Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 4 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Thông hiểu
    Chọn hàm số tương ứng đồ thị

    Đường cong ở hình bên là đồ thị của hàm số y = \frac{ax + b}{cx + d} với a,b,c,dlà các số thực. Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Ta có :

    Dựa vào hình dáng của đồ thị ta được:

    + Điều kiện x eq 1

    + Đây là đồ thị của hàm nghịch biến

    Từ đó ta được y' < 0,\forall x
eq 1.

  • Câu 2: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Cho hàm số y = \frac{2x - 1}{x -
1}.

    a) Đạo hàm của hàm số đã cho là y' =
- \frac{1}{(x - 1)^{2}}. Đúng||Sai

    b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi x eq 1. Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho như sau:

    Sai||Đúng

    d) Đồ thị của hàm số đã cho là đường cong trong hình sau:

    Đúng||Sai

    Đáp án là:

    Cho hàm số y = \frac{2x - 1}{x -
1}.

    a) Đạo hàm của hàm số đã cho là y' =
- \frac{1}{(x - 1)^{2}}. Đúng||Sai

    b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi x eq 1. Đúng||Sai

    c) Bảng biến thiên của hàm số đã cho như sau:

    Sai||Đúng

    d) Đồ thị của hàm số đã cho là đường cong trong hình sau:

    Đúng||Sai

    Ta có: y' = - \frac{1}{(x -
1)^{2}}, \forall x eq 1 nên đạo hàm của hàm số đã cho nhận giá trị âm với mọi x eq 1.

    Bảng biến thiên:

    Hàm số đã cho nghịch biến trên các khoảng ( - \infty;1)(1; + \infty).

    Đồ thị của hàm số có tiệm cận đứng x =
1, tiệm cận ngang y = 2, nhận điểm I(1;2) là giao điểm của hai đường tiệm cận làm tâm đối xứng.

    Đồ thị hàm số cắt trục Oy tại điểm (0;1) và đi qua điểm có tọa độ (2;3).

  • Câu 3: Thông hiểu
    Chọn đáp án thích hợp

    Có bao nhiêu giá trị nguyên của tham số m để phương trình x^{3} - 3x^{2} - m^{2} + 5m = 0 có ba nghiệm thực phân biệt?

    Hướng dẫn:

    Đặt f(x) = x^{3} - 3x^{2} - m^{2} +
5m

    Để x^{3} - 3x^{2} - m^{2} + 5m =
0 có ba nghiệm thực phân biệt thì f'(x) = 0 có ba nghiệm thực phân biệt x_{1};x_{2} thỏa mãn f\left( x_{1} ight).f\left( x_{2} ight) <
0

    Ta có: f'(x) = 3x^{2} - 6x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
f(0) = - m^{2} + 5m \\
f(2) = - m^{2} + 5m - 4 \\
\end{matrix} ight..

    Khi đó f(0).f(2) = \left( - m^{2} + 5m
ight)\left( - m^{2} + 5m - 4 ight) < 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
0 < m < 1 \\
4 < m < 5 \\
\end{matrix} ight.

    Vậy không có giá trị nguyên của tham số m thỏa mãn.

  • Câu 4: Nhận biết
    Chọn phương án thích hợp

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

    Hướng dẫn:

    Dạng đồ thị hình bên là đồ thị hàm số trùng phương y = ax^{4} + bx^{2} + c có hệ số a < 0.

    Do đó, chỉ có đồ thị ở đáp án y = -
2x^{4} + 4x^{2} + 1 là thỏa mãn.

  • Câu 5: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hàm số y = - x^{3} + 3x^{2} -
1. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số có 2 cực trị. Đúng||Sai

    b) Điểm cực đại của hàm số là x = 2. Đúng||Sai

    c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng

    d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng

    Đáp án là:

    Cho hàm số y = - x^{3} + 3x^{2} -
1. Xét tính đúng sai của các khẳng định sau:

    a) Hàm số có 2 cực trị. Đúng||Sai

    b) Điểm cực đại của hàm số là x = 2. Đúng||Sai

    c) Hàm số đồng biến trên khoảng (−1; 3).Sai||Đúng

    d) Giá trị lớn nhất của hàm số là 3. Sai||Đúng

    Hàm số y = - x^{3} + 3x^{2} - 1 có đồ thị như sau:

    a) Đúng. Từ đồ thị, ta khẳng định hàm số có 2 cực trị.

    b) Đúng. Từ đồ thị, ta khẳng định hàm số có điểm cực đại là x = 2.

    c) Sai. Trên khoảng (−1; 3) hàm số có đồng biến và nghịch biến.

    d) Sai. Trên R không tồn tại giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên

  • Câu 6: Thông hiểu
    Tìm tập hợp các điểm M

    Có bao nhiêu điểm M thuộc đồ thị hàm số y = \frac{x + 2}{x - 1} sao cho khoảng cách từ điểm M đến trục tung bằng hai lần khoảng cách từ điểm M đến trục hoành?

    Hướng dẫn:

    Gọi M\left( a;\frac{a + 2}{a - 1}
ight);(a eq 1) là điểm thuộc đồ thị hàm số y = \frac{x + 2}{x - 1}

    Ta có: \left\{ \begin{matrix}d(M;Oy) = |a| \\d(M;Ox) = \left| \dfrac{a + 2}{a - 1} ight| \\\end{matrix} ight.. Theo bài ra ta có phương trình:

    |a| = 2.\left| \frac{a + 2}{a - 1}ight| \Leftrightarrow \left\lbrack \begin{matrix}a = 2.\left( \dfrac{a + 2}{a - 1} ight) \\a = - 2.\left( \dfrac{a + 2}{a - 1} ight) \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}a^{2} - 3a - 4 = 0 \\a^{2} + a + 4 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}a = - 1 \Rightarrow M\left( - 1; - \dfrac{1}{2} ight) \\a = 4 \Rightarrow M(4;2) \\\end{matrix} ight.

    Vậy có 2 điểm M thỏa mãn yêu cầu bài toán.

  • Câu 7: Vận dụng
    Tìm m để phương trình có 4 nghiệm

    Cho hàm số y = f\left( x ight) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình \left| {f\left( {\cos x} ight)} ight| =  - 2m + 3 có bốn nghiệm thuộc đoạn \left[ {0;2\pi } ight] là:

    Tìm m để phương trình có 4 nghiệm

    Hướng dẫn:

    Đặt t = \cos x;t \in \left[ { - 1;1} ight]

    Ta có: \left| {f\left( t ight)} ight| =  - 2m + 3\left( * ight);t \in \left[ { - 1;1} ight]

    Ta có đồ thị hình vẽ như sau:

    Tìm m để phương trình có 4 nghiệm

    Dựa vào đồ thị hàm số, phương trình đã cho có 4 nghiệm thuộc đoạn \left[ {0;2\pi } ight] khi phương trình (*) có hai nghiệm t \in \left[ { - 1;1} ight]

    \Leftrightarrow 0 < 2m + 3 \leqslant 1 \Leftrightarrow 1 \leqslant m < \frac{3}{2}

  • Câu 8: Thông hiểu
    Tìm hàm số theo yêu cầu

    Đường cong ở hình bên dưới là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?

    Hướng dẫn:

    Dựa vào đồ thị ta thấy đây là hình ảnh đồ thị của hàm số bậc ba nên loại đáp án \mathbf{y =
-}\mathbf{x}^{\mathbf{4}}\mathbf{+}\mathbf{2}\mathbf{x}^{\mathbf{2}}\mathbf{+}\mathbf{1}\mathbf{y
=}\mathbf{x}^{\mathbf{4}}\mathbf{-}\mathbf{2}\mathbf{x}^{\mathbf{2}}\mathbf{+}\mathbf{1}

    Mặt khác dựa vào đồ thị ta có \lim_{x
ightarrow + \infty}y = + \infty nên hệ số của x^{3} dương nên ta chọn đáp án y = x^{3} - 3x^{2} + 3

  • Câu 9: Thông hiểu
    Định điều kiện của m

    Tìm điều kiện cần và đủ của tham số thực ủa tham số m để đường thẳng y = 3x + m - 2 cắt đồ thị y = (x - 1)^{3} tại ba điểm phân biệt là:

    Hướng dẫn:

    Phương trình hoành độ giao điểm của hai đồ thị:

    (x - 1)^{3} = 3x + m - 2 \Leftrightarrow
m = x^{3} - 3x^{2} + 1(*)

    (*) là phương trình hoành độ giao điểm của hai đồ thị (d):y = m,(C):y = x^{3} - 3x^{2} + 1

    Xét hàm số f(x) = x^{3} - 3x^{2} +
1

    f'(x) = 3x^{2} - 6x \Rightarrow
f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Bảng biến thiên

    Vậy theo yêu cầu bài toán \Leftrightarrow
- 3 < m < 1

  • Câu 10: Thông hiểu
    Tìm m để phương trình có ba nghiệm thực

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên.

    Có bao nhiêu giá trị nguyên của tham số m để phương trình f(x) = m có ba nghiệm thực phân biệt?

    Hướng dẫn:

    Phương trình có ba nghiệm thực phân biệt \Leftrightarrow - 3 < m < 1.

    Do m nguyên nên m \in \left\{ - 2; - 1;0 ight\}

    Vậy có 3 giá trị nguyên m

  • Câu 11: Thông hiểu
    Tìm mệnh đề đúng

    Cho hàm số y = (x - 3)\left( x^{2} + 2
\right) có đồ thị (C). Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm của (C) và trục hoành là:

    (x - 3)\left( x^{2} + 2 ight) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 3 \\
x^{2} = - 2 \\
\end{matrix} ight.\  \Leftrightarrow x = 3 nghĩa là (C)cắt trục hoành tại một điểm

  • Câu 12: Nhận biết
    Tìm m nguyên thỏa mãn yêu cầu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt?

    Hướng dẫn:

    Ta có: 2f(x) + 3m = 0 \Leftrightarrow
f(x) = \frac{- 3m}{2}

    Để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt thì - \frac{3m}{2} =
- 3 \Leftrightarrow m = 2

    Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.

  • Câu 13: Thông hiểu
    Tìm m thỏa mãn điều kiện

    Cho hàm số y = \frac{3x - 2m}{mx +
1} với m là tham số. Biết rằng với mọi m eq 0, đồ thị hàm số luôn cắt đường thẳng d:y = 3x -
3m tại hai điểm phân biệt A, B. Tích tất cả các giá trị của m tìm được để đường thẳng d cắt các trục Ox,Oy lần lượt tại C,D sao cho diện tích \Delta OAB bằng 2 lần diện tích \Delta OCD bằng

    Hướng dẫn:

    Với m eq 0, xét phương trình \frac{3x - 2m}{mx + 1} = 3x -
3m

    \Leftrightarrow 3x^{2} - 3mx - 1 =
0. (*)

    Gọi tọa độ các giao điểm của d với đồ thị hàm số đã cho là: A\left(
x_{1};3x_{1} - 3m ight), B\left(
x_{2};3x_{2} - 3m ight).

    Tọa độ các điểm C, DC(m;0)D(0; - 3m).

    Gọi h = d_{(O,d)} thì h là chiều cao của các tam giác OABOC
D.

    Theo giả thiết: S_{\bigtriangleup OAB} =
2S_{\bigtriangleup OCD}

    \Leftrightarrow \frac{1}{2}AB.h =
2.\frac{1}{2}CD.h

    \Leftrightarrow AB = 2CD \Leftrightarrow
AB^{2} = 4CD^{2}

    \Leftrightarrow \left( x_{1} - x_{2}
ight)^{2} + \left\lbrack 3\left( x_{1} - x_{2} ight)
ightbrack^{2} = 4\left\lbrack m^{2} + ( - 3m)^{2}
ightbrack

    \Leftrightarrow 10\left( x_{1} - x_{2}
ight)^{2} = 40m^{2} \Leftrightarrow \left( x_{1} + x_{2} ight)^{2} -
4x_{1}x_{2} = 4m^{2}

    \Leftrightarrow m^{2} + \frac{4}{3} =
4m^{2} \Leftrightarrow m^{2} = \frac{4}{9} \Leftrightarrow m = \pm
\frac{2}{3}.

    Vậy tích các giá trị của m- \frac{4}{9}.

  • Câu 14: Thông hiểu
    Chọn đáp án thích hợp

    Cho hàm số bậc bốn \mathbf{y = f}\left(
\mathbf{x} \right) có đồ thị là đường cong trong hình bên.

    Số nghiệm của phương trình f(x)=-\dfrac{1}{2} là

    Hướng dẫn:

    Số nghiệm của phương trình f\left( x ight) =  - \frac{1}{2} bằng số giao điểm của đồ thị hàm số y = f\left( x ight) và đường thẳng y =  - \frac{1}{2} .

    Dựa vào đồ thị ta thấy: đồ thị hàm số y = f\left( x ight) và đường thẳng y =  - \frac{1}{2} cắt nhau tại 2 điểm.

    Nên phương trình f\left( x ight) =  - \frac{1}{2} có 2 nghiệm.

  • Câu 15: Nhận biết
    Xác định hàm số y = f(x)

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?

    Xác định hàm số y = f(x)
    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và đáp án D

    Mặt khác hàm số có ba điểm cực trị

    => Loại đáp án C

  • Câu 16: Thông hiểu
    Xác định hàm số

    Đường cong trong hình bên là của đồ thị hàm số nào dưới đây?

    Hướng dẫn:

    Đồ thị hàm số trên là đồ thị hàm trùng phương có 3 cực trị và có a < 0.

    Chọn đáp án y = - x^{4} + 2x^{2} + 2

  • Câu 17: Vận dụng
    Số nghiệm thực phân biệt của phương trình

    Cho hàm số f\left( x ight) = {x^3} - 3x + 1. Số nghiệm thực phân biệt của phương trình f\left( {f\left( x ight)} ight) = f\left( 2 ight) là:

    Hướng dẫn:

    Ta có: f\left( {f\left( x ight)} ight) = f\left( 2 ight) = 3

    Đồ thị của hàm số f\left( x ight) = {x^3} - 3x + 1 được minh họa bằng hình vẽ sau:

    Số nghiệm thực phân biệt của phương trình

    Từ đồ thị ta suy ra

    f\left( {f\left( x ight)} ight) = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 2} \\   {f\left( x ight) =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 2} \\   {{x^3} - 3x + 1 =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 0\left( * ight)} \\   {{x^3} - 3x + 2 = 0\left( {**} ight)} \end{array}} ight.

    Phương trình (*) có 3 nghiệm thực

    Phương trình (**) có 2 nghiệm thực

  • Câu 18: Thông hiểu
    Tìm điều kiện tham số m để bất phương trình nghiệm đúng

    Cho hàm số y = f(x), hàm số y = f'(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ bên. Bất phương trình f(x) > x^{2} - 2x +
m (m là tham số thực) nghiệm đúng với mọi x \in (1;2) khi và chỉ khi

    Hướng dẫn:

    Minh họa đồ thị như hình vẽ dưới đây:

    Ta có: f(x) > x^{2} - 2x + m\left(
\forall x \in (1;2) ight)

    \Leftrightarrow f(x) - x^{2} + 2x >
m\left( \forall x \in (1;2) ight)(*).

    Gọi g(x) = f(x) - \left( x^{2} - 2x
ight)

    \Rightarrow g'(x) = f'(x) - (2x - 2)

    Theo đồ thị ta thấy f'(x) < (2x -
2)\left( \forall x \in \lbrack 1;2brack ight) \Rightarrow g'(x)
< 0\left( \forall x \in \lbrack 1;2brack ight).

    Vậy hàm số y = g(x) liên tục và nghịch biến trên \lbrack
1;2brack

    Do đó (*) \Leftrightarrow m \leq \min_{\lbrack 1;2brack}g(x) = g(2) =
f(2).

  • Câu 19: Nhận biết
    Tìm số giao điểm của hai đồ thị hàm số

    Số giao điểm của đồ thị hàm số y = x^{3}
- x^{2} và đồ thị hàm số y = -
x^{2} + 5x

    Hướng dẫn:

    Số giao điểm của đồ thị hàm số y = x^{3}
- x^{2} và đồ thị hàm số y = -
x^{2} + 5x chính là số nghiệm thực của phương trình x^{3} - x^{2} = - x^{2} + 5x

    \Leftrightarrow x^{3} - 5x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm \sqrt{5} \\
\end{matrix} ight..

  • Câu 20: Thông hiểu
    Tìm các giá trị nguyên của tham số m

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = x^{3} - 12x + 1 - m cắt trục hoành tại ba điểm phân biệt?

    Hướng dẫn:

    Phương trình hoành độ giao điểm của đồ thị hàm số x^{3} - 12x + 1 - m = 0

    Ta cps: x^{3} - 12x + 1 - m = 0
\Leftrightarrow x^{3} - 12x + 1 = m(*)

    Đặt \left\{ \begin{matrix}
y = x^{3} - 12x + 1 \\
y = m \\
\end{matrix} ight.. Khi đó số nghiệm của phương trình (*) bằng số giao điểm của đồ thị hàm số y =
x^{3} - 12x + 1 và đường thẳng y =
m.

    Khảo sát sự biến thiên của hàm số y =
x^{3} - 12x + 1 ta có:

    y' = 3x^{2} - 12 \Rightarrow y'
= 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Với - 15 < m < 17 thì phương trình (*) có ba nghiệm phân biệt. Mặt khác do m nguyên nên m \in \left\{ - 14;...;16 ight\}.

    Vậy có 31 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo