Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Xác suất có điều kiện Cánh Diều (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Tính P(A|B)

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024, P(B) = 0,2025. Tính P\left( A|B \right).

    Hướng dẫn:

    Ta có: AB là hai biến cố độc lập nên: P\left( A|B \right) = P(A) = 0,2024

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Cho một hộp kín có 6 thẻ ngân hàng của BIDV và 4 thẻ ngân hàng của Techcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ngân hàng của Techcombank nếu biết lần thứ nhất đã lấy được thẻ ngân hàng của BIDV

    Hướng dẫn:

    Gọi A là biến cố “lần thứ hai lấy được thẻ ngân hàng Techcombank“, B là biến cố “lần thứ nhất lấy được thẻ ngân hàng của BIDV “.

    Ta cần tìm P\left( A|B ight) Sau khi lấy lần thứ nhất (biến cố B đã xảy ra) trong hộp còn lại 9 thẻ (trong đó 4 thẻ Techcombank) nên P\left( A|B
ight) = \frac{4}{9}.

  • Câu 3: Thông hiểu
    Ghi đáp án đúng vào ô trống

    Một bình đựng 30 viên bi kích thước, chất liệu như nhau, trong đó có 20 viên bi xanh và 10 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai. (Làm tròn kết quả đến hàng phần trăm)

    Đáp án: 0,23

    Đáp án là:

    Một bình đựng 30 viên bi kích thước, chất liệu như nhau, trong đó có 20 viên bi xanh và 10 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai. (Làm tròn kết quả đến hàng phần trăm)

    Đáp án: 0,23

    Gọi A: “Lấy được một viên bi xanh ở lần thứ nhất”

    B: “Lấy được một viên bi trắng ở lần thứ hai”.

    Ta cần tính P(A \cap B)

    Vì 20 viên bi xanh trong tổng số 30 viên bi nên P(A) = \frac{20}{30} = \frac{2}{3}

    Do A xảy ra, tức là 1 viên bi xanh đã được lấy ra và còn có 29 viên bi trong đó có 10 viên bi trắng nên P\left( B\left| A ight.\  ight) =
\frac{10}{29}.

    Vậy xác suất cần tìm là P(A \cap B) =
P(A).P\left( B\left| A ight.\  ight) = \frac{2}{3}.\frac{10}{29} =
\frac{20}{87} \approx 0,23.

  • Câu 4: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ An được 0,1 điểm, làm đúng mỗi câu trung bình An được 0,25 điểm và làm đúng mỗi câu khó An được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi An làm 3 câu thuộc 3 loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Đáp án là:

    Bạn An đang làm đề ôn tập theo ba mức độ dễ, trung bình và khó. Xác suất để An hoàn thành câu dễ là 0,8; hoàn thành câu trung bình là 0,6và hoàn thành câu khó là 0,15. Làm đúng mỗi một câu dễ An được 0,1 điểm, làm đúng mỗi câu trung bình An được 0,25 điểm và làm đúng mỗi câu khó An được 0,5điểm. Hãy cho biết các khẳng định sau đây đúng hay sai?

    a) Xác suất để An làm ba câu thuộc ba loại và đúng cả ba câu là 72\%. Sai||Đúng

    b) Khi An làm 3 câu thuộc 3 loại khác nhau. Xác suất để An làm đúng 2 trong số 3 câu là 0,45. Sai||Đúng

    c) Khi An làm 3 câu thì xác suất để An làm đúng 3 câu đủ ba loại cao hơn xác suất An làm sai 3 câu ở mức độ trung bình. Đúng||Sai

    d) Xác suất để An làm 5 câu và đạt đúng 2 điểm lớn hơn 0,2\%. Sai||Đúng

    Gọi A là biến cố An làm đúng câu dễ

    B là biến cố An làm đúng câu trung bình

    C là biến cố An làm đúng câu khó.

    Khi đó A, B, C độc lập với nhau.

    a) Xác suất để An làm ba câu thuộc ba loại trên và đúng cả ba câu là:

    P = P(A).P(B).P(C) = 0,072 = 7,2\%. Khẳng định Sai.

    b) Xác suất để An làm đúng 2 trong số 3 câu là:

    P\left( \overline{A} ight).P(B).P(C) +
P(A).P\left( \overline{B} ight).P(C). + P(A).P(B).P\left( \overline{C}
ight)

    = 0,2.0,6.0,15 + 0,8.0,4.0,15 +
0,8.0,6.0,85 = 0,474

    Khẳng định Sai.

    c) Xác suất để An làm đúng 3 câu đủ ba loại là:

    P = P(A).P(B).P(C) = 0,072 = 7,2\%

    Xác suất An làm sai 3 câu mức độ trung bình. (0,4)^{3} = 0,064.

    Khẳng định Đúng.

    d) Để An làm 5 câu và đạt đúng 2 điểm có các trường hợp sau:

    TH1: Đúng 4 câu khó và câu còn lại sai

    (0,15)^{4}(0,2 + 0,4 + 0,85) =
7,34.10^{- 4}

    TH2: Đúng 3 câu khó và đúng 2 câu trung bình

    (0,15)^{3}.(0,6)^{2} = 1,215.10^{-
4}

    Vậy xác suất cần tìm là 0,1949\%

    Khẳng định Sai.

  • Câu 5: Nhận biết
    Chọn công thức đúng

    Nếu A,B là hai biến cố bất kì thì

    Hướng dẫn:

    Công thức cần tìm là: P(A \cap B) =
P(A).P(B|A)

  • Câu 6: Nhận biết
    Tính P(A|B)

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024; P(B) = 0,2025.

    Tính P\left( A\left| B
\right.\  \right).

    Hướng dẫn:

    Ta có: AB là hai biến cố độc lập nên: P\left( A\left| B \right.\  \right) = P(A) =
0,2024

  • Câu 7: Nhận biết
    Tính xác suất

    Cho hai biến cố A;B với P(A) = \frac{1}{3};P(B) = \frac{1}{2};P(A + B) =
\frac{3}{4}. Tính P\left(
\overline{A} + \overline{B} ight)?

    Hướng dẫn:

    Ta có:

    P(A.B) = P(A) + P(B) - P(A + B) =
\frac{1}{12}

    P\left( \overline{A} + \overline{B}
ight) = P\left( \overline{A}\overline{B} ight) = 1 - P(AB) =
\frac{11}{12}

  • Câu 8: Nhận biết
    Tìm không gian mẫu của phép thử

    Một hộp chứa bốn viên bi cùng loại ghi số lần lượt từ 1 đến 4. Bạn Mạnh lấy ra một cách ngẫu nhiên một viên bi, bỏ viên bi đó ra ngoài và lấy ra một cách ngẫu nhiên thêm một viên bi nữa. Không gian mẫu của phép thử đó là

    Hướng dẫn:

    Không gian mẫu là:

    \Omega = \begin{Bmatrix}
(1,2);\ \ (1,3);\ \ (1,4);\ \ (2,1);\ \ (2,3);\ \ (2,4);\ \  \\
(3,1);\ \ (3,2);\ \ (3,4);\ \ (4,1);\ \ (4,2);\ \ (4,3) \\
\end{Bmatrix},

  • Câu 9: Thông hiểu
    Ghi lời giải bài toán vào chỗ trống

    Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Nhận biết
    Tính xác suất P(A|B)

    Gieo con xúc xắc 1 lần. Gọi A là biến cố xuất hiện mặt 2 chấm. B là biến cố xuất hiện mặt chẵn. Xác suất P\left(
A|B \right)

    Hướng dẫn:

    Theo định nghĩa xác suất có điều kiện ta có: P\left( A|B \right) = \frac{P(A \cap B)}{P(B)} =
\frac{\frac{1}{6}}{\frac{3}{6}} = \frac{1}{3}

  • Câu 11: Nhận biết
    Tính xác suất của biến cố

    Cho hai biến cố A,B sao cho P(B) = 0,7P(AB) = 0,2. Tính P(A|B).

    Hướng dẫn:

    Ta có P(A|B) = \frac{P(AB)}{P(B)} =
\frac{0,2}{0,7} = \frac{2}{7}.

  • Câu 12: Nhận biết
    Tính P(A|B)

    Cho hai biến cố AB, với P(A) =
0,6, P(B) = 0,7, P(A \cap B) = 0,3. Tính P\left( A|B \right).

    Hướng dẫn:

    Ta có: P\left( A|B \right) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}

  • Câu 13: Nhận biết
    Chọn kết quả xác suất đúng

    Cho hai biến cố A,\ BP(A) = \frac{7}{15};P(AB) =
\frac{23}{145}. Kết quả của xác suất sau P(B \mid A) bằng bao nhiêu?

    Hướng dẫn:

    Ta có: P(AB) = P(A).P(B \mid
A)

    \Leftrightarrow P(B \mid A) =
\frac{P(AB)}{P(A)} = \frac{23}{145}:\frac{7}{15} =
\frac{69}{203}.

  • Câu 14: Thông hiểu
    Tính xác suất có điều kiện

    Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Bạn Hoa lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.

    Xét các biến cố:

    A: "Quả bóng lấy ra lần đầu có số chẵn"

    B: "Quả bóng lấy ra lần hai có số lẻ".

    Tính xác suất có điều kiện P\left( B|A
ight)?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}n(\Omega) = 12 \(A) = 6 \Rightarrow P(A) = \dfrac{6}{12} = \dfrac{1}{2} \(A \cap B) = 4 \Rightarrow P(A \cap B) = \dfrac{4}{12} = \dfrac{1}{3} \\\end{matrix} ight.

    Vậy P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{1}{3}}{\dfrac{1}{2}} = \dfrac{2}{3}

  • Câu 15: Thông hiểu
    Tìm xác suất P

    Áo sơ mi May10 trước khi xuất khẩu sang phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98\% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95\% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để 1 chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu?

    Hướng dẫn:

    Gọi A là biến cố ”Qua được lần kiểm tra đầu tiên” \Rightarrow P(A) = 0,98

    Gọi B là biên cố “Qua được lần kiểm tra thứ 2” \Rightarrow P\left( B|A ight) =
0,95

    Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên hay ta đi tính P(A \cap B)

    Ta có:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)}

    \Rightarrow P(A \cap B) = P\left( B|A
ight).P(A) = 0,95.0,98 = \frac{931}{1000}.

  • Câu 16: Nhận biết
    Tính xác suất có điều kiện

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024, P(B) = 0,2025. Tính P\left( A|B \right).

    Hướng dẫn:

    Theo bài ra ta có:

    AB là hai biến cố độc lập nên: P\left( A|B \right) = P(A) = 0,2024

  • Câu 17: Nhận biết
    Tính xác suất của biến cố B

    Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.

    Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"

    Và B: "Viên bi lấy ra lần thứ hai là bi trắng".

    Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?

    Hướng dẫn:

    Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.

    Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.

    Do đó, xác suất của biến cố B là: P(B) =
\frac{1}{2}.

  • Câu 18: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( A|B ight)?

    Hướng dẫn:

    Ta có: P\left( A|B ight) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}.

  • Câu 19: Nhận biết
    Tính xác suất

    Cho hai biến cố A;B với P(A + B) = \frac{3}{4}. Tính P\left( \overline{A}.\overline{B}
ight)?

    Hướng dẫn:

    Ta có: P\left( \overline{A}.\overline{B}
ight) = P\left( \overline{A + B} ight) = 1 - P(A + B) =
\frac{1}{4}

  • Câu 20: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB độc lập, biết P(A) = 0,4;\ P(B) = 0,7. Khi đó P\left( \overline{B}|A \right) bằng

    Hướng dẫn:

    AB là hai biến cố độc lập nên ta có: P(AB) = P(A).P(B) = 0,4\ .\ 0,7 =
0,28

    Ta có: P\left( \overline{B}|A \right) = 1- P\left( B|A \right)= 1 - \frac{P(AB)}{P(A)} = 1 - \frac{0,28}{0,4} =\frac{3}{10}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo