Giao diện mới của VnDoc Pro: Dễ sử dụng hơn - chỉ tập trung vào lớp bạn quan tâm. Vui lòng chọn lớp mà bạn quan tâm: Lưu và trải nghiệm
Đóng
Điểm danh hàng ngày
  • Hôm nay +3
  • Ngày 2 +3
  • Ngày 3 +3
  • Ngày 4 +3
  • Ngày 5 +3
  • Ngày 6 +3
  • Ngày 7 +5
Bạn đã điểm danh Hôm nay và nhận 3 điểm!
Nhắn tin Zalo VNDOC để nhận tư vấn mua gói Thành viên hoặc tải tài liệu Hotline hỗ trợ: 0936 120 169
Đóng
Bạn đã dùng hết 1 lần làm bài Trắc nghiệm miễn phí. Mời bạn mua tài khoản VnDoc PRO để tiếp tục! Tìm hiểu thêm

Trắc nghiệm Toán 12 Xác suất có điều kiện Cánh Diều (Mức Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu!!
00:00:00
  • Câu 1: Nhận biết
    Xác định phần tử của biến cố

    Một hộp chứa 5 quả bóng gồm 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên hai quả bóng liên tiếp không hoàn lại.

    Xét các biến cố A: "Quả bóng lấy ra đầu tiên có màu đỏ"

    B: "Tổng số của hai quả bóng lấy ra là số lẻ"

    Xác định B|A là biến cố B khi biết A đã xảy ra?

    Hướng dẫn:

    Khi A đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).

    Do đó, không gian mẫu mới là

    \Omega' = A = \left\{
(1;2),(1;3),(1;4),(1;5),(2;1),(2;3),(2;4),(2;5) ight\}

    Biến cố B khi biết A đã xảy ra là:

    B|A = A \cap B = \left\{
(1;2),(1;4),(2;1),(2;3),(2;5) ight\}

  • Câu 2: Thông hiểu
    Chọn đáp án đúng

    Một công nhân đứng hai máy hoạt động độc lập nhau. Xác suất để máy thứ nhất, máy thứ 2 không bị hỏng trong một ca làm việc lần lượt là 0,90,8. Tính xác suất để cả 2 máy đều không bị hỏng trong một ca làm việc?

    Hướng dẫn:

    Gọi A là biến cố cả 2 máy đều không bị hỏng trong một ca làm việc

    Theo yêu cầu của đầu bài, ta phải tính P(A)

    Nếu gọi Ai là biến cố máy thứ i không bị hỏng trong một ca làm việc với (i = 1, 2)

    Khi đó ta có: A = A_1.A_2

    Vì vậy xác suất cần tìm là: P(A) = P(A_1.A_2)

    Theo giả thiết A1, A2 là 2 biến cố độc lập với nhau nên ta có:

    P(A) = P(A_1.A_2) = P(A_1).P(A_2) = 0,72

  • Câu 3: Nhận biết
    Chọn đáp án đúng

    Cho một hộp kín có 6 thẻ ngân hàng của BIDV và 4 thẻ ngân hàng của Techcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ngân hàng của Techcombank nếu biết lần thứ nhất đã lấy được thẻ ngân hàng của BIDV

    Hướng dẫn:

    Gọi A là biến cố “lần thứ hai lấy được thẻ ngân hàng Techcombank“, B là biến cố “lần thứ nhất lấy được thẻ ngân hàng của BIDV “.

    Ta cần tìm P\left( A|B ight) Sau khi lấy lần thứ nhất (biến cố B đã xảy ra) trong hộp còn lại 9 thẻ (trong đó 4 thẻ Techcombank) nên P\left( A|B
ight) = \frac{4}{9}.

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Một cửa hàng sách ước lượng rằng: trong tổng số các khách hàng đến cửa hàng có 30\% khách cần hỏi nhân viên bán hàng, 20\% khách mua sách và 15\% khách thực hiện cả hai điều trên. Gặp ngẫu nhiên một khách trong nhà sách. Tính xác suất để người này không mua sách, biết rằng người này đã hỏi nhân viên bán hàng?

    Hướng dẫn:

    Gọi A là "khách hỏi nhân viên bán hàng" và B là "khách mua sách".

    Ta có: \left\{ \begin{matrix}
P(A) = 0,3;P(B) = 0,2 \\
P(AB) = 0,15 \\
\end{matrix} ight.

    P\left( \overline{B}|A ight) =
\frac{P\left( \overline{B}|A ight)}{P(A)} = \frac{P(A) - P(AB)}{P(A)}
= 0,5.

  • Câu 5: Nhận biết
    Chọn kết quả xác suất đúng

    Cho hai biến cố A,\ BP(A) = \frac{7}{15};P(AB) =
\frac{23}{145}. Kết quả của xác suất sau P(B \mid A) bằng bao nhiêu?

    Hướng dẫn:

    Ta có: P(AB) = P(A).P(B \mid
A)

    \Leftrightarrow P(B \mid A) =
\frac{P(AB)}{P(A)} = \frac{23}{145}:\frac{7}{15} =
\frac{69}{203}.

  • Câu 6: Nhận biết
    Tính P(AB)

    Cho hai biến cố A,\ B với P(B) = 0,8;P(A/B) = 0,5. Tính P(AB).

    Hướng dẫn:

    Ta có P(AB) = P(A/B)P(B) = 0,5.0,8 =
0,4

  • Câu 7: Thông hiểu
    Chọn phương án thích hợp

    Một nhóm học sinh có 30 học sinh, trong đó có 16 em học khá môn Toán, 25 em học khá môn Hóa học, 12 em học khá cả hai môn Toán và Hóa học. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó học khá môn Toán biết rằng học sinh đó học khá môn Hóa học.

    Hướng dẫn:

    Gọi A: “Học sinh đó học khá môn Toán”,

    Và B: “Học sinh đó học khá môn Hóa học”.

    Từ bài ra ta có P(A) =
\frac{16}{30}, P(B) =
\frac{25}{30}; P(AB) =
\frac{12}{30}.

    P\left( A|B \right) = \frac{P(AB)}{P(B)}
= \frac{12}{25} = 0,48.

  • Câu 8: Thông hiểu
    Tính xác suất có điều kiện

    Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.

    Hướng dẫn:

    Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”

    Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.

    Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì P\left( B|A \right) = \frac{1}{6}

  • Câu 9: Nhận biết
    Tính xác suất P(A|B)

    Gieo con xúc xắc 1 lần. Gọi A là biến cố xuất hiện mặt 2 chấm. B là biến cố xuất hiện mặt chẵn. Xác suất P\left(
A|B \right)

    Hướng dẫn:

    Theo định nghĩa xác suất có điều kiện ta có: P\left( A|B \right) = \frac{P(A \cap B)}{P(B)} =
\frac{\frac{1}{6}}{\frac{3}{6}} = \frac{1}{3}

  • Câu 10: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024;P(B) = 0,2025. Tính P\left( B|\overline{A} ight)?

    Hướng dẫn:

    Hai biến cố \overline{A}B là hai biến cố độc lập nên P\left( B|\overline{A} ight) = P(B) =
0,2025.

  • Câu 11: Nhận biết
    Tính P(A|B)

    Cho hai biến cố AB, với P(A) =
0,6, P(B) = 0,7, P(A \cap B) = 0,3. Tính P\left( A|B \right).

    Hướng dẫn:

    Ta có: P\left( A|B \right) = \frac{P(A
\cap B)}{P(B)} = \frac{0,3}{0,7} = \frac{3}{7}

  • Câu 12: Nhận biết
    Tìm không gian mẫu của phép thử

    Một hộp chứa bốn viên bi cùng loại ghi số lần lượt từ 1 đến 4. Bạn Mạnh lấy ra một cách ngẫu nhiên một viên bi, bỏ viên bi đó ra ngoài và lấy ra một cách ngẫu nhiên thêm một viên bi nữa. Không gian mẫu của phép thử đó là

    Hướng dẫn:

    Không gian mẫu là:

    \Omega = \begin{Bmatrix}
(1,2);\ \ (1,3);\ \ (1,4);\ \ (2,1);\ \ (2,3);\ \ (2,4);\ \  \\
(3,1);\ \ (3,2);\ \ (3,4);\ \ (4,1);\ \ (4,2);\ \ (4,3) \\
\end{Bmatrix},

  • Câu 13: Nhận biết
    Tính xác suất

    Cho hai biến cố AB, với P(A) =
0,8;P(B) = 0,65;P\left( A \cap \overline{B} ight) = 0,55. Tính P(A \cap B)?

    Hướng dẫn:

    Ta có:

    P\left( A \cap \overline{B} ight) +
P(A \cap B) = P(A)

    \Rightarrow P(A \cap B) = P(A) - P\left(
A \cap \overline{B} ight) = 0,8 - 0,55 = 0,25.

  • Câu 14: Nhận biết
    Chọn kết luận đúng

    Cho AB là hai biến cố, trong đó P(B) > 0. Khi đó

    Hướng dẫn:

    Ta có : P\left( \left. \ A \right|B
\right) = \frac{P(A \cap B)}{P(B)}.

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB, với P(A) =
0,6, P(B) = 0,7, P(A \cap B) = 0,3. Tính P\left( \overline{B}|A \right).

    Hướng dẫn:

    Ta có: P\left( \overline{B}|A \right) = 1- P\left( B|A \right)= 1 - \frac{P(A \cap B)}{P(A)}= 1 -\frac{0,3}{0,6} = 1 - \frac{1}{2} = \frac{1}{2}

  • Câu 16: Nhận biết
    Tìm kết luận đúng nhất

    Cho hai biến cố ABP(B)
> 0P\left( A|B \right) =
0,7. Tính P\left( \overline{A}|B
\right) có kết quả là

    Hướng dẫn:

    Với mọi biến cố AB, P(B) >
0 ta có P\left( \overline{A}|B
\right) = 1 - P\left( A|B \right) = 1 - 0,7 = 0,3.

  • Câu 17: Thông hiểu
    Xét tính đúng sai của các khẳng định

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A,B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) AB là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai||Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai||Đúng

    Đáp án là:

    Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi A,B lần lượt là biến cố thắng thầu dự án 1 và dự án 2.

    a) AB là hai biến độc lập. Đúng||Sai

    b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3. Đúng||Sai

    c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là 0,4. Sai||Đúng

    d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án 0,8. Sai||Đúng

    Đề bài: P(A) = 0,5 \Rightarrow P\left(
\overline{A} ight) = 0,5;P(B) = 0,6 \Rightarrow P\left( \overline{B}
ight) = 0,4

    P(A \cap B) = 0,4

    a) A,B độc lập \Leftrightarrow P(A \cap B) =
P(A).P(B)

    0,4 eq 0,5.0,6 nên A,B không độc lập

    b) Gọi C là biến cố thắng thầu đúng 1 dự án

    P(C) = P\left( A \cap \overline{B}
ight) + P\left( \overline{A} \cap B ight) = P(A) - P(A \cap B) +
P(B) - P(A \cap B) = P(A) + P(B) -
2P(A \cap B) = 0,5 + 0,6 - 2.0,4 = 0,3

    c) Gọi D là biến cố thắng dự 2 biết thắng dự án 1

    P(D) = P\left( B|A ight) = \frac{P(B
\cap A)}{P(A)} = \frac{0,4}{0,5} = 0,8

    d) Gọi E là biến cố “thắng dự án 2 biết không thắng dự án 1”

    P(E) = P\left( B|\overline{A} ight) =
\frac{P\left( B \cap \overline{A} ight)}{P\left( \overline{A}
ight)}

    = \frac{P(B) - P(A \cap B)}{P\left(
\overline{A} ight)} = \frac{0,6 - 0,4}{0,5} = 0,4

  • Câu 18: Nhận biết
    Tìm kết quả đúng

    Cho hai biến cố AB, với P(A) =
0,8;P(B) = 0,65;P\left( A \cap \overline{B} ight) = 0,55. Tính P\left( \overline{A} \cap B
ight)?

    Hướng dẫn:

    Ta có:

    P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,65 - 0,25 = 0,4.

  • Câu 19: Nhận biết
    Chọn mệnh đề đúng

    Cho hai biến cố AB. Chọn mệnh đề đúng?

    Hướng dẫn:

    Ta có: P(A \cap B) = P(A).P\left( B|A
\right) = P(B).P\left( A|B \right).

  • Câu 20: Nhận biết
    Tính xác suất có điều kiện

    Một mảnh đất chia thành hai khu vườn. Khu A có 150 cây ăn quả, khu B có 200 cây ăn quả. Trong đó, số cây Táo ở khu A và khu B lần lượt là 50 cây và 100 cây. Chọn ngẫu nhiên 1 cây trong mảnh đất. Xác suất cây được chọn là cây Táo , biết rằng cây đó ở khu B, là :

    Hướng dẫn:

    Xét các biến cố : E: “Cây chọn được là cây Táo”, F: “Cây chọn được ở khu B”

    Ta có: P\left( E\left| F
\right.\  \right) = \frac{n(E \cap F)}{n(F)} = \frac{100}{200} =
\frac{1}{2}.

    Vậy xác suất cây được chọn là cây Táo, biết rằng cây đó ở Khu B, là \frac{1}{2}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (75%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • Điểm thưởng: 0
Làm lại
Xác thực tài khoản!

Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây:

Số điện thoại chưa đúng định dạng!
Số điện thoại này đã được xác thực!
Bạn có thể dùng Sđt này đăng nhập tại đây!
Lỗi gửi SMS, liên hệ Admin
Sắp xếp theo