Có bao nhiêu giá trị nguyên của tham số để phương trình
có nghiệm thuộc
?
Ta có:
Xét hàm số có
Ta có bảng biến thiên
Theo yêu cầu bài toán ta có:
Vì
Có bao nhiêu giá trị nguyên của tham số để phương trình
có nghiệm thuộc
?
Ta có:
Xét hàm số có
Ta có bảng biến thiên
Theo yêu cầu bài toán ta có:
Vì
Đường cong trong hình là đồ thị của hàm số nào dưới đây?
Hình vẽ trên là đồ thị của hàm số dạng Loại phương án
;
Ta thấy: Đồ thị có đường tiệm cận đứng là và đường tiệm cận ngang là
Phương án : Đồ thị có đường tiệm cận đứng là
loại
đúng.
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
Dựa vào đồ thị có dạng đồ thị của hàm số bậc 3 có hệ số nên đáp án
đúng.
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?
Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Gọi là giao điểm của đường thẳng
và đường cong
. Khi đó hoành độ
của trung điểm
của đoạn
bằng bao nhiêu?
Pthdgd (*)
Khi đó .
Chú ý: có thể giải (*), tìm được
Cho hàm số liên tục trên
và có bảng biến thiên như hình vẽ sau:

Hỏi hàm số đồng biến trên khoảng nào dưới đây?
Ta có:
Từ đó hàm số đồng biến trên khoảng
Cho hàm số có đồ thị như hình vẽ bên dưới. Trong các hệ số
,
,
có bao nhiêu số dương?
Tiệm cận đứng:
Tiệm cận ngang:
Đồ thị cắt trục hoành tại nên
hay
Vậy trong các hệ số ,
,
có có hai số dương là
Cho hàm số xác định và liên tục trên
và có bảng biến thiên như hình vẽ:
Tìm giá trị của tham số thực để phương trình
có ít nhất hai nghiệm thực phân biệt?
Phương trình có ít nhất hai nghiệm thực phân biệt khi và chỉ khi đường thẳng
cắt đồ thị hàm số
tại ít nhất hai điểm phân biệt
Cho hàm số . Số nghiệm thực phân biệt của phương trình
là:
Ta có:
Đồ thị của hàm số được minh họa bằng hình vẽ sau:

Từ đồ thị ta suy ra
Phương trình (*) có 3 nghiệm thực
Phương trình (**) có 2 nghiệm thực
Hàm số có đồ thị như sau:
Tìm điều kiện của tham số để phương trình
có
nghiệm dương?
Để số nghiệm dương của phương trình đã cho bằng 1 thì đường thẳng cắt đồ thị hàm số
tại một điểm có hoành độ dương
.
Cho hàm số .
a) Tập xác định của hàm số là . Đúng||Sai
b) . Sai||Đúng
c) khi
,
khi
. Sai||Đúng
d) Hàm số đã cho có đồ thị như hình vẽ.
Đúng||Sai
Cho hàm số .
a) Tập xác định của hàm số là . Đúng||Sai
b) . Sai||Đúng
c) khi
,
khi
. Sai||Đúng
d) Hàm số đã cho có đồ thị như hình vẽ.
Đúng||Sai
Tập xác định: .
Sự biến thiên
Giới hạn tại vô cực: .
và
hoặc
Hàm số đồng biến trên mỗi khoảng và
, nghịch biến trên khoảng
.
Hàm số đạt cực đại tại ; hàm số đạt cực tiểu tại
.
Đồ thị:
Giao điểm của đồ thị với trục tung: .
Giao điểm của đồ thị với trục hoành tại hoặc
. Vậy đồ thị hàm số giao với trục hoành tại ba điểm
và
.
Vậy đồ thị hàm số được cho ở hình vẽ.
Đồ thị hàm số có bao nhiêu điểm có tọa độ nguyên?
Ta có:
Với đồ thị hàm số đã cho có đúng 1 điểm có tọa độ nguyên.
Cho hàm số có đồ thị
. Tìm số giao điểm của
và trục hoành.
Xét phương trình hoành độ giao điểm của và trục hoành:
Vậy số giao điểm của và trục hoành là 3.
Cho hàm số có đồ thị
và đường thẳng
. Có bao nhiêu giá trị nguyên dương của tham số
để đồ thị
cắt đường thẳng
tại ba điểm phân biệt?
Phương trình hoành độ giao điểm
Đặt
Để đồ thị (C) cắt đường thẳng d tại ba điểm phân biệt thì phương trình phải có 3 nghiệm phân biệt, khi đó
phải có hai nghiệm phân biệt khác
.
Do đó
Do nguyên dương nên
.
Vậy số giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán bằng 3.
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số :
Hàm số là hàm số:
Đồ thị hàm số bậc ba có dạng có hệ số
nên hàm số cần tìm là
.
Cho hàm số có đồ thị hàm số như hình vẽ.

Chọn khẳng định đúng trong các khẳng định dưới đây?
Dựa vào đồ thị hàm số ta thấy:
=> Hệ số a < 0 => Loại đáp án C và D
Đồ thị hàm số đi qua điểm =>
Hàm số có ba cực trị => ab < 0
Do a < 0 => b > 0
Đồ thị hàm số đi qua điểm có tọa độ =>
Tìm tất cả các giá trị của tham số để đường thẳng
và
tại ba điểm phân biệt?
Ta có:
Ta có bảng biến thiên
Để đường thẳng và
tại ba điểm phân biệt thì
.
Cho hàm số có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:
a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai
b) Hàm số đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai
c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số . Đúng||Sai
d) Phương trình đường tiệm cận xiên của đồ thị hàm số là
. Sai||Đúng
Cho hàm số có đồ thị là (C). Xét tính đúng sai của các khẳng định sau:
a) Số khoảng đồng biến và nghịch biến của hàm số là bằng nhau. Đúng||Sai
b) Hàm số đạt cực đại tại điểm có toạ độ (−1; 2). Đúng||Sai
c) Đường thẳng x = 1 là đường tiệm cận đứng của đồ thị hàm số . Đúng||Sai
d) Phương trình đường tiệm cận xiên của đồ thị hàm số là
. Sai||Đúng
Hàm số có tập xác định
Ta có:
Bảng biến thiên
a) Đúng: Hàm số đồng biến trên các khoảng (−∞; -1) và (3;+∞) và nghịch biến trên các khoảng (−1;1) và (1;3) .
b) Đúng: Đồ thị hàm số đạt cực đại tại điểm (−1;2)
c) Đúng: Xét nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số
.
d) Sai: Xét nên đường thẳng y = x + 5 là tiệm cận xiên của đồ thị hàm số
.
Cho đường cong hình vẽ bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi đó là hàm số nào?
Dựa vào đồ thị suy ra tiệm cận đứng loại
và
Đồ thị hàm số giao với trục hoành có hoành độ dương nên loại suy ra chọn
Tìm hàm số tương ứng với đồ thị hàm số sau đây?
Đồ thị hàm số có hệ số và có hai điểm cực trị là
nên chỉ có hàm số
thỏa mãn vì
Khi đó .
Vậy hàm số xác định được là .
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: