Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Bài tập trắc nghiệm Toán 12 Cánh Diều Bài 4 (Mức độ Vừa)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Chọn đáp án chính xác

    Đồ thị sau đây là của hàm số nào?

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là y = 2 và tiệm cận đứng của đồ thị hàm số x = - 1.

    Đồ thị hàm số cắt trục tung tại điểm A(0;1)

    Vậy hàm số cần tìm là y = \frac{2x + 1}{x
+ 1}.

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Đồ thị hàm số nào sau đây cắt trục tung tại điểm có tung độ âm?

    Hướng dẫn:

    Trục tung có phương trình x = 0, ta thay x = 0 lần lượt vào các phương án thì chỉ có phương án y = \frac{x -
1}{x + 2} cho ta y = - \frac{1}{2}
< 0.

  • Câu 3: Thông hiểu
    Tính giá trị của hàm số tại một điểm

    Biết rằng đồ thị hàm số y = f(x) = ax^{4}
+ bx^{2} + c có hai điểm cực trị là A(0;2)B(2; - 14). Khi đó giá trị của hàm số y = f(x) tại x = 3 bằng:

    Hướng dẫn:

    Ta có: y = f(x) = ax^{4} + bx^{2} + c
\Rightarrow y' = 4ax^{3} + 2bx

    Đồ thị hàm số y = f(x) = ax^{4} + bx^{2}
+ c có hai điểm cực trị là A(0;2)B(2; - 14) nên ta có

    \left\{ \begin{matrix}
y(0) = 2 \\
y(2) = - 14 \\
y'(2) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 2 \\
16a + 4b + c = - 14 \\
32a + 4b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 2 \\
b = - 8 \\
a = 1 \\
\end{matrix} ight.

    Suy ra y = f(x) = x^{4} - 8x^{2} + 2
\Rightarrow f(3) = 11.

  • Câu 4: Vận dụng
    Chọn đáp án đúng

    Tìm số giao điểm của đồ thị hàm số y =
\sqrt{x^{4} - 4} + 5 và đường thẳng y = x?

    Hướng dẫn:

    Cách 1: Phương trình hoành độ giao điểm \sqrt{x^{4} - 4} + 5 = x \Leftrightarrow
\sqrt{x^{4} - 4} = x - 5

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 5 \\
x^{4} - 4 = (x - 5)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 5 \\
x^{4} - x^{2} + 10x - 29 = 0\ \ \ (*) \\
\end{matrix} ight.

    Do x \geq 5nên x^{4} - x^{2} = x^{2}(x^{2} - 1) > 010x - 29 > 0. Vì vậy (*) vô nghiệm

    Như vậy phương trình \sqrt{x^{4} - 4} + 5
= x vô nghiệm hay đồ thị hàm số y =
\sqrt{x^{4} - 4} + 5 và đường thẳng y = x không có giao điểm nào.

    Cách 2:

    Phương trình hoành độ giao điểm \sqrt{x^{4} - 4} + 5 = x. Ta có điều kiện xác định \left\lbrack \begin{matrix}
x \geq \sqrt{2} \\
x \leq - \sqrt{2} \\
\end{matrix} ight.

    Với điều kiện trên ta có \sqrt{x^{4} - 4}
+ 5 = x \Leftrightarrow \sqrt{x^{4} - 4} + 5 - x = 0

    Xét hàm số h(x) = \sqrt{x^{4} - 4} + 5 -
x. Ta có h'(x) =
\frac{2x^{3}}{\sqrt{x^{4} - 4}} - 1; h'(x) = 0 \Leftrightarrow 2x^{3} = \sqrt{x^{4}
- 4}

    Với x \geq \sqrt{2} ta có 2x^{3} > \sqrt{x^{4} - 4}. Với x \leq - \sqrt{2} ta có 2x^{3} < \sqrt{x^{4} - 4}

    Ta có Bảng biến thiên:

    Số nghiệm của phương trình\sqrt{x^{4} -
4} + 5 = x là số giao điểm của đồ thịy = h(x) = \sqrt{x^{4} - 4} + 5 - x và trục hoànhy = 0.

    Dựa vào BBT ta thấy phương trình \sqrt{x^{4} - 4} + 5 = x vô nghiệm hay đồ thị hàm số y = \sqrt{x^{4} - 4} + 5 và đường thẳng y = x không có giao điểm nào. 

  • Câu 5: Thông hiểu
    Tính tổng tất cả các tham số m

    Cho hàm số y = x^{3} - 3x^{2} + m -
1 với m là tham số. Tổng tất cả các giá trị nguyên của tham số m để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt bằng:

    Hướng dẫn:

    Phương trình hoành độ giao điểm của đồ thị và trục hoành là:

    x^{3} - 3x^{2} + m - 1 = 0
\Leftrightarrow x^{3} - 3x^{2} + 1 = m

    Xét hàm số f(x) = - x^{3} + 3x^{2} +
1;\forall x\mathbb{\in R}

    Ta có: f'(x) = - 3x^{2} + 6x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên ta thấy để đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt khi và chỉ khi 1 < m <
5

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 2;3;4 ight\}

    Vậy tổng tất cả các giá trị nguyên của tham số m thỏa mãn yêu cầu bằng 9.

  • Câu 6: Thông hiểu
    Tìm m để hàm số có ba nghiệm phân biệt

    Cho đồ thị hàm số y = f(x):

    Có bao nhiêu giá trị nguyên của tham số m để phương trình f(x) + 2m - 1 = 0 có ba nghiệm phân biệt?

    Hướng dẫn:

    Ta có: f(x) + 2m - 1 = 0 \Leftrightarrow
f(x) = 1 - 2m

    Để phương trình có ba nghiệm ta phải có -
2 < 1 - 2m < 2 \Leftrightarrow - \frac{1}{2} < m <
\frac{3}{2}

    Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Hãy phương trình 2\left| f(x) ight| - 1
= 0 có bao nhiêu nghiệm thuộc khoảng (0; + \infty)?

    Hướng dẫn:

    Ta có: 2\left| f(x) ight| - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}f(x) = \dfrac{1}{2} \\f(x) = - \dfrac{1}{2} \\\end{matrix} ight.

    Từ đồ thị hàm số ta thấy đường thẳng y =
\frac{1}{2} cắt đồ thị tại hai điểm phân biệt, đường thẳng y = - \frac{1}{2} cắt đồ thị tại 4 điểm phân biệt do đó phương trình f(x) =
\frac{1}{2} có hai nghiệm phân biệt và phương trình f(x) = - \frac{1}{2} có 4 nghiệm phân biệt

    Vậy phương trình 2\left| f(x) ight| - 1
= 0 có tất cả 6 nghiệm thực phân biệt.

  • Câu 8: Thông hiểu
    Tìm các giá trị nguyên của tham số m

    Có bao nhiêu giá trị nguyên của tham số m để phương trình - x^{3} + 4x + 1 = m có ba nghiệm phân biệt?

    Hướng dẫn:

    Phương trình đã cho là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) = - x^{3} + 4x + 1 và đường thẳng y = m

    Xét y = f(x) = - x^{3} + 4x + 1f'(x) = - 3x^{2} + 4

    Phương trình f'(x) = 0\Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{2\sqrt{3}}{3} \\x = - \dfrac{2\sqrt{3}}{3} \\\end{matrix} ight.

    Lập bảng biến thiên

    Đường thẳng y = m cắt đồ thị y = f(x) tại ba điểm phân biệt khi và chỉ khi

    1 - \frac{16\sqrt{3}}{3} < m < 1 +
\frac{16\sqrt{3}}{3}

    Do m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 2; - 1;...;4 ight\}

    Vậy có 7 giá trị nguyên của tham số m thỏa mãn.

  • Câu 9: Thông hiểu
    Chọn đáp án thích hợp

    Có bao nhiêu giá trị nguyên của tham số m để phương trình x^{3} - 3x^{2} - m^{2} + 5m = 0 có ba nghiệm thực phân biệt?

    Hướng dẫn:

    Đặt f(x) = x^{3} - 3x^{2} - m^{2} +
5m

    Để x^{3} - 3x^{2} - m^{2} + 5m =
0 có ba nghiệm thực phân biệt thì f'(x) = 0 có ba nghiệm thực phân biệt x_{1};x_{2} thỏa mãn f\left( x_{1} ight).f\left( x_{2} ight) <
0

    Ta có: f'(x) = 3x^{2} - 6x
\Rightarrow f'(x) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có: \left\{ \begin{matrix}
f(0) = - m^{2} + 5m \\
f(2) = - m^{2} + 5m - 4 \\
\end{matrix} ight..

    Khi đó f(0).f(2) = \left( - m^{2} + 5m
ight)\left( - m^{2} + 5m - 4 ight) < 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
0 < m < 1 \\
4 < m < 5 \\
\end{matrix} ight.

    Vậy không có giá trị nguyên của tham số m thỏa mãn.

  • Câu 10: Nhận biết
    Tìm hàm số tương ứng với đồ thị đã cho

    Cho đồ thị hàm số sau:

    Xác định hàm số tương ứng với đồ thị đã cho?

    Hướng dẫn:

    Dựa vào đồ thị hàm số đã cho, ta thấy đồ thị này là đồ thị hàm số bậc 4 có hệ số a < 0 nên hàm số tương ứng là y = - x^{4} + 2x^{2} + 2.

  • Câu 11: Thông hiểu
    Xác định số nghiệm của phương trình

    Cho hàm số y=f(x) có bảng biến thiên như sau:

    Số nghiệm thực của phương trình 2f(x)-3=0 là

    Hướng dẫn:

    Ta có 2f(x) - 3 = 0 \Leftrightarrow f\left( x ight) = \frac{3}{2}

    Số nghiệm của phương trình bằng số giao điểm của đồ thị hàm số y=f(x) và đường thẳng y = \frac{3}{2}.

    Dựa vào bảng biến thiên của f(x) ta có số giao điểm của đồ thị

  • Câu 12: Thông hiểu
    Tìm mệnh đề đúng

    Cho hàm số y = (x - 3)\left( x^{2} + 2
\right) có đồ thị (C). Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm của (C) và trục hoành là:

    (x - 3)\left( x^{2} + 2 ight) =
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 3 \\
x^{2} = - 2 \\
\end{matrix} ight.\  \Leftrightarrow x = 3 nghĩa là (C)cắt trục hoành tại một điểm

  • Câu 13: Nhận biết
    Tìm số giao điểm của (C) với trục hoành

    Cho hàm số y = x^{3} - 3x có đồ thị (C). Tìm số giao điểm của (C) và trục hoành.

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm của (C) và trục hoành:x^{3} - 3x = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = \pm \sqrt{3} \\
\end{matrix} ight.

    Vậy số giao điểm của (C) và trục hoành là 3.

  • Câu 14: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ - 1
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Hàm số không có giá trị lớn nhất vì \lim_{x ightarrow - 1^{-}}y = + \infty nên khẳng định “Giá trị lớn nhất của hàm số là 2” sai.

    Phương trình f(x) = m có 3 nghiệm thực phân biệt khi và chỉ khi 1 <
m < 2 nên khẳng định “Phương trình f(x) = m3 nghiệm thực phân biệt khi và chỉ khi m \in (1;2)” đúng.

    Hàm số đồng biến trên các khoảng ( -
\infty;1)( - 1;1) nên khẳng định “Hàm số đồng biến trên một khoảng duy nhất là ( - \infty;1)” sai.

    Đồ thị hàm số có hai đường tiệm cận là x
= - 1;y = 1\lim_{x ightarrow
\pm \infty}y = 1;\lim_{x ightarrow - 1^{- 1}}y = + \infty nên khẳng định “Đồ thị hàm số có ba đường tiệm cận” sai.

    Vậy khẳng định đúng cần tìm là “Phương trình f(x) = m3 nghiệm thực phân biệt khi và chỉ khi m \in (1;2).”

  • Câu 15: Thông hiểu
    Tính tổng các giá trị tham số m

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng các giá trị nguyên của tham số m để đường thẳng y = m cắt đồ thị hàm số tại ba điểm phân biệt bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa

    Đường thẳng y = m cắt đồ thị hàm số tại ba điểm phân biệt \Leftrightarrow - 4
< m < 2

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 3; - 2; - 1;0;1 ight\}

    Vậy tổng tất cả các giá trị nguyên của tham số m thỏa mãn yêu cầu bằng -5.

  • Câu 16: Thông hiểu
    Tìm hàm số thích hợp với đường cong

    Đường cong trong hình là đồ thị của hàm số nào dưới đây?

    Hướng dẫn:

    Hình vẽ trên là đồ thị của hàm số dạng y
= \frac{ax + b}{cx + d}\ \ (c eq 0;\ ad - bc eq 0)
\Rightarrow Loại phương án y =
x^{4} - 3x^{2}; y = x^{3} -
3x^{2}

    Ta thấy: Đồ thị có đường tiệm cận đứng là x = - 1 và đường tiệm cận ngang là y = 1

    Phương án y = \frac{- 2x + 1}{2x +
2}: Đồ thị có đường tiệm cận đứng là x = - 2 \Rightarrowloại y = \frac{- 2x + 1}{2x + 2}

    \Rightarrow y = \frac{x - 1}{x + 1} đúng.

  • Câu 17: Thông hiểu
    Chọn đáp án đúng

    Cho hàm trùng phương y = f(x) có đồ thị như hình vẽ dưới đây:

    Tìm các giá trị của tham số m để phương trình f(x) - m = 0 có 4 nghiệm phân biệt?

    Hướng dẫn:

    Hình vẽ minh họa

    Để phương trình f(x) - m = 0 có 4 nghiệm phân biệt thì - 3 < m <
1.

  • Câu 18: Thông hiểu
    Chọn đáp án thích hợp

    Cho hàm số bậc bốn \mathbf{y = f}\left(
\mathbf{x} \right) có đồ thị là đường cong trong hình bên.

    Số nghiệm của phương trình f(x)=-\dfrac{1}{2} là

    Hướng dẫn:

    Số nghiệm của phương trình f\left( x ight) =  - \frac{1}{2} bằng số giao điểm của đồ thị hàm số y = f\left( x ight) và đường thẳng y =  - \frac{1}{2} .

    Dựa vào đồ thị ta thấy: đồ thị hàm số y = f\left( x ight) và đường thẳng y =  - \frac{1}{2} cắt nhau tại 2 điểm.

    Nên phương trình f\left( x ight) =  - \frac{1}{2} có 2 nghiệm.

  • Câu 19: Vận dụng
    Tính giá trị của biểu thức M

    Cho hàm số y = \frac{{ax + b}}{{cx + 1}}\left( C ight) có bảng biến thiên như hình vẽ:

    Tính giá trị của biểu thức M

    Biết (C) cắt các trục tọa độ tại các điểm A, B thỏa mãn {S_{OAB}} = 4. Tính giá trị của biểu thức M = ab + 2c?

    Hướng dẫn:

    Do đồ thi hàm số có tiệm cận đứng x = -1 và tiệm cận ngang là y = 2

    => Hàm số có dạng y = \frac{{2x + b}}{{x + 1}}

    => \left\{ {\begin{array}{*{20}{c}}  {\left( C ight) \cap Ox = A\left( {\frac{{ - b}}{2};0} ight)} \\   {\left( C ight) \cap Oy = B\left( {0;b} ight)} \end{array}} ight. \Rightarrow {S_{OAB}} = \frac{{{b^2}}}{2} = 4 \Rightarrow b =  \pm 4

    Ta có:

    \begin{matrix}  y' = \dfrac{{2 - b}}{{{{\left( {x + 1} ight)}^2}}} < 0 \Rightarrow b = 4 \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 2} \\   {b = 4} \\   {c = 1} \end{array} \Rightarrow M = ab + 2c = 10} ight. \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu
    Xác định hàm số trùng phương

    Cho đồ thị:

    Xác định hàm số tương ứng với đồ thị hàm số đã cho?

    Hướng dẫn:

    Nhận diện đồ thị hàm số bậc 4 trùng phương có a < 0

    Đồ thị hàm số đi qua điểm (0; -
1) nên loại hàm số y = - x^{4} +
2x^{2} - 3.

    Đồ thị hàm số có các cực trị là (1;0),( -
1;0) nên hàm số cần tìm là y = -
x^{4} + 2x^{2} - 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (70%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo