v = x' = - 4\pi\sin\left( \pi
t - \frac{2\pi}{3} \right)

    Vận tốc của con lắc bẳng 0

    => v = - 4\pi\sin\left( \pi t -
\frac{2\pi}{3} \right) = 0 = > t = \frac{2\pi}{3}(s)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (80%):
    2/3
  • Thông hiểu (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo