Cho hai biến cố với
. Tính
.
Ta có
Cho hai biến cố với
. Tính
.
Ta có
Cho hai biến cố với
. Tính
?
Ta có:
Cho hai biến cố và
là hai biến cố độc lập, với
,
. Tính
.
Theo bài ra ta có:
và
là hai biến cố độc lập nên:
Cho hai biến cố với
. Tính
Ta có
Một hộp có 3 quả bóng màu xanh, 4 quả bóng màu đỏ; các quả bóng có kích thước và khối lượng như nhau. Lấy bóng ngẫu nhiên hai lần liên tiếp, trong đó mỗi lần lấy ngẫu nhiên một quả bóng trong hộp, ghi lại màu của quả bóng lấy ra và bỏ lại quả bóng đó vào hộp.
Xét các biến cố: A: “Quả bóng màu xanh được lấy ra ở lần thứ nhất”; B: “Quả bóng màu đỏ được lấy ra ở lần thứ hai”.
Hỏi hai biến cố A và B có độc lập không?
Một hộp có 3 quả bóng màu xanh, 4 quả bóng màu đỏ; các quả bóng có kích thước và khối lượng như nhau. Lấy bóng ngẫu nhiên hai lần liên tiếp, trong đó mỗi lần lấy ngẫu nhiên một quả bóng trong hộp, ghi lại màu của quả bóng lấy ra và bỏ lại quả bóng đó vào hộp.
Xét các biến cố: A: “Quả bóng màu xanh được lấy ra ở lần thứ nhất”; B: “Quả bóng màu đỏ được lấy ra ở lần thứ hai”.
Hỏi hai biến cố A và B có độc lập không?
Một mảnh đất chia thành hai khu vườn. Khu A có 150 cây ăn quả, khu B có 200 cây ăn quả. Trong đó, số cây Táo ở khu A và khu B lần lượt là 50 cây và 100 cây. Chọn ngẫu nhiên 1 cây trong mảnh đất. Xác suất cây được chọn là cây Táo , biết rằng cây đó ở khu B, là :
Xét các biến cố : “Cây chọn được là cây Táo”,
“Cây chọn được ở khu B”
Ta có: .
Vậy xác suất cây được chọn là cây Táo, biết rằng cây đó ở Khu B, là .
Cho hai biến cố và
có
Xác suất
là
Theo định nghĩa xác suất có điều kiện ta có:
Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.
Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"
Và B: "Viên bi lấy ra lần thứ hai là bi trắng".
Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?
Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.
Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.
Do đó, xác suất của biến cố B là: .
Cho hai biến cố và
, với
. Tính
?
Ta có: .
Cho một hộp kín có 6 thẻ ngân hàng của BIDV và 4 thẻ ngân hàng của Techcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ngân hàng của Techcombank nếu biết lần thứ nhất đã lấy được thẻ ngân hàng của BIDV
Gọi A là biến cố “lần thứ hai lấy được thẻ ngân hàng Techcombank“, B là biến cố “lần thứ nhất lấy được thẻ ngân hàng của BIDV “.
Ta cần tìm Sau khi lấy lần thứ nhất (biến cố B đã xảy ra) trong hộp còn lại 9 thẻ (trong đó 4 thẻ Techcombank) nên
.
Cho hai biến cố với
. Tính
?
Ta có:
Một túi đựng bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất để cả hai bi đều đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Cho hai biến cố với
. Tính
?
Ta có:
Gieo hai con xúc sắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng . Biết rằng con xúc xắc thứ nhất xuất hiện mặt
chấm.
Gọi là biến cố “con xúc xắc thứ nhất xuất hiện mặt
chấm”
Gọi là biến cố “Tổng số chấm xuất hiện trên
con xác xắc bằng
”.
Khi con xúc xắc thứ nhất đã xuất hiện mặt chấm thì lần thứ hai xuất hiện
chấm thì tổng hai lần xuất hiện là
chấm thì
Cho hai biến cố có
. Kết quả của xác suất sau
bằng bao nhiêu?
Ta có:
Một hộp chứa 5 quả bóng gồm 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên hai quả bóng liên tiếp không hoàn lại.
Xét các biến cố : "Quả bóng lấy ra đầu tiên có màu đỏ"
: "Tổng số của hai quả bóng lấy ra là số lẻ"
Xác định là biến cố
khi biết
đã xảy ra?
Khi A đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).
Do đó, không gian mẫu mới là
Biến cố khi biết
đã xảy ra là:
Cho hai biến cố và
, với
,
,
. Tính
.
Ta có:
Lớp 12A có 25 học sinh nam và 15 học sinh nữ. Trong số đó có 16 bạn nam và 6 bạn nữ thích chơi thể thao. Chọn một bạn bất kì của lớp 12A. Tính xác suất để bạn đó thích chơi thể thao biết rằng bạn học sinh đó là nữ (làm tròn đến hàng phần chục).
Đáp án: 0,4
Lớp 12A có 25 học sinh nam và 15 học sinh nữ. Trong số đó có 16 bạn nam và 6 bạn nữ thích chơi thể thao. Chọn một bạn bất kì của lớp 12A. Tính xác suất để bạn đó thích chơi thể thao biết rằng bạn học sinh đó là nữ (làm tròn đến hàng phần chục).
Đáp án: 0,4
Xét 2 biến cố sau:
A: “Học sinh được chọn là nữ”
B: “Học sinh được chọn thích chơi thể thao”
Khi đó, xác suất để bạn đó thích chơi thể thao biết rằng bạn học sinh đó là nữ là xác suất có điều kiện .
Ta có
Áp dụng công thức ta có:
Một đoàn tàu gồm toa đỗ ở sân ga. Có
hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên
toa. Tính xác suất để mỗi toa có ít nhất
hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,62
Một đoàn tàu gồm toa đỗ ở sân ga. Có
hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên
toa. Tính xác suất để mỗi toa có ít nhất
hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,62
Không gian mẫu là số cách sắp xếp hành khách lên
toa tàu. Vì mỗi hành khách có
cách chọn toa nên có
cách xếp.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
hành khách bước lên tàu mà mỗi toa có ít nhất
hành khách
. Để tìm số phần tử của biến cố
ta đi tìm số phần tử của biến cố
, tức có toa không có hành khách nào bước lên tàu, có
khả năng sau:
Trường hợp thứ nhất: Có toa không có hành khách bước lên.
+) Chọn trong
toa để không có khách bước lên, có
cách.
+) Sau đó cả hành khách lên toa còn lại, có
cách.
Do đó trường hợp này có cách.
Trường hợp thứ hai: Có toa không có hành khách bước lên.
+) Chọn trong
toa để không có khách bước lên, có
cách.
+) Hai toa còn lại ta cần xếp hành khách lên và mỗi toa có ít nhất
hành khách, có
.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Một nhóm học sinh có 30 học sinh, trong đó có 16 em học khá môn Toán, 25 em học khá môn Hóa học, 12 em học khá cả hai môn Toán và Hóa học. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó học khá môn Toán biết rằng học sinh đó học khá môn Hóa học?
Gọi A: “Học sinh đó học khá môn Toán”
Và B: “Học sinh đó học khá môn Hóa học”
Theo bài ra ta có:
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: