Cho hai biến cố với
. Tính
?
Ta có:
Cho hai biến cố với
. Tính
?
Ta có:
Một đợt xổ số phát hành vé, trong đó có
vé có thưởng. Một người mua
vé
. Tính xác suất để người đó có ít nhất một vé trúng thưởng
Gọi A: “Người đó có ít nhất một vé trúng thưởng”.
: “người đó không có vé trúng thưởng”
Ta có: khi đó
Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt bốc từng bi và không trả lại bi được bốc vào hộp. Giả sử lần đầu tiên bốc được bi trắng. Xác suất lần thứ 2 bốc được bi đỏ là
Gọi A là biến cố “lần 1 bốc được bi trắng”
Gọi B là biến cố “lần 2 bốc được bi đỏ”
Xác suất lần 2 bốc được bi đỏ khi lần 1 đã bốc được bi trắng là
Ta có: ;
Do đó: .
Cho hai biến cố ,
với
. Phát biểu nào sau đây đúng?
Theo công thức xác suất toàn phần, ta có:
.
Cho hai biến cố với
;
và
. Tính xác suất của
.
Xác suất của biến cố là:
.
Cho hai biến cố và
, với
. Tính
?
Ta có:
.
Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.
Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"
Và B: "Viên bi lấy ra lần thứ hai là bi trắng".
Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?
Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.
Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.
Do đó, xác suất của biến cố B là: .
Cho hai biến cố có
. Kết quả của xác suất sau
bằng bao nhiêu?
Ta có:
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”.
Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.
Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì .
Cho hai biến cố và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Cho hai biến cố với
. Tính
.
Ta có
Cho hai biến cố và
, với
,
,
. Tính
.
Ta có:
Một túi đựng bi xanh và
bi đỏ. Lấy ngẫu nhiên
bi. Xác suất để cả hai bi đều đỏ là:
Ta có số phần từ của không gian mẫu là .
Gọi : "Hai bi lấy ra đều là bi đỏ".
Khi đó .
Vậy xác suất cần tính là .
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.
Gọi là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”
Gọi là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.
Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì
Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Anh, trong đó có 1 bạn nữ và 2 bạn nam. Giáo viên chủ nhiệm gọi ngẫu nhiên 1 bạn lên bảng, khi đó:
a) Xác suất để có tên Anh là .Đúng||Sai
b) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nữ là .Sai||Đúng
c) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nam là .Đúng||Sai
d) Nếu giáo viên chủ nhiệm gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là .Sai||Đúng
Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Anh, trong đó có 1 bạn nữ và 2 bạn nam. Giáo viên chủ nhiệm gọi ngẫu nhiên 1 bạn lên bảng, khi đó:
a) Xác suất để có tên Anh là .Đúng||Sai
b) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nữ là .Sai||Đúng
c) Xác suất để có tên Anh, nhưng với điều kiện bạn đó nam là .Đúng||Sai
d) Nếu giáo viên chủ nhiệm gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là .Sai||Đúng
Gọi A là biến cố “tên là Anh”
Gọi B là biến cố “nữ”.
a) Xác suất để học sinh được gọi có tên là Anh là: .
b) Xác suất để thầy giáo gọi bạn đó lên bảng có tên Anh, nhưng với điều kiện bạn đó nữ là
Ta có:
c) Gọi C là biến cố “nam”.
Xác suất để thầy giáo gọi bạn đó lên bảng có tên Anh, nhưng với điều kiện bạn đó nam là
Ta có:
.
d) Nếu thầy giáo gọi 1 bạn có tên là Anh lên bảng thì xác xuất để bạn đó là bạn nữ là ,
.
Cho hai biến cố và
, với
. Tính
?
Ta có:
.
Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?
Gieo hai con xúc xắc cân đối, đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn hoặc bằng 10, nếu biết rằng có ít nhất một con đã ra mặt 5 chấm?
Cho hai biến cố và
. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được gọi là xác suất của
với điều kiện
, ký hiệu là
. Phát biểu nào sau đây đúng?
Công thức tính xác suất của biến cố khi biết biến cố
đã xảy ra
là:
.
Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng.
a) Xác suất để lần thứ nhất lấy được bóng đèn loại II là . Sai||Đúng
b) Xác suất để lần thứ hai lấy được bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là . Đúng||Sai
c) Xác suất để cả hai lần đều lấy được bóng đèn loại II là . Sai||Đúng
d) Xác suất để ít nhất 1 lần lấy được bóng đèn loại I là . Đúng||Sai
Trong một cửa hàng có 18 bóng đèn loại I và 2 bóng đèn loại II, các bóng đèn có hình dạng và kích thước như nhau. Một một người mua hàng lấy ngẫu nhiên lần lượt 2 bóng đèn (lấy không hoàn lại) trong cửa hàng.
a) Xác suất để lần thứ nhất lấy được bóng đèn loại II là . Sai||Đúng
b) Xác suất để lần thứ hai lấy được bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là . Đúng||Sai
c) Xác suất để cả hai lần đều lấy được bóng đèn loại II là . Sai||Đúng
d) Xác suất để ít nhất 1 lần lấy được bóng đèn loại I là . Đúng||Sai
Xét các biến cố: A: "Lần thứ nhất lấy được bóng đèn loại II"; B: "Lần thứ hai lấy được bóng đèn loại II".
a) Xác suất đề lần thứ nhất lấy được bóng đèn loại II là: .
b) Sau khi lấy 1 bóng đèn loại II thì chỉ còn 1 bóng đèn loại II trong hộp. Suy ra xác suất để lần thứ hai lấy được quá bóng đèn loại II, biết lần thứ nhất lấy được bóng đèn loại II là: .
c) Khi đó, xác suất để cả hai lần đều lấy được bóng đèn loại II là:
.
d) Để ít nhất 1 lần lấy được bóng đèn loại I là:
.
Một hộp chứa bốn viên bi cùng loại ghi số lần lượt từ đến
. Bạn Mạnh lấy ra một cách ngẫu nhiên một viên bi, bỏ viên bi đó ra ngoài và lấy ra một cách ngẫu nhiên thêm một viên bi nữa. Không gian mẫu của phép thử đó là
Không gian mẫu là:
,
Theo Nghị định 147/2024/ND-CP, bạn cần xác thực tài khoản trước khi sử dụng tính năng này. Chúng tôi sẽ gửi mã xác thực qua SMS hoặc Zalo tới số điện thoại mà bạn nhập dưới đây: